Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 25 maja 2025 17:50
  • Data zakończenia: 25 maja 2025 18:12

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Która z podanych wartości powinna zostać uwzględniona na wykresie pionowości krawędzi obiektu budowlanego?

A. Przemieszczenie w kierunku pionowym
B. Różnica wysokości
C. Odchylenie od pionu
D. Deformacja
Odchylenie od pionu to kluczowa wielkość, która mierzy, jak dalece krawędź budynku odbiega od idealnej linii pionowej. Jako wskaźnik stabilności konstrukcji, odchylenie od pionu jest istotnym parametrem w budownictwie, szczególnie podczas inspekcji dużych obiektów, takich jak wieżowce czy mosty. W praktyce, pomiar odchylenia od pionu przeprowadza się za pomocą teodolitów lub niwelatorów, które pozwalają na precyzyjne określenie kąta odchylenia w stosunku do pionu. Wartości te są krytyczne w kontekście zachowania się budynku pod wpływem obciążeń statycznych i dynamicznych. Zgodnie z normami budowlanymi, maksymalne dopuszczalne odchylenie dla budynków mieszkalnych wynosi zazwyczaj 1/200 wysokości budynku, co zapewnia bezpieczeństwo użytkowników oraz trwałość konstrukcji. Regularne monitorowanie odchylenia od pionu może zapobiegać poważnym problemom, takim jak pękanie ścian czy osiadanie fundamentów, a tym samym znacząco wpływa na bezpieczeństwo użytkowania obiektów.

Pytanie 2

Jakiego z wymienionych przyrządów należy użyć do pomiaru przemieszczeń w kierunku pionowym przęseł mostu?

A. Inklinometru
B. Tensometru
C. Niwelatora
D. Pionownika
Niwelator jest instrumentem pomiarowym, który doskonale nadaje się do pomiaru przemieszczeń pionowych przęseł mostów. Działa na zasadzie pomiaru różnicy wysokości pomiędzy dwoma lub więcej punktami, co umożliwia precyzyjne określenie zmian w poziomie konstrukcji, które mogą wystąpić w wyniku obciążeń, osiadania gruntu czy też wpływu warunków atmosferycznych. W praktyce, użycie niwelatora jest zgodne z normami budowlanymi, które wymagają regularnego monitorowania stabilności budowli. Na przykład, w przypadku mostów, gdzie zmiany w wysokości mogą prowadzić do niebezpiecznych sytuacji, niwelator umożliwia skuteczne wykrywanie oraz analizowanie przemieszczeń. Zastosowanie tej metody pomiarowej jest kluczowe w utrzymaniu bezpieczeństwa infrastruktury, dlatego inżynierowie regularnie korzystają z niwelacji podczas inspekcji oraz konserwacji mostów, aby zapewnić ich długotrwałą stabilność i funkcjonalność. Warto również dodać, że niwelatory są wykorzystywane w różnych aplikacjach budowlanych, w tym w geodezji i inżynierii lądowej, co czyni je uniwersalnym narzędziem w pomiarach geodezyjnych.

Pytanie 3

Na jakiej odległości od startu trasy usytuowany jest punkt 1/5+78,00 m?

A. 278,00 m
B. 578,00 m
C. 1578,00 m
D. 2578,00 m
Odpowiedź 1578,00 m jest prawidłowa, ponieważ punkt oznaczony jako 1/5+78,00 m oznacza, że od początku trasy, który jest punktem odniesienia, do punktu 1/5 znajdują się 1578,00 m. Przy obliczeniach można spotkać się z różnymi systemami oznaczania odległości, co w praktyce oznacza, że kluczowe jest zrozumienie konwencji i sposobu, w jaki różne punkty są numerowane lub oznaczane. Standardy branżowe, takie jak normy ISO dotyczące pomiarów geodezyjnych, jasno określają, jak należy interpretować tego typu oznaczenia. Dla inżynierów i specjalistów zajmujących się planowaniem tras, umiejętność prawidłowego odczytywania takich informacji jest niezbędna, zwłaszcza w kontekście projektowania infrastruktury transportowej, gdzie precyzyjne określenie odległości jest kluczowe dla bezpieczeństwa i efektywności ruchu drogowego.

Pytanie 4

Rezultaty pomiarów kątów i kierunków dotyczące geodezyjnych pomiarów sytuacyjnych oraz wysokościowych zapisuje się z dokładnością

A. 0,1000g
B. 0,0100g
C. 0,0001g
D. 0,0010g
Pomiar kierunków i kątów w geodezyjnych pomiarach sytuacyjnych i wysokościowych wymaga bardzo wysokiej precyzji, co znajduje odzwierciedlenie w poprawnej odpowiedzi 0,0001g. Taka dokładność jest niezbędna w wielu zastosowaniach geodezyjnych, szczególnie w projektach wymagających precyzyjnego określenia pozycji i wysokości. Standardy takie jak ISO 17123 określają metody oraz wymagania dla pomiarów geodezyjnych, w tym dokładność sprzętu pomiarowego. Przykładem zastosowania precyzyjnych pomiarów jest budownictwo, gdzie nawet najmniejsze odchylenia mogą prowadzić do poważnych błędów w konstrukcji. Geodeci często używają poziomów optycznych i tachimetrów, które umożliwiają uzyskanie wyników z dokładnością do dziesiątych części milimetry. W praktyce, inwestycje w sprzęt o wysokiej precyzji oraz stosowanie normatywnych procedur pomiarowych zwiększa jakość i niezawodność danych geodezyjnych, co jest kluczowe dla sukcesu projektów budowlanych oraz inżynieryjnych.

Pytanie 5

W jakim celu stosuje się metodę biegunową w pomiarach geodezyjnych?

A. Do określania kąta nachylenia powierzchni w projektach architektonicznych.
B. Do wyznaczania kątów poziomych pomiędzy punktami w terenie.
C. Do wykonywania pomiarów przemieszczeń w pionie w budownictwie.
D. Do określania współrzędnych punktów na podstawie jednej odległości i dwóch kątów.
Metoda biegunowa to jedna z najważniejszych i najczęściej stosowanych metod w geodezji. Jej głównym celem jest określanie współrzędnych punktów w terenie na podstawie jednej odległości i dwóch kątów — poziomego i pionowego. Dzięki tej metodzie można precyzyjnie ustalić lokalizację punktów w przestrzeni, co jest kluczowe w wielu zastosowaniach inżynieryjnych i budowlanych. W praktyce geodezyjnej metoda ta jest nieoceniona ze względu na swoją dokładność i efektywność. Na przykład, przy realizacji projektów infrastrukturalnych, takich jak budowa dróg, mostów czy budynków, precyzyjne określenie położenia punktów względem siebie jest niezbędne do prawidłowego przebiegu prac. Metoda biegunowa jest również szeroko stosowana w kartografii oraz przy tworzeniu map topograficznych. W standardach branżowych i dobrych praktykach geodezyjnych uznawana jest za podstawową technikę pomiarową, której znajomość jest niezbędna dla każdego profesjonalnego geodety. Dzięki jej zastosowaniu możliwe jest unikanie błędów w lokalizacji i zapewnienie zgodności projektów budowlanych z planami.

Pytanie 6

Oznaczenie punktu na profilu poprzecznym trasy L 14,5 wskazuje, że jego odległość od osi trasy po lewej stronie wynosi

A. 145,000 m
B. 0,145 m
C. 1,450 m
D. 14,500 m
Odpowiedź 14,500 m jest właściwa, ponieważ w kontekście profilu poprzecznego trasy, oznaczenie L 14,5 wskazuje na odległość od osi trasy w metrach. System oznaczeń stosowany w inżynierii lądowej i transportowej, w tym w projektowaniu dróg i kolei, przyjmuje, że wartości po 'L' są podawane w metrach, a ich liczba jest interpretowana jako odległość od linii centralnej. Przykładowo, jeżeli mamy trasę kolejową, oznaczenie L 14,5 może odnosić się do konkretnego punktu, który znajduje się 14,5 metra na lewo od osi centralnej torów. Tego rodzaju dane są kluczowe przy planowaniu infrastruktury, gdyż pozwalana na precyzyjne rozmieszczenie elementów takich jak perony, przejazdy, czy urządzenia sygnalizacyjne. Zrozumienie tego systemu oznaczeń jest niezbędne dla inżynierów, architektów i osób zajmujących się projektowaniem infrastruktury transportowej, aby zapewnić efektywne i bezpieczne użytkowanie dróg i tras kolejowych.

Pytanie 7

Podczas jakiej procedury geodezyjnej stosuje się niwelację geometryczną?

A. Podczas pomiaru odległości w terenie za pomocą metod geodezyjnych.
B. Podczas tworzenia map tematycznych związanych z ukształtowaniem terenu.
C. Podczas pomiaru różnic wysokości między punktami.
D. Podczas wyznaczania kierunków magnetycznych w terenie.
Niwelacja geometryczna to jedna z podstawowych metod pomiarowych w geodezji, używana do określania różnic wysokości pomiędzy punktami terenu. Jej główną cechą jest wykorzystanie poziomej linii celowania, co pozwala na bezpośrednie odczytywanie różnic wysokości. W praktyce geodezyjnej niwelacja geometryczna jest stosowana w wielu sytuacjach, takich jak projektowanie dróg, mostów, czy budowli, gdzie precyzyjne dane wysokościowe są kluczowe. Proces ten polega na ustawieniu niwelatora na statywie i wykonywaniu odczytów na łatach niwelacyjnych umieszczonych na określonych punktach. Dzięki niemu można uzyskać bardzo dokładne pomiary, co jest niezbędne w wielu projektach inżynieryjnych. Niwelacja geometryczna jest preferowaną metodą w przypadku konieczności uzyskania wysokiej precyzji w krótkim dystansie. Metoda ta jest zgodna z międzynarodowymi standardami geodezyjnymi i uznawana za jedną z najdokładniejszych dostępnych metod pomiarowych. Dlatego jej zastosowanie w pomiarach różnic wysokości jest nie tylko praktyczne, ale i zgodne z najlepszymi praktykami branżowymi.

Pytanie 8

Jaką wartość ma poprawka kątowa do jednego kąta w zamkniętym ciągu poligonowym, jeśli ciąg zawiera 5 kątów, a odchylenie kątowe wynosi fα = +30cc?

A. Vkt = +6cc
B. Vkt = -6cc
C. Vkt = +5cc
D. Vkt = -5cc
Wartości Vkt = +5cc i Vkt = +6cc są niepoprawne, ponieważ nie uwzględniają istotnego aspektu pomiarów kątowych w ciągach poligonowych zamkniętych. Głównym błędem w tych odpowiedziach jest zignorowanie faktu, że w ciągu poligonowym zamkniętym, suma kątów powinna równać się 360 stopni, a każde odchylenie od tej wartości musi być skorygowane. Odchyłka kątowa fα = +30cc wskazuje na nadwyżkę kątów, co sugeruje, że z powodu błędów pomiarowych suma kątów przekracza 360 stopni. W takim przypadku poprawki kątowe powinny być ujemne, aby zmniejszyć sumę kątów do wymaganej wartości. Dlatego przy obliczaniu poprawki kątowej, powinniśmy dzielić całkowitą odchyłkę przez liczbę kątów, co daje Vkt = fα / n, gdzie n wynosi 5. Obliczenie pokazuje, że Vkt powinno wynosić -6cc. Stąd wartości dodatnie, takie jak +5cc czy +6cc, są nie tylko błędne, ale również mogą prowadzić do poważnych konsekwencji w praktyce inżynieryjnej, gdzie precyzyjne pomiary są kluczowe dla sukcesu projektów. Kolejnym błędem jest zapominanie o kontekście, w jakim operujemy; błędy kątowe w geodezji mają swoje źródło w fizycznych ograniczeniach narzędzi pomiarowych, co podkreśla znaczenie dokładnych pomiarów i odpowiedniej ich korekcji.

Pytanie 9

Kąty pionowe nachylenia (a) mogą przyjmować wartości +/- w zakresie

A. 0g-200g
B. 0g-100g
C. 0g-300g
D. 0g-400g
Kąt nachylenia pionowego, który określa kąt, jaki tworzy linia pionowa z poziomem, jest kluczowym zagadnieniem w wielu dziedzinach inżynierii, w tym budownictwie i geodezji. Przyjmuje on wartości w przedziale od 0° do 100°, co jest zgodne z zasadami projektowania konstrukcji oraz normami geodezyjnymi. Kąty powyżej 100° są praktycznie niemożliwe do zastosowania w rzeczywistych aplikacjach, ponieważ prowadziłyby do nieprawidłowego rozumienia położenia obiektów oraz mogłyby zagrażać ich stabilności. Dla przykładu, w budownictwie, gdy projektuje się schody, kąt nachylenia nie powinien przekraczać 45°, by zapewnić bezpieczeństwo użytkowników. Wiedza o kącie pionowym jest również zastosowana w geodezji, gdzie precyzyjne pomiary kątów są niezbędne do dokładnego określenia granic działki oraz w projektowaniu systemów uzbrojenia terenu. Tylko wartości w przedziale 0° do 100° pozwalają na prawidłowe obliczenia oraz zastosowanie w praktyce inżynieryjnej.

Pytanie 10

Jaki jest błąd wartości wyrównanej, jeśli kąt poziomy został zmierzony 4 razy, a średni błąd pojedynczego pomiaru kąta wynosi ±10cc?

A. M = ±4cc
B. M = ±3cc
C. M = ±5cc
D. M = ±2cc
Odpowiedzi, które proponują inne wartości błędu wartości wyrównanej, nie uwzględniają kluczowego aspektu, jakim jest liczba pomiarów. W przypadku pomiarów kątów, zasada redukcji błędów przy wielokrotnym pomiarze jest właściwie stosowana zgodnie z regułą statystyczną, która mówi, że z każdym dodatkowym pomiarem poprawiamy dokładność wyniku. Kiedy ktoś wybiera błąd równy ±2cc, ±3cc lub ±4cc, błędnie interpretuje wpływ powtórzeń na zmniejszenie niepewności pomiarowej. To prowadzi do niedoszacowania rzeczywistego błędu, co jest typowym błędem zarówno w zrozumieniu parametrów pomiarowych, jak i w ich zastosowaniach praktycznych. Warto zwrócić uwagę, że błąd pomiaru nie jest liniowy, a jego redukcja w przypadku powtórzeń jest opisana twierdzeniem o niepewności pomiarowej. W praktyce, poprawne podejście do obliczania błędów pomiarowych ma ogromne znaczenie podczas analizy danych, szczególnie w kontekście zapewnienia jakości i rzetelności wyników w inżynierii i naukach przyrodniczych. Zastosowanie błędnych wartości błędów może prowadzić do niewłaściwych decyzji projektowych oraz wpływać na bezpieczeństwo i efektywność realizowanych projektów.

Pytanie 11

Który z wymienionych wzorów umożliwi obliczenie azymutu następnego boku Az2-3, jeżeli znany jest azymut poprzedniego boku Az1-2 oraz zmierzony kąt lewy α w punkcie 2?

A. Az2-3 = Az2-1 + α - 200g
B. Az2-3 = Az1-2 – α + 200g
C. Az2-3 = Az1-2 + α - 200g
D. Az2-3 = Az2-1 – α + 200g
Odpowiedź Az2-3 = Az1-2 + α - 200g jest prawidłowa, ponieważ przy obliczaniu azymutu kolejnego boku w geodezji stosujemy wzór, który uwzględnia azymut boku poprzedniego oraz pomierzony kąt lewy. W praktyce, azymut boku Az2-3 można obliczyć, dodając kąt lewy α do azymutu boku Az1-2, a następnie odejmując 200g, co wynika z konwencji stosowanej w geodezji. Zgodnie z zasadami, w przypadku pomiarów z użyciem teodolitu, kąt lewy jest mierzony w przeciwnym kierunku do ruchu wskazówek zegara, co wymaga uwzględnienia odpowiednich poprawek przy wyznaczaniu azymutu. Praktyczne zastosowanie tego wzoru widoczne jest w terenie, gdzie precyzyjne pomiary są kluczowe dla uzyskania dokładnych wyników w mapowaniu i inżynierii. Warto również zauważyć, że standardy geodezyjne, takie jak PN-EN ISO 17123-1, zalecają staranne podejście do pomiarów kątów oraz azymutów, aby zapewnić wysoką jakość danych geodezyjnych.

Pytanie 12

Jakie grupy błędów, mających wpływ na wyniki pomiarów, są wyróżniane w geodezji?

A. Błędy stałe, omyłki, błędy systematyczne
B. Błędy osobowe, błędy systematyczne, błędy losowe
C. Błędy grube, omyłki, błędy stałe
D. Błędy grube, błędy systematyczne, błędy przypadkowe
W geodezji mamy trzy główne grupy błędów, które mogą wpłynąć na to, co zmierzymy. Po pierwsze, są błędy grube, które mocno psują wyniki. Często wynikają z tego, że coś źle odczytaliśmy albo popełniliśmy błąd przy obsłudze sprzętu. Na przykład, zawsze trzeba uważać, żeby dobrze wpisać wartości do systemu, bo jeden zły krok i wszystko się sypie. Potem są błędy systematyczne. To takie błędy, które sobie powtarzają przez to, że narzędzie pomiarowe może być źle kalibrowane. Jak coś jest źle ustawione, to za każdym razem będziemy dostawać ten sam zły wynik. A na końcu mamy błędy przypadkowe. To te, które się zdarzają bez żadnego ostrzeżenia, jak zmiany pogody czy losowe wahania w wynikach. W geodezji ważne jest, żeby te błędy identyfikować i minimalizować, bo w projektach budowlanych czy geodezyjnych precyzyjne pomiary to klucz do sukcesu.

Pytanie 13

W niwelacji powierzchniowej przy użyciu punktów rozproszonych dystans mierzonych pikiet względem stanowiska pomiarowego oblicza się według wzoru: D = kl + c. Mając odczyty z łaty niwelacyjnej, wykonane kreską górną oraz dolną siatki dalmierczej instrumentu, wartość l należy obliczyć wg wzoru:

A. l = g · d
B. l = g/d
C. l = g - d
D. l = g + d
Odpowiedź l = g - d jest poprawna, ponieważ w kontekście niwelacji powierzchniowej, 'g' odnosi się do odczytu z łaty niwelacyjnej, a 'd' to różnica wysokości pomiędzy górną a dolną kreską siatki dalmierczej. W obliczeniach niwelacyjnych, kluczowym celem jest określenie odległości l, która reprezentuje rzeczywistą odległość mierzonych pikiet od stanowiska pomiarowego. Poprawne zastosowanie wzoru D = kl + c oraz zrozumienie jego składników jest istotne dla osiągnięcia precyzyjnych wyników. Przykładowo, jeśli na łacie odczytano wartość g = 2.5 m, a różnica między kreskami wynosi d = 0.3 m, to obliczenie l daje 2.5 m - 0.3 m = 2.2 m. Taki sposób obliczeń jest zgodny z praktykami branżowymi, które zalecają dokładne pomiary oraz analizowanie różnic wysokości w kontekście punktów referencyjnych. Dbałość o detale w takiej procedurze może znacząco wpłynąć na jakość projektu budowlanego czy inżynieryjnego, dlatego ważne jest, aby stosować sprawdzone metody i wzory.

Pytanie 14

Wykonanie geodezyjnego pomiaru sytuacyjnego włazu studzienki kanalizacyjnej powinno umożliwiać określenie lokalizacji tego elementu terenowego w odniesieniu do punktów poziomej osnowy geodezyjnej z precyzją nie mniejszą niż

A. 0,20 m
B. 0,50 m
C. 0,30 m
D. 0,10 m
Ocena położenia włazu studzienki kanalizacyjnej z dokładnością nie mniejszą niż 0,10 m jest zgodna z obowiązującymi standardami geodezyjnymi. Tego rodzaju pomiary są kluczowe w kontekście projektowania oraz utrzymania infrastruktury wodno-kanalizacyjnej. W praktyce oznacza to, że pomiar powinien być realizowany z wykorzystaniem precyzyjnych narzędzi geodezyjnych, takich jak tachimetry czy systemy GPS, które umożliwiają osiągnięcie odpowiedniej dokładności. Na przykład, w przypadku budowy nowych sieci kanalizacyjnych, precyzyjne umiejscowienie włazów pozwala na późniejsze łatwiejsze przeprowadzanie prac konserwacyjnych oraz inspekcji. Dodatkowo, warto zauważyć, że w praktyce inżynieryjnej dąży się do minimalizowania błędów pomiarowych, co w konsekwencji przekłada się na większą efektywność i bezpieczeństwo eksploatacji infrastruktury.

Pytanie 15

Aby zaktualizować część mapy zasadniczej, geodeta powinien uzyskać informacje

A. z urzędu miasta
B. z państwowego zasobu geodezyjnego i kartograficznego
C. z urzędu wojewódzkiego
D. z ewidencji gruntów oraz budynków
Odpowiedź "z państwowego zasobu geodezyjnego i kartograficznego" jest prawidłowa, ponieważ to właśnie ten zasób stanowi kompleksowe źródło aktualnych i wiarygodnych danych geodezyjnych i kartograficznych, które są niezbędne do aktualizacji mapy zasadniczej. W Polsce państwowy zasób geodezyjny i kartograficzny jest gromadzony i udostępniany przez Główny Urząd Geodezji i Kartografii (GUGiK), a jego zawartość obejmuje m.in. dane o granicach nieruchomości, infrastrukturze oraz elementach zagospodarowania przestrzennego. Przykładowo, przy aktualizacji mapy zasadniczej, geodeta powinien korzystać z ortofotomap oraz modelu 3D, które są dostępne w ramach tego zasobu. Warto też zaznaczyć, że korzystanie z państwowego zasobu geodezyjnego i kartograficznego jest zgodne z obowiązującymi przepisami prawa, w tym Ustawą z dnia 17 maja 1989 r. – Prawo geodezyjne i kartograficzne, co zapewnia rzetelność i aktualność pozyskiwanych danych, co jest kluczowe dla precyzyjnego odwzorowania rzeczywistości na mapach.

Pytanie 16

Kontrolę numeracji pikiet na szkicu oraz w dzienniku pomiarowym wykonuje się podczas pomiarów terenowych, aby zapewnić

A. poprawność przy kartowaniu pikiet na mapę
B. zgodność prowadzenia szkicu polowego i dziennika pomiarowego
C. poprawność prowadzenia dziennika pomiarowego
D. poprawność prowadzenia szkicu polowego
Zgodność prowadzenia szkicu polowego i dziennika pomiarowego jest kluczowym aspektem w procesie pomiarów terenowych, ponieważ obie te formy dokumentacji muszą odzwierciedlać te same dane pomiarowe i ich układ w terenie. Utrzymanie spójności między szkicem a dziennikiem pomiarowym pozwala na skuteczne śledzenie postępu prac oraz zapewnia, że późniejsza analiza danych będzie oparta na rzetelnych informacjach. Przykładowo, w przypadku wykrycia błędów w jednej z form dokumentacji, ich identyfikacja i korekta będą znacznie łatwiejsze, gdy obie dokumentacje będą ze sobą zgodne. W branży geodezyjnej istnieją ustalone standardy, które nakładają obowiązek prowadzenia takich dokumentów w sposób ułatwiający ich wzajemne weryfikowanie. W praktyce, podczas realizacji pomiarów, geodeta powinien regularnie sprawdzać, czy numery pikiet w szkicu odpowiadają tym wpisanym w dzienniku, co minimalizuje ryzyko błędów oraz ułatwia dalsze etapy pracy, takie jak kartowanie czy przygotowanie mapy. Właściwe utrzymanie zgodności dokumentacji jest nie tylko kwestią organizacyjną, ale również wpływa na jakość końcowych rezultatów pracy geodezyjnej.

Pytanie 17

Na podstawie przedstawionego raportu z wyrównania współrzędnych punktów osnowy realizacyjnej określ, ile wynosi błąd średni położenia punktu 1005.

Lp.Nr PX [m]Y [m]Mx [m]My [m]Mp [m]KL
11000843729.5930255814.63260.00790.01820.0198
21004843905.8055255769.88160.01440.01830.0233
31003843923.6493255717.15190.01660.01850.0248
41002843906.0657255712.58920.01790.01860.0258
51005843936.8654255729.41120.01580.01850.0243
61221843726.5500255606.63000.00000.00000.0000
7767845301.9800255940.35000.00000.00000.0000s
81336845312.2400255012.03000.00000.00000.0000s
91228844953.2000257194.25000.00000.00000.0000s

A. 15,8 mm
B. 18,5 mm
C. 23,4 mm
D. 24,3 mm
Błędne odpowiedzi wskazują na powszechne nieporozumienia dotyczące analizy danych pomiarowych oraz interpretacji raportów z wyrównania współrzędnych. Na przykład, podanie wartości 18,5 mm sugeruje, że pomiar został niedoszacowany, co może wynikać z pomyłki w odczycie lub z nieprawidłowego zrozumienia metodyki obliczeń. W przypadku odpowiedzi 23,4 mm oraz 15,8 mm, można zauważyć, że mogą one być wynikiem błędów w obliczeniach statystycznych, które często są stosowane do oceny precyzji pomiarów. Dobrze jest pamiętać, że błąd średni położenia to nie tylko suma błędów indywidualnych, ale również uwzględnia rozkład błędów w kontekście całego zbioru pomiarowego. Powszechnym błędem myślowym jest skupienie się na pojedynczych wartościach bez szerszej analizy raportu, co prowadzi do niesłusznych wniosków. Odpowiednia interpretacja raportów z wyrównania wymaga znajomości metod statystycznych oraz umiejętności analizy danych, co jest kluczowe w geodezji, aby zapewnić zgodność z przyjętymi standardami jakości oraz dokładności pomiarów.

Pytanie 18

Geodezyjnym znakiem, który znajduje się pod ziemią, nie jest

A. słup wykonany z granitu lub betonu
B. cegła odpowiednio wypalona
C. rurka drenażowa
D. rura kanalizacyjna wypełniona betonem
Słup z granitu lub betonu nie jest geodezyjnym znakiem podziemnym, ponieważ stanowi element konstrukcyjny, a nie punkt odniesienia dla pomiarów geodezyjnych. Geodezyjne znaki podziemne mają na celu oznaczanie punktów, które są wykorzystywane do pomiarów i do monitorowania zmian w terenie. Cegła dobrze wypalona, rura kanalizacyjna wypełniona cementem oraz rurka drenarska mogą być wykorzystane jako znaki podziemne, ponieważ są trwałe i mogą być umieszczone w ziemi w sposób, który pozwala na ich późniejsze zidentyfikowanie. Stosowanie właściwych typów znaku podziemnego jest kluczowe w geodezji, aby zapewnić dokładność pomiarów oraz umożliwić przyszłe prace budowlane i inżynieryjne w danym obszarze. Na przykład, gdy geodeci pracują na terenie, w którym planowana jest budowa, muszą zaznaczyć wszystkie istniejące znaki podziemne, aby uniknąć uszkodzeń i zminimalizować ryzyko związane z realizacją projektu.

Pytanie 19

Lokalizacja charakterystycznych punktów w terenie w procesie niwelacji punktów rozprzestrzenionych ustalana jest za pomocą metody

A. przedłużeń
B. ortogonalnej
C. tachimetrycznej
D. biegunowej
Odpowiedzi tachimetryczna, ortogonalna oraz przedłużeń wskazują na różne podejścia w pomiarze i niwelacji, które nie są właściwe w kontekście określenia położenia punktów rozproszonych. Metoda tachimetryczna, choć użyteczna do pomiarów kątów i odległości, nie jest optymalna dla precyzyjnego określania lokalizacji punktów w rozproszonym terenie, ponieważ koncentruje się głównie na pomiarach punktów z jednego stanowiska oraz może prowadzić do błędów w przypadku przeszkód terenowych. Z kolei metoda ortogonalna, która zakłada stosowanie prostokątnych układów współrzędnych, jest bardziej odpowiednia dla zadań, gdzie punkty są poukładane w regularny sposób, a nie w sposób rozproszony. Przedłużenia, w swoim podstawowym sensie, polegają na wydłużaniu linii przez konkretne punkty, co nie odpowiada na potrzeby związane z niwelacją punktów rozproszonych. Wybór niewłaściwej metody może prowadzić do znaczących błędów w pomiarach, co jest szczególnie problematyczne w projektach budowlanych, gdzie precyzja jest kluczowa. Zrozumienie, kiedy i jak stosować konkretne techniki pomiarowe, jest kluczowe dla osiągnięcia sukcesu w obszarze geodezji i inżynierii lądowej.

Pytanie 20

Jaką wartość ma kąt, o który trzeba obrócić alidadę przy precyzyjnym poziomowaniu teodolitu, po ustawieniu libelli równolegle do osi dwóch śrub regulacyjnych oraz ustawieniu pęcherzyka w pozycji centralnej?

A. 90°
B. 360°
C. 180°
D. 200°
Obroty o 180°, 360° lub 200° są błędne, ponieważ nie są one zgodne z zasadami dokładnego poziomowania teodolitu. Obrót o 180° oznaczałby, że alidade byłaby ustawiona w przeciwnym kierunku, co nie pozwoliłoby na właściwe sprawdzenie poziomowania w kierunkach prostopadłych. Taki kąt nie przynosi dodatkowych informacji o poziomie, a jedynie przesuwa punkt odniesienia na linię, co jest niepraktyczne w kontekście precyzyjnych pomiarów. Obrót o 360° oznaczałby, że alidade powróciłaby do pierwotnej pozycji, co również jest nieefektywne, gdyż nie wprowadza żadnych nowych danych dotyczących poziomowania. Natomiast wybór 200° jest nieadekwatny, gdyż nie ma uzasadnienia geodezyjnego dla takiego kąta w kontekście wykonywania pomiarów z wykorzystaniem teodolitu. W geodezji, każdy kąt obrotu i jego zastosowanie powinny być dobrze przemyślane i oparte na standardach, które gwarantują dokładność i niezawodność pomiarów. Użytkownicy teodolitu muszą być świadomi, że niepoprawne podejście do poziomowania prowadzi do błędnych wyników, które mogą skutkować poważnymi konsekwencjami w projektach budowlanych i inżynieryjnych.

Pytanie 21

Jakie informacje są konieczne do zlokalizowania w terenie punktu geodezyjnego?

A. Opis topograficzny punktu
B. Szkic polowy wykonania osnowy
C. Godło odpowiedniego arkusza mapy zasadniczej
D. Zestawienie szkiców terenowych
Opis topograficzny punktu geodezyjnego jest kluczowym dokumentem potrzebnym do jego identyfikacji i odnalezienia w terenie. Zawiera on szczegółowe informacje o położeniu punktu, jego otoczeniu oraz cechach charakterystycznych, co jest niezbędne dla geodetów podczas pracy w terenie. Na przykład, w opisie mogą być uwzględnione takie elementy jak odległość od znanych punktów orientacyjnych, kierunki do innych punktów geodezyjnych, a także opis naturalnych lub sztucznych obiektów znajdujących się w pobliżu, takich jak drogi, rzeki czy budynki. Wiedza na temat topografii terenu oraz umiejętność interpretacji takich opisów są fundamentem w geodezji, co pozwala na precyzyjne lokalizowanie punktów i minimalizowanie błędów pomiarowych. Właściwa interpretacja opisu topograficznego zgodnie z normami geodezyjnymi, w tym PN-EN 16153, jest niezbędna do osiągnięcia wysokiej jakości danych geodezyjnych oraz zgodności z wymaganiami prawnymi.

Pytanie 22

Jaką literą geodeta oznaczył na szkicu studzienkę wodociągową po dokonaniu jej pomiaru?

A. w
B. s
C. k
D. z
Wybór liter 'k', 's' czy 'z' pokazuje, że coś poszło nie tak z rozumieniem zasad geodezyjskiego oznaczania. Litera 'k' zazwyczaj odnosi się do kabli, więc w przypadku studzienek wodociągowych to nie ma sensu. A 's' to studzienki kanalizacyjne, więc to jeszcze większy błąd, bo studzienki wodociągowe i kanalizacyjne to różne rzeczy. Co do 'z', to zwykle dotyczy innych obiektów, jak zasoby, więc też nie pasuje. W praktyce ważne jest, żeby oznaczenia były jasne i zgodne z obowiązującymi standardami, bo błędne oznaczenia mogą wypaść fatalnie, na przykład przy konserwacji czy potrzebnych naprawach. To wszystko może prowadzić do większych problemów, jak awarie czy brak wody. Dlatego warto, żeby geodeci dokładnie znali te zasady i się ich trzymali.

Pytanie 23

Jeśli dokonano poniższych pomiarów kąta pionowego: w pierwszym ustawieniu lunety KL = 83,3400g oraz w drugim ustawieniu lunety KP = 316,6700g, to wartość kąta nachylenia α wynosi

A. 16,6650g
B. 83,3400g
C. 16,6700g
D. 83,3350g
Aby obliczyć wartość kąta nachylenia α na podstawie odczytów lunety, należy zastosować odpowiednią formułę, która polega na odjęciu wartości odczytu w położeniu I od wartości odczytu w położeniu II. W tym przypadku, odczyt w położeniu II wynosi 316,6700g, a w położeniu I 83,3400g. Obliczenie tego daje: α = KP - KL = 316,6700g - 83,3400g = 233,3300g. Jednak, aby uzyskać kąt nachylenia w kontekście geodezyjnym, należy zauważyć, że kąt nachylenia w kontekście pomiarów geodezyjnych jest często wyrażany jako kąt w stosunku do poziomu, a nie w bezwzględnych jednostkach. W takim przypadku, odpowiednia wartość α, jaką otrzymujemy (16,6650g), odnosi się do różnicy wysokości lub kątów nachylenia. W praktyce, poprawne obliczenie kątów nachyleń jest kluczowe w wielu zastosowaniach geodezyjnych oraz inżynieryjnych, takich jak budowa dróg, mostów czy budynków, gdzie precyzyjne pomiary wysokości i nachyleń mają fundamentalne znaczenie dla bezpieczeństwa oraz trwałości konstrukcji.

Pytanie 24

Który z błędów instrumentalnych teodolitu nie jest usuwany podczas pomiaru kąta w dwóch różnych położeniach lunety?

A. Miejsca zera
B. Inklinacja
C. Kolimacja
D. Libelli rurkowej
Libella rurkowa jest elementem teodolitu służącym do poziomowania instrumentu. W przypadku pomiaru kąta w dwóch położeniach lunety, jakiekolwiek błędy związane z kolimacją, inklinacją czy miejscem zera są eliminowane poprzez odpowiednie średnie arytmetyczne pomiarów. Jednak błąd libelli rurkowej, który może wystąpić na skutek jej niewłaściwego ustawienia lub uszkodzenia, nie jest eliminowany w ten sposób. W praktyce, przed przystąpieniem do pomiarów, niezbędne jest skontrolowanie poziomu teodolitu przy użyciu libelli. Jeśli libella nie jest prawidłowo ustawiona, wszystkie późniejsze pomiary kątów będą obarczone błędem, co może prowadzić do poważnych nieścisłości w opracowywanych projektach geodezyjnych. Dlatego standardowe procedury dotyczące kalibracji teodolitu nakładają obowiązek regularnego sprawdzania libelli, co pozwala na zapewnienie dokładności pomiarów oraz minimalizację błędów instrumentalnych.

Pytanie 25

Niwelator to narzędzie służące do dokonania pomiaru

A. kątów nachylenia
B. kątów zenitalnych
C. wysokości punktów
D. różnic wysokości
Często ludzie mylą to, do czego służy niwelator, co może prowadzić do nieporozumień. Gdy wybierasz odpowiedzi związane z kątami zenitalnymi czy nachyleniem, może się zdarzyć, że pomylisz niwelator z innymi narzędziami geodezyjnymi, jak teodolity czy inklinometry. Kąty zenitalne mierzysz zwykle teodolitem, bo on do tego właśnie jest stworzony, a ma zupełnie inny cel niż niwelator. Z kolei kąty nachylenia wymagają czasem innych narzędzi, jak poziomice. Dlatego przypisywanie tych funkcji niwelatorowi jest trochę błędne. Często mylone jest też pojęcie wysokości punktów – niwelator mierzy różnice w wysokościach, a nie konkretne wysokości miejsc. W geodezji i budownictwie ważne, by ogarnąć te różnice, bo byle błąd w pomiarach może zmienić dużo w projektach budowlanych. Więc szanujmy niwelator jako narzędzie do pomiaru różnic, a nie do pomiaru kątów czy bezpośrednio wysokości.

Pytanie 26

Podczas aktualizacji mapy zasadniczej w czasie pomiarów szczegółowych terenu sporządza się szkic

A. przeglądowy
B. dokumentacyjny
C. inwentaryzacyjny
D. polowy
Każda z pozostałych odpowiedzi nie oddaje właściwego kontekstu dla procesu aktualizacji mapy zasadniczej. Szkic przeglądowy, choć może służyć do ogólnej oceny terenu, nie zapewnia szczegółowego uchwycenia danych niezbędnych do aktualizacji mapy. Tego rodzaju szkic ma na celu jedynie przedstawienie nawykowych cech terenu, a nie zbieranie precyzyjnych informacji w terenie. Z kolei inwentaryzacyjny szkic odnosi się do dokumentacji już istniejących obiektów i ich stanu, co jest niezbędne w procesie inwentaryzacji, ale nie w samym pomiarze terenu i jego szczegółowym odwzorowaniu w dokumentach mapowych. Ostatnia z odpowiedzi, szkic dokumentacyjny, również nie pasuje do kontekstu, ponieważ koncentruje się bardziej na formalnej prezentacji danych, a nie na ich zbieraniu w terenie. Typowym błędem myślowym jest mylenie różnych rodzajów szkiców i ich zastosowań. Aby skutecznie wykonywać pomiary w terenie, istotne jest zrozumienie różnicy między dokumentacją a praktycznym zbieraniem danych. Wiedza o tym, jakie narzędzie wykorzystać w danej sytuacji, wpłynie na jakość końcowego produktu, jakim jest mapa zasadnicza.

Pytanie 27

Który wzór powinien być użyty do obliczenia łącznej sumy kątów wewnętrznych w zamkniętym wielokącie?

A. [β] = (n+2)∙200g
B. [β] = Ak − Ap + n∙200g
C. [β] = (n−2)∙200g
D. [β] = Ap − Ak + n∙200g
Poprawna odpowiedź to wzór [β] = (n−2)∙200g, który służy do obliczania sumy kątów wewnętrznych w poligonie zamkniętym. Wzór ten opiera się na podstawowej zasadzie geometrii, zgodnie z którą suma kątów wewnętrznych w n-kącie (poligonie o n bokach) wynosi (n−2) razy 180 stopni. W praktyce, aby dostosować jednostki do typowego zapisu w geodezji, wprowadza się przelicznik 200g, co odpowiada 180 stopniom (200g = 180°). W związku z tym, dla trójkąta (n=3) suma kątów wynosi (3−2)∙200g = 200g, co jest zgodne z klasycznym wynikiem 180°. Dla czworokąta (n=4) mamy (4−2)∙200g = 400g, co odpowiada 360°. Taki sposób obliczeń jest powszechnie stosowany w inżynierii i architekturze, gdzie precyzyjne określenie kątów jest kluczowe do prawidłowego projektowania i realizacji budowli. Wiedza ta jest także istotna w kontekście standardów geodezyjnych oraz przy tworzeniu map i projektów przestrzennych.

Pytanie 28

Jaką maksymalną długość rzędnej można stosować przy pomiarze sytuacyjnym obrysów budynków metodą prostokątnych domiarów?

A. 20 m
B. 25 m
C. 15 m
D. 30 m
Dopuszczalna długość rzędnej wynosząca 25 m w pomiarach sytuacyjnych konturów budynków przy zastosowaniu metody domiarów prostokątnych jest zgodna z zaleceniami norm i standardów pomiarowych. Taka długość pozwala na efektywne wykonywanie pomiarów, minimalizując jednocześnie błędy związane z nieprawidłowym przenoszeniem wymiarów. Przykładowo, przy pomiarach na większych dystansach, błędy kumulacyjne mogą znacząco wpłynąć na dokładność wyników. Dlatego stosowanie rzędnych o długości 25 m jest praktycznym rozwiązaniem, które zapewnia równocześnie wysoką precyzję i efektywność pracy. W praktyce, taki wymiar pozwala na zastosowanie odpowiednich narzędzi pomiarowych, takich jak dalmierze optyczne, które są zoptymalizowane do pracy w takich odległościach. Dobrą praktyką jest także regularne kalibrowanie sprzętu, co dodatkowo zwiększa dokładność pomiarów. W kontekście przepisów budowlanych oraz norm geodezyjnych, długość rzędnej powinna być dostosowana do specyfiki terenu oraz rodzaju budowli, co czyni znajomość tego zagadnienia niezwykle istotnym elementem pracy geodety.

Pytanie 29

Punkty kontrolne, które są używane w trakcie analizy przemieszczeń obiektów budowlanych, powinny być rozmieszczane

A. jak najdalej od analizowanego obiektu
B. w bezpośredniej bliskości analizowanego obiektu
C. jak najbliżej punktów odniesienia dotyczących badanego obiektu
D. bezpośrednio na analizowanym obiekcie
Umieszczanie punktów kontrolnych bezpośrednio na badanym obiekcie budowlanym jest kluczowym aspektem precyzyjnych pomiarów przemieszczeń. Tylko w ten sposób można uzyskać dokładne i wiarygodne wyniki, ponieważ punkty te są bezpośrednio związane z deformacjami obiektu. Przykładem zastosowania tej metody jest monitoring mostów, gdzie punkty kontrolne są instalowane na elementach konstrukcyjnych, co pozwala na bieżące śledzenie ich stanu oraz identyfikację ewentualnych zagrożeń. Stanowisko pomiarowe powinno być zgodne z odpowiednimi normami, takimi jak PN-EN 1992-1-1, które określają wymagania dotyczące projektowania i wykonania konstrukcji. Dzięki umiejscowieniu punktów kontrolnych na obiekcie, możliwe jest również zastosowanie nowoczesnych technologii, takich jak skanowanie laserowe, które pozwala na uzyskanie danych o przemieszczeniach w skali nano. To podejście zwiększa nie tylko dokładność pomiarów, ale także umożliwia przeprowadzanie analizy trendów, co jest niezbędne w zarządzaniu cyklem życia budynków i infrastruktury.

Pytanie 30

Jaką czynność należy wykonać podczas przeprowadzania wywiadu terenowego, który poprzedza pomiary sytuacyjne i wysokościowe?

A. Identyfikację w terenie punktów osnowy geodezyjnej
B. Pomiar kontrolny szczegółów terenowych
C. Sporządzenie szkicu polowego z mierzonego terenu
D. Zgłoszenie pracy geodezyjnej geodecie powiatowemu
Identyfikacja w terenie punktów osnowy geodezyjnej jest kluczowym etapem przed przystąpieniem do pomiarów sytuacyjnych i wysokościowych. Osnowa geodezyjna stanowi fundament, na którym opierają się wszystkie inne pomiary. Jej odpowiednie zidentyfikowanie pozwala na precyzyjne odniesienie danych pomiarowych do układu współrzędnych, co jest niezbędne w geodezji. Przykładowo, podczas wykonywania pomiarów dla nowego projektu budowlanego, geodeta najpierw lokalizuje punkty osnowy, aby móc ustawić instrumenty pomiarowe w odpowiednich miejscach. Takie praktyki są zgodne z normami, takimi jak PN-EN ISO 17123, które podkreślają znaczenie stabilności i precyzji punktów osnowy dla efektywnego i wiarygodnego pomiaru. Właściwa identyfikacja punktów osnowy geodezyjnej nie tylko zwiększa dokładność pomiarów, ale również przyczynia się do redukcji błędów w późniejszych analizach i projektach.

Pytanie 31

Dysponując informacjami: wysokość miejsca pomiarowego Hst = 200,66 m, wysokość urządzenia i = 1,55 m, odczyt kreski centralnej na łacie s = 1150, oblicz wysokość punktu HP.

A. HP = 201,06 m
B. HP = 200,26 m
C. HP = 203,36 m
D. HP = 197,96 m
Wszystkie niepoprawne odpowiedzi wynikają z błędów w interpretacji przepisów dotyczących obliczania wysokości punktu pomiarowego. Często spotykanym błędem jest pomijanie konwersji jednostek lub nieprawidłowe uwzględnianie wartości w wzorze. Na przykład, niektóre osoby mogą zignorować fakt, że odczyt kreski środkowej na łacie s powinien być przeliczony na metry, co prowadzi do błędnych obliczeń. W przypadku takiego pytania, kluczowe jest, aby pamiętać, że odczyt na łacie jest wartością, którą należy odjąć od sumy wysokości instrumentu i wysokości stanowiska. Ponadto, wiele osób myli wysokość instrumentu z wysokością punktu pomiarowego, co prowadzi do obliczeń, które nie mają sensu w kontekście geodezji. Często, w procesie nauczania, pojawiają się upraszczające założenia, które mogą wprowadzać w błąd. W rzeczywistości, każdy z tych elementów jest istotny dla uzyskania dokładności pomiarów, co jest kluczowe w zastosowaniach geodezyjnych, takich jak skanowanie terenu czy projektowanie infrastruktury. Dlatego, aby skutecznie przeprowadzić obliczenia, należy przestrzegać standardów metodycznych oraz praktyk obowiązujących w branży, co pozwala na uniknięcie typowych pułapek podczas realizacji pomiarów.

Pytanie 32

Jeśli odcinkowi na mapie o długości 1 cm odpowiada odległość 50 m w rzeczywistości, to oznacza, że mapa została stworzona w skali

A. 1:5 000
B. 1:10 000
C. 1:500
D. 1:1 000
Odpowiedź 1:5 000 jest całkiem spoko, bo oznacza, że każdy 1 cm na mapie to 5 000 cm w rzeczywistości, a to przekłada się na 50 m. Jak chcesz obliczyć skalę mapy, to musisz przeliczyć długość terenu na długość na mapie. Więc, jak 1 cm na mapie to 50 m w terenie, to przeliczamy to na centymetry i mamy 50 m, co daje nam 5 000 cm. I stąd mamy ten stosunek 1 cm na mapie do 5 000 cm w terenie, zapisany jako 1:5 000. To jest klasyczna skala, której używa się w kartografii, zwłaszcza w geodezji i planach zagospodarowania. Na przykład w mapach topograficznych skala 1:5 000 świetnie oddaje szczegóły terenu i ułatwia orientację. W praktyce, znajomość skali mapy to kluczowa rzecz, która naprawdę się przydaje w nawigacji i analizie przestrzennej, a dla geodetów i architektów to wręcz niezbędne.

Pytanie 33

Wyznacz wysokość reperu końcowego HK, jeśli wysokość reperu początkowego wynosi HP = 325,000 m, różnica wysokości na badanym odcinku wynosi AhP-K = 2500 mm, a poprawka ma wartość v∆h = -10 mm?

A. HK = 322,490 m
B. HK = 327,510 m
C. HK = 322,510 m
D. HK = 327,490 m
Wielu użytkowników może popełnić błąd podczas obliczania wysokości reperu końcowego, myląc się w dodawaniu lub odejmowaniu wartości różnicy wysokości oraz poprawki. Obliczenia takie jak wysokość HK powinny uwzględniać wszystkie elementy, w tym wysokość początkową HP, różnicę wysokości AhP-K oraz poprawkę v∆h. Błędne odpowiedzi mogą wynikać z niepoprawnego przeliczenia jednostek miar – zmiana milimetrów na metry musi być dokładna, ponieważ 2,500 mm to 2,500 m, a nie 2.5 m. Ponadto, błąd taki jak nieuwzględnienie znaku poprawki (-10 mm) powoduje przesunięcie końcowego wyniku. Innym typowym błędem jest ignorowanie kontekstu pomiarowego; w geodezji, staranność w podejściu do pomiarów ma kluczowe znaczenie dla późniejszych analiz i weryfikacji wyników. Dlatego też, aby uniknąć takich pomyłek, kluczowa jest znajomość i praktyka stosowania wzorów oraz zasad geodezyjnych, które pomagają w dokładnym i bezbłędnym przeprowadzaniu obliczeń.

Pytanie 34

Jeśli azymut A1-2 wynosi 327°12’35’’, to jaki jest azymut odwrotny A2-1?

A. 127°12’35’’
B. 147°12’35’’
C. 527°12’35’’
D. 507°12’35’’
Widać, że przy obliczaniu azymutu odwrotnego pojawił się pewien bałagan. Niektórzy mogą nie zauważyć, że jak A1-2 to 327°12’35’’, to dodanie 180° do tego nie kończy sprawy, zwłaszcza jak wynik wychodzi 507°12’35’’. Takie wartości nie mogą być przyjmowane ot tak, bo azymut powinien być w granicach 0°-360°. Kiedy przekroczymy tę granicę, trzeba odjąć 360°, by wszystko się zgadzało. No i jeśli poszło 127°12’35’’, to tu z kolei wkradł się błąd w dodawaniu, ale pewnie też nie do końca dobrze zrozumiano zasady. Pamiętaj, że azymuty zawsze bierzemy od północy i trzymamy się tych konwencji. Typowe błędy to brak korekty wartości azymutów i nielogiczne przekształcenia. W praktyce nawigacyjnej dla precyzyjnych wyników musisz znać zasady obliczeń azymutów i ich odwrotności.

Pytanie 35

W jakim zakresie znajduje się azymut boku AB, jeżeli różnice współrzędnych między punktem początkowym a końcowym boku AB są następujące: ΔXAB < 0, ΔYAB > 0?

A. 100÷200g
B. 200÷300g
C. 300÷400g
D. 0÷100g
Zrozumienie azymutów i ich zakresów jest kluczowe w geodezji i inżynierii lądowej. Odpowiedzi sugerujące przedziały 200÷300g, 0÷100g, czy 300÷400g są błędne z powodu niewłaściwej interpretacji różnic współrzędnych. Przedział 0÷100g sugeruje kierunki północno-wschodnie, gdzie zarówno ΔX, jak i ΔY byłyby dodatnie, co jest sprzeczne z danymi, ponieważ ΔX jest ujemne. Natomiast przedział 200÷300g obejmuje azymuty w kierunku południowym, które nie pasują do sytuacji, gdy ΔY jest dodatnie, a ΔX ujemne. Przedział 300÷400g, który odpowiada kierunkowi południowo-zachodniemu, również nie jest właściwy w obliczeniach, ponieważ ten azymut oznacza, że zarówno współrzędne X, jak i Y byłyby skierowane w kierunku południowym. Zrozumienie, jak różnice współrzędnych wpływają na określenie azymutu, jest kluczowe dla uniknięcia takich błędów w przyszłości. W praktycznych zastosowaniach geodezyjnych, precyzyjne obliczenia tych wartości są niezbędne do określenia właściwych kierunków w pracy terenowej oraz w inżynierii, a także w systemach informacji geograficznej, gdzie dokładność obliczeń wpływa na efektywność wykonania projektów.

Pytanie 36

Cyfra 2 w oznaczeniu 2/5, użytym przy oznaczaniu w terenie punktów hektometrowych utworzonych podczas wytyczania w terenie linii profilu podłużnego, wskazuje na

A. całkowitą liczbę metrów w jednym odcinku trasy
B. liczbę hektometrów w danym kilometrze trasy
C. numer hektometra w konkretnej sekcji kilometra
D. kompletną liczbę kilometrów od startu trasy
Wybór niepoprawnej odpowiedzi może wynikać z nieporozumienia dotyczącego systemu oznaczania. Na przykład, odpowiedź wskazująca na numer hektometra w danym kilometrze sugeruje, że cyfra 2 odnosi się do odcinka hektometrowego, co jest mylące. W rzeczywistości nie stosuje się takiego zapisu w kontekście punktów pomiarowych. Koncepcja ta może prowadzić do błędnych założeń, ponieważ punkt 2 w schemacie 2/5 nie odnosi się do jednostek hektometrycznych, które są używane na bardziej lokalnym poziomie. Z kolei odniesienie do pełnej liczby metrów w jednym odcinku trasy pomija kluczowy aspekt systemu, który wyraźnie definiuje pełne kilometry. Może to być mylące, zwłaszcza gdy rozważamy różnice w jednostkach pomiarowych. Trzeba również brać pod uwagę, że standardy branżowe, które regulują oznaczanie tras, jasno określają, jak powinny być przedstawiane odległości, co jeszcze bardziej podkreśla, że numeracja kilometrów jest fundamentalna dla właściwego zrozumienia struktury tras. Często popełnianym błędem jest niezweryfikowanie kontekstu, w jakim są używane konkretne oznaczenia, co skutkuje wyborem odpowiedzi, które wydają się mieć sens, ale w rzeczywistości są sprzeczne z ustalonymi normami. Ważne jest, aby zawsze odnosić się do najnowszych standardów i praktyk w branży, aby unikać nieporozumień.

Pytanie 37

Który z wymienionych programów nie nadaje się do tworzenia mapy zasadniczej?

A. Microstation
B. Winkalk
C. Mikro-Map
D. C-Geo
Wybór programów, które są niewłaściwe do wykreślania mapy zasadniczej, może wynikać z niepełnego zrozumienia ich funkcji i zastosowań. C-Geo i Mikro-Map są dedykowane geodezji, oferując możliwości, które są kluczowe dla tworzenia mapy zasadniczej. C-Geo umożliwia przetwarzanie danych geodezyjnych, jak również ich wizualizację, co jest niezbędne w kontekście map zasadniczych, które powinny odzwierciedlać rzeczywiste warunki terenowe. Mikro-Map, z kolei, pozwala na dokładne modelowanie danych przestrzennych i ich przekształcanie w formy, które są zgodne z wymaganiami prawnymi i standardami branżowymi. Microstation to również program, który, mimo że jest bardziej uniwersalny i stosowany w projektowaniu CAD, zawiera narzędzia do analizy przestrzennej, które mogą wspierać proces tworzenia map. Wybór Winkalk jako odpowiedzi mógłby wynikać z błędnego przeświadczenia, że wszystkie programy inżynieryjne mają zastosowanie w geodezji. W rzeczywistości Winkalk, koncentrując się na obliczeniach i analizy kosztorysowej, nie posiada odpowiednich funkcji potrzebnych do tworzenia map geodezyjnych. Dlatego istotne jest, aby przed podjęciem decyzji o wyborze oprogramowania do konkretnego celu, zrozumieć specyfikę jego zastosowania oraz zapewniane przez nie funkcjonalności.

Pytanie 38

Jakiego zestawu sprzętu należy użyć do przeprowadzenia pomiaru różnic wysokości metodą niwelacji geometrycznej?

A. Niwelator precyzyjny, statyw, tyczka z lustrem
B. Tachimetr elektroniczny, statyw, tyczka z lustrem
C. Teodolit optyczny, statyw, łata niwelacyjna
D. Niwelator techniczny, statyw, łata niwelacyjna
Niwelator techniczny to kluczowe narzędzie do wykonywania dokładnych pomiarów różnic wysokości, które są niezbędne w wielu dziedzinach, takich jak budownictwo, inżynieria lądowa i geodezja. Użycie niwelatora w połączeniu z odpowiednim statywem i łata niwelacyjną zapewnia wysoką precyzję i powtarzalność pomiarów. Niwelator techniczny działa na zasadzie emisji promieni świetlnych, które umożliwiają precyzyjne określenie różnicy wysokości pomiędzy punktami. W praktyce, operator ustawia niwelator na statywie w punkcie odniesienia, a następnie korzysta z łaty niwelacyjnej umieszczonej na punkcie, którego wysokość chcemy zmierzyć. Różnice wysokości odczytuje się z podziałki na łacie, co pozwala na uzyskanie dokładnych wartości. Stosowanie takich narzędzi nie tylko spełnia normy branżowe, ale również zapewnia zgodność z wymaganiami projektów budowlanych, gdzie precyzja jest kluczowa dla sukcesu realizacji. Warto również zaznaczyć, że metody niwelacji geometrycznej są powszechnie stosowane w praktyce do różnorodnych zastosowań, w tym do projektowania i budowy infrastruktury, co czyni je istotnym elementem edukacji technicznej.

Pytanie 39

Jakiej wartości pomiaru w przód z łaty niwelacyjnej należy się spodziewać, jeśli poszukiwany punkt znajduje się w odległości 60,00 m od punktu wyjściowego niwelety drogi o nachyleniu i = -3%, a odczyt w tył z łaty ustawionej na początku niwelety wyniósł w = 1500 mm?

A. p = 3390 mm
B. p = 3000 mm
C. p = 3300 mm
D. p = 1800 mm
Wybór innych wartości odczytu w przód z łaty niwelacyjnej wynika z różnych nieporozumień dotyczących sposobu obliczeń związanych z niwelacją. Na przykład, przy odpowiedzi p = 3000 mm, można zauważyć, że ignoruje się wpływ pochylenia na przemieszczenie wysokościowe, co prowadzi do zaniżenia rzeczywistego wyniku. Kolejna nieprawidłowa odpowiedź, p = 3390 mm, również nie uwzględnia poprawnie spadku, co sugeruje, że osoba odpowiadająca mogła dodać spadek zamiast go odjąć od odczytu wstecz. W przypadku p = 1800 mm, wartość ta jest nie tylko zaniżona, ale również nie ma żadnego uzasadnienia w kontekście podanych danych: odczyt nie powinien być mniejszy niż odczyt wstecz, co jest fundamentalną zasadą w pomiarach. Kluczowym błędem myślowym jest zaniedbanie wpływu pochylenia na rzeczywistą wysokość punktu docelowego, co może prowadzić do poważnych błędów w obliczeniach inżynieryjnych. Zrozumienie tego procesu wymaga znajomości podstaw niwelacji oraz umiejętności analizy danych pomiarowych w kontekście zastosowania norm i dobrych praktyk inżynieryjnych.

Pytanie 40

Który południk jest osiowym w odwzorowaniu Gaussa-Krugera w systemie współrzędnych PL-2000?

A. 25°
B. 23°
C. 24°
D. 22°
Wybierając odpowiedzi 25°, 23° lub 22°, można wpaść w pułapkę pomylenia pojęcia południka osiowego z innymi aspektami układu współrzędnych. Południki te nie są przypadkowe i mają swoje konkretne umiejscowienie w kontekście odwzorowania Gaussa-Krugera. W przypadku układu PL-2000, południki te są precyzyjnie wyznaczone, aby zminimalizować zniekształcenia podczas przekształcania danych geograficznych na współrzędne prostokątne. Wybierając 25°, można założyć, że jest to bardziej na zachód, co może wprowadzać w błąd, ponieważ w rzeczywistości ten południk nie jest centralnym południkiem dla omawianego odwzorowania. Odpowiedź 23° i 22° również nie są prawidłowe dla obszaru Polski. Zasadniczo, każdy z tych błędnych wyborów może wynikać z nieporozumień dotyczących regionalnych układów odniesienia i ich zastosowania w praktyce geodezyjnej. Odpowiedzi te wskazują na typowe błędy myślowe, takie jak zakładanie, że każdy południk reprezentuje równą wartość dla regionalnego odwzorowania, co jest mylne. W rzeczywistości, kluczowe jest zrozumienie koncepcji południka osiowego oraz jego wpływu na dokładność i efektywność odwzorowania, co jest podstawą skutecznego planowania przestrzennego i geodezyjnego.