Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 2 maja 2025 17:38
  • Data zakończenia: 2 maja 2025 17:57

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby przeprowadzić rezerwację adresów IP w systemie Windows Server na podstawie fizycznych adresów MAC urządzeń, konieczne jest skonfigurowanie usługi

A. DNS
B. RRAS
C. DHCP
D. NAT
Odpowiedź DHCP jest prawidłowa, ponieważ Dynamic Host Configuration Protocol (DHCP) jest protokołem sieciowym, który automatycznie przypisuje adresy IP oraz inne istotne informacje konfiguracyjne, takie jak maski podsieci i bramy domyślne, urządzeniom w sieci. Możliwość rezerwacji adresów IP na podstawie adresów MAC jest jedną z kluczowych funkcji DHCP, która pozwala administratorom przypisać określony adres IP do konkretnego urządzenia, zapewniając tym samym stabilność oraz przewidywalność w zarządzaniu adresacją IP w sieci lokalnej. Przykładowo, w sieci biurowej możemy zarezerwować adres IP dla drukarki, co umożliwi jej łatwe znalezienie przez inne urządzenia w sieci, zachowując stały adres, niezależnie od cykli DHCP. Ponadto, dobrym standardem w zarządzaniu sieciami jest wdrażanie DHCP w połączeniu z dokumentacją adresacji, co ułatwia przyszłe rozbudowy oraz zarządzanie zasobami sieciowymi.

Pytanie 2

Producent wyświetlacza LCD stwierdził, że spełnia on wymagania klasy II według normy ISO 13406-2. Na podstawie danych przedstawionych w tabeli określ, ile pikseli z defektem typu 3 musi wystąpić na wyświetlaczu o naturalnej rozdzielczości 1280x800 pikseli, aby uznać go za uszkodzony?

KlasaMaksymalna liczba dopuszczalnych błędów na 1 milion pikseli
Typ 1Typ 2Typ 3
I000
II225
III51550
IV50150500

A. 3 piksele
B. 1 piksel
C. 7 pikseli
D. 4 piksele
Analizując pytanie dotyczące defektów pikseli w matrycach LCD zgodnych z normą ISO 13406-2, należy zrozumieć klasyfikację jakościową, która określa maksymalne dopuszczalne liczby defektów dla każdej klasy jakości. Klasa II, na którą powołuje się pytanie, dopuszcza do 5 defektów typu 3 na milion pikseli, które są subpikselami stale włączonymi lub wyłączonymi. Błędne podejście polega na niedoszacowaniu dopuszczalnej liczby defektów na rozdzielczość 1280x800 pikseli. Przy tej rozdzielczości całkowita liczba pikseli wynosi 1024000, co oznacza, że dopuszczalna liczba defektów typu 3 pozostaje na poziomie do 5 według normy klasy II. Odpowiedzi sugerujące 3 czy 4 defekty wynikają z błędnej interpretacji normy, która jasno definiuje limity na milion pikseli, a nie w mniejszych jednostkach. Kluczowy błąd myślowy polega na mylnym założeniu, że liczba pikseli równoważna jest proporcjonalnym zmniejszeniem liczby dopuszczalnych defektów, co nie jest zgodne z interpretacją norm ISO. Dlatego ważne jest, aby dokładnie analizować specyfikacje techniczne i pamiętać, że normy jakościowe są ustalane dla standardowej jednostki miary, jaką jest milion pikseli, co ma bezpośrednie przełożenie na ocenę jakości urządzeń elektronicznych i ich zgodność z międzynarodowymi standardami. To pozwala uniknąć nieporozumień i błędnych ocen w kontekście standardów branżowych i zapewnić wysoką jakość produktów elektronicznych na rynku.

Pytanie 3

Którego programu nie można użyć do przywrócenia danych w systemie Windows na podstawie wcześniej wykonanej kopii?

A. FileCleaner
B. Acronis True Image
C. Norton Ghost
D. Clonezilla
Wybór Acronis True Image, Norton Ghost lub Clonezilla jako narzędzi do odzyskiwania danych jest uzasadniony ich funkcjonalnością i przeznaczeniem. Acronis True Image to oprogramowanie umożliwiające tworzenie pełnych obrazów systemu, co pozwala na odzyskanie wszystkich danych, ustawień oraz aplikacji w razie awarii. Norton Ghost działa na podobnej zasadzie, umożliwiając tworzenie kopii zapasowych i przywracanie systemu do wcześniejszego stanu, co czyni go odpowiednim narzędziem w pożarowych sytuacjach. Clonezilla, z kolei, jest darmowym oprogramowaniem open source, które również pozwala na wykonywanie obrazów dysków oraz ich przywracanie. Użytkownicy często mylą funkcje tych programów z aplikacjami służącymi do optymalizacji systemu, takimi jak FileCleaner. To prowadzi do błędnych wniosków, ponieważ FileCleaner nie ma zdolności odzyskiwania danych z kopii zapasowej. Kluczowym błędem myślowym jest nieodróżnianie funkcjonalności narzędzi do zarządzania danymi od tych, które służą do ich usuwania lub oczyszczania. Efektywne zarządzanie danymi i ich zabezpieczanie wymaga stosowania odpowiednich narzędzi, co stanowi podstawową zasadę w praktykach informatycznych. Dlatego ważne jest, aby użytkownicy byli świadomi różnicy między tymi rozwiązaniami oraz ich przeznaczeniem.

Pytanie 4

Programem wiersza poleceń w systemie Windows, który umożliwia kompresję oraz dekompresję plików i folderów, jest aplikacja

A. Compact.exe
B. Expand.exe
C. DiskPart.exe
D. CleanMgr.exe
Expand.exe to narzędzie, które głównie służy do rozpakowywania plików z archiwum, a nie do kompresji. Zwykle używa się go, kiedy trzeba przywrócić pliki z archiwum, ale nie ma tu mowy o kompresji, co jest najważniejsze w tym pytaniu. DiskPart.exe to zupełnie inna bajka – to program do zarządzania partycjami, a nie do kompresji plików. Można z jego pomocą tworzyć czy kasować partycje, ale to nic nie ma wspólnego z kompresowaniem danych. CleanMgr.exe, czyli Oczyszczanie dysku, działa na rzecz usuwania niepotrzebnych plików, co też nie dotyczy kompresji. Czasami może się wydawać, że te narzędzia mogą kompresować, ale każde ma inne przeznaczenie. Warto pamiętać, że kompresja i dekompresja to różne procesy, a odpowiedni wybór narzędzi jest kluczowy dla zachowania wydajności systemu.

Pytanie 5

Aby system operacyjny mógł szybciej uzyskiwać dostęp do plików na dysku twardym, należy wykonać

A. podział dysku
B. fragmentację dysku
C. defragmentację dysku
D. szyfrowanie dysku
Defragmentacja dysku to proces, który ma na celu uporządkowanie fragmentów danych zapisanych na dysku twardym, co pozwala systemowi operacyjnemu na szybszy dostęp do plików. Kiedy plik jest zapisywany na dysku, jego dane mogą być rozdzielone na różne sektory, co prowadzi do fragmentacji. W wyniku tego procesor musi wykonać dodatkowe operacje, aby zebrać wszystkie fragmenty pliku, co znacząco spowalnia jego działanie. Defragmentacja reorganizuje dane, umieszczając je w bardziej ciągłych blokach, co skraca czas dostępu i przyspiesza operacje odczytu i zapisu. Przykładem zastosowania defragmentacji jest sytuacja, gdy użytkownik intensywnie korzysta z aplikacji wymagających dużych zasobów, takich jak edytory wideo czy gry komputerowe. W takich przypadkach defragmentacja pozwala na zauważalne zwiększenie wydajności. Warto także regularnie monitorować stan dysku za pomocą narzędzi systemowych, co jest zgodne z najlepszymi praktykami w zarządzaniu systemami operacyjnymi.

Pytanie 6

Jakie medium transmisyjne stosują myszki bluetooth do łączności z komputerem?

A. Promieniowanie w ultrafiolecie
B. Fale radiowe w paśmie 2,4 GHz
C. Promieniowanie w podczerwieni
D. Fale radiowe w paśmie 800/900 MHz
Myszki Bluetooth działają w paśmie 2,4 GHz, korzystając z fal radiowych do komunikacji z komputerem. To pasmo jest naprawdę popularne w technologii Bluetooth, która została stworzona, żeby umożliwić bezprzewodową wymianę danych na krótkich dystansach. Te fale są słabe, co jest fajne, bo zmniejsza zużycie energii w urządzeniach mobilnych. Bluetooth jest zgodny z IEEE 802.15.1 i pozwala na łatwe łączenie różnych sprzętów, jak myszki, klawiatury czy słuchawki. Dzięki temu użytkownicy mają więcej swobody, bo nie muszą się martwić kablami. Warto też wiedzieć, że są różne wersje technologii Bluetooth, które oferują różne prędkości i zasięgi, więc każdy może znaleźć coś dla siebie.

Pytanie 7

Jakie jest zadanie programu Wireshark?

A. analiza wydajności komponentów komputera
B. uniemożliwienie dostępu do komputera przez sieć
C. ochrona komputera przed wirusami
D. obserwacja działań użytkowników sieci
Wireshark jest zaawansowanym narzędziem służącym do analizy ruchu sieciowego, które pozwala na monitorowanie i rejestrowanie wszystkich pakietów danych przesyłanych w sieci komputerowej. Dzięki temu administratorzy mogą dokładnie śledzić działania użytkowników, diagnozować problemy z siecią, a także analizować bezpieczeństwo. Przykładowo, Wireshark może być używany do identyfikacji nieautoryzowanych prób dostępu do zasobów sieciowych lub do wykrywania nieprawidłowości w komunikacji między urządzeniami. Program umożliwia wizualizację ruchu w czasie rzeczywistym oraz oferuje funkcje filtrowania, które pozwalają skupić się na interesujących nas danych. Działania te są zgodne z dobrymi praktykami w zakresie zarządzania sieciami, gdzie ciągłe monitorowanie jest kluczowe dla zapewnienia ich bezpieczeństwa i wydajności. Wireshark jest również zgodny z wieloma standardami branżowymi, co czyni go narzędziem niezastąpionym dla inżynierów sieciowych i specjalistów z zakresu cyberbezpieczeństwa.

Pytanie 8

Jaką jednostką określa się szybkość przesyłania danych w sieciach komputerowych?

A. ips
B. mips
C. bps
D. dpi
Odpowiedź 'bps' oznacza 'bits per second', co jest jednostką używaną do pomiaru szybkości transmisji danych w sieciach komputerowych. Szybkość ta określa liczbę bitów, które mogą być przesyłane w ciągu jednej sekundy. W praktyce, bps jest kluczowym wskaźnikiem, pozwalającym ocenić wydajność sieci, na przykład w kontekście szerokopasmowego dostępu do internetu, gdzie operatorzy często podają prędkość łącza w megabitach na sekundę (Mbps). W kontekście protokołów sieciowych i technologii takich jak Ethernet, bps jest również używane do określenia maksymalnej przepustowości połączenia. Standardy takie jak IEEE 802.3 definiują różne prędkości transmisji, w tym 10, 100 i 1000 Mbps, które są fundamentem nowoczesnych sieci lokalnych. Oprócz bps, inne jednostki, takie jak Kbps (kilobits per second) czy Mbps, są również powszechnie używane, aby precyzyjnie określić szybkość transferu. Rozumienie tej jednostki jest niezbędne dla specjalistów IT oraz osób zajmujących się administracją sieci, aby móc efektywnie zarządzać infrastrukturą sieciową oraz optymalizować wydajność przesyłania danych.

Pytanie 9

Jakie złącze powinna mieć karta graficzna, aby mogła być bezpośrednio podłączona do telewizora LCD, który ma tylko analogowe złącze do komputera?

A. DE-15F
B. HDMI
C. DP
D. DVI-D
Wybór jakiegokolwiek innego złącza niż DE-15F w kontekście podłączenia telewizora LCD wyłącznie z analogowym złączem do komputera prowadzi do nieporozumień dotyczących sygnałów i kompatybilności. Złącze DVI-D, mimo że jest popularnym standardem w nowoczesnych kartach graficznych, obsługuje jedynie sygnał cyfrowy, co oznacza, że nie może być użyte do bezpośredniego połączenia z telewizorem analogowym. Brak odpowiednich adapterów sprawia, że przy braku konwersji sygnału użytkownik nie uzyska obrazu na telewizorze. Podobnie, HDMI jest złączem, które również przesyła sygnał cyfrowy, co czyni go niekompatybilnym z telewizorami, które nie posiadają złącza HDMI. Co więcej, złącze DisplayPort (DP) jest dedykowane głównie dla nowoczesnych monitorów i kart graficznych, co w praktyce oznacza, że nie ma możliwości podłączenia go bezpośrednio do starego telewizora LCD. Wybór DVI-D, HDMI lub DP może wydawać się kuszący ze względu na ich zaawansowaną technologię i wyższą jakość obrazu, lecz w rzeczywistości są one nieprzydatne w kontekście podłączania urządzeń, które nie obsługują sygnału cyfrowego. Zrozumienie różnic pomiędzy analogowymi i cyfrowymi sygnałami jest kluczowe w wyborze odpowiednich złącz, a w przypadku telewizora LCD z analogowym złączem, DE-15F jest jedynym racjonalnym wyborem.

Pytanie 10

Komputer dysponuje adresem IP 192.168.0.1, a jego maska podsieci wynosi 255.255.255.0. Który adres stanowi adres rozgłoszeniowy dla podsieci, do której ten komputer przynależy?

A. 192.168.0.127
B. 192.168.0.31
C. 192.168.0.63
D. 192.168.0.255
Adres 192.168.0.255 to adres rozgłoszeniowy dla sieci, do której należy komputer z adresem 192.168.0.1 i maską 255.255.255.0. Tak naprawdę, przy tej masce, pierwsze trzy oktety (192.168.0) wskazują na sieć, a ostatni (czyli ten czwarty) służy do adresowania urządzeń w tej sieci. Warto pamiętać, że adres rozgłoszeniowy to ten ostatni adres w danej podsieci, co w tym przypadku to właśnie 192.168.0.255. Ta funkcjonalność jest mega ważna, bo pozwala na wysłanie pakietów do wszystkich urządzeń w sieci naraz. W praktyce, rozgłoszenia są wykorzystywane w takich protokołach jak ARP czy DHCP, co pozwala na automatyczne przydzielanie adresów IP. Moim zdaniem, zrozumienie tego, jak działają adresy rozgłoszeniowe, ma znaczenie dla każdego, kto chce ogarnąć sprawy związane z sieciami komputerowymi. Właściwe użycie tych adresów naprawdę wpływa na to, jak dobrze działa sieć.

Pytanie 11

Użytkownik systemu Windows napotyka komunikaty o zbyt małej ilości pamięci wirtualnej. W jaki sposób można rozwiązać ten problem?

A. dołożenie dodatkowego dysku
B. zwiększenie rozmiaru pliku virtualfile.sys
C. zwiększenie pamięci RAM
D. dołożenie dodatkowej pamięci cache procesora
Zwiększenie pamięci RAM jest kluczowym rozwiązaniem dla problemów związanych z zbyt małą pamięcią wirtualną, ponieważ pamięć RAM jest wykorzystywana przez system operacyjny do przechowywania danych i programów, które są aktualnie w użyciu. Im więcej pamięci RAM jest dostępne, tym więcej aplikacji można uruchomić jednocześnie bez występowania problemów z wydajnością. W praktyce, zwiększenie pamięci RAM pozwala na bardziej efektywne przetwarzanie danych i redukuje potrzebę korzystania z pamięci wirtualnej, co z kolei może zmniejszyć obciążenie dysku twardego i poprawić ogólną responsywność systemu. Warto również zaznaczyć, że nowoczesne komputery często wymagają minimum 8 GB pamięci RAM do komfortowego użytkowania, zwłaszcza przy pracy z aplikacjami wymagającymi dużej mocy obliczeniowej, takimi jak edytory wideo, oprogramowanie do projektowania graficznego czy gry komputerowe. Zgodnie z dobrymi praktykami, zaleca się, aby użytkownicy regularnie monitorowali zużycie pamięci RAM, aby dostosować konfigurację sprzętową do swoich potrzeb. W sytuacjach, gdy pamięć RAM jest niewystarczająca, najlepszym i najbardziej efektywnym rozwiązaniem jest jej rozbudowa.

Pytanie 12

Który z podanych adresów IP należy do kategorii adresów prywatnych?

A. 190.5.7.126
B. 192.168.0.1
C. 131.107.5.65
D. 38.176.55.44
Adresy IP 190.5.7.126, 131.107.5.65 oraz 38.176.55.44 są przykładami adresów publicznych. W przeciwieństwie do adresów prywatnych, adresy publiczne są routowane w Internecie i mogą być wykorzystywane do identyfikacji urządzeń w globalnej sieci. Adresy publiczne są przypisywane przez organizacje zajmujące się przydzielaniem adresów IP, takie jak IANA czy lokalne rejestry. Wybierając adres publiczny, użytkownicy muszą być świadomi, że ich urządzenia stają się dostępne w Internecie, co może rodzić zagrożenia związane z bezpieczeństwem, takie jak ataki hakerskie czy nieautoryzowany dostęp. Często, aby zminimalizować ryzyko, sieci domowe i biurowe stosują NAT (Network Address Translation), co pozwala na użycie adresów prywatnych w sieci lokalnej, a jednocześnie umożliwia dostęp do Internetu przy użyciu jednego publicznego adresu. Ponadto, niektóre osoby wciąż mylą pojęcie adresów prywatnych i publicznych, co prowadzi do nieprawidłowego skonfigurowania sieci i problemów z dostępem do zasobów online. Wiedza na temat różnic między tymi rodzajami adresów jest niezbędna dla każdego, kto zajmuje się administracją sieci czy infrastrukturą IT.

Pytanie 13

Klawiatura QWERTY, która pozwala na wprowadzanie znaków typowych dla języka polskiego, nazywana jest także klawiaturą

A. maszynistki
B. diaktryczną
C. polską
D. programisty
Klawiatura QWERTY, znana jako klawiatura programisty, jest dostosowana do wprowadzania znaków diakrytycznych, które są niezbędne w polskim alfabecie. W skład tego układu wchodzą dodatkowe znaki, takie jak 'ą', 'ę', 'ł', 'ó', 'ś', 'ź', 'ż', a także znaki interpunkcyjne, które są kluczowe dla poprawnej pisowni w języku polskim. Klawiatura programisty jest szczególnie użyteczna dla programistów i osób pracujących z tekstem, ponieważ umożliwia łatwe i szybkie wprowadzanie polskich znaków bez potrzeby zmiany układu klawiatury. Szereg programów i edytorów tekstu automatycznie rozpoznaje ten układ, co przyspiesza proces pisania kodu lub tekstów. Standardowe praktyki w branży zalecają korzystanie z klawiatury, która umożliwia sprawne pisanie w lokalnym języku, co zwiększa produktywność oraz minimalizuje ryzyko błędów w komunikacji pisemnej. Dostosowanie układu klawiatury do potrzeb użytkownika to kluczowy element efektywnej pracy biurowej oraz programistycznej.

Pytanie 14

Karta sieciowa w standardzie Fast Ethernet umożliwia przesył danych z maksymalną prędkością

A. 10 Mbps
B. 10 MB/s
C. 100 Mbps
D. 100 MB/s
Wybór niepoprawnej odpowiedzi może wynikać z nieporozumienia dotyczącego jednostek miary prędkości transferu danych. Odpowiedzi takie jak 10 Mbps czy 10 MB/s mylą dwie różne jednostki: Mbps (megabitów na sekundę) oraz MB/s (megabajtów na sekundę). Jeden megabajt to równowartość 8 megabitów, co oznacza, że wartości te nie są wymienne. Z tego powodu 10 MB/s przekłada się na 80 Mbps, co wciąż nie jest wystarczające w kontekście standardu Fast Ethernet. Ponadto, wartością 100 MB/s również nie jest odpowiadająca standardowi Fast Ethernet prędkość transferu, ponieważ jest to równowartość 800 Mbps, co jest znacznie powyżej maksymalnych możliwości Fast Ethernet. Często błąd ten powstaje na skutek braku znajomości różnic między jednostkami miary lub nieprecyzyjnych informacji dotyczących standardów sieciowych. Aby zrozumieć, dlaczego Fast Ethernet jest ograniczony do 100 Mbps, należy wziąć pod uwagę specyfikacje techniczne oraz różne technologie sieciowe. Standard ten bazuje na technologii kodowania sygnałów oraz architekturze sieci, co determinuje maksymalne wartości prędkości przesyłania danych. W związku z tym ważne jest, aby zwracać uwagę na jednostki oraz kontekst, w jakim są używane, aby uniknąć nieporozumień i błędnych wniosków.

Pytanie 15

Funkcja systemu Windows Server, umożliwiająca zdalną instalację systemów operacyjnych na komputerach kontrolowanych przez serwer, to

A. GPO
B. WDS
C. DFS
D. FTP
GPO, czyli Group Policy Object, to mechanizm zarządzania polityką grupy w systemach Windows, który pozwala administratorom na definiowanie i egzekwowanie ustawień dla użytkowników i komputerów w sieci. GPO nie jest odpowiednie do zdalnej instalacji systemów operacyjnych, lecz do zarządzania konfiguracją systemów już zainstalowanych. Używanie GPO do tego celu mogłoby prowadzić do nieporozumień, ponieważ wiele osób może myśleć, że ustawienia polityki mogą zastąpić proces instalacji. FTP, czyli File Transfer Protocol, to z kolei protokół transferu plików, który służy do przesyłania plików między komputerami w sieci. Choć FTP może być wykorzystywany do przesyłania obrazów systemów operacyjnych, nie jest to narzędzie do ich instalacji, a jego stosowanie w tym kontekście jest niewłaściwe. DFS, czyli Distributed File System, to technologia umożliwiająca zarządzanie i replikację danych w rozproszonym środowisku. Tak samo jak w przypadku FTP, DFS nie jest narzędziem do instalacji systemów operacyjnych, lecz do zarządzania dostępem do plików. Typowym błędem myślowym jest mylenie różnych technologii i ich funkcji, co może prowadzić do nieefektywnego zarządzania infrastrukturą IT. Dlatego kluczowe jest zrozumienie specyfiki narzędzi oraz ich odpowiednich zastosowań w kontekście administracji systemami.

Pytanie 16

Jakie właściwości charakteryzują pojedyncze konto użytkownika w systemie Windows Serwer?

A. maksymalna objętość profilu użytkownika
B. maksymalna objętość pojedynczego pliku, który użytkownik może zapisać na serwerowym dysku
C. maksymalna objętość pulpitu użytkownika
D. numer telefonu, na który serwer powinien oddzwonić w razie nawiązania połączenia telefonicznego przez tego użytkownika
W analizowanych odpowiedziach znajdują się różne nieporozumienia dotyczące cech kont użytkowników w systemie Windows Server. W szczególności, maksymalna wielkość pojedynczego pliku, jaką użytkownik może zapisać na dysku serwera, nie jest specyfiką konta użytkownika, lecz wynikiem ustawień systemu plików oraz polityk bezpieczeństwa, które są stosowane w danym środowisku. W kontekście serwerów Windows, te parametry są regulowane przez system operacyjny, a nie przez indywidualne konta użytkowników. Dodatkowo, maksymalna wielkość profilu użytkownika, choć istotna, nie jest bezpośrednio powiązana z podstawową funkcjonalnością i identyfikacją konta w systemie. Profile użytkowników są zarządzane przez system, który ustala limity i zarządza przestrzenią potrzebną na dane użytkownika. Podobnie, maksymalna wielkość pulpitu użytkownika jest pojęciem dość nieprecyzyjnym, ponieważ pulpity są z reguły statyczne i nie mają ograniczeń w kontekście przechowywania, a jedynie w kontekście ilości aplikacji, które mogą być jednocześnie uruchomione. Te błędne interpretacje mogą prowadzić do nieporozumień, które w praktyce skutkują niewłaściwą konfiguracją kont użytkowników oraz ograniczeniem ich efektywności w codziennej pracy. Właściwe zrozumienie tych aspektów jest kluczowe dla administratorów systemów, którzy muszą zarządzać kontami użytkowników w sposób, który maksymalizuje ich wydajność i bezpieczeństwo.

Pytanie 17

Aby sprawdzić, czy zainstalowana karta graficzna w komputerze jest przegrzewana, użytkownik ma możliwość użycia programu

A. Everest
B. CHKDSK
C. CPU-Z
D. HD Tune
Everest to zaawansowane narzędzie do monitorowania sprzętu, które dostarcza szczegółowych informacji o różnych komponentach komputera, w tym o karcie graficznej. Program ten pozwala na monitorowanie temperatury, napięcia, a także obciążenia karty graficznej w czasie rzeczywistym. Dzięki tym informacjom użytkownik może zidentyfikować potencjalne problemy z przegrzewaniem, co jest kluczowe dla stabilności i wydajności systemu. Na przykład, jeśli temperatura karty graficznej przekracza zalecane normy, użytkownik może podjąć działania, takie jak poprawa chłodzenia lub czyszczenie obudowy komputera. Warto również zaznaczyć, że Everest wspiera standardy branżowe, umożliwiając użytkownikom dostęp do danych zgodnych z różnymi modelami i producentami sprzętu. Użycie Everest w codziennym użytkowaniu komputerów może znacznie poprawić ich żywotność i wydajność poprzez bieżące monitorowanie stanu podzespołów.

Pytanie 18

Jaką inną formą można zapisać 2^32 bajtów?

A. 4 GiB
B. 8 GB
C. 2 GB
D. 1 GiB
Równoważny zapis 2^32 bajtów to 4 GiB. W celu zrozumienia tego przeliczenia, warto zwrócić uwagę na różnice między jednostkami miary. GiB (gibibajt) i GB (gigabajt) to różne jednostki, które są często mylone. 1 GiB odpowiada 2^30 bajtom, podczas gdy 1 GB to 10^9 bajtów (1 000 000 000 bajtów). Dlatego, przeliczając 2^32 bajtów na GiB, wykonujemy obliczenie: 2^32 / 2^30 = 2^2 = 4 GiB. Przykładem praktycznego zastosowania tej wiedzy jest zarządzanie pamięcią w systemach komputerowych, gdzie precyzyjne określenie wielkości pamięci RAM oraz przestrzeni dyskowej ma kluczowe znaczenie dla wydajności systemu operacyjnego. W branży IT, stosowanie jednostek zgodnych z danymi standardami, takimi jak IEC 60027-2, jest istotne, aby uniknąć nieporozumień.

Pytanie 19

Symbol umieszczony na obudowie komputera stacjonarnego informuje o zagrożeniu przed

Ilustracja do pytania
A. porażeniem prądem elektrycznym
B. promieniowaniem niejonizującym
C. możliwym urazem mechanicznym
D. możliwym zagrożeniem radiacyjnym
Symbol przedstawiony na obudowie komputera to powszechnie stosowany znak ostrzegawczy przed porażeniem prądem elektrycznym Składa się z żółtego trójkąta z czarną obwódką oraz czarną błyskawicą w środku Ten symbol informuje użytkownika o potencjalnym ryzyku związanym z kontaktem z nieosłoniętymi przewodami lub urządzeniami elektrycznymi mogącymi znajdować się pod niebezpiecznym napięciem Znak ten jest szeroko stosowany w różnych gałęziach przemysłu gdzie istnieje możliwość porażenia prądem szczególnie w miejscach o dużym natężeniu energii elektrycznej Przestrzeganie oznaczeń jest kluczowe dla zapewnienia bezpieczeństwa w miejscach pracy oraz w domach Zgodnie z międzynarodowymi normami i standardami takimi jak ISO 7010 czy ANSI Z535.4 stosowanie tego rodzaju symboli jest wymagane do informowania o zagrożeniach elektrycznych Praktyczne zastosowanie znaku obejmuje nie tylko sprzęt komputerowy ale także rozdzielnie elektryczne oraz inne urządzenia przemysłowe gdzie występuje ryzyko kontaktu z prądem Elektryczność mimo swoich korzyści stanowi poważne zagrożenie dla zdrowia i życia dlatego znajomość i rozumienie takich symboli jest kluczowe w codziennym użytkowaniu urządzeń elektrycznych i elektronicznych

Pytanie 20

Liczba FAFC w systemie heksadecymalnym odpowiada wartości liczbowej

A. 175376 (8)
B. 1111101011111100 (2)
C. 1111101011011101 (2)
D. 64256(10)
Liczba FAFC w systemie heksadecymalnym odpowiada liczbie 1111101011111100 w systemie binarnym. Aby zrozumieć, dlaczego tak jest, warto najpierw przyjrzeć się konwersji pomiędzy systemami liczbowymi. Liczba heksadecymalna FAFC składa się z czterech cyfr, gdzie każda cyfra heksadecymalna odpowiada czterem bitom w systemie binarnym. Zatem, aby przeliczyć FAFC na system binarny, należy przetłumaczyć każdą z cyfr: F to 1111, A to 1010, F to 1111, a C to 1100. Po połączeniu tych bitów otrzymujemy 1111101011111100. Taka konwersja jest powszechnie stosowana w programowaniu i elektronice, zwłaszcza w kontekście adresowania pamięci lub przedstawiania kolorów w systemach graficznych, gdzie heksadecymalne kody kolorów są często używane. Przykładami zastosowań mogą być grafika komputerowa oraz rozwój systemów wbudowanych, gdzie konwersje między różnymi systemami liczbowymi są na porządku dziennym. Zrozumienie tych konwersji jest kluczowe dla efektywnego programowania i pracy z różnymi formatami danych.

Pytanie 21

Interfejs HDMI w komputerze umożliwia transfer sygnału

A. tylko cyfrowego video
B. cyfrowego audio i video
C. analogowego audio i video
D. tylko cyfrowego audio
Interfejs HDMI (High-Definition Multimedia Interface) jest standardem, który umożliwia przesyłanie zarówno cyfrowego sygnału audio, jak i wideo, co czyni go niezwykle wszechstronnym rozwiązaniem w dziedzinie elektroniki użytkowej. Dzięki temu, użytkownicy mogą podłączyć różnorodne urządzenia, takie jak telewizory, monitory, projektory, odtwarzacze multimedialne oraz komputery, za pomocą jednego kabla, eliminując potrzebę stosowania wielu kabli dla różnych sygnałów. Przykładowo, połączenie laptopa z telewizorem za pomocą kabla HDMI pozwala na przesyłanie obrazu w wysokiej rozdzielczości oraz towarzyszącego mu dźwięku, co jest szczególnie przydatne podczas prezentacji, oglądania filmów lub grania w gry. Standard HDMI obsługuje różne rozdzielczości, w tym 4K i 8K, a także różne formaty dźwięku, w tym wielokanałowy dźwięk przestrzenny, co czyni go idealnym rozwiązaniem zarówno dla profesjonalistów, jak i dla użytkowników domowych. HDMI stał się de facto standardem w branży audio-wideo, co potwierdzają liczne zastosowania w telekomunikacji, rozrywce i edukacji.

Pytanie 22

Jakie będą całkowite wydatki na materiały potrzebne do wyprodukowania 20 kabli połączeniowych typu patchcord o długości 1,5 m każdy, jeżeli koszt jednego metra kabla wynosi 1 zł, a wtyk to 50 gr?

A. 40 zł
B. 30 zł
C. 60 zł
D. 50 zł
Aby obliczyć łączny koszt materiałów do wykonania 20 kabli połączeniowych typu patchcord o długości 1,5 m każdy, należy dokładnie przeanalizować koszty zarówno kabla, jak i wtyków. Koszt jednego metra kabla wynosi 1 zł. Zatem, na wykonanie jednego kabla o długości 1,5 m potrzeba 1,5 m x 1 zł/m = 1,5 zł. Koszt wtyku wynosi 50 gr, co odpowiada 0,5 zł. Łączny koszt materiałów do wykonania jednego kabla wynosi zatem 1,5 zł + 0,5 zł = 2 zł. Aby obliczyć łączny koszt dla 20 kabli, należy pomnożyć koszt jednego kabla przez ich liczbę: 20 x 2 zł = 40 zł. Warto jednak zauważyć, że odpowiedź 50 zł była błędnie oznaczona jako poprawna. Również, przy projektowaniu i realizacji połączeń kablem, ważne jest przestrzeganie standardów dotyczących długości kabli, aby zapewnić optymalną jakość sygnału oraz minimalizację strat sygnałowych. W praktyce, projektanci często uwzględniają dodatkowe koszty związane z materiałami eksploatacyjnymi oraz ewentualne zmiany w projekcie, które mogą wpłynąć na całkowity koszt.

Pytanie 23

Rodzaj połączenia VPN obsługiwany przez system Windows Server, w którym użytkownicy są uwierzytelniani za pomocą niezabezpieczonych połączeń, a szyfrowanie zaczyna się dopiero po wymianie uwierzytelnień, to

A. PPTP
B. SSTP
C. IPSEC
D. L2TP
Wybór SSTP, L2TP czy IPSEC do opisania połączenia VPN, które najpierw korzysta z niezabezpieczonego połączenia, a następnie przechodzi w szyfrowane, jest niewłaściwy. SSTP (Secure Socket Tunneling Protocol) to protokół, który wykorzystuje HTTPS do ustanowienia bezpiecznego tunelu, co oznacza, że uwierzytelnienie i szyfrowanie odbywają się równolegle. Charakteryzuje się dużym poziomem bezpieczeństwa, jednak jego działanie nie odpowiada opisowi pytania, ponieważ nie ma etapu niezabezpieczonego połączenia. L2TP (Layer 2 Tunneling Protocol) często mylony jest z IPSEC, ponieważ zazwyczaj jest używany razem z nim do zapewnienia bezpiecznego transportu danych. L2TP sam w sobie nie ma mechanizmu szyfrowania, a więc wymaga dodatkowych protokołów, co również nie wpisuje się w schemat opisany w pytaniu. IPSEC to standardowy protokół zabezpieczający, który działa na poziomie sieciowym i służy do szyfrowania i uwierzytelniania pakietów IP. Choć IPSEC jest niezwykle skuteczny, również nie pasuje do koncepcji stopniowego przejścia od niezabezpieczonego do zabezpieczonego połączenia. Mylne przekonanie o funkcjonalności tych protokołów często wynika z ich skomplikowanej natury oraz różnorodności zastosowań w praktyce. Ważne jest, aby zrozumieć, że wybór odpowiedniego protokołu VPN zależy od specyficznych potrzeb i wymaganych standardów bezpieczeństwa, co dodatkowo podkreśla znaczenie świadomości dotyczącej zastosowań każdego z tych protokołów.

Pytanie 24

Liczba 563 (8) w systemie szesnastkowym to

A. 713
B. 173
C. 371
D. 317
Aby przeliczyć liczbę 563 w systemie ósemkowym (8) na system szesnastkowy (16), najpierw należy zamienić liczbę ósemkową na dziesiętną. Liczba 563 (8) oznacza 5*8^2 + 6*8^1 + 3*8^0, co daje 320 + 48 + 3 = 371 (10). Następnie przekształcamy tę liczbę dziesiętną na szesnastkową. Dzielimy 371 przez 16, co daje 23 z resztą 3. Następnie dzielimy 23 przez 16, co daje 1 z resztą 7. Kiedy 1 jest mniejsze od 16, kończymy dzielenie. Ostatnie reszty odczytujemy w odwrotnej kolejności, co daje 173 (16). Zrozumienie tych konwersji jest kluczowe w programowaniu, gdzie przetwarzanie danych w różnych systemach liczbowych jest powszechne, zwłaszcza w kontekście adresowania pamięci i kolorów w systemach komputerowych, które często wykorzystują notację szesnastkową.

Pytanie 25

Który algorytm służy do weryfikacji, czy ramka Ethernet jest wolna od błędów?

A. CRC (Cyclic Redundancy Check)
B. CSMA (Carrier Sense Multiple Access)
C. LLC (Logical Link Control)
D. MAC (Media Access Control)
Logical Link Control (LLC) i Media Access Control (MAC) to dwa różne podwarstwy w modelu OSI, które służą do zarządzania dostępem do medium i kontrolą ramki, ale nie są one odpowiedzialne za wykrywanie błędów. LLC zajmuje się zapewnieniem komunikacji między różnymi protokołami sieciowymi, umożliwiając współpracę z różnymi typami sieci, natomiast MAC jest odpowiedzialne za adresowanie i kontrolę dostępu do medium w warstwie łącza danych. Jednak ani LLC, ani MAC nie mają mechanizmów wykrywania błędów; ich główną rolą jest zarządzanie dostępem do medium oraz identyfikacja ramki danych. Carrier Sense Multiple Access (CSMA) to mechanizm kontroli dostępu, który zapobiega kolizjom w sieci, pozwalając urządzeniom na 'nasłuchiwanie' medium przed rozpoczęciem transmisji. CSMA nie ma jednak funkcji wykrywania błędów. Typowym błędem myślowym jest mylenie różnych warstw modelu OSI i przypisywanie im niewłaściwych funkcji. Aby poprawnie zrozumieć rolę każdej z tych technologii, należy dobrze znać architekturę sieci oraz standardy, takie jak IEEE 802, które regulują, jak urządzenia komunikują się w sieci. Wiedza ta jest istotna dla inżynierów sieciowych i programistów, aby mogli skutecznie projektować i wdrażać systemy komunikacyjne.

Pytanie 26

Który z poniższych adresów stanowi adres rozgłoszeniowy dla sieci 172.16.64.0/26?

A. 172.16.64.255
B. 172.16.64.192
C. 172.16.64.0
D. 172.16.64.63
Adres rozgłoszeniowy dla sieci 172.16.64.0/26 to 172.16.64.63. W tej sieci, przy masce /26, mamy 64 adresy IP, zaczynając od 172.16.64.0, co oznacza, że adresy od 172.16.64.0 do 172.16.64.63 są wykorzystywane w tej podsieci. Adres rozgłoszeniowy jest najwyższym adresem w danej podsieci, co oznacza, że wszystkie bity hosta są ustawione na 1. W tym przypadku, przy masce 255.255.255.192, ostatnie 6 bitów w adresie IP jest przeznaczonych na identyfikację hostów, co daje nam 2^6 = 64 adresy. W praktyce, adres rozgłoszeniowy jest używany do wysyłania pakietów do wszystkich urządzeń w danej sieci lokalnej. Na przykład, w protokole ARP (Address Resolution Protocol) używa się adresu rozgłoszeniowego do rozgłaszania zapytań, co pozwala urządzeniom w sieci na wzajemne odnajdywanie się. W kontekście IPv4, znajomość adresu rozgłoszeniowego jest kluczowa dla efektywnego zarządzania sieciami oraz rozwiązywania problemów związanych z komunikacją w sieci lokalnej.

Pytanie 27

Ile bitów zawiera adres MAC karty sieciowej?

A. 48
B. 16
C. 64
D. 32
Zrozumienie, że adres fizyczny MAC karty sieciowej składa się z 48 bitów, jest kluczowe dla efektywnego zarządzania sieciami komputerowymi. Można jednak natknąć się na nieporozumienia dotyczące liczby bitów, które mogą prowadzić do błędnych koncepcji. Odpowiedzi 16, 32, czy 64 bity są nietrafione, ponieważ wprowadzenie błędnych wartości nie tylko zniekształca prawidłowy obraz funkcjonowania adresacji w sieciach, ale także może skutkować nieefektywnym zarządzaniem i bezpieczeństwem w lokalnych sieciach. Adresy MAC, składające się z 48 bitów, zapewniają 281 474 976 710 656 unikalnych identyfikatorów, co jest wystarczające do obsługi ogromnej liczby urządzeń w sieciach lokalnych. W przypadku 16 lub 32 bitów liczba unikalnych adresów byłaby znacznie ograniczona, co w praktyce prowadziłoby do kolizji adresów i problemów z identyfikacją urządzeń. Z kolei 64 bity, choć teoretycznie mogą wydawać się rozsądne w kontekście rozwoju technologii, nie są standardem w obecnie używanych protokołach, co czyni je niepraktycznymi. W konsekwencji, ważne jest, aby opierać się na uznanych standardach, takich jak IEEE 802, które jasno określają, że adresy MAC powinny mieć długość 48 bitów. Prawidłowe zrozumienie tej kwestii pozwala na efektywne projektowanie i zarządzanie infrastrukturą sieciową oraz unikanie typowych pułapek w zakresie konfiguracji i bezpieczeństwa sieci.

Pytanie 28

Jakie urządzenie jest kluczowe do połączenia pięciu komputerów w sieci o topologii gwiazdy?

A. modem.
B. most.
C. przełącznik.
D. ruter.
Wybór błędnych urządzeń do połączenia komputerów w sieci gwiazdowej może być wynikiem niepełnego zrozumienia ich funkcji. Most, choć użyteczny w łączeniu różnych segmentów sieci, nie jest odpowiedni do centralnego zarządzania komunikacją między wieloma urządzeniami w sieci lokalnej. Jego głównym zadaniem jest łączenie dwóch segmentów sieci, co może prowadzić do nieefektywności w sytuacji, gdy jest wiele urządzeń do obsługi. Z kolei ruter, który łączy różne sieci i kieruje ruch między nimi, nie jest przeznaczony do pracy w obrębie jednej, lokalnej sieci. Jego funkcja polega na przesyłaniu danych między różnymi sieciami, a nie na bezpośrednim zarządzaniu lokalnym ruchem w obrębie jednego segmentu, co czyni go niewłaściwym wyborem w przypadku połączenia pięciu komputerów w topologii gwiazdy. Modem, z drugiej strony, jest urządzeniem, które służy do łączenia sieci lokalnej z Internetem poprzez konwersję sygnałów cyfrowych na analogowe i vice versa. Jego rola nie obejmuje zarządzania połączeniami wewnętrznymi w sieci, co dodatkowo wyklucza go z tej sytuacji. Wybierając niewłaściwe urządzenia, można napotkać na problemy z wydajnością, bezpieczeństwem oraz niezawodnością sieci, co podkreśla znaczenie zrozumienia funkcji każdego elementu w infrastrukturze sieciowej.

Pytanie 29

Postcardware to typ

A. licencji oprogramowania
B. karty sieciowej
C. wirusa komputerowego
D. usługi poczty elektronicznej
Postcardware to specyficzny rodzaj licencji oprogramowania, który wprowadza unikalny model dystrybucji. W przeciwieństwie do tradycyjnych licencji, które często wymagają zakupu, postcardware umożliwia użytkownikom korzystanie z oprogramowania za darmo, pod warunkiem, że w zamian wyślą autorowi pocztówkę lub inny rodzaj wiadomości. Taki model promuje interakcję między twórcami a użytkownikami, a także zwiększa świadomość na temat oprogramowania. Przykłady zastosowania postcardware można znaleźć w przypadku projektów open source, gdzie autorzy zachęcają do kontaktu z nimi w celu wyrażenia uznania za ich pracę. Dzięki temu, postcardware przyczynia się do budowania społeczności wokół oprogramowania oraz wzmacnia więź między twórcą a użytkownikiem. Jest to również forma marketingu, która podkreśla wartość osobistego kontaktu, co może prowadzić do większej lojalności użytkowników. Taki model dystrybucji jest zgodny z duchem współpracy i otwartości, które są fundamentem wielu inicjatyw technologicznych i wspiera rozwój innowacyjnych rozwiązań.

Pytanie 30

Adres IP 192.168.2.0/24 podzielono na cztery różne podsieci. Jaką maskę mają te nowe podsieci?

A. 255.255.255.192
B. 255.255.255.128
C. 255.255.255.240
D. 255.255.255.224
W przypadku podziału sieci adresowej 192.168.2.0/24 na cztery podsieci, wybór maski 255.255.255.128 jest niewłaściwy, ponieważ ta maska (/25) pozwala na utworzenie jedynie dwóch podsieci z 126 hostami w każdej. Również wybór maski 255.255.255.224 (/27) nie jest odpowiedni, jako że prowadzi do podziału na osiem podsieci, co jest zbyt dużą fragmentacją w tym kontekście. W kontekście adresacji IP, ważne jest zrozumienie, że każda maska sieciowa określa, ile bitów jest przeznaczonych na identyfikator sieci, a ile na identyfikację hostów. W przypadku niepoprawnych wyborów, typowym błędem jest nieprawidłowe zrozumienie zasady podziału sieci oraz konsekwencji związanych z ilością możliwych adresów w danej podsieci. Ponadto, niektórzy mogą mylić liczbę podsieci z liczbą hostów, co prowadzi do nieefektywnego wykorzystania dostępnej przestrzeni adresowej. Zrozumienie zasad adresacji IP oraz zamiarów związanych z segmentacją sieci jest kluczowe dla efektywnego projektowania i zarządzania siecią, a także dla zapewnienia jej bezpieczeństwa i wydajności. Warto zaznaczyć, że stosowanie niewłaściwych masek może prowadzić do problemów z komunikacją między hostami oraz trudności w zarządzaniu ruchem sieciowym.

Pytanie 31

Po włączeniu komputera wyświetlił się komunikat: Non-system disk or disk error. Replace and strike any key when ready. Co może być tego przyczyną?

A. skasowany BIOS komputera
B. dyskietka włożona do napędu
C. uszkodzony kontroler DMA
D. brak pliku NTLDR
Patrząc na inne odpowiedzi, można zauważyć, że uszkodzony kontroler DMA tak naprawdę nie ma związku z komunikatami, które dostajesz z brakiem systemu. Kontroler DMA to coś, co połącza pamięć z urządzeniami, ale nie zajmuje się uruchamianiem systemu. Owszem, może sprawiać inne kłopoty, ale nie te konkretne komunikaty. Z kolei brak pliku NTLDR, mimo że może dawać podobne błędy, ma więcej wspólnego z twardym dyskiem, na którym jest system. NTLDR to ważny plik, ale jeśli komunikat dotyczy dyskietki, to sprawa jest inna. A co do skasowanego BIOS-u, to też nie jest przyczyną tego błędu. Skasowany BIOS mógłby całkowicie uniemożliwić uruchomienie komputera, ale nie spowodowałby błędu z „Non-system disk”. Zrozumienie tego typu rzeczy jest naprawdę ważne w diagnozowaniu problemów z uruchamianiem komputerów. Każda z innych odpowiedzi może być związana z innymi kwestiami, ale nie dotyczy tej sytuacji opisanej w pytaniu.

Pytanie 32

Wynikiem wykonania komendy arp -a 192.168.1.1 w systemie MS Windows jest pokazanie

A. sprawdzenia połączenia z komputerem o wskazanym IP
B. spisu aktywnych połączeń sieciowych
C. ustawień protokołu TCP/IP interfejsu sieciowego
D. adresu MAC urządzenia o wskazanym IP
Polecenie arp -a w systemie MS Windows służy do wyświetlania tabeli ARP (Address Resolution Protocol), która mapuje adresy IP na adresy fizyczne (MAC) urządzeń w lokalnej sieci. Gdy wykonujesz to polecenie z argumentem wskazującym na konkretny adres IP, system poszukuje w swojej tabeli ARP odpowiedniego wpisu i zwraca adres MAC skojarzony z tym IP. Jest to kluczowe dla komunikacji sieciowej, ponieważ urządzenia w sieci lokalnej komunikują się za pomocą adresów fizycznych, a nie tylko adresów IP. Przykładem zastosowania tej komendy może być diagnozowanie problemów z połączeniem w sieci, gdy podejrzewasz, że urządzenie nie odpowiada na zapytania. Znalezienie adresu MAC pozwala na weryfikację, czy urządzenie jest aktywne w sieci. Dodatkowo, znajomość adresów MAC jest niezbędna do zarządzania bezpieczeństwem w sieci, na przykład przy używaniu filtrów MAC w switchach.

Pytanie 33

W systemie Linux, co oznacza znak "~" w ścieżce dostępu do plików?

A. Katalog tymczasowy
B. Katalog domowy użytkownika
C. Katalog główny
D. Katalog root
W systemie Linux istnieje kilka specjalnych symboli, które mają swoje specyficzne znaczenie w kontekście ścieżek plików. Znak "~" jest jednym z nich i odnosi się do katalogu domowego użytkownika, ale istnieje pokusa, by mylić go z innymi, bardziej ogólnymi katalogami. Katalog główny, oznaczony jako "/", jest fundamentem struktury systemu plików w Linuxie. To miejsce, od którego zaczynają się wszystkie inne katalogi, takie jak "/bin", "/etc", czy "/var". Jest to mylne, gdyż "~" nie odnosi się do tej lokalizacji, ale do bardziej spersonalizowanego miejsca. Z kolei katalog tymczasowy, często oznaczany jako "/tmp", jest używany do przechowywania tymczasowych plików, które mogą być usunięte po restarcie systemu lub po określonym czasie. Nie ma on żadnego związku z "~", który jest stałym punktem odniesienia dla każdego użytkownika. Katalog root, oznaczony jako "/root", jest katalogiem domowym użytkownika root, czyli superużytkownika systemu. Choć jest to katalog domowy, to specyficzny dla tylko jednego użytkownika, root, a nie dla bieżącego użytkownika, dlatego "~" nie odnosi się do niego, chyba że jesteśmy zalogowani jako root. Rozróżnianie tych ścieżek jest kluczowe dla zrozumienia, jak działa system plików w Linuxie i jak możemy efektywnie nawigować i zarządzać plikami.

Pytanie 34

Zanim przystąpimy do prac serwisowych dotyczących modyfikacji rejestru systemu Windows, konieczne jest wykonanie

A. defragmentacji dysku
B. czyszczenia rejestru
C. kopii rejestru
D. oczyszczania dysku
Wykonywanie kopii rejestru systemu Windows przed wprowadzeniem jakichkolwiek zmian jest kluczowym krokiem w procesie modyfikacji. Rejestr systemowy przechowuje krytyczne informacje dotyczące konfiguracji systemu operacyjnego oraz zainstalowanych aplikacji. Zmiany w rejestrze mogą prowadzić do poważnych problemów z systemem, w tym do jego niestabilności lub nawet unieruchomienia. Dlatego przed przystąpieniem do jakichkolwiek działań w tym obszarze, zawsze należy utworzyć kopię zapasową rejestru. W przypadku wystąpienia jakichkolwiek problemów po dokonaniu zmian, użytkownik ma możliwość przywrócenia wcześniejszego stanu rejestru, co może uratować system przed koniecznością reinstalacji. Praktycznym przykładem jest użycie narzędzia 'Regedit', gdzie można łatwo eksportować całą zawartość rejestru do pliku .reg, który następnie można zaimportować w razie potrzeby. Ta procedura jest zgodna z najlepszymi praktykami zarządzania systemem i informatyki, podkreślając znaczenie zabezpieczenia danych przed dokonaniem istotnych zmian.

Pytanie 35

Jaki jest adres rozgłoszeniowy w sieci, w której działa host z adresem IP 195.120.252.32 i maską podsieci 255.255.255.192?

A. 195.120.255.255
B. 195.120.252.255
C. 195.120.252.63
D. 195.120.252.0
Zrozumienie adresowania IP oraz koncepcji podsieci jest kluczowe dla efektywnego zarządzania sieciami komputerowymi. Podane w pytaniu odpowiedzi, takie jak 195.120.252.0, mogą wydawać się kuszące, jednakże są one zdefiniowane w kontekście innych ról w sieci. Adres 195.120.252.0 to adres sieciowy, a nie rozgłoszeniowy, co jest częstym źródłem nieporozumień. Adresy sieciowe służą do identyfikacji samej sieci i nie mogą być przypisane do urządzeń. Inna odpowiedź, 195.120.252.255, jest adresem rozgłoszeniowym, ale jest to adres dla całej klasy C, co czyni go niewłaściwym w kontekście podanej maski podsieci. Adres 195.120.255.255 jest natomiast adresem rozgłoszeniowym klasy B, który nie jest związany z rozpatrywaną siecią. Typowe błędy myślowe, prowadzące do takich niepoprawnych odpowiedzi, mogą wynikać z braku zrozumienia, jak maski podsieci dzielą adresy IP na mniejsze grupy. Właściwe zrozumienie funkcji adresów sieciowych, rozgłoszeniowych oraz hostów jest fundamentalne dla architektury współczesnych sieci i ich zarządzania. Niezrozumienie tych podstaw może prowadzić do błędów w konfiguracji sieci, co z kolei wpływa na jej wydajność i bezpieczeństwo.

Pytanie 36

W projekcie sieci komputerowej przewiduje się użycie fizycznych adresów kart sieciowych. Która warstwa modelu ISO/OSI odnosi się do tych adresów w komunikacji?

A. Łącza danych
B. Sesji
C. Prezentacji
D. Transportowa
Odpowiedź 'Łącza danych' jest poprawna, ponieważ warstwa łącza danych w modelu OSI odpowiada za bezpośrednią komunikację między urządzeniami w sieci lokalnej oraz za adresację sprzętową. W tej warstwie wykorzystywane są adresy MAC (Media Access Control), które są unikalnymi identyfikatorami przypisanymi do kart sieciowych. Warstwa ta zapewnia prawidłowe przesyłanie danych przez medium transmisyjne, zarządza dostępem do medium oraz wykrywa i koryguje błędy. Przykładem zastosowania tej warstwy jest Ethernet, który jest najpowszechniej stosowanym standardem w sieciach lokalnych. Ethernet wykorzystuje adresy MAC do kierowania ramkami danych do odpowiednich urządzeń, co pozwala na efektywne zarządzanie komunikacją w sieci. Dodatkowo, w kontekście standardów, protokoły takie jak IEEE 802.3 definiują zasady działania warstwy łącza danych. Zrozumienie tej warstwy jest kluczowe dla projektowania i implementacji sieci, co ma bezpośredni wpływ na wydajność i bezpieczeństwo komunikacji.

Pytanie 37

Jakie adresy mieszczą się w zakresie klasy C?

A. 192.0.0.0 ÷ 223.255.255.255
B. 128.0.0.1 ÷ 191.255.255.254
C. 224.0.0.1 ÷ 239.255.255.0
D. 1.0.0.1 ÷ 126.255.255.254
Adresy klasy C to zakres od 192.0.0.0 do 223.255.255.255, co jest zgodne z definicją klasy C w protokole IP. Adresy te są powszechnie używane w małych sieciach lokalnych, co sprawia, że są niezwykle praktyczne. W klasycznej konfiguracji sieci, adres klasy C pozwala na posiadanie do 256 różnych adresów (od 192.0.0.0 do 192.0.0.255), z czego 254 mogą być przypisane urządzeniom końcowym, ponieważ jeden adres jest zarezerwowany jako adres sieciowy, a drugi jako adres rozgłoszeniowy. Klasa C umożliwia również sieciowanie w sposób umożliwiający efektywne zarządzanie dużymi grupami urządzeń, co jest kluczowe w dzisiejszym świecie, gdzie złożoność sieci wzrasta. Dodatkowo, zgodnie z zasadami CIDR (Classless Inter-Domain Routing), adresy klasy C mogą być elastycznie podzielone na mniejsze podsieci, co pozwala na lepsze wykorzystanie dostępnych zasobów IP. W praktyce, adresy klasy C są często używane w biurach i małych firmach, gdzie liczba urządzeń końcowych nie przekracza 254.

Pytanie 38

Protokół pakietów użytkownika, który zapewnia dostarczanie datagramów w trybie bezpołączeniowym, to

A. IP
B. TCP
C. ARP
D. UDP
UDP (User Datagram Protocol) to protokół transportowy, który umożliwia bezpołączeniowe przesyłanie danych w formie datagramów. W przeciwieństwie do TCP, UDP nie nawiązuje dedykowanego połączenia przed przesłaniem danych, co czyni go bardziej efektywnym w sytuacjach, gdzie niższe opóźnienia są kluczowe. Przykłady zastosowań UDP obejmują aplikacje strumieniowe, takie jak transmisje wideo na żywo czy gry online, gdzie szybkie dostarczanie danych jest ważniejsze niż gwarancja ich dostarczenia. Protokół ten pozwala na wysyłanie pakietów bez potrzeby ich potwierdzania przez odbiorcę, co znacząco zwiększa wydajność w odpowiednich zastosowaniach. Dobre praktyki branżowe zalecają stosowanie UDP w przypadkach, gdzie tolerancja na utratę pakietów jest wyższa, a latencja ma kluczowe znaczenie. Specyfikacja UDP jest zawarta w standardzie IETF RFC 768, co potwierdza jego powszechnie akceptowane zastosowanie w sieciach komputerowych.

Pytanie 39

Schemat ilustruje fizyczną strukturę

Ilustracja do pytania
A. Gwiazdy
B. Magistrali
C. Szyny
D. Drzewa
Topologia gwiazdy jest jedną z najczęściej stosowanych fizycznych topologii sieci komputerowych, szczególnie w sieciach lokalnych (LAN). W tej topologii wszystkie urządzenia końcowe, takie jak komputery, są podłączone do centralnego urządzenia, którym zazwyczaj jest switch lub hub. Kluczową zaletą topologii gwiazdy jest jej łatwość w diagnostyce i zarządzaniu siecią. Jeśli jeden z kabli ulegnie uszkodzeniu, wpływa to tylko na jedno urządzenie, a reszta sieci działa bez zakłóceń. Topologia ta zapewnia również skalowalność, umożliwiając łatwe dodawanie nowych urządzeń bez wpływu na istniejące połączenia. W przypadku switcha, możliwe jest zastosowanie zaawansowanych mechanizmów zarządzania ruchem, takich jak filtry adresów MAC czy VLANy, co zwiększa wydajność i bezpieczeństwo sieci. Topologia gwiazdy jest zgodna z różnymi standardami komunikacyjnymi, takimi jak Ethernet, co czyni ją wszechstronną i kompatybilną z wieloma technologiami sieciowymi. W praktyce, ze względu na jej niezawodność i efektywność, jest to najczęściej wybierana topologia w środowiskach biurowych i komercyjnych, a jej zastosowanie jest szeroko udokumentowane w branżowych standardach i dobrych praktykach.

Pytanie 40

Karta rozszerzeń zaprezentowana na rysunku ma system chłodzenia

Ilustracja do pytania
A. symetryczne
B. aktywne
C. pasywne
D. wymuszone
Chłodzenie aktywne często mylone z pasywnym wykorzystuje wentylatory do wymuszania przepływu powietrza co zwiększa efektywność odprowadzania ciepła. Jest niezbędne w systemach komputerowych o wysokiej wydajności takich jak gamingowe karty graficzne które generują znaczne ilości ciepła. Wymuszone chłodzenie to termin często używany zamiennie z aktywnym choć technicznie może obejmować również inne metody chłodzenia zewnętrznego. Wymuszone chłodzenie jest bardziej efektywne ale również głośniejsze co może być problematyczne w środowiskach wymagających ciszy. Symetryczne chłodzenie to pojęcie które nie jest standardowo używane w kontekście komputerowym i może wprowadzać w błąd. Oznaczałoby to równomierne rozprowadzanie chłodzenia co nie odnosi się bezpośrednio do żadnych powszechnie stosowanych technologii w kartach graficznych. Częstym błędem jest utożsamianie pojęć związanych z technikami chłodzenia bez zrozumienia ich specyfiki działania. Ważne aby odróżniać podstawowe metody i ich zastosowanie w praktycznych scenariuszach co ma szczególne znaczenie podczas projektowania systemów komputerowych aby zapewnić ich optymalną wydajność i trwałość.