Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 23 maja 2025 06:35
  • Data zakończenia: 23 maja 2025 06:57

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na tynku wykonanym na ścianie działowej z cegły pełnej wytyczono miejsce dla rurek PVC. Jakie narzędzia należy zgromadzić, aby zapewnić szybki i precyzyjny montaż rurek?

A. Taśmę mierniczą, wiertarkę, piłę do metalu, młotek
B. Punktak, młotek, wiertarka udarowa, wiertło widiowe dostosowane do średnicy kołka rozporowego, piła do metalu, zestaw wkrętaków
C. Wiertarkę, punktak, zestaw wkrętaków
D. Taśmę mierniczą, młotek, wiertarkę udarową, wiertło widiowe dostosowane do średnicy kołka rozporowego, poziomicę, zestaw wkrętaków
Wybór punktaka, młotka, wiertarki udarowej, wiertła widiowego dopasowanego do rozmiarów kołka rozporowego, piły do metalu oraz kompletu wkrętaków jest odpowiedni do montażu rurek PVC na ścianie działowej z cegły pełnej. Punktak i młotek są niezbędne do precyzyjnego wyznaczania miejsc, w których będą wiercone otwory, co pozwala na uniknięcie uszkodzeń materiału oraz zachowanie dokładności w montażu. Wiertarka udarowa, w połączeniu z wiertłem widiowym, zapewnia skuteczne wiercenie w twardym materiale, jakim jest cegła pełna, a odpowiednie dopasowanie wiertła do rozmiaru kołka gwarantuje stabilne mocowanie rurek. Piła do metalu umożliwia precyzyjne przycinanie elementów instalacji, a komplet wkrętaków jest niezbędny do montażu uchwytów mocujących. Taki zestaw narzędzi wpisuje się w dobre praktyki branżowe, gdzie kluczową rolę odgrywa precyzja i odpowiednie przygotowanie do wykonania zadania, co przekłada się na trwałość i bezpieczeństwo instalacji. Przykładem może być sytuacja, w której nieodpowiednie narzędzia mogą prowadzić do uszkodzenia materiałów lub nietrwałego montażu, co w efekcie wiąże się z dodatkowymi kosztami i czasem potrzebnym na poprawki.

Pytanie 2

W jakim typie układu sieciowego można zrealizować instalację trójfazową za pomocą przewodu trzyżyłowego?

A. TN-C-S
B. IT
C. TN-S
D. TN-C
Układ sieciowy IT (Isolated Ground) jest układem, w którym przewody zasilające są odizolowane od ziemi, co pozwala na zastosowanie przewodu trójżyłowego. W tym układzie mamy do czynienia z niskim ryzykiem zwarć doziemnych, ponieważ instalacja nie jest uziemiona bezpośrednio, co minimalizuje ryzyko pojawienia się prądów zwarciowych. Przewód trójżyłowy, składający się z jednej żyły fazowej, neutralnej i uziemiającej, może być bezpiecznie stosowany w tym systemie. Przykładem praktycznego zastosowania instalacji w układzie IT mogą być instalacje w szpitalach lub obiektach przemysłowych, gdzie niezawodność i bezpieczeństwo zasilania są kluczowe. W takich miejscach, w razie uszkodzenia izolacji, prąd upływowy nie wpłynie na działanie urządzeń, co jest zgodne z dobrymi praktykami branżowymi, które promują minimalizację ryzyka porażenia prądem elektrycznym oraz zapewnienie ciągłości zasilania. Warto również zauważyć, że zgodnie z normą IEC 60364, instalacje w układzie IT powinny być regularnie monitorowane, aby wychwycić ewentualne nieprawidłowości.

Pytanie 3

W jakiej z poniższych sytuacji poślizg silnika indukcyjnego będzie najmniejszy?

A. Silnik będzie pracować na biegu jałowym
B. Silnik będzie zasilany prądem w kierunku przeciwnym
C. Podczas zasilania silnika jego wirnik będzie stał
D. Silnik działa w nominalnych warunkach zasilania oraz obciążenia
Silnik pozostający na biegu jałowym charakteryzuje się minimalnym poślizgiem, ponieważ nie jest obciążony zewnętrznie, co sprawia, że jego wirnik obraca się blisko prędkości synchronicznej. W praktyce oznacza to, że nie ma znacznego oporu mechanicznego, który mógłby wpłynąć na różnicę między prędkością wirnika a polem magnetycznym statora. W takich warunkach obroty wirnika są prawie zgodne z obrotami pola magnetycznego. W zastosowaniach przemysłowych, takich jak wentylatory czy pompy, silniki indukcyjne często pracują w trybie jałowym, co minimalizuje straty energii. Dobrą praktyką jest monitorowanie poślizgu silników w celu optymalizacji ich wydajności i zużycia energii. Zmniejszenie poślizgu wpływa na obniżenie kosztów eksploatacji, co jest kluczowe w kontekście zarządzania energią w zakładach produkcyjnych.

Pytanie 4

Jakie narzędzia są konieczne do wytyczenia trasy instalacji przewodów elektrycznych montowanych na powierzchni?

A. Kątownik, ołówek traserski, sznurek traserski
B. Ołówek traserski, przymiar kreskowy, rysik
C. Kątownik, młotek, punktak
D. Ołówek traserski, poziomnica, przymiar taśmowy
Ołówek traserski, poziomnica i przymiar taśmowy to świetny wybór! Te narzędzia naprawdę są niezbędne, gdy chodzi o trasowanie drogi do układania przewodów natynkowych. Ołówek traserski pozwala na dokładne oznaczanie punktów i linii, co jest podstawą do dalszej roboty. Poziomnica zaś to must-have, żeby upewnić się, że wszystko jest równo i w odpowiednich nachyleniach. To ważne, bo estetyka i funkcjonalność idą w parze. Przymiar taśmowy z kolei umożliwia precyzyjne mierzenie, co też jest kluczowe, żeby dobrze rozmieścić przewody na ścianach. W branży mamy różne standardy, jak normy PN-IEC, które podkreślają, jak ważna jest dokładność i planowanie przy instalacjach elektrycznych. Używanie właściwych narzędzi zwiększa wydajność, a także zmniejsza ryzyko błędów, które mogą skończyć się problemami, jak zwarcia czy uszkodzenia sprzętu. Na przykład, korzystając z poziomnicy przy układaniu przewodów, mamy pewność, że będą one prosto, co będzie miało znaczenie przy montażu osprzętu elektrycznego.

Pytanie 5

Jaką rolę odgrywa uzwojenie biegunów komutacyjnych w urządzeniach prądu stałego?

A. Tworzy nieruchome, stałe pole magnetyczne
B. Generuje moment magnetyczny o stałym kierunku
C. Kompensuje SEM samoindukcji, co eliminuje iskrzenie na szczotkach
D. Redukuje hałas podczas eksploatacji
Uzwojenie biegunów komutacyjnych w maszynach prądu stałego pełni kluczową rolę w kompensacji siły elektromotorycznej (SEM) samoindukcji, co jest istotne dla prawidłowego funkcjonowania silników. W trakcie pracy silnika, gdy zmienia się kierunek prądu, powstaje SEM samoindukcji, która może prowadzić do iskrzenia na szczotkach. Uzwojenie biegunów komutacyjnych, poprzez odpowiednie wytwarzanie pola magnetycznego, pomaga zminimalizować to zjawisko, co przekłada się na dłuższą żywotność szczotek oraz zmniejszenie strat energetycznych. Przykładem zastosowania tej zasady jest wykorzystanie silników prądu stałego w aplikacjach, gdzie wymagana jest duża niezawodność, jak w napędach elektrycznych tramwajów czy w robotyce. Dobre praktyki w projektowaniu maszyn prądu stałego uwzględniają parametry uzwojenia komutacyjnego, co umożliwia uzyskanie optymalnej charakterystyki pracy silnika oraz minimalizację zakłóceń.

Pytanie 6

Który z poniższych sposobów ochrony przed porażeniem elektrycznym jest weryfikowany przez pomiar rezystancji pętli zwarcia w instalacji elektrycznej?

A. Uziemienie ochronne
B. Samoczynne wyłączanie zasilania
C. Umieszczenie części dostępnych poza zasięgiem ręki
D. Separacja elektryczna
Samoczynne wyłączanie zasilania jest jednym z kluczowych środków ochrony przeciwporażeniowej, który polega na szybkim odłączeniu zasilania w przypadku wykrycia zwarcia lub innego niebezpiecznego stanu w instalacji elektrycznej. Aby ocenić skuteczność tego systemu, przeprowadza się pomiar rezystancji pętli zwarcia, który pozwala określić, czy prąd zwarciowy jest wystarczająco niski, aby automatyczne wyłączniki mogły zareagować. Standardy, takie jak IEC 60364, określają wymagania dotyczące pomiarów rezystancji pętli, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Praktycznie, jeśli rezystancja pętli zwarcia jest zbyt wysoka, może to oznaczać, że samoczynne wyłączanie zasilania nie zadziała prawidłowo, co może prowadzić do niebezpiecznych sytuacji. Dlatego regularne testowanie i konserwacja instalacji elektrycznych są niezbędne, aby zapewnić ich bezpieczeństwo i sprawność. Warto również zauważyć, że w przypadku braku odpowiednich przeciwwskazań, instalacje elektryczne powinny być projektowane tak, aby ułatwiały pomiar rezystancji pętli, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 7

Jaki stopień ochrony powinno mieć urządzenie, które jest odporne na działanie wody zalewającej obudowę z każdej strony?

A. IPX4
B. IPX5
C. IPX2
D. IPX3
Stopień ochrony IPX5 oznacza, że urządzenie jest odporne na strumienie wody z dowolnego kierunku, co czyni je odpowiednim do użytku w warunkach, gdzie może być narażone na wody strugą. W praktyce, urządzenia o tym stopniu ochrony mogą być stosowane w różnych zastosowaniach, na przykład w oświetleniu zewnętrznym, sprzęcie audio w plenerze, czy urządzeniach wykorzystywanych w środowiskach przemysłowych, gdzie mogą być narażone na zachlapanie wodą. Zrozumienie klas ochrony IP jest kluczowe dla zapewnienia trwałości i niezawodności urządzeń, a także dla zachowania bezpieczeństwa użytkowników. Standardy, takie jak IEC 60529, definiują te klasyfikacje, pomagając producentom i użytkownikom w doborze sprzętu odpowiedniego do specyficznych warunków eksploatacji. Dlatego znajomość stopni ochrony IP, w tym IPX5, jest istotna dla inżynierów, projektantów i techników, którzy pracują nad rozwiązaniami odpornymi na czynniki zewnętrzne.

Pytanie 8

Które z oznaczeń posiada trzonek źródła światła przedstawiony na ilustracji?

Ilustracja do pytania
A. GU10
B. G9
C. E27
D. MR16
Odpowiedź GU10 jest prawidłowa, ponieważ trzonek źródła światła przedstawiony na ilustracji ma charakterystyczne cechy, które są typowe dla tego rodzaju gniazda. Trzonki GU10 mają dwie wypustki po bokach, które umożliwiają łatwe i pewne mocowanie w oprawach oświetleniowych poprzez system 'push and twist'. Jest to szczególnie przydatne w zastosowaniach, gdzie wymagana jest wysoka stabilność i łatwość wymiany źródła światła, jak w przypadku halogenów oraz niektórych modeli lamp LED. W praktyce trzonki GU10 są często wykorzystywane w oświetleniu wnętrz, takich jak sufitowe lampy halogenowe czy reflektory. Używanie trzonków zgodnych z normą GU10 jest zalecane, aby zapewnić bezpieczeństwo oraz efektywność energetyczną, co jest zgodne z najlepszymi praktykami branżowymi w oświetleniu. Dodatkowo, trzonki te często pozwalają na korzystanie z energooszczędnych rozwiązań, co jest istotne w kontekście ochrony środowiska i redukcji kosztów energii.

Pytanie 9

Na podstawie danych z tabliczki znamionowej wyłącznika różnicowoprądowego zebrano informacje: IN25 A; IΔN0,030 A; 230 V~; Im 1000 A. Jakie obciążenie prądowe może wytrzymać ten wyłącznik w trybie ciągłym?

A. 230 A
B. 0,03 A
C. 25 A
D. 1000 A
Wyłącznik różnicowoprądowy, na podstawie odczytanej tabliczki znamionowej, ma oznaczone wartości prądów znamionowych, które są kluczowe dla jego zastosowania. Wartość IN (25 A) oznacza maksymalne obciążenie prądowe, które wyłącznik może bezpiecznie obsługiwać w trybie ciągłym. Przyjmując tę wartość jako podstawę, możemy określić, że wyłącznik ten może być używany w instalacjach elektrycznych, gdzie wartość obciążenia nie przekracza 25 A. Przykładowo, w zastosowaniach domowych, takich jak zasilanie urządzeń o mniejszym poborze mocy, np. oświetlenia LED czy małych urządzeń AGD, wyłącznik różnicowoprądowy o takim nominale będzie odpowiedni. Ważne jest również, aby podczas projektowania instalacji elektrycznej uwzględnić przepisy normatywne, takie jak PN-IEC 61008-1, które określają wymagania dla tych urządzeń, co zapewnia wysoką jakość i bezpieczeństwo użytkowania.

Pytanie 10

Jakie znaczenie ma opis OMY 500 V 3x1,5 mm2 umieszczony na izolacji przewodu?

A. Sznur mieszkalny trzyżyłowy w izolacji polwinitowej
B. Przewód oponowy warsztatowy pięciożyłowy w izolacji polietylenowej
C. Przewód oponowy mieszkalny trzyżyłowy w izolacji polwinitowej
D. Sznur mieszkalny pięciożyłowy w izolacji polietylenowej
Odpowiedź wskazująca na przewód oponowy mieszkaniowy trzyżyłowy w izolacji polwinitowej jest poprawna, ponieważ oznaczenie OMY 500 V 3x1,5 mm2 wskazuje na konkretny typ przewodu, który jest powszechnie stosowany w instalacjach elektrycznych w budynkach mieszkalnych. Oznaczenie 'OMY' odnosi się do przewodów oponowych, które charakteryzują się dużą elastycznością i odpornością na uszkodzenia mechaniczne. Izolacja polwinitowa (PVC) zabezpiecza przed działaniem wilgoci i substancji chemicznych, co czyni ten przewód idealnym do stosowania w warunkach domowych, gdzie często zachodzi ryzyko narażenia na różnorodne czynniki zewnętrzne. Przewód o przekroju 3x1,5 mm2 oznacza, że ma trzy żyły o średnicy 1,5 mm2, co jest standardowym przekrojem dla obwodów oświetleniowych i gniazd wtykowych w mieszkaniach. Przykłady zastosowania obejmują instalacje w domach jednorodzinnych, w których przewody te są używane do podłączenia oświetlenia oraz zasilania urządzeń elektrycznych. Zgodność z normą PN-EN 50525-2-21 potwierdza, że przewód spełnia wymagane standardy bezpieczeństwa oraz jakości.

Pytanie 11

Zakres działania wyzwalaczy elektromagnetycznych w instalacyjnych wyłącznikach nadprądowych dla charakterystyki C mieści się w przedziale

A. 3-5 krotności prądu znamionowego
B. 5-10 krotności prądu znamionowego
C. 1-20 krotności prądu znamionowego
D. 20-30 krotności prądu znamionowego
Wybór odpowiedzi "5-10 krotności prądu znamionowego" dla charakterystyki C wyłączników nadprądowych jest poprawny, ponieważ odpowiada on standardowym wartościom zdefiniowanym w normach elektrotechnicznych. Wyłączniki charakteryzujące się tym zakresem są zaprojektowane tak, aby reagować na przeciążenia oraz krótkie spięcia w sytuacjach, gdy prąd wzrasta do poziomów znacznie wyższych niż prąd znamionowy. W praktyce oznacza to, że wyłączniki te skutecznie chronią instalacje elektryczne przed uszkodzeniami, które mogą być spowodowane nagłymi skokami prądu. Przykładem zastosowania wyłączników o charakterystyce C mogą być instalacje elektryczne w obiektach przemysłowych, gdzie urządzenia takie jak silniki i transformatory mogą generować znaczne prądy rozruchowe. Dobrze dobrany wyłącznik nadprądowy, zgodnie z normą PN-EN 60898, w odpowiednich sytuacjach zabezpiecza przed skutkami przeciążeń, co jest kluczowe dla bezpiecznej eksploatacji urządzeń oraz minimalizowania ryzyka pożarów i awarii.

Pytanie 12

Jakie urządzenie powinno zostać zainstalowane w pośrednim układzie pomiarowym mocy czynnej w zakładzie przemysłowym?

A. Przetwornicę napięcia
B. Transformator separacyjny
C. Przekładnik prądowy
D. Transformator bezpieczeństwa
Przekładnik prądowy jest kluczowym elementem w pośrednich układach pomiarowych mocy czynnej, ponieważ jego główną funkcją jest przekształcenie dużych prądów roboczych na niższe, które mogą być bezpiecznie zmierzone przez urządzenia pomiarowe. Działa to na zasadzie indukcji elektromagnetycznej, gdzie prąd w obwodzie pierwotnym generuje pole magnetyczne, które z kolei indukuje prąd w obwodzie wtórnym. Dzięki zastosowaniu przekładników prądowych, możliwe jest monitorowanie i obliczanie zużycia energii, co jest niezwykle istotne w zarządzaniu efektywnością energetyczną w zakładach przemysłowych. Przykładem zastosowania mogą być instalacje, w których przekładniki prądowe są wykorzystywane do pomiarów w systemach monitorujących zużycie energii elektrycznej w czasie rzeczywistym. Dobrą praktyką w branży jest również regularna kalibracja przekładników, aby zapewnić ich dokładność oraz niezawodność w długoterminowym użytkowaniu. W kontekście norm, należy również odnosić się do standardów IEC 61869, które regulują kwestie dotyczące przekładników prądowych oraz ich zastosowań w układach pomiarowych.

Pytanie 13

Zakres działania wyzwalaczy elektromagnetycznych w nadprądowych wyłącznikach instalacyjnych o charakterystyce B mieści się w zakresie

A. 3-5 krotności prądu znamionowego
B. 5-10 krotności prądu znamionowego
C. 10-20 krotności prądu znamionowego
D. 20-30 krotności prądu znamionowego
Wyzwalacze elektromagnetyczne w wyłącznikach instalacyjnych nadprądowych o charakterystyce B są zaprojektowane do działania w określonym zakresie prądów zwarciowych, co zapewnia skuteczną ochronę obwodów elektrycznych. W przypadku wyłączników charakterystyki B obszar zadziałania wynosi 3-5 krotności prądu znamionowego. Oznacza to, że przy prądzie zwarciowym, który osiąga wartość od 3 do 5 razy wyższą niż nominalny prąd wyłącznika, następuje jego natychmiastowe wyłączenie. Dzięki temu, wyłączniki te skutecznie chronią przed skutkami przeciążeń i zwarć, co jest kluczowe w instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych. Przykładowo, jeśli wyłącznik ma prąd znamionowy 10 A, zadziała przy prądzie zwarciowym w zakresie 30 A do 50 A. Tego typu wyłączniki są zalecane do zastosowań, gdzie istnieje ryzyko wystąpienia krótkotrwałych, ale intensywnych prądów, jak w przypadku silników elektrycznych czy transformatorów. Dodatkowo, zgodnie z normą IEC 60898, wyłączniki te powinny być stosowane w obwodach, gdzie istotna jest ochrona przed skutkami zwarć, co czyni je jednym z podstawowych elementów systemów zabezpieczeń elektrycznych.

Pytanie 14

Metodą oceny efektywności połączeń wyrównawczych powinien być pomiar napięć

A. skutecznych
B. krokowych
C. rażeniowych
D. dotykowych
Mówiąc o napięciach dotykowych, rażeniowych czy krokowych, chociaż są istotne z punktu widzenia bezpieczeństwa, niekoniecznie są najlepszym sposobem na ocenę efektywności połączeń wyrównawczych. Napięcia dotykowe to te, które można poczuć, gdy dotykamy czegoś przewodzącego, ale to nie mówi nam zbyt wiele o tym, jak skutecznie działają połączenia wyrównawcze. Z napięciami rażeniowymi jest podobnie – one dotyczą kontaktu z niebezpiecznym przewodnikiem, ale także nie oceniają efektywności samego połączenia. Napięcia krokowe, które mogą wystąpić podczas awarii, mają większe znaczenie dla oceny ryzyka dla ludzi w pobliżu, ale znów nie dostarczają informacji o samych połączeniach. Dlatego poleganie na tych pomiarach może prowadzić do błędnych wniosków, bo nie biorą one pod uwagę całego rozkładu napięć w instalacji, a to w końcu może być mylące. Ważne jest, by rozróżniać kwestie bezpieczeństwa od skuteczności systemu ochrony. Prawdziwe pomiary napięć skutecznych dają nam ważne informacje, które pomagają upewnić się, że instalacja elektryczna spełnia normy, takie jak PN-IEC 60364, które mocno akcentują bezpieczeństwo oraz prawidłowe działanie systemów ochronnych.

Pytanie 15

Jakie minimalne wymiary powinien mieć przewód ochronny miedziany w przypadku przewodów fazowych miedzianych o przekrojach 25 mm2 i 35 mm2?

A. 10 mm2
B. 12 mm2
C. 20 mm2
D. 16 mm2
Wybór niewłaściwego przekroju przewodu ochronnego ma istotne konsekwencje dla bezpieczeństwa elektrycznego. Wiele osób może uważać, że mniejszy przekrój, taki jak 10 mm2 czy 12 mm2, jest wystarczający do ochrony przewodów fazowych o większym przekroju. W rzeczywistości, takie podejście ignoruje zasady dotyczące przewodów ochronnych, które muszą być dobierane na podstawie potencjalnych prądów zwarciowych oraz wymagań związanych z czasem wyłączenia w przypadku awarii. Zbyt mały przekrój przewodu ochronnego może prowadzić do jego przegrzania, a w skrajnych przypadkach do uszkodzenia instalacji, a nawet pożaru. Ponadto, przewody ochronne muszą być w stanie przewodzić prądy zwarciowe przez odpowiedni czas, aby skutecznie wyłączyć źródło zasilania i zminimalizować ryzyko porażenia prądem. Obliczenia te są oparte na normach, takich jak PN-IEC 60364, które jasno określają zasady doboru przekrojów. Zrozumienie tych zasad jest kluczowe dla zapewnienia bezpieczeństwa w instalacjach elektrycznych. Warto również zwrócić uwagę, że wybór zbyt dużego przekroju, np. 20 mm2, również może być nieoptymalny, ponieważ może prowadzić do niepotrzebnych kosztów i zwiększonej sztywności instalacji, co może być problematyczne w kontekście montażu i utrzymania. Dlatego ważne jest, aby stosować się do ustalonych norm i praktyk w branży, aby zapewnić optymalne warunki pracy instalacji elektrycznych.

Pytanie 16

Którą wielkość fizyczną można zmierzyć przyrządem pokazanym na rysunku?

Ilustracja do pytania
A. Luminancję.
B. Temperaturę barwową światła.
C. Światłość.
D. Natężenie oświetlenia.
Poprawna odpowiedź to natężenie oświetlenia, które jest mierzonym parametrem przez luksomierz, przyrząd specjalistyczny zaprojektowany do oceny ilości światła padającego na określoną powierzchnię. Natężenie oświetlenia wyrażane jest w luksach (lx), co odnosi się do strumienia świetlnego padającego na powierzchnię jednego metra kwadratowego. W praktyce, luksomierze są używane w wielu dziedzinach, takich jak architektura, fotografia czy ergonomia, aby zapewnić odpowiednie warunki oświetleniowe, które wpływają na komfort oraz efektywność pracy. Na przykład, w biurach często normy dotyczące natężenia oświetlenia wynoszą od 300 do 500 luksów, co jest wystarczające do prowadzenia typowych prac biurowych. Użycie luksomierzy pozwala na optymalizację warunków oświetleniowych, co jest istotne dla zdrowia i wydajności pracowników. To narzędzie jest również kluczowe w budownictwie ekologicznym, gdzie odpowiednie oświetlenie wpływa na oszczędność energii.

Pytanie 17

Jaką metodę należy zastosować do bezpośredniego pomiaru rezystancji przewodów?

A. watomierz oraz amperomierz
B. analogowy omomierz
C. amperomierz oraz woltomierz
D. cyfrowy watomierz
Wykorzystanie watomierza cyfrowego do pomiaru rezystancji przewodów jest nieodpowiednie, ponieważ watomierz służy do pomiaru mocy elektrycznej, a nie do oceny rezystancji. Watomierz mierzy moc czynną, wyrażoną w watach, na podstawie pomiaru napięcia i natężenia prądu oraz współczynnika mocy. Użycie tego narzędzia w kontekście pomiaru rezystancji prowadzi do mylnych rezultatów, ponieważ nie uwzględnia ono specyfiki rezystancji, która jest niezależna od mocy. Podobnie, połączenie amperomierza i woltomierza również nie jest właściwe, gdyż te urządzenia mierzą natężenie prądu i napięcie, a do obliczenia rezystancji potrzebne jest odniesienie do wartości mierzonej bezpośrednio, co wymaga zastosowania omomierza. W przypadku watomierza i amperomierza, pomiar rezystancji wymagałby dodatkowego przeliczenia, co wprowadza niepotrzebne komplikacje i możliwość błędów. Coraz częściej w praktyce inżynierskiej wykorzystuje się zalecenia dotyczące stosowania omomierzy, które zapewniają dokładność i prostotę pomiarów. Zrozumienie tego, że każdy instrument ma swoje specyficzne zastosowanie, jest kluczowe dla przeprowadzania efektywnych i dokładnych pomiarów w elektrotechnice.

Pytanie 18

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji uzwojeń silnika w temperaturze
20 oC, jeżeli rezystancja izolacji uzwojeń tego silnika zmierzona w temperaturze 23 oC wyniosła 6,8 MΩ.

Współczynniki przeliczeniowe K20 dla rezystancji izolacji uzwojeń silników
R20 = K20·Rx
Temperatura, w °C0111417202326293235445262
Współczynnik przeliczeniowy K200,670,730,810,901,01,101,211,341,481,642,503,335,00

A. 6,18 MΩ
B. 7,48 MΩ
C. 6,73 MΩ
D. 6,87 MΩ
Obliczenie rezystancji izolacji uzwojeń silnika w temperaturze 20°C wymaga zastosowania odpowiednich współczynników przeliczeniowych, które uwzględniają zmiany rezystancji w zależności od temperatury. W tym przypadku zastosowaliśmy wzór R20 = K20 * Rs, gdzie Rs to zmierzona rezystancja w temperaturze 23°C, a K20 to współczynnik przeliczeniowy dla temperatury 20°C. Z tabeli uzyskujemy wartości K20 = 1,0 dla 20°C i K23 = 1,1 dla 23°C. Zatem, dzieląc zmierzoną rezystancję 6,8 MΩ przez 1,1, uzyskujemy rezystancję w niższej temperaturze, co daje wynik 6,18 MΩ. Jednak w praktyce, biorąc pod uwagę zastosowania w przemyśle, znajomość tych wartości jest kluczowa do oceny stanu izolacji silnika. Izolacja musi spełniać normy, aby zapewniać bezpieczeństwo operacyjne i zapobiegać awariom. Takie obliczenia są standardem w diagnostyce stanu technicznego maszyn elektrycznych.

Pytanie 19

Jaką proporcję strumienia świetlnego kieruje się w dół w oprawie oświetleniowej klasy V?

A. 40 ÷ 60%
B. 90 ÷ 100%
C. 0 ÷ 10%
D. 60 ÷ 90%
Odpowiedzi wskazujące na wyższe wartości strumienia świetlnego, takie jak 40 ÷ 60%, 60 ÷ 90% oraz 90 ÷ 100%, koncentrują się na nieprawidłowych założeniach dotyczących funkcji opraw V klasy. Te klasy oprawy oświetleniowej są zaprojektowane w taki sposób, aby dostarczać minimalną ilość światła w kierunku podłogi, co jest sprzeczne z ideą intensywnego oświetlenia. Błędne założenie, że oprawy V klasy mogą emitować znaczną ilość światła w dół, wynika z nieporozumienia dotyczącego ich zastosowań oraz sposobu działania. W praktyce, oprawy te powinny być wykorzystywane w takich miejscach, gdzie kontrola nad oświetleniem jest kluczowa, a intensywne oświetlenie w dół mogłoby powodować olśnienie lub zwiększać zużycie energii. Należy również zwrócić uwagę na to, że istnieją standardy dotyczące odpowiedniego oświetlenia w budynkach, które jednoznacznie określają dopuszczalne wartości strumienia świetlnego w zależności od jego zastosowania. Stosowanie opraw z niewłaściwą klasą efektywności może prowadzić do niekorzystnych warunków pracy, a także do naruszenia przepisów dotyczących ochrony środowiska oraz efektywności energetycznej. Dlatego tak ważne jest, aby projektanci oświetlenia oraz użytkownicy byli świadomi różnic między klasami opraw, aby uniknąć błędnych decyzji projektowych.

Pytanie 20

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa, aby chronić przewody przed skutkami zwarć i przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. gG 16 A
B. gB 20 A
C. aR 16 A
D. aM 20 A
Wkładka topikowa oznaczona jako gG 16 A jest odpowiednia do ochrony obwodów elektrycznych, w tym przypadku obwodu jednofazowego bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V. Oznaczenie gG (ogólne zabezpieczenie, przystosowane do ochrony obwodów przed przeciążeniami oraz zwarciami) wskazuje, że wkładka ta ma zdolność do przerwania obwodu zarówno w przypadku zwarcia, jak i przeciążenia. Analizując parametry bojlera, obliczamy prąd znamionowy przy pomocy wzoru: I = P / U, co daje I = 3000 W / 230 V ≈ 13 A. Wkładka gG 16 A będzie odpowiednia, ponieważ jej nominalny prąd przewyższa obliczony prąd znamionowy bojlera, a jednocześnie zapewnia odpowiednie zabezpieczenie przed skutkami zwarć. W praktyce wkładki gG są powszechnie stosowane w instalacjach domowych oraz przemysłowych, co gwarantuje ich niezawodność oraz efektywność w odpowiednich zastosowaniach. Dla bezpieczeństwa zaleca się również regularne kontrolowanie stanu wkładek oraz ich wymianę, aby zapewnić optymalne funkcjonowanie systemu elektrycznego.

Pytanie 21

W instrukcji technicznej dotyczącej instalacji elektrycznej przewód uziemiający jest oznaczony symbolem literowym

A. CC
B. E
C. FPE
D. TE
Nieprawidłowe odpowiedzi mogą wynikać z nieporozumień dotyczących symboliki używanej w dokumentacji elektrycznej. Odpowiedzi takie jak TE, E oraz FPE nie odnoszą się do przewodu wyrównawczego w kontekście ochrony przed porażeniem prądem. Symbol TE odpowiada zazwyczaj przewodom stosowanym w instalacjach telekomunikacyjnych, natomiast E najczęściej odnosi się do uziemienia, co nie jest tym samym co przewód wyrównawczy. Przewód uziemiający ma na celu zapewnienie bezpiecznego odprowadzenia prądu do ziemi, ale nie służy bezpośrednio do wyrównywania potencjałów. FPE z kolei może być mylone z przewodami stosowanymi w systemach ochrony przeciwprzepięciowej, które mają inną funkcję. Zrozumienie różnic między tymi symbolami jest kluczowe dla prawidłowego projektowania i implementacji systemów elektrycznych. Błędy myślowe związane z myleniem funkcji przewodów mogą prowadzić do niebezpiecznych sytuacji, w których instalacja nie spełnia wymogów bezpieczeństwa, co jest niezgodne z normami i dobrymi praktykami branżowymi. Właściwe stosowanie symboli oraz ich zrozumienie jest podstawą skutecznego i bezpiecznego projektowania instalacji elektrycznych.

Pytanie 22

Jakie narzędzie powinno być wykorzystane do wykonania kilku połączeń w nowej instalacji elektrycznej na listwach zaciskowych śrubowych?

A. Klucza nasadowego
B. Klucza imbusowego
C. Wiertarki udarowej z wiertłem widiowym
D. Wkrętarki akumulatorowej z odpowiednim bitem
Wkrętarka akumulatorowa z dopasowanym bitem to narzędzie idealne do wykonywania wielu połączeń w listwach zaciskowych śrubowych. Dzięki swojej konstrukcji i możliwości łatwej wymiany bitów, wkrętarka umożliwia szybkie i efektywne dokręcanie śrub, co jest kluczowe w instalacjach elektrycznych, gdzie często zachodzi potrzeba wielokrotnego podłączania i odłączania przewodów. Standardy branżowe, takie jak normy IEC 60364 dotyczące instalacji elektrycznych, podkreślają konieczność stosowania odpowiednich narzędzi do zapewnienia bezpieczeństwa i jakości wykonania połączeń. Wkrętarka akumulatorowa pozwala również na pracę w trudno dostępnych miejscach, co zwiększa jej funkcjonalność. Przykładem zastosowania może być instalacja oświetlenia, gdzie konieczne jest podłączenie wielu przewodów do jednego punktu, a użycie wkrętarki znacznie przyspiesza ten proces, zmniejszając ryzyko uszkodzenia elementów oraz poprawiając komfort pracy.

Pytanie 23

Jaki rodzaj wkładki topikowej powinien być użyty do ochrony nadprądowej obwodu jednofazowych gniazd do użytku ogólnego?

A. gG
B. gL
C. aR
D. aM
Wkładka topikowa typu gG jest rekomendowanym rozwiązaniem do zabezpieczenia nadprądowego obwodów jednofazowych gniazd ogólnego przeznaczenia. Charakteryzuje się ona zdolnością do ochrony przed przeciążeniami oraz krótkimi spięciami, a także do działania w obwodach wymagających wysokich zdolności zwarciowych. W praktyce, zastosowanie wkładki gG w instalacjach elektrycznych, takich jak gniazda w domach, biurach czy obiektach użyteczności publicznej, zapewnia skuteczną ochronę przed uszkodzeniami spowodowanymi nadmiernym przepływem prądu. Wkładki te są zgodne z normami IEC 60269 oraz PN-EN 60269, które regulują ich parametry techniczne. Dzięki zastosowaniu wkładek gG, można zminimalizować ryzyko uszkodzenia urządzeń elektrycznych oraz przeciążenia obwodów, co jest kluczowe dla bezpieczeństwa użytkowników oraz sprawności całego systemu elektrycznego.

Pytanie 24

Który z podanych łączników elektrycznych jest przeznaczony do układu niezależnego sterowania światłem z przynajmniej 3 różnych lokalizacji?

A. Dwubiegunowy
B. Świecznikowy
C. Jednobiegunowy
D. Krzyżowy
Odpowiedź 'Krzyżowy' jest poprawna, ponieważ łącznik krzyżowy jest kluczowym elementem w instalacjach elektrycznych, które wymagają sterowania oświetleniem z wielu miejsc. Umożliwia on połączenie trzech lub więcej punktów sterujących, co znacznie zwiększa elastyczność w zarządzaniu oświetleniem w większych pomieszczeniach lub w korytarzach. Przykładem zastosowania łącznika krzyżowego może być sytuacja, w której światło w długim korytarzu jest kontrolowane zarówno na początku, w środku, jak i na końcu. W połączeniu z łącznikami schodowymi, które umożliwiają sterowanie z dwóch miejsc, łącznik krzyżowy wprowadza dodatkowy poziom kontroli, co jest zgodne z najlepszymi praktykami w instalacjach elektrycznych. Zgodnie z normami PN-IEC 60669-1, stosowanie łączników krzyżowych jest rekomendowane w celu zapewnienia wygodnego i funkcjonalnego dostępu do systemu oświetlenia, co zwiększa komfort użytkowania oraz efektywność energetyczną.

Pytanie 25

Co symbolizuje kod literowo-cyfrowy C10, umieszczony na wyłączniku nadmiarowo-prądowym?

A. Najwyższy czas zadziałania
B. Maksymalny prąd zwarciowy
C. Rodzaj charakterystyki czasowo-prądowej oraz prąd wyłączeniowy
D. Rodzaj charakterystyki czasowo-prądowej oraz prąd znamionowy
Kod literowo-cyfrowy C10 umieszczony na wyłączniku nadmiarowo-prądowym odnosi się do charakterystyki czasowo-prądowej oraz prądu znamionowego wyłącznika. W przypadku 'C' oznacza to, że wyłącznik jest przeznaczony do ochrony urządzeń, które mogą mieć duże prądy rozruchowe, jak silniki elektryczne. Liczba '10' wskazuje, że prąd znamionowy wynosi 10 A. Tego rodzaju wyłączniki są powszechnie stosowane w instalacjach elektrycznych, gdzie konieczne jest zabezpieczenie przed przeciążeniem oraz zwarciami, a jednocześnie umożliwienie chwilowego przepływu większego prądu, co jest istotne w przypadku urządzeń indukcyjnych. Dobrze dobrany wyłącznik nadmiarowo-prądowy chroni instalację przed uszkodzeniami, a także zapewnia bezpieczeństwo użytkowników. Warto zaznaczyć, że wybór odpowiedniego wyłącznika powinien być zgodny z normami PN-EN 60898, które regulują wymagania i metody badań związanych z wyłącznikami nadmiarowo-prądowymi.

Pytanie 26

Podczas wymiany uszkodzonego mechanicznie gniazda wtykowego w podtynkowej instalacji elektrycznej działającej w systemie TN-S, jakie czynności należy podjąć?

A. wybrać gniazdo o wyższym prądzie znamionowym niż to uszkodzone
B. podłączyć poszczególne przewody do odpowiednich zacisków gniazda
C. zasilić przewody o większym przekroju żył do najbliższej puszki łączeniowej
D. nałożyć warstwę cyny na końcówki przewodów
Odpowiedź dotycząca przyłączenia poszczególnych przewodów do właściwych zacisków gniazda jest poprawna, ponieważ jest to kluczowy krok w procesie instalacji elektrycznej. W instalacjach elektrycznych podtynkowych, szczególnie w sieci TN-S, ważne jest, aby przewody były podłączone do odpowiednich zacisków, co zapewnia zarówno bezpieczeństwo, jak i prawidłowe funkcjonowanie obwodu. Przyłączenie przewodów do właściwych zacisków gwarantuje, że neutralny przewód nie będzie pomylony z przewodem fazowym, co mogłoby prowadzić do zwarć lub uszkodzeń sprzętu. Dobór gniazda musi być zgodny z normami, takimi jak PN-EN 60309, które określają wymagania dotyczące gniazd wtykowych. Ponadto, podczas instalacji warto zwrócić uwagę na kolorystykę przewodów zgodnie z normami, co ułatwia identyfikację ich funkcji. W praktyce, prawidłowe podłączenie przewodów zwiększa bezpieczeństwo użytkowania instalacji i minimalizuje ryzyko awarii.

Pytanie 27

Przedstawiony na rysunku zrzut ekranu miernika zawiera między innymi wyświetlaną w trakcie pomiaru wartość

Ilustracja do pytania
A. prądu zadziałania zabezpieczenia.
B. znamionowego prądu instalacji.
C. maksymalnego prądu obciążenia.
D. spodziewanego prądu zwarcia.
Wybranie odpowiedzi o prądzie zadziałania zabezpieczenia czy znamionowym prądzie instalacji pokazuje, że mogłeś nie do końca zrozumieć niektóre zasady pomiarów elektrycznych. Prąd zadziałania zabezpieczenia to wartość, przy której powinno zadziałać dane zabezpieczenie, takie jak wyłącznik nadprądowy, żeby chronić instalację przed uszkodzeniem. Ale to nie to samo, co prąd zwarcia, który mierzysz podczas pomiaru impedancji pętli zwarcia. Z kolei znamionowy prąd instalacji to maksimum, na jakie była projektowana instalacja, nie rzeczywisty prąd zwarcia, który mógłby się pojawić w przypadku awarii. Takie odpowiedzi mogą prowadzić do błędnych wniosków, bo nie uwzględniają, jak ważna jest znajomość prądu zwarcia dla bezpieczeństwa. Choć prąd zadziałania i znamionowy prąd są ważne, to nie odnoszą się do konkretnych pomiarów, które robimy. Błędna interpretacja tych pojęć może prowadzić do złego doboru zabezpieczeń, a to może narazić instalację na uszkodzenia i zwiększyć ryzyko dla użytkowników. Dlatego warto dobrze zrozumieć znaczenie każdego pomiaru, w tym prądu zwarcia, w kontekście bezpieczeństwa instalacji.

Pytanie 28

Które z poniższych wskazówek nie dotyczy przeprowadzania nowych instalacji elektrycznych w lokalach mieszkalnych?

A. Gniazda wtyczkowe w każdym pomieszczeniu powinny być zasilane z osobnego obwodu
B. Gniazda wtyczkowe w kuchni zasilane muszą być z oddzielnego obwodu
C. Oddzielić obwody oświetleniowe od obwodów gniazd wtyczkowych
D. Odbiorniki o dużej mocy należy zasilać z wyodrębnionych obwodów
Odpowiedź dotycząca zasilania gniazd wtyczkowych każdego pomieszczenia z osobnego obwodu jest prawidłowa, ponieważ takie podejście nie jest zgodne z zaleceniami w zakresie projektowania instalacji elektrycznych w budynkach mieszkalnych. W praktyce, stosowanie osobnych obwodów dla każdego pomieszczenia może prowadzić do nadmiernych kosztów i skomplikowania instalacji. Zgodnie z Polską Normą PN-IEC 60364-1, obwody powinny być projektowane w taki sposób, aby zapewnić bezpieczeństwo i funkcjonalność, a nie każdy obwód powinien być dedykowany dla jednego pomieszczenia. W standardowych rozwiązaniach gniazda wtyczkowe w poszczególnych pomieszczeniach, jak kuchnia czy salon, mogą być podłączane do wspólnych obwodów, co jest bardziej efektywne, a także ułatwia ewentualne naprawy czy modernizacje. Przykładowo, w kuchni, gdzie występuje wiele odbiorników, stosuje się osobny obwód, ale gniazda w innych pomieszczeniach mogą być zasilane z jednego wspólnego obwodu, co zmniejsza ilość potrzebnych przewodów oraz urządzeń zabezpieczających.

Pytanie 29

Oblicz znamionowy współczynnik mocy silnika trójfazowego przy danych: Pn = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,99
B. 0,57
C. 0,69
D. 0,82
Aby zrozumieć, dlaczego pozostałe odpowiedzi są niewłaściwe, ważne jest, aby przeanalizować proces obliczania współczynnika mocy. Wiele osób myli pojęcia związane z mocą czynną, mocą bierną i mocą pozorną. Odpowiedzi takie jak 0,69, 0,99 czy 0,57 mogą wynikać z błędnych założeń dotyczących tego, co oznacza współczynnik mocy. Na przykład, wartość 0,99 sugeruje praktycznie idealny współczynnik mocy, co rzadko zdarza się w rzeczywistych aplikacjach przemysłowych, szczególnie w przypadku silników indukcyjnych, które nie osiągają tak wysokiej efektywności. Z kolei współczynnik mocy 0,57 wskazuje na słabe wykorzystanie energii, co prowadzi do wysokich strat w systemie. W praktyce, niskie wartości współczynnika mocy mogą skutkować koniecznością stosowania dodatkowych kondensatorów w celu poprawy jakości energii elektrycznej, co wiąże się z dodatkowymi kosztami. Typowym błędem myślowym w ocenie współczynnika mocy jest pomijanie wpływu obciążeń indukcyjnych oraz ich charakterystyki na całkowite zużycie energii. Ważnym aspektem jest także to, że obliczając współczynnik mocy, należy uwzględnić zarówno moc czynną, jak i moc bierną, co pozwala na bardziej precyzyjne zaplanowanie wymagań energetycznych dla danej instalacji. Dlatego też, zrozumienie i poprawne obliczenie współczynnika mocy jest kluczowe dla efektywności energetycznej i optymalizacji kosztów związanych z eksploatacją silników elektrycznych.

Pytanie 30

W jakim z podanych układów sieciowych pojawia się przewód PEN?

A. TN-S
B. TT
C. TN-C
D. IT
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym przewód PEN (przewód ochronny-neutralny) pełni podwójną funkcję, łącząc funkcję uziemiającą z funkcją neutralną. Oznacza to, że jeden przewód jest odpowiedzialny zarówno za ochronę przed porażeniem elektrycznym, jak i za przewodzenie prądu neutralnego. Układ TN-C jest często stosowany w nowoczesnych instalacjach elektrycznych w budynkach mieszkalnych oraz przemysłowych, gdzie zapewnia wysoki poziom bezpieczeństwa oraz efektywności energetycznej. Zgodnie z normami PN-IEC 60364, stosowanie przewodu PEN w układzie TN-C umożliwia uproszczenie instalacji poprzez redukcję liczby przewodów oraz zmniejszenie ryzyka błędów podłączeniowych. Przykładem zastosowania układu TN-C mogą być instalacje w dużych budynkach biurowych, gdzie przewód PEN efektywnie łączy punkt neutralny transformatora z systemem uziemiającym budynku, co zwiększa bezpieczeństwo i stabilność zasilania elektrycznego.

Pytanie 31

Jaki rodzaj złączki stosowanej w instalacjach elektrycznych przedstawiono na rysunku?

Ilustracja do pytania
A. Gwintową.
B. Samozaciskową.
C. Skrętną.
D. Śrubową.
Odpowiedź "Samozaciskową" jest poprawna, ponieważ przedstawiona złączka instalacyjna rzeczywiście jest złączką samozaciskową. Złączki tego typu charakteryzują się prostym mechanizmem, który umożliwia szybkie i wygodne połączenie przewodów bez konieczności używania narzędzi. Wystarczy włożyć przewód do otworu zaciskowego, a mechanizm samozaciskowy automatycznie zaciska przewód, co zapewnia stabilne połączenie. Tego rodzaju złączki są powszechnie stosowane w instalacjach elektrycznych, ponieważ przyspieszają proces montażu oraz eliminują ryzyko niewłaściwego użycia narzędzi, które mogą uszkodzić przewody. Złączki samozaciskowe znajdują zastosowanie w różnych obszarach, od instalacji domowych po przemysłowe systemy elektryczne. Warto zaznaczyć, że ich stosowanie jest zgodne z zasadami bezpieczeństwa, ponieważ zapewniają one solidne połączenia, które są niezbędne dla bezpiecznego funkcjonowania instalacji elektrycznych.

Pytanie 32

Aby zrealizować połączenie przewodów z żyłami jednodrutowymi przy użyciu złączki WAGO, co powinno się zastosować?

A. nóż monterski
B. cęgi do zdejmowania izolacji oraz zaciskarkę końcówek
C. prasę hydrauliczną
D. cęgi do zdejmowania izolacji oraz wkrętak
Podejście, które sugeruje użycie prasy hydraulicznej w przypadku łączenia przewodów z żyłami jednodrutowymi za pomocą złączek typu WAGO, jest mylne. Prasa hydrauliczna jest narzędziem stosowanym głównie do zaciskania końcówek przewodów, co w kontekście złączek WAGO nie ma zastosowania, ponieważ te złącza działają na zasadzie sprężystego zacisku mechanicznego, a nie na zasadzie spawania czy zaciskania. W przypadku użycia noża monterskiego, mylenie tej czynności z użyciem prasy hydraulicznej może wynikać z nieznajomości podstawowych zasad montażu instalacji elektrycznych. Nóż monterski jest narzędziem, które doskonale nadaje się do precyzyjnego usuwania izolacji, co jest kluczowe dla uzyskania dobrego połączenia. Cążki do zdejmowania izolacji i wkrętaki również nie są optymalnymi narzędziami w tym kontekście, ponieważ ich zastosowanie nie zabezpiecza połączenia w optymalny sposób, co może prowadzić do trudności w zapewnieniu dobrego kontaktu elektrycznego. W przypadku zastosowania cęgów do zdejmowania izolacji, istnieje ryzyko uszkodzenia przewodu, co obniża jakość połączenia. Dobre praktyki w branży elektrycznej wymagają użycia odpowiednich narzędzi dla określonego rodzaju złączeń i połączeń, co podkreśla znaczenie znajomości technologii i narzędzi dostępnych na rynku.

Pytanie 33

Co oznacza oznaczenie IP00 widoczne na obudowie urządzenia elektrycznego?

A. Brak klasy ochronności przed porażeniem.
B. Wykorzystanie separacji ochronnej.
C. Najwyższy poziom ochrony.
D. Brak ochrony przed wilgocią i pyłem.
Napis IP00 na obudowie urządzenia elektrycznego oznacza brak ochrony przed wilgocią i kurzem. Klasyfikacja IP (Ingress Protection) jest standardem opracowanym przez Międzynarodową Organizację Normalizacyjną (IEC), który określa poziomy ochrony oferowane przez obudowy urządzeń elektrycznych. W przypadku IP00, brak jakiejkolwiek cyfry oznacza, że urządzenie nie jest chronione ani przed wnikaniem ciał stałych, ani przed wilgocią. W praktyce oznacza to, że takie urządzenia powinny być używane w suchych, czystych i kontrolowanych warunkach, przez co minimalizuje się ryzyko uszkodzenia komponentów w wyniku nadmiernego zapylenia lub kontaktu z wodą. Przykładem zastosowania urządzeń oznaczonych jako IP00 mogą być niektóre elementy wewnętrzne systemów elektronicznych, które są odpowiednio zabezpieczone w zamkniętych obudowach i nie są narażone na działanie czynników zewnętrznych.

Pytanie 34

Jakie elementy nie są kontrolowane podczas oględzin urządzeń napędowych w czasie ich postoju?

A. stanu pierścieni ślizgowych oraz komutatorów
B. stanu przewodów ochronnych oraz ich połączeń
C. ustawienia zabezpieczeń i stanu osłon części wirujących
D. poziomu drgań i skuteczności układu chłodzenia
Odpowiedź dotycząca stanu pierścieni ślizgowych i komutatorów jest właściwa, ponieważ podczas przeprowadzania oględzin urządzeń napędowych w czasie postoju nie jest to element, który zazwyczaj podlega rutynowym kontrolom. Pierścienie ślizgowe i komutatory są kluczowymi komponentami w silnikach prądu stałego oraz w niektórych alternatorach, jednak ich stan ocenia się głównie podczas przeglądów większych, planowanych konserwacji. W codziennych oględzinach, które mają na celu zapewnienie bezpieczeństwa i operacyjności urządzeń, bardziej koncentruje się na aspektach takich jak kontrola przewodów ochronnych, które zapewniają bezpieczeństwo operatorów, poziom drgań, które mogą wskazywać na problemy mechaniczne, oraz działania układu chłodzenia, aby zapobiec przegrzewaniu. Przykładowo, w praktyce inżynieryjnej standardy takie jak ISO 9001 obejmują kontrolę jakości i bezpieczeństwa, kładąc nacisk na utrzymanie systemów w dobrym stanie operacyjnym, co potwierdza, że elementy takie jak osłony części wirujących oraz zabezpieczenia są kluczowe w codziennych kontrolach.

Pytanie 35

Jakie czynności nie są częścią przeglądów instalacji elektrycznej?

A. przyjęcia do eksploatacji
B. przeprowadzania konserwacji i napraw
C. pomiarów napięcia oraz rezystancji izolacji
D. oględzin
Odpowiedzi dotyczące pomiarów napięć i rezystancji izolacji, konserwacji i napraw oraz oględzin wskazują na istotne aspekty przeglądów instalacji elektrycznej. Przeglądy te mają na celu ocenę stanu technicznego instalacji oraz wykrywanie potencjalnych problemów, które mogą zagrażać bezpieczeństwu użytkowania. Pomiar napięć jest kluczowy, ponieważ pozwala na ocenę poprawności działania instalacji oraz identyfikację ewentualnych spadków napięcia, które mogą wpływać na efektywność działania urządzeń elektrycznych. Rezystancja izolacji jest równie ważna, gdyż niska wartość tego parametru może wskazywać na uszkodzenia izolacji, co z kolei zwiększa ryzyko porażenia prądem elektrycznym. Konserwacja i naprawa instalacji to działania, które są integralną częścią jej eksploatacji, zapewniającą długoterminowe działanie oraz bezpieczeństwo. Oględziny wizualne pozwalają na szybką identyfikację uszkodzeń, co jest kluczowe dla zapobiegania poważniejszym awariom. Często pojawia się mylne przekonanie, że przyjęcie do eksploatacji jest częścią rutynowych przeglądów, podczas gdy w rzeczywistości jest to oddzielny proces związany z zakończeniem budowy i uruchomieniem nowej instalacji. Różnice te są kluczowe dla zrozumienia cyklu życia instalacji elektrycznej oraz dla zapewnienia, że wszystkie działania są wykonywane zgodnie z obowiązującymi normami i standardami branżowymi.

Pytanie 36

Jakie z podanych powodów wpływa na wzrost iskrzenia na komutatorze w trakcie działania sprawnego silnika bocznikowego prądu stałego po wymianie szczotek?

A. Zbyt małe wzbudzenie silnika
B. Zbyt duże wzbudzenie silnika
C. Zbyt duży nacisk szczotek na komutator
D. Zbyt mała powierzchnia styku szczotek z komutatorem
Odpowiedź dotycząca za małej powierzchni styku szczotek z komutatorem jest poprawna, ponieważ kontakt między szczotkami a komutatorem jest kluczowy dla prawidłowego działania silnika prądu stałego. Niewłaściwa powierzchnia styku może prowadzić do zwiększonego oporu elektrycznego, co skutkuje większym iskrzeniem i nadmiernym zużyciem szczotek. W praktyce, odpowiedni dobór szczotek, które powinny być dobrze dopasowane do średnicy komutatora, jest istotny dla optymalizacji ich kontaktu. Standardy branżowe, takie jak normy IEC, podkreślają znaczenie jakości materiałów używanych do produkcji szczotek i ich geometrii, aby zapewnić skuteczny transfer prądu. Wymiana szczotek na modele o większej powierzchni styku lub z lepszymi właściwościami przewodzącymi może znacząco poprawić wydajność silnika i zmniejszyć iskrzenie, co zwiększa jego trwałość oraz bezpieczeństwo eksploatacji. Poprawny dobór szczotek i regularne ich kontrolowanie to praktyki, które powinny być stosowane w każdej aplikacji wykorzystującej silniki prądu stałego.

Pytanie 37

Widoczny zanik w obwodzie instalacji elektrycznej może zapewnić

A. wyłącznik instalacyjny płaski
B. wyłącznik różnicowoprądowy
C. ochronnik przeciwprzepięciowy
D. bezpiecznik instalacyjny
Wyłącznik instalacyjny płaski, choć pełni ważną funkcję w instalacji elektrycznej, nie zapewnia widocznej przerwy w obwodzie. Jego zadaniem jest włączanie oraz wyłączanie obwodu, ale nie zabezpiecza go przed przeciążeniem ani zwarciem. Ochronnik przeciwprzepięciowy, z drugiej strony, ma na celu ochronę urządzeń przed nagłymi wzrostami napięcia, ale również nie przerywa obwodu w przypadku zagrożenia. Natomiast wyłącznik różnicowoprądowy służy do ochrony przed porażeniem prądem elektrycznym poprzez wykrywanie różnic w prądzie płynącym do i od urządzenia, lecz także nie oferuje funkcji widocznej przerwy w obwodzie w kontekście zabezpieczeń przed przeciążeniem. Użytkownicy często mylą te elementy, ponieważ nie dostrzegają różnicy między ich funkcjami. Kluczowe jest zrozumienie, że tylko bezpiecznik instalacyjny, działając na zasadzie przerwania obwodu w momencie wystąpienia anomalii w przepływie prądu, gwarantuje bezpieczeństwo w przypadku awarii. W niektórych sytuacjach, wybór niewłaściwego urządzenia zabezpieczającego może prowadzić do poważnych konsekwencji, dlatego znajomość ról poszczególnych elementów instalacji elektrycznych jest niezbędna dla zapewnienia ich prawidłowego funkcjonowania.

Pytanie 38

Jaki z podanych warunków powinien być zrealizowany podczas instalacji elektrycznej prowadzonej na tynku na zewnątrz budynku mieszkalnego?

A. Zamontowanie osłon, które chronią przewody przed promieniowaniem słonecznym
B. Zastosowanie wyłączników różnicowoprądowych o dużej czułości
C. Użycie transformatora separacyjnego do zasilania
D. Montaż ochronników przepięciowych w głównej rozdzielnicy
Zamontowanie osłon zabezpieczających przewody przed działaniem promieni słonecznych jest kluczowym wymogiem przy instalacji elektrycznej w warunkach zewnętrznych. Ekspozycja na promieniowanie UV może prowadzić do degradacji materiałów izolacyjnych, co zwiększa ryzyko zwarć i awarii. Osłony chronią przewody przed niekorzystnymi warunkami atmosferycznymi, co jest szczególnie istotne w kontekście bezpieczeństwa użytkowania. Przykładem skutecznych osłon są rurki ochronne z PVC, które nie tylko izolują przewody, ale również chronią je przed mechanicznymi uszkodzeniami. Zgodnie z normą PN-IEC 60364, instalacje elektryczne muszą być projektowane w taki sposób, aby minimalizować ryzyko uszkodzeń, a stosowanie osłon to jedna z podstawowych zasad. Dodatkowo, regulacje branżowe podkreślają, że w przypadku instalacji na tynku, stosowanie takich zabezpieczeń jest nie tylko zalecane, ale wręcz wymagane, aby zapewnić długotrwałą i bezpieczną eksploatację systemu elektrycznego.

Pytanie 39

W jakiego rodzaju instalacjach elektrycznych typowe jest stosowanie przewodów w karbowanych rurkach?

A. Podtynkowych
B. Wtynkowych
C. Nadtynkowych
D. Napowietrznych
Rozważając odpowiedzi, które nie są poprawne, można zauważyć, że układanie przewodów w rurkach karbowanych nie jest praktykowane w instalacjach natynkowych. W tego typu instalacjach przewody są często umieszczane na powierzchni ścian, co nie tylko obniża estetykę, ale również naraża je na uszkodzenia mechaniczne. Rurki karbowane pełnią funkcję ochronną, a ich stosowanie w instalacjach natynkowych jest zbędne, ponieważ przewody nie są ukryte w ścianach. Kolejny błąd myślowy dotyczy odpowiedzi odnośnie instalacji wtynkowych. Termin ten jest często mylony z podtynkowymi, jednak wtynkowe oznacza, że przewody są osadzone w elementach budowlanych, co nie wymaga dodatkowej ochrony, jaką zapewniają rurki karbowane. Wreszcie, instalacje napowietrzne również nie wymagają użycia rur karbowanych. Przewody w takich instalacjach są zwykle zawieszone na słupach i nie są narażone na te same warunki, co przewody w ścianach. Dlatego stosowanie rur karbowanych w tych przypadkach byłoby niepraktyczne i nieefektywne. W każdym przypadku, ignorowanie odpowiednich norm i praktyk dotyczących instalacji elektrycznych może prowadzić do problemów z bezpieczeństwem oraz niezawodnością, dlatego zrozumienie różnic pomiędzy typami instalacji jest kluczowe dla właściwego podejścia do tematu.

Pytanie 40

W systemach sieciowych IT przy podwójnym uziemieniu, z zastosowaniem urządzenia różnicowoprądowego i napięciu izolacji 230/400 V, czas wyłączenia powinien wynosić - dla obwodu bez żyły neutralnej oraz dla obwodu z żyłą neutralną?

A. 0,8 s i 0,4 s
B. 0,2 s i 0,4 s
C. 0,4 s i 0,2 s
D. 0,4 s i 0,8 s
Odpowiedź 0,4 s dla obwodu z przewodem neutralnym oraz 0,8 s dla obwodu bez przewodu neutralnego jest zgodna z normami dotyczącymi bezpieczeństwa w układach sieci typu IT. W przypadku obwodów z przewodem neutralnym, czas wyłączenia wynoszący 0,4 s zapewnia odpowiednią ochronę przed skutkami porażenia prądem, co jest kluczowe w kontekście ochrony ludzi oraz sprzętu. W obwodach bez przewodu neutralnego wydłużony czas wyłączenia do 0,8 s ma na celu zmniejszenie ryzyka niepożądanych skutków w przypadku awarii, co jest zgodne z wymaganiami określonymi w normach IEC 60364. Przykładowo, w sytuacji, gdy wystąpi zwarcie lub ucieczka prądu do ziemi, szybka reakcja urządzenia różnicowoprądowego jest kluczowa dla zminimalizowania ryzyka porażenia oraz ochrony przed pożarami. Dodatkowo, zastosowanie urządzenia różnicowoprądowego w obwodach sieci IT w znaczący sposób zwiększa bezpieczeństwo użytkowników, a przestrzeganie tych czasów wyłączenia jest kluczowe w projektowaniu systemów elektrycznych.