Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik technologii chemicznej
  • Kwalifikacja: CHM.02 - Eksploatacja maszyn i urządzeń przemysłu chemicznego
  • Data rozpoczęcia: 19 maja 2025 17:05
  • Data zakończenia: 19 maja 2025 17:12

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Roztwór do zasilania elektrolizera przeponowego powinien mieć stężenie 24%. Do elektrolizera wprowadza się jednorazowo 2 m3 roztworu o gęstości 1180 kg/m3. Jakie składniki należy przygotować do jednorazowego załadunku elektrolizera?

A. 480 kg NaCl i 1520 m3 H2O
B. 566 kg NaCl i 1794 m3 H2O
C. 480 kg NaCl i 1880 m3 H2O
D. 566 kg NaCl i 1434 m3 H2O
Odpowiedź, w której podano 566 kg NaCl i 1794 m3 H2O, jest jak najbardziej trafna. Gdy przygotowujemy solankę do elektrolizera, musimy dobrze policzyć ilość soli i wody, żeby uzyskać stężenie 24%. Najpierw ustalamy, ile m3 roztworu potrzebujemy – tu mamy 2 m3. Potem, uwzględniając gęstość solanki, która wynosi 1180 kg/m3, obliczamy masę solanki: 2 m3 razy 1180 kg/m3 daje nam 2360 kg. Następnie, żeby stężenie NaCl wynosiło 24%, potrzebujemy 566 kg tej soli. Resztę masy to już woda, więc 2360 kg minus 566 kg daje 1794 kg H2O. Takie obliczenia to podstawa w przemyśle, gdzie dokładne przygotowanie roztworów chemicznych jest mega ważne, zarówno dla efektywności elektrolizy, jak i dla jakości produktów. W elektrolicie musimy pamiętać, że odpowiednie stężenie ma kolosalne znaczenie dla efektywności reakcji oraz bezpieczeństwa całego procesu.

Pytanie 2

Który z wymienionych metali charakteryzuje się wysoką temperaturą topnienia oraz dużą odpornością na korozję?

A. Aluminium
B. Magnez
C. Cuprum
D. Wolfram
Wolfram jest metalem trudnotopliwym, którego temperatura topnienia wynosi 3422°C, co czyni go jednym z najbardziej odpornych na wysoką temperaturę materiałów. Jego wyjątkowe właściwości mechaniczne, w połączeniu z odpornością na działanie większości środowisk korozyjnych, sprawiają, że jest szeroko stosowany w różnych dziedzinach przemysłu. Przykłady zastosowania wolframu obejmują produkcję elementów w lampach wyładowczych, narzędzi skrawających oraz elektrody stosowane w spawaniu. W przemyśle lotniczym i kosmicznym wolfram jest wykorzystywany w komponentach silników, które muszą wytrzymać ekstremalne warunki temperaturowe. Dodatkowo, ze względu na swoją gęstość i wysoką odporność na promieniowanie, jest także wykorzystywany w osłonach ochronnych. Zgodnie z normami ISO oraz innymi standardami branżowymi, wolfram jest często preferowany w aplikacjach wymagających niezawodności i długotrwałej wydajności.

Pytanie 3

Osoba obsługująca suszarkę rozpryskową powinna regularnie pobierać próbki do analizy

A. powietrze odprowadzane
B. materiał poddawany suszeniu
C. uzyskiwany materiał suchy
D. powietrze dolotowe
Uzyskiwany materiał suchy jest kluczowym elementem procesu suszenia w technologii obróbki materiałów. Regularne pobieranie próbek tego materiału do analizy pozwala na ocenę efektywności procesu suszenia oraz jakości końcowego produktu. Przeprowadzenie analizy uzyskiwanego materiału suchego umożliwia identyfikację ewentualnych problemów, takich jak niewłaściwe parametry procesu, które mogą prowadzić do nadmiernej wilgotności lub zanieczyszczeń. W praktyce, w branży farmaceutycznej lub spożywczej, monitorowanie jakości uzyskiwanego materiału jest niezbędne dla zapewnienia zgodności z normami jakościowymi oraz regulacyjnymi. Warto stosować metody analizy, takie jak pomiar wilgotności, które są zgodne z normami ISO, aby uzyskać rzetelne i powtarzalne wyniki. Dzięki tym praktykom, możliwe jest stałe doskonalenie procesu oraz zapewnienie wysokiej jakości produktu końcowego, co przekłada się na zadowolenie klientów oraz efektywność produkcji.

Pytanie 4

Wyniki monitoringu przebiegu procesu technologicznego powinny obejmować między innymi: datę, godzinę oraz podpis

A. osoby wykonującej odczyt
B. dyrektora zakładu pracy
C. kierownika linii produkcyjnej
D. brygadzisty
Odpowiedź "osoby wykonującej odczyt" jest prawidłowa, ponieważ monitoring procesu technologicznego jest kluczowym elementem zarządzania jakością i produkcją. Osoba odpowiedzialna za odczyt powinna dokumentować wszystkie istotne informacje, takie jak godzina, data oraz podpis, aby zapewnić pełną przejrzystość i odpowiedzialność. Standardy jakości ISO 9001 oraz normy branżowe wymagają, aby dokumentacja była dokładna i przechowywana w sposób umożliwiający jej późniejsze odtworzenie. Działania te są istotne w kontekście audytów wewnętrznych oraz zewnętrznych, gdzie poprawne zapisanie danych ma kluczowe znaczenie dla analizy procesów. Na przykład, w przemyśle produkcyjnym, dokładne odnotowanie parametrów pracy maszyn przez wykwalifikowany personel może pomóc w identyfikacji problemów i optymalizacji procesów. Tego rodzaju praktyki wspierają również wdrażanie ciągłego doskonalenia, co jest fundamentalnym założeniem nowoczesnego zarządzania jakością.

Pytanie 5

Jaką ilość czerni eriochromowej należy odważyć, aby uzyskać 50,25 g jej mieszanki z NaCl, przy przygotowywaniu alkoholowego roztworu czerni eriochromowej, który powstaje z połączenia czerni eriochromowej z chlorkiem sodu w proporcji 1 g czerni na 200 g NaCl oraz odpowiednią ilością etanolu?

A. 0,05 g
B. 50,20 g
C. 0,25 g
D. 50,0 g
Aby otrzymać 50,25 g mieszaniny czerni eriochromowej z chlorkiem sodu w proporcji 1 g czerni na 200 g NaCl, należy obliczyć, ile czerni eriochromowej jest potrzebne. W tej proporcji oznacza to, że na 200 g NaCl przypada 1 g czerni. Całkowita masa mieszaniny wynosi 50,25 g, zatem masa NaCl będzie wynosić 50,25 g - masa czerni. Stosując proporcję, możemy ustalić, że 200 g NaCl odpowiada 1 g czerni, co prowadzi do równania 50,25 g = 200 g NaCl + 0,25 g czerni. Z tego wynika, że masa czerni eriochromowej wynosi 0,25 g. Taki sposób obliczeń jest ważny w praktyce laboratoryjnej, gdzie precyzyjne przygotowanie roztworów ma kluczowe znaczenie dla uzyskiwania rzetelnych i powtarzalnych wyników analitycznych. Dobre praktyki w laboratoriach analitycznych obejmują dokładne odważanie reagentów oraz stosowanie odpowiednich proporcji, co jest niezbędne w analizach chemicznych oraz w przygotowywaniu wskaźników, takich jak czerń eriochromowa, wykorzystywana w titracji.

Pytanie 6

Jakie działania nie powinny być realizowane w procesie technologicznym?

A. Osiąganie wysokiej wydajności produktów z jednostki objętości urządzenia
B. Najbardziej efektywne prowadzenie procesów przy maksymalnym zużyciu surowców
C. Najbardziej efektywne prowadzenie procesów przy minimalnym zużyciu surowców
D. Najbardziej efektywne prowadzenie procesów przy minimalnym zużyciu energii
Postępowanie polegające na najszybszym prowadzeniu procesów przy minimalnym wykorzystaniu surowców jest nieodpowiednie, ponieważ prowadzi do nieefektywności w szerokim kontekście procesu technologicznego. W praktyce, maksymalne wykorzystanie surowców jest kluczowe dla optymalizacji kosztów produkcji oraz minimalizacji odpadów. Wiele branż, takich jak przemysł chemiczny czy spożywczy, stosuje zasady zrównoważonego rozwoju, w których dąży się do jak największej efektywności wykorzystania surowców. Przykładem może być metodologia Lean Manufacturing, która koncentruje się na eliminacji marnotrawstwa, gdzie surowce są wykorzystywane w sposób maksymalny, co również przekłada się na lepszą jakość produktów końcowych. Wprowadzenie efektywnych procesów technologicznych pozwala nie tylko na zwiększenie wydajności, ale także na zminimalizowanie negatywnego wpływu na środowisko. Dobre praktyki wskazują, że każdy proces technologiczny powinien być zaprojektowany z myślą o równowadze między wydajnością a efektywnością wykorzystania zasobów, co jest fundamentalne w nowoczesnym podejściu do produkcji.

Pytanie 7

Jakie urządzenie dozujące powinno być użyte w procesie technologicznym, który wymaga bardzo precyzyjnego podawania surowca w formie materiału sypkiego?

A. Dozownik wagowy
B. Podajnik taśmowy
C. Dozownik naczyniowy
D. Podajnik wahliwy
Dozownik wagowy jest najbardziej odpowiednim rozwiązaniem w sytuacji, gdy zachowanie wysokiej dokładności jest kluczowe przy podawaniu surowca w postaci materiału sypkiego. Tego rodzaju urządzenie działa na zasadzie pomiaru masy materiału, co pozwala na precyzyjne kontrolowanie jego ilości. Dozowniki wagowe są często wykorzystywane w branżach, takich jak chemiczna, spożywcza czy farmaceutyczna, gdzie istnieją rygorystyczne normy dotyczące dokładności i powtarzalności dozowania. Przykładowo, w procesach produkcji leków, gdzie każdy składnik musi być dokładnie odważony, dozownik wagowy zapewnia nie tylko precyzję, ale również możliwość monitorowania i dokumentowania procesu. Dzięki zastosowaniu nowoczesnych technologii, takich jak czujniki tensometryczne, dozowniki wagowe osiągają wysoką dokładność, co jest zgodne z normami ISO oraz innymi standardami branżowymi. Z tego powodu, wybór dozownika wagowego w kontekście dużej dokładności jest w pełni uzasadniony i zalecany.

Pytanie 8

Produkcja kaprolaktamu wynosi 5 ton na godzinę. Jaką liczbę worków polietylenowych o wadze 25 kg oraz palet przemysłowych o maksymalnym udźwigu 1,5 t należy wykorzystać do pakowania i składowania kaprolaktamu w ciągu 24 godzin produkcji?

A. 480 worków i 40 palet
B. 4800 worków i 80 palet
C. 5000 worków i 120 palet
D. 500 worków i 60 palet
Odpowiedź 4800 worków i 80 palet jest prawidłowa, ponieważ obliczenia dotyczące pakowania kaprolaktamu uwzględniają zarówno ilość produkcji, jak i pojemności opakowań. Kaprolaktam produkowany jest w ilości 5 ton na godzinę, co przekłada się na 120 ton w ciągu 24 godzin (5 ton/h * 24 h). Przy pakowaniu tego materiału w worki polietylenowe o pojemności 25 kg, należy obliczyć ilość worków potrzebnych do zapakowania 120000 kg (120 ton * 1000 kg). Dzieląc 120000 kg przez 25 kg, otrzymujemy 4800 worków. Jeśli chodzi o palety, każda z nich ma udźwig 1,5 tony, co odpowiada 1500 kg. Dlatego dzieląc 120000 kg przez 1500 kg, otrzymujemy 80 palet. Takie podejście jest zgodne z praktykami logistycznymi, które zalecają odpowiednie planowanie pakowania i magazynowania, aby zminimalizować straty materiałowe i zoptymalizować przestrzeń magazynową.

Pytanie 9

W jaki sposób powinien zachowywać się pracownik nadzorujący działanie autoklawu?

A. Kontrolować wskazania manometru i zmniejszać temperaturę procesu, kiedy wartość ciśnienia przekroczy normę
B. Monitorować temperaturę procesu i regulować ją tak, aby nie przekroczyła normy o więcej niż 20%
C. Śledzić wskazania manometru i zwiększać temperaturę procesu, gdy wartość ciśnienia przekroczy normę
D. Obserwować temperaturę procesu i systematycznie ją zwiększać, aż do osiągnięcia 150°C
Obserwowanie temperatury prowadzenia procesu i regulowanie jej w taki sposób, aby nie przekroczyła normy o więcej niż 20%, jest podejściem, które może prowadzić do poważnych błędów w zarządzaniu procesem sterylizacji. Przede wszystkim, takie podejście nie uwzględnia bezpośredniego związku między ciśnieniem a temperaturą w autoklawie. Wysoka temperatura, która jest zbyt bliska maksymalnym wartościom, może nie tylko zagrażać integralności materiałów poddawanych sterylizacji, ale również powodować uszkodzenia samego autoklawu. Regulacja temperatury z myślą o marginesie 20% jest niewystarczająca, ponieważ nie bierze pod uwagę dynamicznego charakteru procesów, które zachodzą w zamkniętym systemie sterylizacji. Najlepiej jest stosować podejście, które polega na ciągłym monitorowaniu i reagowaniu na zmiany parametrów, co jest zgodne z najlepszymi praktykami w zakresie kontroli procesów. Ponadto, koncentrowanie się wyłącznie na temperaturze, a nie na ciśnieniu, może prowadzić do nieefektywnej sterylizacji, co jest sprzeczne z wymogami norm ISO dotyczących sterylizacji sprzętu medycznego. Dlatego kluczowe jest, aby pracownik kontrolujący autoklawu miał pełną wiedzę o wzajemnym wpływie temperatury i ciśnienia oraz stosował podejście holistyczne w zarządzaniu tymi parametrami.

Pytanie 10

Elementem mieszającym o dużej prędkości w reaktorze zbiornikowym jest mieszadło

A. łapowe
B. kotwiczne
C. ślimakowe
D. turbinowe
Mieszadło turbinowe jest kluczowym elementem w reaktorach zbiornikowych, które wymagają efektywnej mieszanki substancji. Jego konstrukcja, charakteryzująca się dużą prędkością obrotową oraz specyficznym kształtem łopatek, pozwala na skuteczne przemieszczanie cieczy, co jest niezbędne w procesach chemicznych i biotechnologicznych. Mieszadła turbinowe wspierają rozpuszczanie, homogenizację, a także umożliwiają transport ciepła i masy. W zastosowaniach przemysłowych, takich jak produkcja farb, żywności czy farmaceutyków, ich efektywność jest niezbędna do zapewnienia jednolitej jakości produktów. Dzięki dużej zdolności do wytwarzania turbulence, mieszadła te przyczyniają się do intensyfikacji procesów reakcji chemicznych, co w efekcie prowadzi do skrócenia czasu reakcji. Zgodnie z normami branżowymi, zastosowanie mieszadeł turbinowych w reaktorach zbiornikowych ma na celu osiągnięcie optymalnych warunków mieszania, odpowiadając na wymagania procesów technologicznych.

Pytanie 11

Przy obsłudze flotownika istotne jest, aby zwracać szczególną uwagę na prawidłowe funkcjonowanie

A. sita na wylewie z flotownika
B. separatora magnetycznego
C. sprężarki powietrza oraz mieszadła
D. rozdrabniacza oraz bębnów przesiewających
Odpowiedź dotycząca sprężarki powietrza oraz mieszadła jest prawidłowa, ponieważ oba te elementy odgrywają kluczową rolę w prawidłowej pracy flotownika. Sprężarka powietrza jest odpowiedzialna za dostarczanie sprężonego powietrza, które jest niezbędne do procesu flotacji, gdzie cząstki minerałów są oddzielane od innych materiałów. Mieszadło z kolei zapewnia odpowiednią dystrybucję i homogenizację mieszanki, co pozwala na efektywne wprowadzenie powietrza do zawiesiny. Przykładem zastosowania tej wiedzy jest monitorowanie ciśnienia i wydajności sprężarki, co jest standardem w branży górniczej, aby zapewnić optymalną flotację. W przypadku niesprawności tych elementów, efektywność procesu flotacji może znacząco się obniżyć, prowadząc do strat surowców. Warto również zaznaczyć, że zgodnie z najlepszymi praktykami branżowymi, regularne serwisowanie i kontrola tych komponentów są niezbędne do utrzymania wysokiej jakości procesu technologicznego oraz minimalizacji ryzyka awarii.

Pytanie 12

Podczas planowania remontu reaktora chemicznego, należy wziąć pod uwagę:

A. Liczbę operatorów na zmianie
B. Kierunek obrotów mieszadła
C. Stan korozji i zużycie materiałów
D. Kolor powłoki ochronnej
Ocena stanu korozji i zużycia materiałów w reaktorze chemicznym jest kluczowym elementem planowania remontu. Korozja to proces, który może prowadzić do osłabienia struktury reaktora, co z kolei zwiększa ryzyko awarii lub wycieków niebezpiecznych substancji. Oceniając stopień korozji, inżynierowie są w stanie określić, które elementy wymagają wymiany lub wzmocnienia. Jest to zgodne z dobrymi praktykami i standardami przemysłowymi, takimi jak API 510, które opisuje inspekcję i naprawę naczyń ciśnieniowych. Regularna ocena stanu materiałów pozwala również na optymalizację kosztów remontu, eliminując potrzebę niepotrzebnej wymiany elementów, które wciąż są w dobrym stanie. To podejście, oprócz zapewnienia bezpieczeństwa, przedłuża także żywotność reaktora i zwiększa jego niezawodność operacyjną. W praktyce, podczas przeglądów, używa się narzędzi takich jak ultradźwięki czy spektroskopia, aby dokładnie ocenić grubość ścianek i stopień degradacji materiału. Takie działania są nieodzowne w branży chemicznej, gdzie bezpieczeństwo i efektywność są priorytetem.

Pytanie 13

Proces wymiany ciepła w wymienniku płaszczowo-rurowym jest najbardziej efektywny, gdy:

A. przepływy są turbulentne
B. przepływy są przeciwprądowe
C. przepływy są równoległe
D. przepływy są laminarnie
Przepływ przeciwprądowy w wymienniku ciepła charakteryzuje się tym, że gorący czynnik płynie w przeciwnym kierunku niż zimny. Dzięki temu różnica temperatur pomiędzy tymi czynnikami jest utrzymywana na wyższym poziomie na całej długości wymiennika niż w układach równoległych. W efekcie, zgodnie z zasadami termodynamiki, wymiana ciepła jest bardziej intensywna i efektywna. Tego typu układ pozwala na osiągnięcie większej różnicy temperatur końcowych, co jest pożądane w wielu procesach przemysłowych, gdzie wymagane jest maksymalne wykorzystanie energii cieplnej. Z mojego doświadczenia, w przemyśle chemicznym takie rozwiązania są kluczowe, zwłaszcza w procesach wymagających precyzyjnej kontroli temperatury, jak w reaktorach czy chłodnicach. Praktyczne zastosowanie przepływu przeciwprądowego można zauważyć w wymiennikach ciepła w instalacjach petrochemicznych, gdzie optymalizacja wymiany ciepła przekłada się na znaczące oszczędności energetyczne i redukcję kosztów operacyjnych. To sprawia, że przepływy przeciwprądowe są standardem w wielu nowoczesnych instalacjach.

Pytanie 14

Reaktor przeznaczony do nitrowania benzenu przed jego konserwacją powinien zostać oczyszczony z zawartości, schłodzony oraz

A. przemyty gorącym benzenem
B. wypłukany powietrzem
C. przemyty zimnym benzenem
D. zneutralizowany wapienną zasadą
Wybór odpowiedzi dotyczących mycia reaktora gorącym lub zimnym benzenem jest niewłaściwy, ponieważ takie podejście nie zapewnia efektywnego usunięcia ewentualnych pozostałości kwasowych. Chociaż benzenu można używać do mycia, jego działanie polega głównie na mechanicznym usuwaniu zanieczyszczeń, a nie na neutralizacji. W przypadku pozostałości chemicznych, użycie samego rozpuszczalnika, jakim jest benzen, nie wystarczy. Ponadto, istnieje wiele zagrożeń związanych z używaniem benzenu, w tym jego toksyczność i łatwopalność, co czyni ten proces jeszcze bardziej ryzykownym. Wybór metody przedmuchania powietrzem również jest problematyczny, gdyż nie eliminuje to chemicznych pozostałości, które mogą pozostać w reaktorze. W praktyce, powietrze może być użyte do osuszenia, ale nie zastąpi efektywnego procesu neutralizacji, który jest niezbędny, aby zapobiec reakcji chemicznych w przyszłości. Zastosowanie zasad wapiennych jako środka neutralizującego jest zgodne z najlepszymi praktykami przemysłowymi, które wymagają rozważenia chemicznych właściwości substancji oraz potencjalnych zagrożeń. Ignorowanie tych kryteriów może prowadzić do niebezpiecznych sytuacji oraz wpływać na jakość końcowego produktu, co podkreśla, jak istotne jest stosowanie odpowiednich metod w procesach chemicznych.

Pytanie 15

Ruch materiałów w trybie przeciwprądowym jest najskuteczniejszy podczas suszenia gorącymi gazami, ale w sytuacji, gdy sucha substancja może ulegać rozkładowi, bezpieczniejsze jest zastosowanie ruchu współprądowego. W tym kontekście obowiązuje zasada

A. umiarkowania technologicznego
B. maksymalnego wykorzystania energii
C. maksymalnego wykorzystania sprzętu
D. maksymalnego wykorzystania surowców
Odpowiedź "umiary technologicznego" jest prawidłowa, ponieważ odnosi się do zasadności wyboru metod suszenia w kontekście zachowania jakości materiałów. W przypadku suszenia gorącymi gazami w ruchu przeciwprądowym, proces ten jest wydajny energetycznie, jednak naraża substancję na wysokie temperatury przez dłuższy czas, co może prowadzić do jej rozkładu. Umiar technologiczny wskazuje na konieczność dostosowania procesów technologicznych do specyficznych właściwości materiałów, co jest kluczowe w praktykach przemysłowych. Przykładem może być suszenie ziół, gdzie wysoka temperatura może zniszczyć cenne związki aktywne. W takich przypadkach, zastosowanie ruchu współprądowego, gdzie temperatura gazów wlotowych jest niższa, chroni surowce przed degradacją. W kontekście dobrych praktyk, umiar technologiczny przyczynia się do efektywności procesów produkcyjnych i ochrony środowiska, co znajduje odzwierciedlenie w standardach jakość takich jak ISO 9001, które promują ciągłe doskonalenie procesów.

Pytanie 16

Jakie elementy należy przede wszystkim zweryfikować, przygotowując butle do składowania gazów technicznych pod ciśnieniem do 15 MPa?

A. Ilość rozpuszczalnika w butli
B. Wagę butli
C. Stan powłoki malarskiej butli
D. Aktualność legalizacji butli
Aktualność legalizacji butli jest kluczowym aspektem przy przygotowywaniu butli do magazynowania gazów technicznych pod ciśnieniem. Zgodnie z normami oraz przepisami prawa, każdy zbiornik ciśnieniowy, w tym butle, musi być regularnie poddawany kontroli technicznej oraz legalizacji, aby zapewnić ich bezpieczeństwo i efektywność użytkowania. W Polsce na przykład, zgodnie z Rozporządzeniem Ministra Gospodarki, butle muszą być legalizowane co 10 lat. Kontrola legalizacji obejmuje ocenę stanu technicznego butli, a także potwierdzenie, że spełnia ona odpowiednie normy i standardy jakości. Przykładem zastosowania jest kontrola butli w zakładach przemysłowych, gdzie gazy techniczne są niezbędne do procesów produkcyjnych. Regularna legalizacja pozwala uniknąć niebezpieczeństw związanych z wyciekami gazu czy eksplozjami, co czyni ten proces kluczowym dla bezpieczeństwa wszystkich pracowników oraz otoczenia.

Pytanie 17

Podczas pracy z pompą wirową, wzrost poziomu hałasu może wskazywać na:

A. zwiększenie ciśnienia wejściowego
B. prawidłowe działanie pompy
C. zmniejszenie wydajności pompy
D. zużycie łożysk lub kawitację
Wzrost poziomu hałasu w pompie wirowej jest zazwyczaj sygnałem ostrzegawczym, że coś jest nie tak. Jednym z głównych powodów takiego stanu może być zużycie łożysk. Łożyska w pompach są kluczowym elementem, zapewniającym płynne i efektywne działanie urządzenia. Z czasem jednak ulegają one zużyciu, co może prowadzić do zwiększonego tarcia, a w konsekwencji do wzrostu hałasu. Innym istotnym powodem może być zjawisko kawitacji. Kawitacja to proces, w którym pęcherzyki pary wodnej tworzą się w cieczy przepływającej przez pompę, a następnie gwałtownie zapadają się. To nie tylko generuje hałas, ale również może prowadzić do uszkodzeń mechanicznych. Zrozumienie tych procesów jest kluczowe dla eksploatacji i konserwacji maszyn przemysłu chemicznego. Regularne przeglądy i monitorowanie stanu technicznego pompy mogą zapobiec poważnym awariom i zapewnić jej długotrwałe działanie. Dbałość o prawidłowe działanie pompy to nie tylko kwestia efektywności, ale również bezpieczeństwa procesu przemysłowego.

Pytanie 18

Proces produkcji polietylenu w metodzie wysokociśnieniowej odbywa się w temperaturze 150--260°C oraz pod ciśnieniem
150-200 MPa. Wyniki monitorowania temperatury tego procesu, zapisane w dokumentacji, wyrażone w kelwinach, powinny znajdować się w zakresie

A. 423--533 K
B. 423--473 K
C. 273--423 K
D. 150--260 K
Produkcja polietylenu w wysokiej temperaturze rzeczywiście zachodzi w przedziale 150-260°C. Jak chcesz to przeliczyć na kelwiny, to wystarczy dodać 273,15 do stopni Celsjusza. Czyli, 150°C to 423,15 K, a 260°C to 533,15 K. Dlatego zgadza się, że przedział 423-533 K jest poprawny. W przemyśle to monitorowanie temperatury jest naprawdę kluczowe. Jeśli temperatura jest za niska lub za wysoka, to mogą być kłopoty z reakcją chemiczną i w efekcie jakością oraz wydajnością produkcji polietylenu. Trzymanie się odpowiednich temperatur to nie tylko zasady inżynierii chemicznej, ale również standardy, jak ISO 9001, które dbają o efektywność w produkcji. Poza tym, często korzysta się z systemów automatyki, które pomagają w monitorowaniu i optymalizacji warunków produkcji. To bardzo ważne w dużych zakładach, żeby wszystko szło sprawnie.

Pytanie 19

Na podstawie danych w zamieszczonej tabeli podaj rodzaje badań, które należy zlecić w 21. roku użytkowania zbiornika niskociśnieniowego metalowego przeznaczonego do magazynowania chloru o pojemności 500 m3.

Częstotliwość badań okresowych zbiorników bezciśnieniowych i niskociśnieniowych przeznaczonych do magazynowania materiałów trujących lub żrących
Rodzaj badaniaCzęstotliwość badania nie rzadziej niż
Dla zbiorników naziemnych metalowych
Wiek do 30 latWiek powyżej 30 lat
Pojemność >1000 m³Pojemność <1000 m³Pojemność >1000 m³Pojemność <1000 m³
Rewizja wewnętrzna5 lat3 lata3 lata3 lata
Próba szczelności10 lat6 lat6 lat4 lata
Rewizja zewnętrzna2 lata1 rok1 rok1 rok

A. Rewizja wewnętrzna i zewnętrzna.
B. Tylko rewizja zewnętrzna.
C. Rewizja zewnętrzna i próba szczelności.
D. Tylko rewizja wewnętrzna.
Wybór rewizji wewnętrznej i zewnętrznej dla zbiornika niskociśnieniowego metalowego przeznaczonego do magazynowania chloru o pojemności 500 m³ jest uzasadniony wymogami bezpieczeństwa oraz standardami branżowymi. Rewizja wewnętrzna, która powinna odbywać się co 3 lata, pozwala na ocenę stanu wewnętrznego zbiornika, identyfikację korozji oraz innych uszkodzeń, które mogą nie być widoczne z zewnątrz. Z kolei rewizja zewnętrzna, zalecana co roku, umożliwia wykrycie ewentualnych defektów mechanicznych, takich jak pęknięcia czy ubytki materiału. W przypadku zbiorników magazynujących substancje niebezpieczne, takie jak chlor, szczegółowe badania są kluczowe dla zapewnienia bezpieczeństwa operacji oraz ochrony środowiska. Należy również pamiętać, że zgodnie z normą PN-EN 13445, zbiorniki ciśnieniowe powinny być regularnie kontrolowane, aby zminimalizować ryzyko awarii. Zastosowanie obu typów rewizji jest najlepszą praktyką, która pozwala na kompleksową ocenę stanu technicznego zbiornika oraz podjęcie ewentualnych działań prewencyjnych.

Pytanie 20

Jaką czynność należy wykonać przed rozpoczęciem przeglądu oraz konserwacji bełkotki?

A. Obniżyć temperaturę cieczy w zbiorniku
B. Zwiększyć natężenie przepływu powietrza
C. Wydobyć bełkotkę z aparatu
D. Odłączyć przepływ powietrza
Przy podejmowaniu decyzji o działaniach związanych z przeglądem bełkotki, wiele osób może pomylić istotę odłączenia przepływu powietrza z innymi, nieprawidłowymi działaniami. Wyjęcie bełkotki z aparatu, mimo że może wydawać się logiczne, nie jest pierwszym krokiem, który powinno się podjąć. To działanie powinno mieć miejsce dopiero po zapewnieniu, że nie ma ryzyka związane z ciśnieniem w systemie. W przeciwnym razie, nieodpowiednie podejście do usuwania urządzenia może prowadzić do niekontrolowanego wydostania się cieczy lub gazów, co stwarza zagrożenie dla operatora oraz otoczenia. Obniżanie temperatury cieczy w zbiorniku, choć może być korzystne w kontekście bezpieczeństwa, nie jest podstawowym krokiem koniecznym przed konserwacją, ani nie rozwiązuje problemu ciśnienia. Zwiększenie natężenia przepływu powietrza jest kompletnie nieodpowiednie, ponieważ wprowadza dodatkowe ryzyko, a także może prowadzić do nadmiernego ciśnienia w systemie, które jest sprzeczne z zasadami bezpieczeństwa. Takie myślenie często opiera się na błędnych założeniach dotyczących funkcjonowania systemów pneumatycznych i ich konserwacji. Właściwe postępowanie wymaga tu znajomości standardów i procedur konserwacyjnych, które podkreślają znaczenie odłączenia źródła zasilania powietrzem jako pierwszego kroku w każdym procesie przeglądu.

Pytanie 21

Dane techniczne krystalizatora stosowanego w procesie krystalizacji laktozy zamieszczono w tabeli:
Jaką objętość produktu (m3) wykorzystano do napełnienia trzech krystalizatorów przy założeniu, że każdy został napełniony maksymalnie, czyli w 3/4 objętości zbiornika?

Pojemność8 m³
Temperatura na dopływie~42°C
Temperatura na odpływie~14°C
Zapotrzebowanie wody lodowej8 m³/h
Temperatura wody lodowej2°C

A. 6 m3
B. 12 m3
C. 8 m3
D. 18 m3
Odpowiedź 18 m³ jest prawidłowa, ponieważ aby obliczyć łączną objętość produktu wykorzystanego do napełnienia trzech krystalizatorów, musimy najpierw ustalić pojemność jednego krystalizatora. Pojemność każdego krystalizatora wynosi 8 m³, jednak w procesie napełniania, wykorzystano tylko 3/4 tej objętości. Zatem obliczamy: 8 m³ * 3/4 = 6 m³. W każdym z trzech krystalizatorów znajduje się zatem 6 m³ produktu. Następnie, aby uzyskać łączną objętość, mnożymy objętość jednego krystalizatora przez liczbę krystalizatorów: 6 m³ * 3 = 18 m³. Ta metoda obliczeń jest zgodna z podstawowymi zasadami inżynierii procesowej, gdzie dokładne obliczenia objętości są kluczowe dla efektywności procesu krystalizacji. Pomocne może być również zrozumienie, jak takie obliczenia wpływają na optymalizację kosztów produkcji, co jest istotnym aspektem w branży spożywczej.

Pytanie 22

Jakie środki należy podjąć, aby zapobiec powstawaniu piany w reaktorze chemicznym?

A. Obniżyć ciśnienie w reaktorze
B. Zwiększyć temperaturę reakcji
C. Zmniejszyć ilość katalizatora
D. Stosować substancje przeciwpieniące
Podczas pracy z reaktorami chemicznymi, kontrola powstawania piany jest kluczowa, zwłaszcza gdy procesy obejmują reakcje intensywnie pieniące się. Jednym z najskuteczniejszych środków jest stosowanie substancji przeciwpieniących. Te związki chemiczne obniżają napięcie powierzchniowe cieczy, co zmniejsza stabilność piany i ułatwia jej rozpad. W praktyce przemysłowej, przeciwpieniacze są stosowane w różnych formach: jako dodatki do cieczy, w postaci aerozoli lub jako stałe. Typowe substancje przeciwpieniące to oleje silikonowe, wyższe alkohole, czy emulsyfikowane oleje mineralne. Ich wybór zależy od specyfiki procesu i rodzaju reakcji chemicznej. Właściwie dobrane substancje mogą znacząco zwiększyć efektywność i bezpieczeństwo procesu produkcyjnego, zapobiegając potencjalnym przestojom i uszkodzeniom sprzętu, jakie mogą być spowodowane nadmiernym pienieniem się. W standardach przemysłowych, takich jak ISO 9001, zwraca się uwagę na kontrolę czynników wpływających na jakość produktu, w tym skuteczne zarządzanie pianą.

Pytanie 23

Aby pobrać próbkę materiału stałego, zgodnie z zasadami pobierania próbek z całej głębokości partie nieruchomych, należy zastosować

A. sondy
B. wgłębnika
C. szpatułki
D. naczynia miarowe
Wgłębnik jest narzędziem kluczowym w procesie pobierania próbek ciał stałych, szczególnie w kontekście analizy gruntów i materiałów budowlanych. Jego konstrukcja umożliwia efektywne wnikanie w głąb materiału, co jest niezbędne do uzyskania reprezentatywnej próbki z całej głębokości partii. W praktyce, wgłębnik pozwala na precyzyjne wydobycie próbek, co jest istotne dla późniejszych analiz laboratoryjnych, takich jak badania geotechniczne czy ocena jakości materiałów. Standardy pobierania próbek, takie jak np. normy PN-EN 1997-2, wskazują na znaczenie odpowiedniego narzędzia w kontekście zapewnienia reprezentatywności próbki oraz minimalizacji jej zanieczyszczenia. Zastosowanie wgłębnika, w przeciwieństwie do innych narzędzi, takich jak zlewki czy łopatki, które mogą nie dostarczyć próbek o odpowiedniej strukturze czy objętości, jest kluczowe. Dzięki wgłębnikowi można również kontrolować głębokość pobierania, co jest istotne w kontekście warstwowania w gruntach. Przykładem praktycznego zastosowania wgłębnika może być prace związane z inżynierią lądową, gdzie analiza właściwości gruntów jest fundamentalna dla projektowania fundamentów budowli.

Pytanie 24

Aby usunąć zanieczyszczenia z zewnętrznych elementów maszyn i urządzeń, które są spowodowane przez kurz i pył, należy je spłukać

A. rozpuszczalnikiem
B. mlekiem wapiennym
C. roztworem etanolu
D. ciepłą wodą
Odpowiedź ciepłą wodą jest poprawna, ponieważ woda w temperaturze pokojowej lub lekko podgrzana skutecznie usuwa zanieczyszczenia, takie jak kurz i pył, z zewnętrznych części maszyn i urządzeń. Ciepła woda zwiększa aktywność molekularną, co sprzyja rozpuszczaniu zanieczyszczeń i ich łatwiejszemu usunięciu. W praktyce, wiele branż, w tym przemysł spożywczy i produkcyjny, korzysta z mycia na gorąco w celu zapewnienia czystości i higieny. Oprócz skuteczności, stosowanie wody jest zgodne z zasadami ochrony środowiska, gdyż nie wprowadza do obiegu substancji chemicznych. Do mycia można dodatkowo stosować środki zwilżające, które poprawiają efektywność czyszczenia, jednak sam proces spłukiwania ciepłą wodą pozostaje najbardziej efektywny. Warto również zwrócić uwagę na standardy, takie jak ISO 9001, które podkreślają znaczenie czystości w procesach produkcyjnych.

Pytanie 25

Węgiel kamienny w koksowniach przechowywany jest

A. na utwardzonym, zadaszonym terenie
B. w silosach
C. w zamkniętym, odpowiednio wentylowanym pomieszczeniu
D. w formie pryzm na utwardzonych miejscach składowania
Węgiel kamienny w koksowniach najlepiej przechowywać w formie pryzm na utwardzonym składowisku. To nie tylko popularna, ale też skuteczna praktyka w branży. Dzięki pryzmom łatwo zarządza się surowcem i poprawia cały proces technologiczny. Układają je na specjalnie przygotowanej nawierzchni, co ogranicza ryzyko zanieczyszczeń gruntu. To z kolei ułatwia załadunek i rozładunek. Jeszcze jednym plusem jest to, że węgiel jest łatwiej dostępny, co ma znaczenie, by produkcja szła bez przestojów. Warto też pamiętać, że standardy magazynowania węgla uwzględniają ochronę środowiska, co jest teraz na czasie. W niektórych zakładach dobrze sprawdzają się systemy monitorujące stan magazynów, które pozwalają kontrolować jakość i wilgotność surowca, co jest istotne dla koksowania.

Pytanie 26

W procesie rafinacji ropy naftowej, która frakcja jest oddzielana jako pierwsza?

A. Olej opałowy
B. Olej napędowy
C. Asfalt
D. Gazy lekkie
W procesie rafinacji ropy naftowej, pierwszą frakcją oddzielaną podczas destylacji jest frakcja gazów lekkich. Proces ten odbywa się w kolumnach destylacyjnych, gdzie ropa naftowa jest podgrzewana i wprowadzana do kolumny. Ze względu na różnice w temperaturze wrzenia składników ropy, poszczególne frakcje są oddzielane na różnych wysokościach kolumny. Gazy lekkie, takie jak metan, etan, propan i butan, charakteryzują się najniższymi temperaturami wrzenia, dlatego są one oddzielane jako pierwsze w górnej części kolumny destylacyjnej. Proces ten jest kluczowy dla przemysłu petrochemicznego, ponieważ umożliwia uzyskanie podstawowych składników do dalszej produkcji chemicznej i energetycznej. Gazy lekkie znajdują szerokie zastosowanie jako paliwa, surowce do produkcji chemicznej oraz w procesach syntezy. Właściwe zarządzanie tym procesem jest kluczowe dla efektywności i rentowności rafinerii. Dlatego też zrozumienie tego etapu jest fundamentalne dla każdego, kto pracuje w branży chemicznej, szczególnie w dziedzinie eksploatacji maszyn i urządzeń rafineryjnych.

Pytanie 27

Solanka używana jako surowiec do wytwarzania sody metodą Solvaya jest pozbawiana soli wapnia i magnezu przed dalszą obróbką. Proces ten kontroluje się przez oznaczanie stężenia jonów Ca2+ oraz Mg2+ w oczyszczonej solance stosując metodę

A. wersenianową
B. strąceniową
C. jodometryczną
D. wagową
Metoda wersenianowa, zwana także metodą EDTA, jest jedną z najskuteczniejszych technik analitycznych stosowanych do oznaczania jonów metali, w tym wapnia (Ca2+) i magnezu (Mg2+). W tej metodzie wykorzystuje się chelatację, gdzie EDTA (kwas etylenodiaminotetraoctowy) stabilizuje jony metali, tworząc kompleksy. Dzięki temu można dokładnie oznaczyć ich stężenie w próbce. W przemyśle chemicznym, takim jak produkcja sody, kontrola jakości surowców jest kluczowa. Usunięcie jonów Ca2+ i Mg2+ z solanki jest istotne, ponieważ ich obecność może prowadzić do powstawania niepożądanych osadów i obniżać efektywność procesów chemicznych. W szczególności, metody wersenianowe są preferowane ze względu na swoją precyzję i szybkość, co czyni je standardem w laboratoriach kontrolnych. Dodatkowo, w stosunku do innych metod, werseniany są mniej wrażliwe na zakłócenia ze strony innych jonów, co zwiększa ich użyteczność w analizie skomplikowanych próbek.

Pytanie 28

Jakie termometry charakteryzują się największym zakresem pomiarowym w zakresie najwyższych temperatur?

A. Termometry termoelektryczne
B. Termometry rezystancyjne
C. Termometry pirometryczne
D. Termometry manometryczne
Termometry pirometryczne są dedykowane do pomiaru wysokich temperatur, często w zakresie od kilku setek do kilku tysięcy stopni Celsjusza. Ich działanie opiera się na pomiarze promieniowania podczerwonego emitowanego przez obiekty, co pozwala na bezkontaktowe określenie temperatury. Dzięki zastosowaniu tej technologii, pirometry są niezwykle użyteczne w przemyśle metalurgicznym, odlewniczym oraz w procesach spalania, gdzie tradycyjne metody pomiarowe mogą być niepraktyczne lub niemożliwe do zastosowania. Przykładem zastosowania pirometrów może być monitorowanie temperatury pieców hutniczych czy podczas procesów spawania. W branży energetycznej, pirometry są wykorzystywane do kontrolowania temperatury w turbinach gazowych, co jest kluczowe dla zapewnienia efektywności energetycznej i bezpieczeństwa operacyjnego. W związku z tym, pirometry stanowią standard w pomiarach wysokotemperaturowych, co czyni je niezbędnym narzędziem w wielu zastosowaniach inżynieryjnych i przemysłowych.

Pytanie 29

Do zbudowania przegrody filtracyjnej ziarnistej używa się

A. piasku
B. materiału lnianego
C. materiału bawełnianego
D. bibuły
Piasek jest podstawowym materiałem stosowanym do budowy przegrody filtracyjnej ziarnistej, ponieważ charakteryzuje się odpowiednią wielkością ziaren oraz porowatością, co pozwala na skuteczne zatrzymywanie zanieczyszczeń mechanicznych z cieczy. W systemach filtracyjnych piasek działa jako medium filtracyjne, które, w zależności od frakcji, jest w stanie zatrzymać cząstki o różnej wielkości, co czyni go niezwykle wszechstronnym w zastosowaniach takich jak oczyszczanie wody pitnej, przemysłowej czy ścieków. Przykładem zastosowania piasku w praktyce może być budowa studni chłonnych, gdzie piasek jest wykorzystywany w warstwie filtracyjnej, by zapewnić skuteczną filtrację i ochronę przed zanieczyszczeniami. Przy projektowaniu systemów filtracyjnych należy także zwrócić uwagę na standardy, takie jak PN-EN 12921, które określają wymagania dotyczące materiałów filtracyjnych, w tym zastosowania piasku. Wiedza o właściwościach piasku jako materiału filtracyjnego jest kluczowa dla inżynierów zajmujących się projektowaniem systemów uzdatniania wody.

Pytanie 30

Operator nadzorujący reaktor do produkcji amoniaku, zauważając nagły spadek stężenia NH3 w gazach odlotowych, powinien przede wszystkim zweryfikować

A. skład gazów syntezowych
B. natężenie przepływu gazu poreakcyjnego
C. temperaturę katalizatora
D. ciśnienie w reaktorze
Temperatura katalizatora jest kluczowym czynnikiem wpływającym na efektywność procesu syntezy amoniaku. W odpowiednich warunkach temperatura umożliwia osiągnięcie optymalnej reakcji, co przekłada się na maksymalne wydobycie NH3. Zbyt niska temperatura może prowadzić do zmniejszenia aktywności katalizatora, co skutkuje obniżeniem wydajności i spadkiem stężenia amoniaku w gazach odlotowych. Przykładowo, w przemyśle chemicznym, zgodnie z najlepszymi praktykami, operatorzy monitorujący proces syntezy amoniaku dbają o regularne pomiary temperatury katalizatora, a także stosują systemy automatycznej regulacji, aby utrzymać ją w optymalnym zakresie. W przypadku stwierdzenia nagłego spadku NH3, należy najpierw skontrolować temperaturę, aby wykluczyć jej wpływ na proces. Dbałość o parametry pracy katalizatora, w tym jego temperaturę, jest szczególnie ważna w kontekście utrzymania ciągłości produkcji oraz minimalizacji strat surowców.

Pytanie 31

Jakie czynniki mogą wpływać na korozję materiałów w przemyśle chemicznym?

A. Wysokie ciśnienie i niska zawartość tlenu
B. Niskie pH i wysoka zawartość soli
C. Wysoka wilgotność i agresywne środowisko chemiczne
D. Niska temperatura i niskie ciśnienie
Korozja materiałów to proces, który może być znacząco przyspieszony przez różne czynniki środowiskowe, zwłaszcza w przemyśle chemicznym, gdzie maszyny i urządzenia są narażone na wymagające warunki pracy. Agresywne środowisko chemiczne, na przykład obecność gazów korozyjnych czy cieczy, może prowadzić do różnych form korozji, takich jak korozja chemiczna, elektrochemiczna czy nawet atmosferyczna. Wysoka wilgotność zwiększa przewodnictwo elektrolityczne, co sprzyja reakcjom korozyjnym. W praktyce, urządzenia pracujące w takich warunkach muszą być wykonane z materiałów odpornych na korozję, takich jak stal nierdzewna, oraz dodatkowo zabezpieczone odpowiednimi powłokami antykorozyjnymi. Stosowanie inhibitorów korozji w płynach procesowych także jest dobrą praktyką. Z mojego doświadczenia, regularne monitorowanie stanu technicznego urządzeń i szybka reakcja na pierwsze oznaki korozji są kluczowe dla utrzymania ich długiej żywotności. To wszystko sprawia, że znajomość czynników korozyjnych jest niezbędna dla każdego specjalisty zajmującego się eksploatacją maszyn w przemyśle chemicznym.

Pytanie 32

Jak należy się zachować, jeśli podczas realizacji procesu krystalizacji w krystalizatorze próżniowym nastąpiła awaria pompy próżniowej?

A. W czasie pracy krystalizatora podłączyć sprężarkę do układu cyrkulacyjnego
B. Doprowadzić proces do końca, powiadomić brygadzistę o awarii oraz przystąpić do wymiany pompy
C. Zwiększyć temperaturę prowadzenia procesu dla następnych porcji roztworu
D. Przerwać pracę urządzenia, zgłosić awarię brygadziście i po jej usunięciu włączyć urządzenie
Przerwanie pracy urządzenia w przypadku awarii pompy próżniowej jest kluczowym działaniem, aby uniknąć potencjalnych uszkodzeń sprzętu oraz zapewnić bezpieczeństwo procesu. W krystalizatorze próżniowym, pompa próżniowa odgrywa fundamentalną rolę w utrzymaniu odpowiedniego ciśnienia, które jest niezbędne do prawidłowego przebiegu krystalizacji. Jeśli pompa przestaje działać, ciśnienie w krystalizatorze może wzrosnąć, co prowadzi do niekontrolowanego przyrostu temperatury oraz obniżenia jakości kryształów. W takich sytuacjach, zgodnie z dobrymi praktykami branżowymi, należy niezwłocznie zgłosić awarię brygadziście. Istotne jest, aby uniknąć dalszego prowadzenia procesu w uszkodzonym urządzeniu, ponieważ może to doprowadzić do nieodwracalnych uszkodzeń i strat materiałowych. Po usunięciu usterki przez wykwalifikowany personel, urządzenie powinno być uruchomione zgodnie z ustalonymi procedurami, co zapewnia bezpieczeństwo oraz efektywność procesu krystalizacji.

Pytanie 33

Na podstawie danych zamieszczonych w tabeli dobierz sprężarkę do procesu sprężania gazu obiegowego otrzymywanego w instalacji syntezy amoniaku, w ilości 0,8 m3 w ciągu minuty.

Dane techniczne wybranych sprężarek
Typ sprężarkiWydajność ssawna [dm3/min]
Sprężarka tłokowa GD 28-50-255255
Sprężarka tłokowa GD 38-200-475475
Sprężarka wolnostojąca CUBE SD 710705
Sprężarka zabudowana na zbiorniku CUBE SD 1010-500F1050

A. Sprężarka zabudowana na zbiorniku CUBE SD 1010-500F
B. Sprężarka tłokowa GD 38-200-475
C. Sprężarka tłokowa GD 28-50-255
D. Sprężarka wolnostojąca CUBE SD 710
Sprężarka CUBE SD 1010-500F to naprawdę dobry wybór do sprężania gazu w procesie syntezy amoniaku. Jak spojrzysz na wydajność ssawną, to zauważysz, że wynosi ona ponad 0,8 m³/min, co jest wymagane do sprawnego przeprowadzenia całego procesu. CUBE ma mocny silnik oraz solidną konstrukcję, co zapewnia potrzebną stabilność. W branży chemicznej to naprawdę ważne, bo nie ma miejsca na awarie. Co więcej, jeśli wybierzesz sprężarki z wyższą wydajnością niż wymagana, to zmniejszasz ryzyko przeciążenia, a to zawsze jest na plus. Warto wziąć pod uwagę konkretne warunki swojej pracy, bo to klucz do efektywności i bezpieczeństwa. I pamiętaj, żeby wybierać sprzęt zgodny z normami branżowymi – to się opłaca i obniża koszty eksploatacji.

Pytanie 34

W trakcie produkcji kwasu azotowego(V) konieczne jest monitorowanie stężenia amoniaku w mieszance amoniakalno-powietrznej. Jak powinno się przeprowadzać pobieranie próbki do kontroli ruchowej?

A. Przy użyciu pipety gazowej
B. Przy użyciu gazometru
C. Przy użyciu butelki probierczej
D. Przy użyciu zgłębnika
Pipeta gazowa to świetne narzędzie do pobierania gazów, bo dzięki niej możemy zwinnie i precyzyjnie napełniać próbki, co jest super ważne. Przy produkcji kwasu azotowego(V) musimy szczególnie pilnować stężenia amoniaku w mieszaninie amoniakalno-powietrznej, żeby reakcje chemiczne przebiegały jak należy i żeby nie wypuszczać za dużo szkodliwych substancji. Pipety gazowe są specjalnie stworzone do pracy z gazami i pozwalają na dokładne dawkowanie, co ma duże znaczenie, gdy analizujemy jakość i ilość. W praktyce przemysłowej użycie pipet gazowych to standard i zgodność z najlepszymi praktykami, jak te z normy ISO 8655, które mówią, jakie powinny być precyzyjne urządzenia pomiarowe. Dzięki pipetom unikamy też ryzyka kontaminacji próbki, co w chemii jest naprawdę kluczowe, bo czystość próbki wpływa na wyniki. Na przykład w przemyśle chemicznym standardem jest takie podejście, żeby wyniki były jak najbardziej wiarygodne.

Pytanie 35

Który z wymienionych materiałów budowlanych posiada cechy umożliwiające jego wykorzystanie do produkcji chłodnic w przemysłowej instalacji syntezy metanolu?

A. Polistyren
B. Stopy cyny
C. Winidur
D. Stopy glinu
Stopy glinu są szeroko stosowane w przemyśle ze względu na swoje korzystne właściwości mechaniczne i termiczne. Charakteryzują się one dobrą odpornością na korozję, co czyni je idealnym materiałem do zastosowań w instalacjach, gdzie występuje kontakt z substancjami chemicznymi, takimi jak metanol. Dodatkowo, stopy glinu mają niską gęstość, co pozwala na zmniejszenie masy konstrukcji chłodnic, a także doskonałe przewodnictwo cieplne, co jest kluczowe w aplikacjach związanych z wymianą ciepła. Przykładem zastosowania stopów glinu w przemyśle może być produkcja wymienników ciepła, które są kluczowymi komponentami w procesach chemicznych, w tym w syntezie metanolu. W kontekście dobrych praktyk, standardy takie jak ASTM B221 regulują wymagania dla tych materiałów, co zapewnia ich jakość i odpowiednią wydajność w trudnych warunkach przemysłowych.

Pytanie 36

Rysunek przedstawia manometr, który służy do pomiaru ciśnienia w zbiorniku z chlorem. W jakim zakresie ciśnień mierzonego medium powinien pracować ten ciśnieniomierz?

Ilustracja do pytania
A. 0 ± 0,40 MPa
B. 0 ± 0,45 MPa
C. 0 ± 0,30 MPa
D. 0 ± 0,60 MPa
Odpowiedź "0 ± 0,45 MPa" jest prawidłowa, ponieważ manometry są projektowane w taki sposób, aby zapewnić odpowiedni zakres pomiarowy dla medium, które mają mierzyć. W przypadku pomiaru ciśnienia w zbiorniku z chlorem, istotne jest, aby zakres pracy manometru nie tylko obejmował spodziewane ciśnienie, ale także zapewniał pewien zapas bezpieczeństwa. W praktyce przyjmuje się, że manometr powinien mieć zakres pomiarowy wyższy od maksymalnego ciśnienia roboczego o co najmniej 10-20%. W związku z tym wybrany zakres 0 ± 0,45 MPa odpowiada temu wymaganiu, biorąc pod uwagę, że maksymalne ciśnienie wskazywane przez manometr wynosi 0,6 MPa. Dodatkowo, manometry powinny być kalibrowane i testowane pod kątem dokładności w swoim zakresie pracy, co jest zgodne z normami ISO 5170 i ISO 9001, aby zapewnić ich niezawodność i bezpieczeństwo w zastosowaniach przemysłowych. Na przykład, w zakładach chemicznych, przy pomiarze ciśnienia w zbiornikach, użycie manometru z odpowiednim zakresem jest kluczowe dla uniknięcia niebezpiecznych sytuacji związanych z nadciśnieniem.

Pytanie 37

W jaki sposób powinny być przechowywane butle ze sprężonym siarkowodorem?

A. W wydzielonej strefie na hali produkcyjnej
B. Na świeżym powietrzu pod zadaszeniem
C. W ogrzewanym pomieszczeniu razem z innymi gazami technicznymi
D. Na najwyższym piętrze budynku
Magazynowanie butli ze sprężonym siarkowodorem na wolnym powietrzu pod zadaszeniem to najlepsza praktyka zapewniająca bezpieczeństwo. Siarkowodór jest gazem toksycznym i łatwopalnym, dlatego wymaga odpowiednich warunków składowania. Zadaszenie chroni butle przed działaniem niekorzystnych warunków atmosferycznych, takich jak deszcz czy śnieg, które mogłyby wpłynąć na integralność butli. Dodatkowo, umiejscowienie w otwartej przestrzeni minimalizuje ryzyko gromadzenia się gazu w zamkniętym pomieszczeniu, co mogłoby prowadzić do niebezpiecznych sytuacji. Ważne jest również, aby strefa składowania była odpowiednio oznakowana i oddzielona od innych obiektów, co jest zgodne z normami takimi jak PN-EN 14175. Przykładem może być budowanie zadaszonego pomieszczenia, które posiada odpowiednie wentylacje oraz dostęp do systemu detekcji gazów, co dodatkowo zwiększa bezpieczeństwo operacji związanych z tym niebezpiecznym gazem.

Pytanie 38

Jakie kroki należy podjąć, aby przygotować młyn kulowy do serwisowania?

A. Otworzyć bęben i włączyć urządzenie na maksymalne obroty przez 15 minut
B. Otworzyć bęben, napełnić wodą z detergentem oraz włączyć urządzenie na 5 minut
C. Odłączyć zasilanie, usunąć elementy rozdrabniające z bębna oraz pozbyć się resztek materiału rozdrabnianego
D. Odłączyć zasilanie i przemyć wnętrze wodą pod ciśnieniem, obracając bęben ręcznie
Poprawna odpowiedź dotyczy kluczowych kroków w procesie przygotowania młyna kulowego do konserwacji. Odłączenie zasilania to fundamentalny krok, który ma na celu zapewnienie bezpieczeństwa operatora oraz uniknięcie przypadkowego uruchomienia maszyny podczas prac konserwacyjnych. Opróżnienie bębna z elementów rozdrabniających oraz resztek materiału jest niezbędne do prawidłowego przeprowadzenia konserwacji, ponieważ wszelkie pozostałości mogłyby zanieczyścić proces czyszczenia oraz wpłynąć negatywnie na sprawność młyna. Zgodnie z najlepszymi praktykami branżowymi, przed przeprowadzeniem jakichkolwiek działań konserwacyjnych, należy również zidentyfikować i usunąć potencjalnie niebezpieczne materiały. Po wykonaniu tych kroków można przystąpić do dokładnego czyszczenia wnętrza młyna, co jest kluczowe dla jego dalszego prawidłowego funkcjonowania. Regularna konserwacja, zgodnie z wytycznymi producenta, przyczynia się do zwiększenia żywotności urządzenia oraz minimalizowania ryzyka awarii.

Pytanie 39

W reaktorze zachodzi reakcja syntezy amoniaku opisana równaniem:
N2 + 3H2 → 2 NH3 Jaką ilość wodoru powinno się wprowadzić do reaktora (mieszaninę wodoru z azotem podaje się do reaktora w proporcji stechiometrycznej), zakładając, że 300 m3 azotu ulegnie całkowitemu przereagowaniu?

A. 500 m3
B. 100 m3
C. 900 m3
D. 300 m3
Reakcja syntezy amoniaku opisana równaniem N2 + 3H2 → 2 NH3 wskazuje na stosunek molowy reagentów. Z równania wynika, że do jednego mola azotu N2 potrzeba trzech moli wodoru H2. W sytuacji, gdy w reaktorze ma przereagować 300 m3 azotu, należy przeliczyć tę objętość na odpowiadającą jej ilość wodoru. Zgodnie z zasadą zachowania materii, dla 300 m3 azotu potrzebujemy: 300 m3 N2 * 3 m3 H2 / 1 m3 N2 = 900 m3 H2. Takie podejście jest zgodne z zasadami stechiometrii, które są kluczowe w chemii procesowej i inżynierii chemicznej. Praktycznym zastosowaniem tej wiedzy jest optymalizacja procesów produkcji amoniaku, co ma zastosowanie w przemyśle nawozowym, gdzie amoniak jest podstawowym surowcem. Wydajne zarządzanie proporcjami reagentów może prowadzić do zmniejszenia kosztów produkcji oraz minimalizacji odpadów.

Pytanie 40

Reaktor przeznaczony do syntezy metanolu powinien być zbudowany z materiałów charakteryzujących się głównie

A. dużą odpornością na ścieranie i wysokie temperatury
B. dużą odpornością na korozję wodorową i karbonylkową
C. małym współczynnikiem przewodnictwa cieplnego
D. niską plastycznością oraz wysoką odpornością na alkalia
Reaktor, który służy do syntezy metanolu, musi być zrobiony z materiałów, które są naprawdę odporne na różne rodzaje korozji, jak korozja wodorowa czy karbonylkowa. Ta pierwsza pojawia się, gdy wodór wchodzi w reakcję z metalami i to może prowadzić do ich degradacji, co nie jest fajne, zwłaszcza przy wysokim ciśnieniu i temperaturze w reaktorze. Dlatego ważne jest, żeby używać dobrych materiałów. Na przykład stal nierdzewna austenityczna albo specjalne stopy metali z molibdenem to naprawdę dobry wybór, bo są znane z tego, że dobrze znoszą korozję. Jak patrzymy na reaktory w zakładach petrochemicznych, to widać, że stosowanie takich materiałów pozwala uniknąć awarii i przestojów w produkcji. To tak z mojego doświadczenia - inżynierowie muszą przestrzegać dobrych praktyk, jak te, które wskazuje ASME, bo mają one duże znaczenie dla bezpieczeństwa i efektywności produkcji.