Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 21 maja 2025 17:20
  • Data zakończenia: 21 maja 2025 17:42

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką minimalną powierzchnię należy zapewnić na jednego pracownika pracującego równocześnie w tej samej przestrzeni biurowej?

A. 2 m2
B. 4 m2
C. 3 m2
D. 1 m2
Przypisanie zbyt małej powierzchni na jednego pracownika, jak 1 m2, 3 m2 lub 4 m2, może prowadzić do różnych problemów ergonomicznych i zdrowotnych. Odpowiedź 1 m2 jest zdecydowanie niewystarczająca, ponieważ w praktyce oznacza brak miejsca na podstawowe elementy wyposażenia, takie jak biurko, krzesło, a także przestrzeń do poruszania się. Zbyt mała powierzchnia może prowadzić do uczucia dyskomfortu, które negatywnie wpływa na zdrowie psychiczne i fizyczne pracowników. W przypadku 3 m2, mimo że pod względem powierzchni może wydawać się to bardziej odpowiednie, nadal nie zapewnia to wystarczającej przestrzeni na swobodny ruch oraz zachowanie dystansu, co jest kluczowe w kontekście pracy w grupie. Z kolei 4 m2 może być w niektórych przypadkach zbyt dużą przestrzenią, co z kolei wiąże się z nieefektywnym wykorzystaniem biura oraz większymi kosztami operacyjnymi. Kluczowe jest zrozumienie, że odpowiednia przestrzeń powinna być dostosowana do potrzeb pracowników, a także specyfiki wykonywanej pracy. Błędem jest również założenie, że mniejsza powierzchnia sprzyja lepszej interakcji między pracownikami; przeciwnie, zbyt bliskie sąsiedztwo może prowadzić do zakłóceń oraz obniżenia efektywności zespołu. W praktyce, przeciwdziałanie tym problemom i dostosowanie przestrzeni do standardów ergonomicznych jest kluczowe dla zdrowia i wydajności pracowników.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Router to urządzenie wykorzystywane w warstwie

A. aplikacji
B. sesji
C. prezentacji
D. sieci
Router to urządzenie, które operuje w warstwie sieci modelu OSI. Jego główną funkcją jest przesyłanie pakietów danych pomiędzy różnymi sieciami, co umożliwia komunikację między urządzeniami pracującymi w różnych lokalizacjach. Routery analizują adresy IP zawarte w pakietach, a następnie podejmują decyzje o najlepszej trasie przesyłania tych pakietów, korzystając z tablic routingu. Routery są kluczowe w budowie sieci lokalnych oraz szerokopasmowych, a ich zastosowanie można znaleźć w domowych sieciach Wi-Fi, centrach danych oraz w infrastrukturze internetowej. Dobre praktyki w konfiguracji routerów obejmują zabezpieczanie ich poprzez zastosowanie silnych haseł, aktualizację oprogramowania oraz konfigurowanie zapór sieciowych, aby minimalizować ryzyko ataków. Zrozumienie roli routera w architekturze sieciowej jest istotne dla zapewnienia efektywnej komunikacji oraz bezpieczeństwa danych.

Pytanie 5

Telewizor nie odbiera żadnego sygnału z zewnętrznej anteny w transmisji naziemnej, natomiast prawidłowo wyświetla obraz z tunera satelitarnego połączonego z telewizorem kablem EURO SCART oraz z kamery VHS-C. Wskazane symptomy sugerują, że uszkodzony jest moduł

A. separatora sygnałów
B. wielkiej i pośredniej częstotliwości
C. odchylania poziomego i pionowego
D. wzmacniacza obrazu
Odpowiedź 'wielkiej i pośredniej częstotliwości' jest poprawna, ponieważ moduł ten jest kluczowy w procesie odbioru sygnału telewizyjnego z anteny. W systemach telewizyjnych, częstotliwości pośrednie (IF) są używane do konwersji sygnału odbieranego z anteny na poziom, który może być łatwiej przetwarzany przez odbiornik. Jeśli ten moduł jest uszkodzony, sygnał z anteny nie jest właściwie demodulowany, co prowadzi do braku obrazu. Natomiast sygnał z tunera satelitarnego oraz z kamery VHS-C są już na poziomie, który nie wymaga dalszej obróbki w zakresie częstotliwości pośrednich, dlatego są wyświetlane poprawnie. Przykładem zastosowania tej wiedzy może być diagnozowanie problemów z odbiorem telewizji naziemnej, gdzie kluczowe jest sprawdzenie, czy sygnał pośredni jest prawidłowo przetwarzany. Wiedza ta jest zgodna z praktykami serwisowymi, gdzie szczegółowa analiza sygnałów IF jest standardem w naprawach i diagnostyce odbiorników telewizyjnych.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Aby wykonać otwór na kołek rozporowy w betonie, należy użyć

A. młota pneumatycznego
B. wkrętarki
C. wiertarki udarowej
D. młotka
Wykonanie otworu pod kołek rozporowy w ścianie betonowej wymaga zastosowania wiertarki udarowej, ponieważ jej konstrukcja łączy funkcję wiercenia z działaniem udarowym, co pozwala na efektywne przełamywanie twardych materiałów, takich jak beton. Wiertarka udarowa jest wyposażona w mechanizm udarowy, który generuje dodatkową siłę uderzenia, co znacznie ułatwia proces wiercenia w betonie, który charakteryzuje się dużą twardością i gęstością. Przykładem praktycznego zastosowania wiertarki udarowej jest montaż różnych elementów, takich jak półki, wieszaki czy systemy oświetleniowe, które wymagają solidnego osadzenia w betonie. W standardach budowlanych i remontowych zaleca się używanie wiertarek udarowych z odpowiednimi wiertłami do betonu, aby zapewnić zarówno skuteczność, jak i bezpieczeństwo pracy. Wybór odpowiedniej wiertarki i wierteł zgodnych z wymaganiami projektu jest kluczowy dla uzyskania trwałych i bezpiecznych połączeń.

Pytanie 8

Do jakiego złącza podłącza się sygnał: wizji zespolony, kolor R, kolor G, kolor B, luminancji i chrominancji oraz sygnał audio kanału lewego i prawego?

A. S-VHS
B. DIN 5
C. JACK
D. EUROSCART
Złącze S-VHS jest przeznaczone głównie do przesyłania sygnału wideo w wyższej jakości niż standardowy sygnał kompozytowy, ale nie obsługuje zintegrowanego przesyłania kolorów R, G, B ani sygnału audio. S-VHS, z uwagi na swoją konstrukcję, skupia się jedynie na jakości obrazu, co ogranicza jego zastosowanie w kontekście przesyłania pełnego sygnału multimedialnego. Odpowiedź JACK, znana głównie jako złącze audio, również nie jest właściwa, ponieważ jest to złącze mono lub stereo, które nie może obsługiwać sygnałów wideo. Podobnie, złącze DIN 5, mimo że może być używane do różnych zastosowań audio, nie jest przystosowane do przesyłania zarówno sygnałów wideo, jak i audio w formie, która zintegrowałaby wszystkie wymienione sygnały. Wybór niewłaściwego złącza często wynika z nieporozumienia dotyczącego jego funkcji i zastosowania. Aby uniknąć takich błędów, kluczowe jest zrozumienie specyfikacji oraz możliwości każdego złącza, a także ich funkcji w kontekście całego systemu audio-wideo.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Podczas instalacji wzmacniacza antenowego najpierw należy

A. uziemić urządzenie, następnie podłączyć przewody antenowe, włączyć zasilanie, a na końcu zamontować urządzenie
B. najpierw podłączyć zasilanie, uziemić, następnie podłączyć przewody antenowe, a na końcu zamontować urządzenie
C. zamontować urządzenie, uziemić, podłączyć przewody antenowe, a na końcu podłączyć zasilanie
D. najpierw podłączyć przewody antenowe, później włączyć zasilanie, uziemić i na końcu zamontować urządzenie
Poprawna odpowiedź polega na odpowiednim porządku prac przy montażu wzmacniacza antenowego. Proces ten powinien zaczynać się od zamontowania urządzenia, co zapewnia, że wszystkie elementy są prawidłowo zainstalowane i mają odpowiednie wsparcie mechaniczne. Następnie kluczowe jest uziemienie urządzenia, aby zminimalizować ryzyko uszkodzeń spowodowanych przepięciami czy wyładowaniami atmosferycznymi. Uziemienie jest istotnym krokiem w ochronie zarówno sprzętu, jak i osób korzystających z systemu. Po tym etapie powinno się podłączyć przewody antenowe, co jest niezbędne do prawidłowego funkcjonowania wzmacniacza, a na końcu można podłączyć zasilanie, co pozwoli na uruchomienie urządzenia. Taki porządek działań jest zgodny z dobrymi praktykami instalacyjnymi i zapewnia zarówno bezpieczeństwo, jak i skuteczność działania wzmacniacza. Przykładem zastosowania tych zasad może być instalacja anteny telewizyjnej, gdzie odpowiednia sekwencja zwiększa jakość odbioru sygnału.

Pytanie 12

W trakcie pomiaru rezystancji po zamontowaniu komponentów wykryto bardzo wysoką rezystancję, która była efektem pojawienia się zimnego lutu na połączeniu jednego z komponentów z polem lutowniczym. Jak można usunąć tę wadę?

A. Przylutować obok komponentu odcinek przewodu
B. Wylutować komponent i przylutować koniecznie nowy o identycznych parametrach
C. Przylutować obok komponentu drugi element tego samego typu
D. Wylutować komponent i po sprawdzeniu jego funkcjonalności ponownie przylutować ten element
Wylutowanie elementu i późniejsze przylutowanie go po sprawdzeniu, czy działa, to naprawdę najlepszy sposób na pozbycie się zimnego lutowania. Zimny lut, który ma wysoką rezystancję, pojawia się najczęściej, gdy podgrzanie elementów lutowniczych jest niewystarczające albo lutowia nie są zbyt dobrej jakości. Kiedy wylutujesz element, możesz dokładnie sprawdzić, czy działa poprawnie, co jest mega ważne, jak chcesz, żeby cały układ funkcjonował. Dobrze jest też przetestować lut pod kątem przewodności i pewności, żeby nie było innych problemów. Gdy przylutujesz go znowu, pamiętaj o odpowiednich technikach lutowania i temperaturze. Użycie lutownicy, która ma regulowaną temperaturę, może bardzo poprawić jakość tych połączeń. Ta metoda jest zgodna z najlepszymi standardami, takimi jak IPC-A-610, gdzie mówią, co jest akceptowalne w lutach i połączeniach elektronicznych. Jak połączenie lutownicze jest dobrze zrobione, to nie tylko ma niską rezystancję, ale też zwiększa stabilność i niezawodność całego układu.

Pytanie 13

Jakie dane identyfikuje czytnik biometryczny?

A. zapis magnetyczny
B. kod kreskowy
C. sygnał transpondera
D. linie papilarne
Czytnik biometryczny to takie fajne urządzenie, które potrafi sprawdzić, kim jesteś, na podstawie cech, które masz tylko Ty, jak na przykład linie papilarne. Gdy chodzi o te linie, to czytniki korzystają z różnych technologii, jak skanowanie optyczne, elektrostatyczne czy ultradźwiękowe, żeby złapać ten unikalny wzór z palca. Są one mega popularne w bankach, na lotniskach czy w smartfonach, bo są naprawdę skuteczne i zwiększają bezpieczeństwo. Jak rejestrujesz swoje linie papilarne, to po prostu przykładujesz palec, a system zapisuje ten wzór cyfrowo, żeby później móc go łatwo zweryfikować. Zresztą, to wszystko musi być zgodne z międzynarodowymi standardami, no bo bezpieczeństwo danych jest bardzo istotne. Ogólnie, używanie technologii biometrycznej nie tylko podnosi bezpieczeństwo, ale i sprawia, że korzystanie z systemów jest wygodniejsze, bo nie musisz pamiętać haseł czy nosić kart.

Pytanie 14

Który amperomierz powinien być użyty do zmierzenia natężenia prądu 0,5 A przepływającego przez czujnik o rezystancji wyjściowej w przybliżeniu 100 Ω, aby pomiar był jak najbardziej precyzyjny?

A. Analogowy na zakresie I = 1 A i RWE = 50 Ω
B. Cyfrowy na zakresie I = 1 A i RWE = 5 Ω
C. Analogowy na zakresie I = 10 A i RWE = 50 Ω
D. Cyfrowy na zakresie I = 10 A i RWE = 5 Ω
Jeśli wybierzesz złe amperomierze, możesz się mocno rozczarować co do dokładności. Na przykład, analogowy amperomierz na 10 A z RWE 50 Ω, chociaż może działać, nie jest najlepszy w tej sytuacji. Z takim dużym zakresem, pomiar 0,5 A to praktycznie nic, a to może wprowadzać spore błędy. Do tego ten wysoki RWE wprowadza dodatkowy opór, a to znowu zmniejsza dokładność pomiarów, zwłaszcza przy czujniku 100 Ω. A co do cyfrowego amperomierza na 10 A z RWE 5 Ω – też nie jest to najlepszy wybór, bo przy dużym zakresie wiadomo, że pomiary małych prądów będą mniej dokładne. Przy czujniku o rezystancji 100 Ω ten dodatkowy opór zmienia charakterystykę obwodu, co prowadzi do niepewnych wyników. Często ludzie myślą, że większy zakres to lepsza dokładność, ale to nie zawsze prawda, szczególnie przy pomiarach blisko dolnej granicy zakresu. Więc fajnie jest wybierać narzędzia pomiarowe blisko mierzonych wartości, bo to naprawdę zwiększa dokładność.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jakim urządzeniem należy się posłużyć, aby zmierzyć amplitudę sygnału z generatora taktującego mikroprocesorowy układ o częstotliwości f = 25 MHz?

A. Częstościomierzem o maksymalnym zakresie 50 MHz
B. Woltomierzem prądu zmiennego o wewnętrznej rezystancji 100 kOhm/V
C. Oscyloskopem o podstawie czasu 100 ns/cm
D. Amperomierzem prądu zmiennego z rezystorem szeregowym 10 kOhm
Pomiary amplitudy przebiegu sygnału z generatora taktującego o częstotliwości 25 MHz przy pomocy woltomierza prądu zmiennego o rezystancji wewnętrznej 100 kOhm/V nie są odpowiednie, ponieważ woltomierze nie są przeznaczone do pomiarów sygnałów o tak dużych częstotliwościach. Woltomierz może nie zarejestrować pełnej amplitudy sygnału, zwłaszcza w przypadku sygnałów o wysokiej częstotliwości, ze względu na swoje ograniczenia pasmowe, co prowadzi do znacznie zaniżonych wyników pomiarów. Podobnie, użycie amperomierza prądu zmiennego z szeregowym rezystorem 10 kOhm jest niewłaściwe, ponieważ amperomierze są zaprojektowane do pomiaru natężenia prądu, a nie napięcia, co w kontekście analizy sygnałów cyfrowych jest nieodpowiednie. Dodatkowo, szeregowe połączenie z rezystorem może wpływać na działanie układu, wprowadzając dodatkowe straty i zmieniając charakterystykę obwodu. Na koniec, częstościomierz o maksymalnym zakresie 50 MHz teoretycznie mógłby być użyty do określenia częstotliwości, lecz nie dostarczyłby żadnych informacji na temat amplitudy sygnału, co jest kluczowe w analizie sygnałów cyfrowych. Typowe błędy myślowe to przekonanie, że jakiekolwiek urządzenie do pomiarów elektrycznych nadaje się do pomiaru amplitudy sygnału o wysokiej częstotliwości, co jest niezgodne z zasadami inżynierii elektronicznej. Praktyką w takich sytuacjach jest zawsze wybór sprzętu dostosowanego do specyfikacji sygnału, co jest fundamentalne dla uzyskania rzetelnych wyników.

Pytanie 17

Jakie złącza powinny być wykorzystane dla kabli koncentrycznych w systemie monitoringu telewizyjnego?

A. SCART
B. DIN
C. BNC
D. HDMI
Złącza BNC (Bayonet Neill-Concelman) są powszechnie stosowane w systemach telewizji dozorowej ze względu na ich prostotę, niezawodność oraz doskonałe właściwości sygnałowe. Złącza te są zaprojektowane do pracy z kablami koncentrycznymi, co czyni je idealnym rozwiązaniem w aplikacjach wymagających przesyłania sygnałów wideo. W systemach CCTV, BNC umożliwia szybkie i łatwe podłączenie kamer do rejestratorów, a także zapewnia stabilne połączenie, które minimalizuje straty sygnału. W praktyce, złącza BNC są również szeroko stosowane w profesjonalnych systemach telekomunikacyjnych oraz w transmisji sygnałów wideo w studiach telewizyjnych. Dzięki swojej konstrukcji, złącza BNC pozwalają na łatwe wypinanie i wpinaliwaniu, co jest istotne w kontekście serwisowania i rozbudowy systemów monitorujących. Ponadto, standardy branżowe, takie jak SMPTE 292M, wspierają użycie złącz BNC w aplikacjach wideo, co podkreśla ich znaczenie i niezawodność w tej dziedzinie.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Analogowy oscyloskop dwukanałowy pozwala na pomiar

A. bitowej stopy błędów
B. współczynnika błędów modulacji
C. stosunku sygnału do szumu
D. przesunięcia fazowego
Odpowiedź "przesunięcie fazowe" jest poprawna, ponieważ analogowy oscyloskop dwukanałowy jest szczególnie przydatny do analizy sygnałów w czasie rzeczywistym, umożliwiając bezpośrednie porównanie dwóch sygnałów. Przesunięcie fazowe oznacza różnicę w czasie pomiędzy dwoma sygnałami, co jest kluczowe w wielu zastosowaniach elektronicznych, takich jak synchronizacja systemów, modulacja czy analiza obwodów. Z pomocą oscyloskopu można zaobserwować, jak dwa sygnały współpracują ze sobą, co pozwala na dokładne pomiary przesunięcia fazowego. Przykładem zastosowania tej techniki może być analizowanie sygnałów w systemach komunikacyjnych, gdzie dokładna synchronizacja sygnałów jest kluczowa dla poprawnego odbioru informacji. Ponadto, w przypadku analizy filtrów, przesunięcie fazowe może dostarczyć informacji o stabilności i charakterystyce częstotliwościowej systemu, co jest zgodne z najlepszymi praktykami w obszarze inżynierii elektronicznej.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Podczas zdejmowania charakterystyki pasma przenoszenia filtrów wyniki zanotowano w poniższej tabeli. Jakiego rodzaju filtr był badany, jeżeli napięcie wejściowe wynosiło 2 V?

Uwyj=2 V
f1 Hz10 Hz100 Hz1 kHz10 kHz100 kHz1 MHz
Uwyj0,1 V0,2 V0,2 V1,5 V1,9 V2 V2 V

A. Środkowoprzepustowy.
B. Górnoprzepustowy.
C. Środkowozaporowy.
D. Dolnoprzepustowy.
Wybór odpowiedzi innej niż "Górnoprzepustowy" może wynikać z nieporozumień dotyczących podstawowych zasad działania filtrów. Odpowiedzi sugerujące filtry dolnoprzepustowe, środkowozaporowe czy środkowoprzepustowe opierają się na błędnym zrozumieniu tego, jak te filtry działają na sygnały elektryczne. Filtry dolnoprzepustowe, na przykład, są zaprojektowane do przepuszczania sygnałów o niskich częstotliwościach i tłumienia tych wysokich, co jest odwrotnością tego, co zaobserwowano w podanych danych. W praktyce, może to prowadzić do zawyżenia wartości sygnałów niskoczęstotliwościowych w zastosowaniach audio lub komunikacyjnych. Środkowozaporowe filtry z kolei mają na celu eliminację sygnałów w określonym przedziale częstotliwości, co także nie odpowiada opisanym wynikom, gdzie wysokie częstotliwości były przepuszczane. Natomiast filtry środkowoprzepustowe pozwalają na przepuszczanie sygnałów w określonym zakresie częstotliwości, co również nie pasuje do analizowanych danych. Kluczowym błędem jest zatem nieprawidłowe przypisanie funkcji filtrów do obserwowanych efektów, co prowadzi do mylnych wniosków. Aby poprawnie zrozumieć działanie filtrów, warto zaznajomić się z ich charakterystykami częstotliwościowymi oraz zastosowaniem w praktyce, co jest kluczowe w inżynierii elektronicznej.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Reflektometr optyczny to urządzenie wykorzystywane do zlokalizowania uszkodzeń w

A. światłowodach
B. matrycach LED RGB
C. ogniwach fotowoltaicznych
D. matrycach LCD
Jeśli chodzi o reflektometry optyczne, to sporo osób ma błędne wyobrażenie o tym, do czego one służą. Może i w technologii mamy ogniwa fotowoltaiczne, światłowody czy matryce LED RGB, ale reflektometry optyczne nie są najlepszym wyborem do lokalizowania w nich uszkodzeń. W przypadku ogniw fotowoltaicznych bardziej chodzi o pomiary prądu i napięcia, a nie o odbicia optyczne. Tak więc, nie da się z ich pomocą zdiagnozować problemów z konwersją energii słonecznej na elektryczną. Co do światłowodów, potrzebne są specjalistyczne urządzenia, takie jak reflektometry czasowe, bo one są zaprojektowane do pracy z sygnałami optycznymi. A matryce LED RGB, mimo że korzystają z technologii optycznych, w diagnostyce skupiają się na elektryczności, a nie na analizowaniu odbić świetlnych jak w matrycach LCD. Więc przypuszczanie, że reflektometry optyczne mogą być używane do diagnozowania uszkodzeń w tych technologiach, to błąd, bo nie wszyscy rozumieją, jak to wszystko działa.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jakie czynności należy podjąć w pierwszej kolejności, udzielając pomocy osobie porażonej prądem elektrycznym?

A. odciąć porażonego od źródła prądu
B. wykonać masaż serca
C. zadzwonić po pomoc medyczną
D. przeprowadzić sztuczne oddychanie
Odpowiedź "uwolnić porażonego spod napięcia" jest prawidłowa, ponieważ w przypadku porażenia prądem elektrycznym najważniejszym krokiem jest zapewnienie bezpieczeństwa zarówno osobie poszkodowanej, jak i osobie udzielającej pomocy. Bezpośredni kontakt z prądem może prowadzić do poważnych obrażeń, a nawet śmierci, dlatego należy najpierw usunąć źródło zagrożenia. Można to zrobić poprzez odłączenie zasilania, użycie narzędzi izolowanych lub, w przypadku braku takiej możliwości, przesunięcie porażonego na bezpieczną odległość za pomocą przedmiotu nieprzewodzącego. Po uwolnieniu osoby z niebezpiecznej sytuacji, można przejść do oceny jego stanu zdrowia i, w razie potrzeby, wezwać pomoc medyczną. Zgodnie z wytycznymi Stowarzyszenia Czerwonego Krzyża, kluczowe jest działanie w taki sposób, aby nie narażać siebie ani innych na dodatkowe niebezpieczeństwo. W praktyce, znajomość procedur udzielania pierwszej pomocy w przypadku porażenia prądem elektrycznym może uratować życie, dlatego ważne jest, aby regularnie brać udział w szkoleniach z zakresu pierwszej pomocy.

Pytanie 26

Firma zajmująca się konserwacją oraz serwisowaniem instalacji domofonowych nalicza administratorowi budynku rocznie sumę 1 800 zł. Jaką kwotą miesięcznie trzeba obciążyć każdego z 30 mieszkańców?

A. 15 zł
B. 3 zł
C. 5 zł
D. 10 zł
Aby wyliczyć, jaką kwotą miesięcznie należy obciążyć każdego z 30 lokatorów, najpierw należy obliczyć roczny koszt konserwacji i serwisowania instalacji domofonowej, który wynosi 1800 zł. Następnie dzielimy ten koszt przez liczbę miesięcy w roku, czyli 12, co daje nam 150 zł miesięcznie na całą wspólnotę. Aby określić kwotę przypadającą na jednego lokatora, dzielimy miesięczny koszt za całą budowę przez liczbę lokatorów: 150 zł / 30 lokatorów = 5 zł na lokatora. Jest to przykład zastosowania podstawowych zasad rachunkowości w kontekście zarządzania nieruchomościami. Obliczenia tego typu są niezbędne w zarządzaniu wspólnotami mieszkaniowymi oraz w określaniu kosztów eksploatacji, co jest zgodne z dobrymi praktykami branżowymi. Przykłady takich obliczeń można znaleźć w dokumentacji finansowej wspólnot oraz projektach budżetowych, gdzie precyzja w planowaniu wydatków ma kluczowe znaczenie dla prawidłowego funkcjonowania całej wspólnoty.

Pytanie 27

Czym jest watchdog?

A. rodzaj timera kontrolującego działanie mikroprocesora
B. system bezpośredniego dostępu do portów I/O mikroprocesora
C. system bezpośredniego dostępu do pamięci mikroprocesora
D. typ licznika rejestrującego impulsy zewnętrzne
Watchdog to kluczowy element w systemach mikroprocesorowych, który działa jako rodzaj timera nadzorującego ich pracę. Jego głównym zadaniem jest monitorowanie stanu pracy systemu i wykrywanie potencjalnych awarii. W momencie, gdy system przestaje odpowiadać lub wchodzi w stan zawieszenia, watchdog resetuje mikroprocesor, co pozwala na przywrócenie jego prawidłowego działania. Przykłady zastosowania zegarów watchdog są widoczne w systemach krytycznych, takich jak urządzenia medyczne czy systemy wbudowane w lotnictwie, gdzie niezawodność i ciągłość działania są kluczowe. Wdrażając watchdogi w projektach, inżynierowie stosują standardy, takie jak IEC 61508, które zapewniają odpowiedni poziom bezpieczeństwa w systemach elektronicznych. To podejście jest zgodne z najlepszymi praktykami branżowymi, które zalecają implementację mechanizmów nadzorujących, aby minimalizować ryzyko awarii systemów oraz zapewnić ich ciągłe działanie.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Który rodzaj linii transmisyjnej zapewnia przesył sygnału telewizyjnego, wyróżniający się najwyższą odpornością na negatywne skutki warunków atmosferycznych?

A. Radiowa
B. Światłowodowa
C. Symetryczna kablowa
D. Kablowa koncentryczna
Sygnał telewizyjny przesyłany za pomocą światłowodów charakteryzuje się wyjątkową odpornością na zakłócenia, w tym te związane z niekorzystnymi warunkami atmosferycznymi. Wynika to z faktu, że światłowody wykorzystują światło do przesyłania informacji, co sprawia, że są one niewrażliwe na czynniki takie jak deszcz, śnieg czy burze. Światłowodowe linie transmisyjne zapewniają niskie tłumienie sygnału oraz wysoką przepustowość, co umożliwia przesyłanie sygnałów o dużej jakości, w tym sygnałów HD i 4K. Ponadto, światłowody nie emitują fal radiowych, co wyklucza ich zakłócanie przez inne źródła sygnału. Przykładem zastosowania technologii światłowodowej jest modernizacja sieci telewizyjnych w miastach, gdzie światłowody zastępują tradycyjne kable, co zapewnia nieprzerwaną jakość sygnału nawet w trudnych warunkach atmosferycznych. Wykorzystanie światłowodów w telekomunikacji jest zgodne z międzynarodowymi standardami, takimi jak ITU-T G.652, które określają parametry techniczne dla światłowodów jedno- i wielomodowych, zapewniając ich skuteczność w transmisji danych.

Pytanie 30

W jaki sposób należy zrealizować połączenie uszkodzonego kabla koncentrycznego, który prowadzi do odbiornika sygnału telewizyjnego, aby miejsce złączenia wprowadzało minimalne tłumienie?

A. Lutując żyłę sygnałową i ekran w miejscu uszkodzenia
B. Łącząc żyłę sygnałową i ekran przy pomocy złącza typu F
C. Łącząc żyłę sygnałową i ekran przy użyciu tulejek zaciskowych
D. Skręcając żyłę sygnałową i ekran w miejscu uszkodzenia
Łączenie rdzenia i oplotu kabla koncentrycznego za pomocą złącza typu F to najskuteczniejszy sposób na minimalizację tłumienia sygnału telewizyjnego w miejscu przerwania. Złącza typu F zostały zaprojektowane z myślą o wysokiej jakości połączeniu, które zapewnia niską stratność sygnału. W przeciwieństwie do innych metod, takich jak lutowanie czy skręcanie, złącza te umożliwiają stabilne i trwałe połączenie, które jest odporne na działanie czynników zewnętrznych. Dodatkowo, złącza typu F są szeroko stosowane w instalacjach telewizyjnych, co czyni je standardem branżowym. W praktyce, instalatorzy często korzystają z tych złączy, aby zapewnić optymalne parametry sygnałowe, zwłaszcza w dłuższych odległościach od źródła sygnału. Użycie złącza typu F eliminuje również ryzyko korozji, która może występować w innych metodach łączenia, co dodatkowo przyczynia się do długotrwałej niezawodności instalacji. Kluczowe jest również, aby przed zastosowaniem złącza odpowiednio przygotować kabel, co obejmuje staranne usunięcie izolacji oraz prawidłowe ułożenie rdzenia i oplotu, co zapewnia ich właściwe zamocowanie w złączu.

Pytanie 31

Zaciski wyjściowe przekaźnika czujnika ruchu nie są oznaczone literami

A. IN
B. NO
C. COM
D. NC
Odpowiedź IN jest prawidłowa, ponieważ oznacza 'input', czyli wejście. W kontekście czujnika ruchu, przewód oznaczony jako IN jest przeznaczony do podłączenia zewnętrznego sygnału, który aktywuje urządzenie. W praktyce, czujniki ruchu wykorzystywane są w systemach automatyki budynkowej, gdzie detekcja ruchu uruchamia różne urządzenia, takie jak oświetlenie, alarmy czy systemy monitoringu. Prawidłowe zrozumienie oznaczeń zacisków jest kluczowe dla efektywnej instalacji i późniejszej konserwacji systemów. Stosowanie standardów, takich jak normy IEC, pozwala na jednoznaczne i spójne oznaczanie zacisków w różnych urządzeniach. Wiedza na temat właściwego podłączenia czujników oraz ich funkcji w systemach automatyki zwiększa bezpieczeństwo i komfort użytkowania.

Pytanie 32

Który z parametrów kamery wskazuje na jej efektywność w warunkach słabego oświetlenia?

A. Rozdzielczość
B. Czułość
C. Kąt widzenia kamery
D. Typ mocowania obiektywu
Rozdzielczość jest istotnym parametrem kamery, ale nie wpływa bezpośrednio na zdolność widzenia w słabym oświetleniu. Wyższa rozdzielczość oznacza więcej pikseli w obrazie, co przekłada się na większą szczegółowość. Niemniej jednak, nawet kamery o wysokiej rozdzielczości mogą mieć problem z uchwyceniem detali w warunkach słabego oświetlenia, jeśli ich czułość jest niska. Typ mocowania obiektywu dotyczy kompatybilności sprzętu, a nie zdolności kamery do pracy w nocy. Kąt widzenia kamery, choć wpływa na zakres obserwacji, również nie jest związany z jej wydajnością przy niskim oświetleniu. W praktyce, podczas wyboru kamery do monitoringu, kluczowym czynnikiem staje się czułość, ponieważ z odpowiednią wartością ISO można osiągnąć zadowalające rezultaty w trudnych warunkach. Nieprawidłowe zrozumienie roli czułości w kontekście niskiego oświetlenia prowadzi do błędnych decyzji zakupowych, gdzie użytkownicy mogą wybrać kamerę z wysoką rozdzielczością, ale niską czułością, co nie spełni ich oczekiwań w trudnych warunkach oświetleniowych.

Pytanie 33

Najlepiej połączyć bierne kolumny głośnikowe z akustycznym wzmacniaczem przy użyciu przewodu

A. koncentrycznym nieekranowanym
B. symetrycznym o dużym przekroju żył
C. symetrycznym o małym przekroju żył
D. koncentrycznym ekranowanym
Wybór niewłaściwego rodzaju przewodu do połączenia kolumn głośnikowych z wzmacniaczem akustycznym może prowadzić do znacznych strat jakości sygnału oraz zwiększenia poziomu zakłóceń. Przewody koncentryczne nieekranowane są szczególnie narażone na wpływ zakłóceń elektromagnetycznych, co w praktyce oznacza, że sygnał audio może być zniekształcony przez różnorodne źródła zakłóceń, takie jak inne urządzenia elektroniczne. Użycie przewodów o małym przekroju żył może z kolei prowadzić do zwiększenia oporu, co skutkuje dodatkowymi stratami mocy oraz obniżeniem jakości dźwięku. W kontekście połączeń głośnikowych, zastosowanie przewodu koncentrycznego ekranowanego również nie jest optymalne, ponieważ choć ekranowanie może pomóc w redukcji zakłóceń, to nie zapewnia ono takiej samej ochrony przed interferencjami jak przewody symetryczne. Często błędnie zakłada się, że jakiekolwiek ekranowanie wystarczy do ochrony sygnału, co jest mylnym podejściem, szczególnie w profesjonalnym nagłośnieniu, gdzie jakość sygnału jest kluczowa. Właściwy dobór przewodów do systemów audio jest zgodny z najlepszymi praktykami branżowymi, które promują stosowanie odpowiednich typów kabli w zależności od ich zastosowania, co jest niezbędne do zapewnienia optymalnej wydajności systemów akustycznych.

Pytanie 34

W trakcie regularnej inspekcji instalacji telewizyjnej należy zwrócić uwagę na

A. jakość sygnału w gniazdku
B. położenie anteny
C. usytuowanie gniazd
D. metodę ułożenia przewodów
Podczas rozważania, co należy sprawdzić podczas okresowej kontroli instalacji TV, można natknąć się na różne koncepcje, które niekoniecznie są kluczowe dla jakości odbioru. Na przykład, umiejscowienie anteny, mimo że istotne, nie jest przedmiotem analizy w kontekście okresowej kontroli, ponieważ zakłada się, iż antena została poprawnie zainstalowana na etapie montażu. W przypadku lokalizacji gniazd, również należy zauważyć, że ich umiejscowienie powinno być określone już na etapie projektowania instalacji. Ponadto, sposób ułożenia kabli, choć ważny dla estetyki i bezpieczeństwa, nie ma bezpośredniego wpływu na jakość sygnału. W rzeczywistości, niepoprawna analiza takiej sytuacji może prowadzić do błędnych wniosków, które nie rozwiążą problemów związanych z odbiorem telewizyjnym. Kluczowym elementem jest bowiem poziom sygnału, który jest bezpośrednio związany z jakością odbioru. Skupienie się na umiejscowieniu anteny, gniazd czy kabli bez zbadania poziomu sygnału może prowadzić do zignorowania podstawowego problemu, jakim jest nieodpowiednia moc sygnału. Tego typu myślenie może skutkować nieefektywnym podejściem do problematyki instalacji telewizyjnych, co w konsekwencji nie przynosi oczekiwanych rezultatów w postaci wysokiej jakości odbioru.

Pytanie 35

Jakim objawem może być zużycie głowicy laserowej w odtwarzaczu CD?

A. spadek prądu lasera
B. wzrost prądu lasera
C. zwiększenie prędkości silnika
D. zmniejszenie prędkości silnika
Zarówno zmniejszenie prądu lasera, jak i zmniejszenie obrotów silnika są konsekwencjami błędnych założeń dotyczących pracy odtwarzacza CD. Zmniejszenie prądu lasera nie jest objawem zużycia głowicy, lecz raczej może wskazywać na poprawne funkcjonowanie. Wysoka jakość odczytu danych przy niskim prądzie lasera jest pożądana, ponieważ zapobiega to przegrzewaniu się komponentów. W przypadku silnika, obroty jego nie powinny być zmniejszane w kontekście zużycia lasera, ponieważ są one z nim ściśle związane. Zwiększenie obrotów silnika jest zazwyczaj oznaką próby odczytu danych z płyty w trudniejszych warunkach, na przykład, gdy płyta jest porysowana lub brudna. W takiej sytuacji, silnik jest w stanie dostarczyć więcej energii, aby skompensować trudności w odczycie. Zmniejszenie obrotów silnika mogłoby spowodować, że napęd nie będzie w stanie poprawnie odczytać danych, co prowadziłoby do błędów. Często przyczyną takich nieporozumień jest brak wiedzy na temat mechanizmów działania urządzeń optycznych. Warto zrozumieć, że prawidłowe działanie układów optycznych, w tym głowicy laserowej i silnika, jest kluczowe dla utrzymania jakości odczytu, co z kolei jest kluczowe w kontekście długotrwałego użytkowania odtwarzacza CD.

Pytanie 36

Termin "licznik mikrorozkazów" odnosi się do

A. manipulatora
B. pętli PLL
C. oscyloskopu cyfrowego
D. systemu mikroprocesorowego
Licznik mikrorozkazów to kluczowy element systemu mikroprocesorowego, który odpowiada za synchronizację i kontrolę wykonywania instrukcji. Działa na zasadzie zliczania mikrorozkazów, które są najmniejszymi jednostkami operacyjnymi w architekturze mikroprocesorów. Każdy mikrorozkaz zazwyczaj odpowiada za pojedynczą operację, jak na przykład przeniesienie danych, wykonanie obliczeń czy zarządzanie pamięcią. W praktyce, licznik mikrorozkazów jest wykorzystywany do zarządzania sekwencją działań wewnętrznych mikroprocesora, co jest kluczowe dla wydajności i poprawności operacji. Zastosowanie liczników mikrorozkazów jest zgodne z najlepszymi praktykami inżynieryjnymi, które zakładają efektywne zarządzanie cyklami pracy mikroprocesora, co przekłada się na optymalizację wydajności systemu. W nowoczesnych urządzeniach elektronicznych, takich jak komputery, smartfony czy systemy wbudowane, licznik mikrorozkazów odgrywa fundamentalną rolę w zapewnieniu prawidłowego działania aplikacji i systemów operacyjnych, co czyni go jednym z kluczowych elementów architektury komputerowej.

Pytanie 37

Co oznacza opis na przewodzie YTDY 6×0,5?

A. sześciożyłowy z żyłą aluminiową typu drut, o przekroju żyły 0,5 mm2
B. sześciożyłowy z żyłą aluminiową typu linka, o przekroju żyły 0,5 mm2
C. sześciożyłowy z żyłą miedzianą typu drut, o przekroju żyły 0,5 mm2
D. sześciożyłowy z żyłą miedzianą typu linka, o przekroju żyły 0,5 mm2
Odpowiedź wskazująca na przewód sześciożyłowy z żyłą miedzianą typu drut o przekroju żyły 0,5 mm2 jest poprawna, ponieważ oznaczenie YTDY odnosi się do specyfikacji przewodów elektrycznych, w których 'Y' oznacza przewód miedziany, 'T' oznacza, że przewód ma zastosowanie do instalacji w trudnych warunkach, a 'D' i 'Y' oznaczają odpowiednio, że przewód jest wielożyłowy i ma izolację z PVC. Przewody z żyłą miedzianą są powszechnie używane w instalacjach elektrycznych ze względu na dobre przewodnictwo elektryczne oraz odporność na utlenianie. Przykładem zastosowania tego typu przewodu może być okablowanie oświetleniowe w budynkach mieszkalnych, gdzie przewody o małym przekroju są wystarczające do zasilania energooszczędnych źródeł światła. W przypadku instalacji, które nie wymagają znacznych obciążeń, przewody o przekroju 0,5 mm2 są odpowiednie, a ich elastyczność sprawia, że można je łatwo układać w różnych konfiguracjach. Zgodnie z normą PN-EN 60228, przewody tego typu powinny być stosowane zgodnie z określonymi zasadami, co zapewnia bezpieczeństwo użytkowania.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

W kablowej telewizji magistrale optyczne wykorzystywane są do przesyłania sygnałów na znaczne odległości?

A. skretkami telefonicznymi
B. łączami światłowodowymi
C. kablami koncentrycznymi
D. drogą radiową
Odpowiedzi 'skrótkami telefonicznymi', 'drogą radiową' oraz 'kabli koncentrycznymi' są nieprawidłowe, ponieważ każda z tych technologii nie jest odpowiednia do przesyłania sygnałów na duże odległości w telewizji kablowej. Skrętki telefoniczne, choć stosowane w telekomunikacji, mają ograniczoną przepustowość i są podatne na zakłócenia elektromagnetyczne. W praktyce, ich użycie w transmisji telewizyjnej na dużą skalę wiązałoby się z znacznymi stratami sygnału i nieefektywnością. Z kolei transmisja drogą radiową, mimo że może być użyteczna w niektórych zastosowaniach, wymaga silnych sygnałów i widoczności linii, co utrudnia stabilne przesyłanie sygnału w gęsto zaludnionych obszarach miejskich, gdzie przeszkody terenowe mogą prowadzić do znacznych strat jakości. Kable koncentryczne, chociaż były szeroko stosowane w telewizji kablowej, mają swoje ograniczenia w kontekście wydajności na dużych odległościach. Przesyłają sygnały analogowe lub cyfrowe, ale przy większych odległościach doświadczają znacznych spadków sygnału. Dodatkowo, kable koncentryczne są bardziej podatne na zakłócenia i interferencje w porównaniu z systemami światłowodowymi. Zrozumienie tych różnic jest kluczowe w kontekście wyboru odpowiedniej technologii dla efektywnej transmisji sygnału w nowoczesnych systemach telewizyjnych.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.