Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 18 maja 2025 17:49
  • Data zakończenia: 18 maja 2025 17:57

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Który z procesów jest endotermiczny?

A. rozcieńczanie stężonego kwasu siarkowego(VI)
B. rozpuszczanie azotanu(V) amonu w wodzie
C. roztwarzanie magnezu w kwasie solnym
D. rozpuszczanie wodorotlenku sodu w wodzie
Rozpuszczanie azotanu(V) amonu w wodzie jest procesem endotermicznym, co oznacza, że podczas tego procesu energia jest absorbowana z otoczenia, prowadząc do spadku temperatury roztworu. Zjawisko to można zaobserwować, gdy dotykamy pojemnika z roztworem – będzie on chłodniejszy niż otoczenie. Endotermiczne charakterystyki tego procesu są kluczowe w wielu zastosowaniach, takich jak chłodzenie w reakcjach chemicznych, w laboratoriach analitycznych oraz w zastosowaniach przemysłowych. Azotan(V) amonu jest wykorzystywany w nawozach, gdzie jego zdolność do absorbowania ciepła jest wykorzystywana do stabilizacji temperatury gleby, co sprzyja wzrostowi roślin. W kontekście standardów branżowych, zrozumienie procesów endotermicznych pomaga w opracowywaniu bardziej efektywnych metod chłodzenia oraz w projektowaniu systemów, które wykorzystują zmiany temperatury do poprawy wydajności energetycznej.

Pytanie 2

Oddzielanie płynnej mieszanki poprzez jej odparowanie, a potem skroplenie poszczególnych składników to

A. chromatografia cieczowa
B. destylacja
C. ekstrakcja w systemie ciecz - ciecz
D. adsorpcja
Destylacja to proces rozdzielania składników cieczy, który polega na odparowaniu cieczy i następnie skropleniu pary. W praktyce, destylacja wykorzystuje różnice w temperaturach wrzenia poszczególnych składników. Na przykład w przemyśle petrochemicznym destylacja jest kluczowym etapem w produkcji benzyny, gdzie surowa ropa naftowa jest poddawana destylacji frakcyjnej, co pozwala na uzyskanie różnych frakcji, takich jak nafta, benzen czy olej napędowy. Ważnym standardem w destylacji jest stosowanie kolumn destylacyjnych, które zwiększają efektywność rozdzielania dzięki wielokrotnemu parowaniu i skraplaniu. W praktyce, destylacja znajduje zastosowanie również w winiarstwie, gdzie alkohol jest oddzielany od innych składników, oraz w produkcji wody destylowanej. Dobre praktyki w tym zakresie obejmują kontrolowanie temperatury oraz ciśnienia, co może znacznie poprawić wydajność procesu oraz jakość uzyskiwanego produktu.

Pytanie 3

Proces usuwania substancji z cieczy lub wydobywania składnika z mieszanin cieczy, oparty na równowadze fazowej ciecz-gaz, nazywa się

A. dekantacja
B. krystalizacja
C. filtracja
D. destylacja
Filtracja, krystalizacja oraz dekantacja to metody separacji różnych faz w mieszaninach, jednak żadna z nich nie wykorzystuje równowagi fazowej ciecz-gaz. Filtracja polega na przeprowadzaniu cieczy przez medium filtracyjne, które zatrzymuje cząstki stałe, ale nie rozdziela składników mieszanin cieczy na podstawie różnic w ich temperaturach wrzenia. W kontekście przemysłowym, filtracja jest powszechnie stosowana do oczyszczania cieczy, na przykład w oczyszczalniach ścieków, gdzie istotne jest usunięcie zanieczyszczeń stałych. Krystalizacja z kolei opiera się na procesie formowania kryształów z roztworu, co również nie jest związane z równowagą fazową ciecz-gaz, a raczej z przejściem ze stanu ciekłego do stałego. Przykłady to produkcja soli czy cukru. Dekantacja natomiast to proces oddzielania cieczy od osadu, który osadził się na dnie naczynia, i jest skuteczna jedynie w przypadku mieszanin, gdzie różnice gęstości są znaczne. Te metody, mimo że są użyteczne w różnych kontekstach, nie są odpowiednie do separacji składników cieczy w oparciu o różnice w temperaturach wrzenia, jakie zachodzą w procesie destylacji. Uznawanie ich za alternatywy dla destylacji prowadzi do nieporozumień w zastosowaniach technologicznych oraz w przemyśle chemicznym, gdzie właściwy dobór metody separacji jest kluczowy dla efektywności i jakości procesów produkcyjnych.

Pytanie 4

Jakim rozpuszczalnikiem o niskiej temperaturze wrzenia wykorzystuje się do suszenia szkła laboratoryjnego?

A. woda amoniakalna
B. alkohol etylowy
C. roztwór węglanu wapnia
D. kwas siarkowy(VI)
Alkohol etylowy, znany również jako etanol, jest powszechnie stosowanym rozpuszczalnikiem w laboratoriach chemicznych ze względu na swoje właściwości lotne oraz zdolność do efektywnego rozpuszczania różnych substancji. W procesie suszenia szkła laboratoryjnego, alkohol etylowy jest wykorzystywany do usuwania wody oraz innych zanieczyszczeń, co jest kluczowe dla uzyskania wysokiej czystości sprzętu. Alkohol etylowy odparowuje w stosunkowo niskich temperaturach, co umożliwia szybkie i skuteczne suszenie bez ryzyka uszkodzenia szkła. Ponadto, etanol jest zgodny z zasadami dobrych praktyk laboratoryjnych, które podkreślają znaczenie stosowania substancji nie tylko skutecznych, ale także bezpiecznych dla użytkowników oraz środowiska. Warto również zwrócić uwagę, że alkohol etylowy jest substancją łatwopalną, dlatego podczas jego stosowania należy przestrzegać odpowiednich procedur bezpieczeństwa, takich jak praca w dobrze wentylowanych pomieszczeniach oraz unikanie otwartego ognia. Zastosowanie alkoholu etylowego w laboratoriach chemicznych jest również zgodne z normami EPA, które regulują użycie rozpuszczalników w kontekście ochrony środowiska.

Pytanie 5

Na ilustracji zobrazowano urządzenie do

A. sublimacji
B. rektyfikacji
C. destylacji pod ciśnieniem atmosferycznym
D. destylacji przy obniżonym ciśnieniu
Destylacja pod zmniejszonym ciśnieniem jest techniką, która służy do separacji składników przy niższych temperaturach, co jest korzystne dla substancji wrażliwych na wysokie temperatury, ale nie jest odpowiednia w kontekście zastanawiania się nad destylacją w warunkach atmosferycznych. Takie podejście może prowadzić do mylnych wniosków, zwłaszcza gdy mówimy o substancjach, które nie powinny być poddawane wysokim temperaturze ze względu na ryzyko rozkładu. Rektyfikacja, z drugiej strony, to proces bardziej skomplikowany, który wymaga stosowania kolumny rektyfikacyjnej i jest używany do uzyskiwania bardzo czystych frakcji ze złożonych mieszanin, co znacznie różni się od prostszej destylacji. Z kolei sublimacja, czyli przejście substancji ze stanu stałego w gazowy bez przechodzenia przez stan ciekły, jest zupełnie odmiennym procesem, stosowanym głównie w przypadku substancji takich jak jod czy nafta. Typowym błędem jest mylenie tych procesów, ponieważ każdy z nich ma swoje specyficzne zastosowania, warunki i cele. Zrozumienie różnic między tymi technikami jest kluczowe dla efektywnego planowania eksperymentów i procesów przemysłowych, a także dla bezpieczeństwa w laboratoriach chemicznych.

Pytanie 6

W urządzeniu Soxhleta wykonuje się

A. sublimację
B. ługowanie
C. krystalizację
D. dekantację
Wybór krystalizacji, sublimacji lub dekantacji jako metod prowadzenia procesów w aparacie Soxhleta jest mylny, ponieważ każda z tych technik ma swoje specyficzne zastosowanie i nie jest przeznaczona do ekstrakcji materiałów stałych za pomocą cieczy w sposób charakterystyczny dla Soxhleta. Krystalizacja to proces, w którym substancja przechodzi ze stanu ciekłego do stałego w formie kryształów, a nie polega na wydobywaniu związków chemicznych z innego materiału. Jest to metoda wykorzystywana do oczyszczania związków chemicznych, ale nie ma związku z aparatem Soxhleta. Sublimacja z kolei odnosi się do transformacji substancji bezpośrednio z fazy stałej w gazową, co nie ma zastosowania w kontekście aparatu Soxhleta. Dekantacja to proces oddzielania cieczy od osadu, również nie związany z podstawowym działaniem Soxhleta, który opiera się na cyklicznym przepuszczaniu rozpuszczalnika przez próbkę. W związku z tym, wybór tych odpowiedzi może wynikać z nieporozumienia dotyczącego zasadności stosowania poszczególnych metod w kontekście ekstrakcji. Aby uniknąć takich błędów, warto zrozumieć, że aparaty Soxhleta są zaprojektowane specjalnie do efektywnej ekstrakcji substancji, a każda inna technika ma swoje unikalne zastosowanie, które nie pokrywa się z funkcjonalnością Soxhleta.

Pytanie 7

Nie należy używać gorącej wody do mycia

A. zlewki
B. szkiełka zegarkowego
C. kolby miarowej
D. kolby stożkowej
Kolba miarowa jest szklanym naczyniem laboratoryjnym, które służy do dokładnego pomiaru objętości cieczy. Z uwagi na jej konstrukcję, nagłe zmiany temperatury mogą prowadzić do uszkodzeń, takich jak pęknięcia czy odkształcenia. Gorąca woda może powodować, że szkło stanie się bardziej podatne na stres termiczny, co jest niebezpieczne, zwłaszcza w przypadku kolb miarowych, które są projektowane z myślą o precyzyjnych pomiarach. W standardach laboratoryjnych, takich jak normy ISO, zaleca się, aby naczynia wykonane ze szkła boro-krzemowego, wykorzystywane w laboratoriach, nie były narażane na nagłe zmiany temperatury. Dobrą praktyką jest mycie ich w letniej wodzie z detergentem, a następnie dokładne płukanie w wodzie destylowanej, aby zminimalizować ryzyko uszkodzenia i zapewnić dokładność pomiarów. Przy odpowiedniej konserwacji, kolby miarowe mogą służyć przez wiele lat, jednak ich właściwe użytkowanie jest kluczowe dla utrzymania ich funkcjonalności.

Pytanie 8

Jakie oznaczenie znajduje się na naczyniach szklanych kalibrowanych do wlewu?

A. W
B. Ex
C. In
D. R
Oznaczenie In na naczyniach szklanych kalibrowanych na wlew wskazuje, że naczynie to jest zaprojektowane do precyzyjnego pomiaru objętości cieczy, która ma zostać wlane w jego wnętrze. W praktyce oznaczenie to oznacza, że objętość wskazana na naczyniu jest równa objętości cieczy, gdy jej poziom osiąga oznaczenie kalibracyjne. Naczynia te są szeroko stosowane w laboratoriach chemicznych, biologicznych oraz w przemyśle farmaceutycznym, gdzie dokładność pomiarów jest kluczowa. Przykładem zastosowania może być przygotowywanie roztworów o określonej stężeniu, gdzie precyzyjna objętość reagentów jest niezbędna do uzyskania powtarzalnych wyników analiz. Warto również zwrócić uwagę na standardy ISO oraz normy ASTM, które regulują wymagania dotyczące kalibracji naczyń, co zapewnia wysoką jakość i rzetelność wyników eksperymentalnych.

Pytanie 9

Aby podnieść stężenie mikroelementów w roztworze, próbkę należy poddać

A. liofilizacji
B. rozcieńczaniu
C. zagęszczaniu
D. roztwarzaniu
Wybór odpowiedzi związanych z roztwarzaniem, liofilizacją czy rozcieńczaniem nie odpowiada na pytanie dotyczące zwiększenia stężenia składników śladowych w roztworze. Roztwarzanie polega na procesie rozpuszczania substancji stałych w cieczy, co prowadzi do rozcieńczenia, a nie zagęszczenia. W kontekście chemii analitycznej, stosowanie roztwarzania w sytuacji, gdy celem jest zwiększenie stężenia analitu, jest błędnym podejściem, ponieważ z definicji prowadzi do obniżenia stężenia składnika. Liofilizacja, z kolei, jest procesem suszenia, który polega na usunięciu wody z substancji poprzez sublimację, a dla roztworu nie jest on odpowiedni, gdyż na ogół ma na celu uzyskanie proszków z substancji w stanie płynnym, co nie wpływa na stężenie składników w roztworze. Natomiast rozcieńczanie prowadzi do zmniejszenia stężenia substancji w roztworze poprzez dodanie rozpuszczalnika, co jest całkowicie sprzeczne z celem zwiększenia stężenia składników śladowych. Zrozumienie tych procesów jest kluczowe dla prawidłowego przygotowania prób w badaniach laboratoryjnych oraz w przemyśle chemicznym i farmaceutycznym, gdzie precyzyjne manipulowanie stężeniami składników jest niezbędne do uzyskania wiarygodnych i powtarzalnych wyników.

Pytanie 10

Jakie środki należy zastosować do gaszenia pożaru metali, takich jak magnez, sód czy potas?

A. gaśnicy śniegowej
B. piasku
C. gaśnicy pianowej
D. wody
Użycie piasku do gaszenia pożarów metali, takich jak magnez, sód czy potas, jest zgodne z zaleceniami dotyczącymi bezpieczeństwa przeciwpożarowego. W przypadku pożarów metali, które reagują z wodą, stosowanie wody może prowadzić do niebezpiecznych reakcji chemicznych, a tym samym pogarszać sytuację. Piasek działa jako środek dławienia, ograniczając dostęp tlenu do ognia oraz absorbuje ciepło, co skutecznie gaśnie płomienie. W praktyce, podczas akcji ratunkowej, mogą być używane specjalne pojemniki z piaskiem, które są łatwe do transportu i użycia w nagłych wypadkach. Ważne jest, aby personel odpowiedzialny za bezpieczeństwo w zakładach przemysłowych był odpowiednio przeszkolony w zakresie używania piasku oraz innych aprobowanych środków do gaszenia pożarów metali. Aktualne wytyczne i normy, takie jak NFPA 484 (National Fire Protection Association), jasno określają metody postępowania w przypadku pożarów materiałów metalicznych, co podkreśla znaczenie prawidłowego doboru środka gaśniczego.

Pytanie 11

Aby przygotować 150 g roztworu jodku potasu o stężeniu 10% (m/m), konieczne jest użycie
(zakładając, że gęstość wody wynosi 1 g/cm3)

A. 10 g KI oraz 150 cm3 wody destylowanej
B. 15 g KI oraz 135 cm3 wody destylowanej
C. 10 g KI oraz 140 g wody destylowanej
D. 15 g KI oraz 145 g wody destylowanej
Stężenie 10% (m/m) oznacza, że na każde 100 g roztworu przypada 10 g substancji czynnej, czyli jodku potasu (KI). Aby przygotować 150 g roztworu, musimy obliczyć masę KI: 150 g x 10% = 15 g. Pozostała masa roztworu to woda, która będzie stanowić 135 g (150 g - 15 g). Woda ma gęstość 1 g/cm³, co oznacza, że 135 g wody to 135 cm³. Ta odpowiedź jest zgodna z zasadami przygotowywania roztworów, które wymagają zachowania proporcji masowych dla określonego stężenia. Przykładem zastosowania tego procesu może być przygotowanie roztworu do badań chemicznych, gdzie precyzyjne stężenie reagentów jest kluczowe dla uzyskania wiarygodnych wyników. Ponadto, zgodnie z dobrą praktyką laboratoryjną, zawsze warto sprawdzić obliczenia i użyć wagi analitycznej oraz menzurki, aby zapewnić dokładność pomiarów.

Pytanie 12

Maksymalna średnica ziaren w partii substancji stałej wynosi 0,5 cm. Zgodnie z danymi zawartymi w tabeli próbka pierwotna tej substancji powinna mieć masę minimum

Tabela. Masa próbki pierwotnej w zależności od wielkości ziaren lub kawałków
Średnica ziaren lub kawałków [mm]do 11 - 1011 - 50ponad 50
Pierwotna próbka (minimum) [g]10020010002500

A. 1000 g
B. 100 g
C. 2500 g
D. 200 g
Odpowiedź 200 g jest poprawna, ponieważ zgodnie z danymi zawartymi w tabeli, średnica ziaren wynosząca 0,5 cm (5 mm) mieści się w przedziale od 1 do 10 mm. Dla takiej średnicy, minimalna masa próbki pierwotnej powinna wynosić 200 g. W kontekście badań materiałowych, odpowiednia masa próbki jest kluczowa, aby uzyskać reprezentatywne wyniki analiz. Przykładem zastosowania tej wiedzy może być przemysł farmaceutyczny, gdzie precyzyjne określenie masy substancji czynnej ma fundamentalne znaczenie dla skuteczności leku. Przemysł ten opiera się na standardach takich jak ISO 17025, które wymagają stosowania odpowiednich procedur i metodologii w celu zapewnienia wiarygodności wyników. W praktyce, zrozumienie, jak masa próbki wpływa na jej dalsze właściwości fizykochemiczne, jest niezbędne dla uzyskania dokładnych wyników badawczych.

Pytanie 13

Metodą, która nie służy do utrwalania próbek wody, jest

A. zakwaszenie do pH < 2
B. naświetlanie lampą UV
C. schłodzenie do temperatury 2-5°C
D. dodanie biocydów
Naświetlanie próbek wody lampą UV nie jest skuteczną metodą ich utrwalania, ponieważ ta technika służy głównie do dezynfekcji wody, a nie do długoterminowego utrwalania próbek. Proces naświetlania UV eliminuje mikroorganizmy, jednak nie zatrzymuje procesów chemicznych, które mogą prowadzić do zmian w składzie chemicznym próbki. W praktyce, dla zachowania integralności próbki wody, stawia się na metody takie jak schłodzenie do temperatury 2-5°C, co ogranicza aktywność mikroorganizmów i spowalnia procesy biochemiczne. Dodanie biocydów również może być skuteczne w eliminacji niepożądanych mikroorganizmów, natomiast zakwaszenie próbki do pH < 2 ma na celu denaturację białek i stabilizację niektórych związków chemicznych, co jest szczególnie ważne w kontekście analizy chemicznej. W przypadku analizy wody, zwłaszcza w kontekście norm takich jak PN-EN ISO 5667, każda z tych metod ma swoje wytyczne i zasady stosowania, które należy przestrzegać, aby zapewnić wiarygodność wyników.

Pytanie 14

250 cm3 roztworu kwasu octowego o stężeniu 10% objętościowych zostało rozcieńczone pięciokrotnie. Jakie jest stężenie otrzymanego roztworu?

A. 2%
B. 1,25%
C. 2,5%
D. 5%
Roztwór kwasu octowego o stężeniu 10% objętościowych zawiera 10 g kwasu octowego w 100 cm³ roztworu. W przypadku 250 cm³ tego roztworu mamy 25 g kwasu octowego (10 g/100 cm³ * 250 cm³). Rozcieńczenie pięciokrotne oznacza, że całkowitą objętość roztworu zwiększamy pięciokrotnie, co daje 250 cm³ * 5 = 1250 cm³. Aby obliczyć stężenie, dzielimy masę kwasu octowego przez objętość nowego roztworu: 25 g / 1250 cm³ = 0,02 g/cm³, co odpowiada 2% objętościowych. Praktyczne zastosowanie tej wiedzy znajduje się w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne przygotowywanie roztworów o określonych stężeniach jest kluczowe dla jakości produkcji i bezpieczeństwa. Dobre praktyki wskazują, że zawsze należy dokładnie obliczać ilości reagentów przed ich użyciem, aby uniknąć niepożądanych reakcji chemicznych.

Pytanie 15

Który symbol literowy umieszczany na naczyniach miarowych wskazuje na kalibrację do "wlewu"?

A. B
B. A
C. IN
D. EX
Odpowiedź 'IN' oznacza, że to naczynie miarowe jest skalibrowane na 'wlew'. To jest naprawdę ważne, gdy chodzi o dokładne pomiary objętości cieczy. W praktyce to znaczy, że ilość cieczy, którą zobaczysz na naczyniu, odnosi się do tego, co wlewasz do środka, a nie do tego, co zostaje po opróżnieniu. Kiedy używasz naczynia z takim oznaczeniem, działasz zgodnie z normami ISO i metrologicznymi. To ma znaczenie, zwłaszcza w laboratoriach chemicznych lub medycznych, gdzie dokładne pomiary objętości są kluczowe. Używając naczyń oznaczonych jako 'IN', masz pewność, że otrzymujesz dokładną ilość płynu potrzebną do eksperymentów czy analiz. Warto też dodać, że to oznaczenie jest zwłaszcza istotne w badaniach, bo każda pomyłka w pomiarze może prowadzić do błędnych wyników.

Pytanie 16

Aby uzyskać Cr2O3, dichromian(VI) amonu został poddany rozkładowi. Po rozpoczęciu, egzotermiczna reakcja rozkładu przebiega samorzutnie.
(NH4)2Cr2O7 → Cr2O3 + 4 H2O + N2 Jak oceniasz zakończenie tej reakcji?

A. Ocena nie jest potrzebna, ponieważ wytworzone produkty są w stanie gazowym w temperaturze reakcji
B. Ocena nie jest potrzebna, ponieważ tego typu reakcja zawsze zachodzi do końca
C. W otrzymanym zielonym proszku Cr2O3 nie powinny być widoczne pomarańczowe kryształy substratu
D. Woda, po dodaniu szczypty uzyskanego preparatu, nie zabarwi się na pomarańczowo niewykorzystanym dichromianem (VI)
Oceny dotyczące zakończenia reakcji nie można podejmować wyłącznie na podstawie obecności gazów, ponieważ niektóre reakcje mogą prowadzić do powstawania produktów w stanie stałym lub cieczy, które nie ulegają dalszym przemianom. Niepoprawne jest twierdzenie, że w przypadku reakcji rozkładu dichromianu (VI) amonu, sama egzotermiczność oznacza, że reakcja zawsze dobiegnie końca bez dalszych ocen. Niezrozumienie tego aspektu może prowadzić do błędnych wniosków, zwłaszcza gdy reakcji towarzyszy wydzielanie gazów. Ponadto, ocena obecności pomarańczowych kryształów może prowadzić do mylnych wniosków, gdyż nie każdy związek chromu prezentuje te same właściwości barwne. Kryształy dichromianu (VI) mają charakterystyczny kolor pomarańczowy, ale po zakończeniu reakcji i uzyskaniu tlenku chromu (III) nie powinny być już widoczne. Dlatego też, w praktyce chemicznej, powinniśmy korzystać z bardziej rzetelnych metod oceny, takich jak analizy spektroskopowe czy chromatograficzne, które pozwalają na dokładną identyfikację produktów reakcji i eliminację ryzyka błędnej interpretacji wyników. Uczenie się na błędach analitycznych oraz stosowanie dobrych praktyk laboratoryjnych to kluczowe elementy, które powinny być zawsze brane pod uwagę podczas oceny końcowego efektu reakcji chemicznych.

Pytanie 17

Który z podanych związków chemicznych można wykorzystać do oceny całkowitego usunięcia jonów chlorkowych z osadu?

A. AgNO3
B. KNO3
C. Al(NO3)3
D. Cu(NO3)2
AgNO3, czyli azotan srebra, jest powszechnie stosowanym reagentem w chemii analitycznej, który umożliwia identyfikację i oznaczanie jonów chlorkowych. Jony srebra z azotanu srebra reagują z jonami chlorkowymi, tworząc nierozpuszczalny osad chlorku srebra (AgCl). Ta reakcja jest zasadnicza w procesach, w których kontrola czystości chemicznej jest kluczowa, na przykład w laboratoriach analitycznych oraz w przemyśle chemicznym. W praktyce, próbka z osadu, w której podejrzewa się obecność jonów chlorkowych, może zostać poddana działaniu AgNO3. Po dodaniu reagentu, wystąpienie białego osadu AgCl wskazuje na obecność chlorków. Procedura ta jest zgodna z normami określonymi w analizach chemicznych, co czynią ją wiarygodną metodą w różnych zastosowaniach. Ponadto, reakcja ta jest również wykorzystywana w edukacji chemicznej do demonstrowania właściwości reakcji podwójnej wymiany, co czyni ją ważnym elementem programu nauczania w szkołach wyższych oraz technicznych.

Pytanie 18

Jakie substancje wykorzystuje się do wykrywania obecności jonów chlorkowych w wodzie mineralnej?

A. uniwersalny papierek wskaźnikowy
B. roztwór chlorku baru
C. roztwór azotanu srebra
D. roztwór szczawianu potasu
Roztwór chlorku baru (BaCl2) jest używany głównie do wykrywania jonów siarczanowych i nie znajduje zastosowania w identyfikacji jonów chlorkowych. Kiedy BaCl2 jest dodawany do roztworu zawierającego jony siarczanowe, powstaje biały osad siarczanu baru (BaSO4). Użycie tego odczynnika do wykrywania chlorków jest mylące i nieefektywne, co może prowadzić do błędnych wniosków dotyczących zawartości anionów w wodzie. Roztwór szczawianu potasu (K2C2O4) jest również niewłaściwy, ponieważ jest stosowany do detekcji jonów wapnia (Ca2+) poprzez tworzenie osadu szczawianu wapnia (CaC2O4). Użycie tego odczynnika w kontekście chlorków może prowadzić do nieprawidłowych wyników, co jest wynikiem braku znajomości specyficznych reakcji chemicznych. Uniwersalny papierek wskaźnikowy służy do ogólnej oceny pH roztworu, ale nie jest zdolny do selektywnej detekcji jonów chlorkowych, co jest kluczowe w analizach jakości wody. Kluczowym błędem w myśleniu jest niezrozumienie, że każdy z tych odczynników ma swoje specyficzne zastosowania i nie można ich stosować zamiennie bez znajomości ich chemicznych właściwości oraz reakcji. Rzetelna analityka wymaga precyzyjnych narzędzi i zrozumienia ich funkcji w kontekście chemicznym.

Pytanie 19

Jaką masę NaCl uzyskuje się poprzez odparowanie do sucha 250 g roztworu 10%?

A. 0,25 g
B. 2,5 g
C. 25 g
D. 250 g
Wybierając inne odpowiedzi, można wprowadzić się w błąd co do metody obliczeń związanych z roztworami. Przykładowo, odpowiedź 250 g może sugerować, że cała masa roztworu to tylko NaCl, co jest nieprawidłowe, ponieważ roztwór składa się z substancji rozpuszczonej oraz rozpuszczalnika. Innym błędem jest wybór 0,25 g, co może wynikać z błędnego rozumienia skali stężenia; 10% roztwór oznacza, że na każdy 100 g roztworu przypada 10 g NaCl, a nie 0,25 g. Podobnie, odpowiedź 2,5 g jest zbyt mała w kontekście obliczeń, co może wskazywać na mylne przeliczenie lub pominięcie kluczowego etapu w obliczeniach. Kluczowym błędem myślowym jest nieuznanie, że stężenie procentowe odnosi się do całkowitej masy roztworu, a nie tylko substancji rozpuszczonej. W praktyce, aby poprawnie wykonać obliczenia dotyczące roztworów chemicznych, istotne jest zrozumienie, jak różne składniki wpływają na całkowitą masę i jak to się przekłada na masę substancji aktywnej. Wiedza ta ma zastosowanie nie tylko w chemii, ale także w biologii i farmacji, gdzie przygotowanie roztworów jest na porządku dziennym.

Pytanie 20

Część partii pobrana w sposób jednorazowy z jednego źródła towaru zapakowanego lub z jednego opakowania jednostkowego określana jest mianem próbki

A. średniej laboratoryjnej
B. analitycznej
C. pierwotnej
D. ogólnej
Odpowiedź 'pierwotnej' jest poprawna, ponieważ próbka pierwotna to część partii, która jest pobrana jednorazowo z jednego miejsca towaru opakowanego lub z jednego opakowania jednostkowego. Termin ten jest kluczowy w kontekście badań laboratoryjnych i jakości produktów. Próbki pierwotne są często stosowane w analizach chemicznych, mikrobiologicznych i fizykochemicznych, gdzie dokładność i reprezentatywność próbki mają kluczowe znaczenie dla wyników. Na przykład, w akredytowanych laboratoriach, zgodnie z normami ISO 17025, zaleca się pobieranie próbek pierwotnych w sposób zapewniający ich reprezentatywność dla całej partii. Przykłady zastosowania obejmują kontrolę jakości surowców w przemyśle spożywczym czy farmaceutycznym, gdzie kluczowe jest, aby wyniki badań były wiarygodne i mogły być zastosowane do oceny całej partii produktu. Dobrą praktyką jest również dokumentowanie procesu pobierania próbek, co zwiększa transparentność i wiarygodność analiz.

Pytanie 21

Z podanych w tabeli danych wybierz sprzęt potrzebny do zmontowania zestawu do destylacji z parą wodną.

12345
manometrkociołek miedzianychłodnica powietrznakolba destylacyjnaodbieralnik

A. 2,3,5
B. 1,2,3
C. 1,3,4
D. 2,4,5
Wybierając odpowiedzi inne niż 2,4,5, można natknąć się na szereg koncepcji, które nie są zgodne z podstawowymi zasadami destylacji. Manometr (1) jest instrumentem służącym do pomiaru ciśnienia, co nie jest kluczowe w procesie destylacji z parą wodną, gdyż proces ten odbywa się w warunkach atmosferycznych, a nie pod ciśnieniem. Włączenie manometru do zestawu destylacyjnego może prowadzić do błędnych interpretacji funkcji sprzętu i ich zastosowania. Chłodnica powietrzna (3), choć użyteczna w niektórych procesach, nie jest niezbędna w klasycznej destylacji z parą wodną; wiele procesów wykorzystuje inne typy chłodnic, które są bardziej efektywne w tym kontekście. Wybierając niepoprawne kombinacje elementów, można wprowadzać w błąd co do ich funkcji oraz zastosowania. To podejście wskazuje na typowy błąd myślowy polegający na nadmiernym poleganiu na instrumentach, które nie są kluczowe dla procesu lub na brak zrozumienia podstaw działania destylacji. Kluczowe jest, aby każdy element w zestawie był zrozumiany w kontekście jego funkcji i roli w całym procesie, co jest fundamentalne dla efektywności i bezpieczeństwa operacji chemicznych.

Pytanie 22

Do narzędzi pomiarowych zalicza się

A. cylinder
B. kolbę stożkową
C. naczynko wagowe
D. zlewkę
Kolba stożkowa i zlewka to narzędzia, które wiele osób zna z laboratoriach, ale nie są one sprzętem pomiarowym w takim sensie, jak cylinder miarowy. Kolba stożkowa jest super do mieszania czy podgrzewania, ale przez brak wyraźnych podziałek nie jest najlepsza do dokładnych pomiarów. Tak naprawdę to zlewka, mimo że czasem służy do szybkich pomiarów, to też nie daje pewności co do objętości. Ma szersze otwory i mniej precyzyjne podziałki, co może wprowadzać w błąd, szczególnie gdy liczysz na to, że musisz dokładnie odmierzyć jakieś substancje. Naczynko wagowe to następny przykład narzędzia, które nie jest do mierzenia cieczy. Warto dobrze rozumieć różnice między tymi narzędziami, bo to może uratować nas przed dużymi błędami w eksperymentach.

Pytanie 23

Który sposób przechowywania próbek żywności jest niezgodny z Rozporządzeniem Ministra Zdrowia?

Fragment Rozporządzenia Ministra Zdrowia w sprawie pobierania i przechowywania próbek żywności przez zakłady żywienia zbiorowego typu zamkniętego
(...)
Zakład przechowuje próbki, przez co najmniej 3 dni, licząc od chwili, kiedy cała partia została spożyta w miejscu wyłącznym właściwym do tego celu oraz w warunkach zapewniających utrzymanie temperatury +4°C lub niższej, w zależności od przechowywanego produktu.
Miejsce przechowywania próbek musi być tak zabezpieczone, aby dostęp do niego posiadał tylko kierujący zakładem lub osoba przez niego upoważniona.

A. Przechowywanie przez co najmniej 3 dni od czasu spożycia całej partii żywności.
B. Przechowywanie przez maksymalnie 3 dni od czasu pobrania próbek.
C. Przechowywanie w temperaturze maksymalnej +4°C.
D. Przechowywanie w specjalnie do tego celu wyznaczonym miejscu, do którego dostęp posiada kierownik zakładu lub osoba przez niego upoważniona.
Odpowiedź wskazująca na przechowywanie próbek przez maksymalnie 3 dni od czasu ich pobrania jest poprawna, ponieważ jest sprzeczna z przepisami zawartymi w Rozporządzeniu Ministra Zdrowia. Zgodnie z tymi regulacjami, zakład ma obowiązek przechowywać próbki przez co najmniej 3 dni, liczonych od momentu spożycia całej partii żywności. Ta zasada jest istotna, aby zapewnić odpowiednią kontrolę jakości i bezpieczeństwa żywności. W praktyce oznacza to, że próbki żywności muszą być dostępne do analizy przez określony czas, co jest kluczowe w przypadku wykrycia problemów zdrowotnych związanych z danym produktem. Zastosowanie tej regulacji wspiera przejrzystość procesu zarządzania jakością oraz umożliwia przeprowadzenie niezbędnych badań, co jest zgodne z dobrymi praktykami w branży spożywczej, takimi jak HACCP (Analiza Zagrożeń i Krytyczne Punkty Kontroli). Przechowywanie w odpowiednich warunkach i przez określony czas jest niezbędne dla zachowania integralności próbek i ich przydatności do analizy.

Pytanie 24

Do szklanych narzędzi laboratoryjnych wielomiarowych używanych w analizach ilościowych należy

A. zlewka
B. kolba stożkowa
C. pipeta Mohra
D. cylinder z podziałką
Cylinder z podziałką jest jednym z kluczowych elementów sprzętu laboratoryjnego wykorzystywanego w analizie ilościowej, ze względu na swoją zdolność do precyzyjnego pomiaru objętości cieczy. Oferuje on wyraźne podziały, które pozwalają na dokładne odczytanie objętości, co jest niezbędne w wielu eksperymentach chemicznych i biologicznych. Użycie cylindra z podziałką jest standardem w laboratoriach, gdzie wymagana jest wysoka dokładność i powtarzalność pomiarów. Przykładowo, w analizie stężenia roztworu chemicznego, cylinder umożliwia odmierzenie dokładnej ilości reagentów, co jest kluczowe dla uzyskania wiarygodnych wyników. W praktyce laboratoryjnej, zgodnie z normami ISO, korzystanie z odpowiednich narzędzi pomiarowych, takich jak cylinder z podziałką, jest wymogiem, który zapewnia jakość i rzetelność wyników badań. Ponadto, cylinder z podziałką jest łatwy w użyciu i czyszczeniu, co czyni go praktycznym wyborem w codziennej pracy laboratoryjnej.

Pytanie 25

Którą substancję można bezpośrednio wyrzucić do odpadów komunalnych?

A. Azotan(V) srebra
B. Azbest
C. Glukozę
D. Tlenek rtęci(II)
Glukoza to taki prosty cukier, który znajdziesz w wielu jedzeniu. Jest zupełnie naturalna i nasze ciała potrafią ją rozłożyć. Dlatego można ją bez obaw wrzucać do odpadów komunalnych, co oznacza, że trafia do oczyszczalni i tam można ją przerobić. Z tego, co wiem, glukoza nie szkodzi ani naturze, ani zdrowiu ludzi. Jeśli chodzi o odpady, to takie organiczne rzeczy jak glukoza są ok i można je spokojnie kompostować. W przemyśle używa się jej do produkcji żywności i jako źródło energii w fermentacji, co pokazuje, że można ją bezpiecznie utylizować. W dodatku normy takie jak ISO 14001 pomagają zarządzać środowiskiem, więc glukoza jest w tym kontekście super bezpieczna.

Pytanie 26

Aby uzyskać wodorotlenek wapnia, odważono 30 g węglanu wapnia, który następnie wyprażono. Powstały tlenek wapnia dodano do 100 cm3 wody, a otrzymany osad wysuszono i zważono, uzyskując 18,5 g wodorotlenku wapnia. Jaką wydajność miała ta reakcja?

Ca – 40 g/mol; O – 16 g/mol; C – 12 g/mol; H – 1 g/mol

A. 80%
B. 83%
C. 75%
D. 93%
Aby obliczyć wydajność reakcji, najpierw należy określić teoretyczną ilość wodorotlenku wapnia, którą można by uzyskać z 30 g węglanu wapnia. Reakcja wypalania węglanu wapnia (CaCO3) do tlenku wapnia (CaO) można zapisać jako: CaCO3 → CaO + CO2. Obliczając masę molową węglanu wapnia, otrzymujemy 100 g/mol. Zatem 30 g węglanu wapnia to 0,3 mol. Następnie, tlenek wapnia reaguje z wodą, tworząc wodorotlenek wapnia (Ca(OH)2): CaO + H2O → Ca(OH)2. Masa molowa wodorotlenku wapnia wynosi 74 g/mol. Z 0,3 mola CaO możemy uzyskać 0,3 mola Ca(OH)2, co daje 22,2 g teoretycznego wodorotlenku wapnia (0,3 mol * 74 g/mol). W rzeczywistości uzyskaliśmy 18,5 g, więc wydajność reakcji obliczamy jako (18,5 g / 22,2 g) * 100% = 83%. Wydajność reakcji jest kluczowym wskaźnikiem efektywności procesów chemicznych, a jej znajomość jest niezbędna w przemyśle chemicznym, gdzie optymalizacja kosztów i surowców ma ogromne znaczenie.

Pytanie 27

Jakie urządzenie laboratoryjne jest używane do realizacji procesu ekstrakcji?

A. Kolba ssawkowa
B. Rozdzielacz
C. Biureta gazowa
D. Kolba stożkowa
Biureta gazowa, kolba ssawkowa i kolba stożkowa, to nie są sprzęty, które używa się do ekstrakcji, co może prowadzić do zamieszania w ich funkcji. Biureta gazowa jest głównie do dozowania gazów podczas reakcji chemicznych, a nie do separacji faz. To urządzenie ma zastosowanie w analizach ilościowych, gdzie liczy się precyzja, a to jest coś zupełnie innego niż ekstrakcja. Kolba ssawkowa to narzędzie do filtracji i też się nie nadaje do separacji faz, bo jej konstrukcja nie pozwala na efektywne oddzielanie cieczy. A kolba stożkowa? Ona jest do mieszania, przechowywania i podgrzewania substancji, ale nie do ekstrakcji, co stawia jej zastosowanie w tym kontekście w kiepskim świetle. Często ludzie mylą funkcje tych narzędzi, co prowadzi do złego doboru sprzętu w eksperymentach. Dlatego ważne jest, żeby zrozumieć, do czego każde z tych narzędzi służy, żeby uniknąć błędów w laboratorium. Bycie pewnym, jak działają urządzenia laboratoryjne, jest kluczowe dla bezpiecznej i efektywnej pracy.

Pytanie 28

Oddzielanie płynnej mieszaniny wieloskładnikowej poprzez odparowanie, a następnie skraplanie jej komponentów, to proces

A. koagulacji
B. krystalizacji
C. filtracji
D. destylacji
Destylacja to proces, który polega na rozdzielaniu składników cieczy poprzez ich odparowanie i następne skroplenie. Jest to technika szeroko stosowana w różnych gałęziach przemysłu, takich jak petrochemia, przemysł spożywczy, a także w laboratoriach chemicznych. Przykładem zastosowania destylacji w przemyśle jest produkcja alkoholi, gdzie poprzez destylację fermentowanych surowców uzyskuje się wysokoprocentowe napoje. Proces destylacji wykorzystuje różnice w temperaturach wrzenia poszczególnych składników, co pozwala na ich selektywne odparowanie i kondensację. W praktyce, w destylacji frakcyjnej, stosuje się kolumny destylacyjne, które umożliwiają wielokrotne skraplanie i odparowywanie, co zwiększa efektywność rozdziału. Warto również znać standardy takie jak ASTM D86, które określają metody przeprowadzania destylacji w przemyśle naftowym, gwarantując wysoką jakość oraz powtarzalność procesów.

Pytanie 29

Na diagramie przedstawiającym proces pobierania prób środowiskowych do analizy literą Y oznaczono próbkę

A. laboratoryjną
B. wtórną
C. do analizy
D. ogólną
Odpowiedzi takie jak ogólna, wtórna czy do analizy mogą wydawać się poprawne w kontekście pobierania próbek, ale w rzeczywistości nie oddają istoty klasyfikacji próbek w kontekście laboratoryjnym. Próbka ogólna jest zbiorem różnych elementów, które mogą nie odzwierciedlać dokładnych warunków danego miejsca, co może prowadzić do błędnych wniosków. Próbki wtórne z kolei są pobierane z już przetworzonych lub istniejących próbek, co uniemożliwia ich bezpośrednią analizę w pierwotnych warunkach. Odpowiedź sugerująca próbkę do analizy odnosi się do ogólnego pojęcia, które nie precyzuje, w jaki sposób próbka ma być wykorzystana ani jakie są jej wymagania. Błędne przekonanie może prowadzić do mylnego założenia, że każda próbka nadaje się do analizy, podczas gdy rzeczywistość wymaga rygorystycznych standardów pobierania, transportu i przechowywania, aby zapewnić integralność wyników. Prawidłowe określenie rodzaju próbki jest kluczowe dla sukcesu analitycznego, ponieważ różne typy próbek wymagają różnych metod przygotowania i analizy. W związku z tym, zrozumienie różnicy między próbą laboratoryjną a innymi typami próbek jest niezbędne dla praktyków zajmujących się analityką środowiskową.

Pytanie 30

Roztwór, który jest dodawany z biurety w formie kropli do roztworu substancji, którą analizujemy, określamy mianem

A. produktem
B. analitem
C. substratem
D. titrantem
Termin 'titant' odnosi się do substancji, która jest dodawana z biurety do roztworu analizowanej substancji, czyli analitu, w trakcie procesu titracji. Titracja jest kluczową techniką analityczną wykorzystywaną w chemii do określenia stężenia substancji w roztworze poprzez stopniowe dodawanie titranta do analitu aż do osiągnięcia punktu końcowego, który zwykle jest sygnalizowany poprzez zmianę koloru lub inny wskaźnik. Przykładem może być titracja kwasu solnego (HCl) w celu określenia jego stężenia poprzez dodawanie roztworu wodorotlenku sodu (NaOH) jako titranta. W praktyce, zgodnie z zaleceniami norm ISO oraz metodami opisanymi w dokumentach takich jak ASTM, ważne jest, aby dokładnie znać stężenie titranta oraz stosować odpowiednie wskaźniki, co zapewnia uzyskanie dokładnych i powtarzalnych wyników. Znajomość tego pojęcia jest niezbędna dla chemików zajmujących się analizą chemiczną, co podkreśla jego praktyczne zastosowanie w laboratoriach analitycznych.

Pytanie 31

Jaką masę wodorotlenku potasu trzeba odważyć, żeby przygotować 500 cm3 roztworu o stężeniu 0,02 mola? Masy molowe poszczególnych pierwiastków wynoszą: potas K - 39 g/mol, tlen O - 16 g/mol, wodór H - 1 g/mol?

A. 0,56 g
B. 5,60 g
C. 56,00 g
D. 0,28 g
Aby obliczyć, ile gramów wodorotlenku potasu (KOH) należy odważyć do przygotowania 500 cm³ 0,02-molowego roztworu, należy zastosować wzór na obliczenie masy substancji w roztworze: m = C × V × M, gdzie m to masa w gramach, C to stężenie molowe, V to objętość roztworu w litrach, a M to masa molowa substancji. Masa molowa KOH wynosi: 39 g/mol (K) + 16 g/mol (O) + 1 g/mol (H) = 56 g/mol. Podstawiając dane do wzoru, otrzymujemy: m = 0,02 mol/L × 0,5 L × 56 g/mol = 0,56 g. W praktyce, precyzyjne odważenie substancji chemicznych jest kluczowe w laboratoriach, aby uzyskać odpowiednie stężenie roztworu, co jest istotne w wielu procesach chemicznych, takich jak syntezy, analizach chemicznych czy w badaniach naukowych.

Pytanie 32

Ustalanie miana roztworu polega na

A. określaniu przybliżonego stężenia roztworu
B. miareczkowaniu przy użyciu roztworu o precyzyjnie znanym stężeniu roztworu oznaczanej próbki
C. miareczkowaniu próbki roztworu o dokładnie znanym stężeniu przy pomocy roztworu nastawianego
D. zważeniu substancji i rozpuszczeniu jej w wodzie
Poprawna odpowiedź dotyczy miareczkowania próbki roztworu o znanym stężeniu za pomocą roztworu nastawianego. Jest to kluczowy proces analityczny w chemii, stosowany do precyzyjnego określania stężenia substancji chemicznych w roztworach. W praktyce, miareczkowanie polega na dodawaniu roztworu titranta o znanym stężeniu do roztworu próbki aż do osiągnięcia punktu końcowego, w którym zachodzi reakcja chemiczna. Użycie roztworu nastawianego, którego stężenie zostało ustalone i potwierdzone na podstawie ścisłych standardów, zapewnia wysoką dokładność i powtarzalność wyników analizy. Na przykład, w laboratoriach analitycznych często stosuje się roztwory wzorcowe, które są przygotowane w zgodzie z normami ISO, co pozwala na uzyskanie wiarygodnych wyników. Miareczkowanie jest nie tylko fundamentalną techniką w chemii analitycznej, ale także w biologii, farmacji, a także w przemyśle spożywczym do kontroli jakości produktów.

Pytanie 33

W celu wydania świadectwa kontroli jakości odczynnika chemicznego - jodku potasu cz.d.a. przeprowadzono jego analizę. Wymagania oraz wyniki badań zapisano w tabeli:
Z analizy danych zawartych w tabeli wynika, że jodek potasu cz.d.a.

WymaganiaWynik badania
Zawartość KImin. 99,5%99,65%
Wilgoćmax. 0,1%0,075%
Substancje nierozpuszczalne w wodziemax. 0,005%0,002%
pH (5%, H2O)6 ÷ 86,8
Azot ogólny (N)max. 0,001%0,0007%
Chlorki i bromki (j. Cl)max. 0,01%0,004%
Fosforany (PO4)max. 0,001%0,0006%
Jodany (IO3)max. 0,0003%0,0001%
Siarczany (SO4)max. 0,001%0,0004%
Metale ciężkie (j. Pb)max. 0,0005%0,00025%
Arsen (As)max. 0,00001%0,000006%
Magnez (Mg)max. 0,001%0,0004%
Sód (Na)max. 0,05%0,015%
Wapń (Ca)max. 0,001%0,0006%
Żelazo (Fe)max. 0,0003%0,0003%

A. nie spełnia wymagań pod względem zawartości metali ciężkich.
B. spełnia wymagania i można wydać świadectwo jakości.
C. nie spełnia wymagań pod względem pH i zawartości jodanów.
D. nie spełnia wymagań pod względem zawartości żelaza.
Twoja odpowiedź jest na pewno trafna. Jodek potasu cz.d.a. rzeczywiście spełnia normy jakościowe, co jest bardzo ważne, gdy mówimy o wydaniu świadectwa kontroli jakości. W badaniach wyszło, że zawartość jodku potasu wynosi 99,65%, co jest lepsze niż wymagane 99,5%. To świetny wynik! Poza tym inne parametry, takie jak pH, wilgotność czy substancje nierozpuszczalne w wodzie, też są w normie. Z mojego doświadczenia, spełnianie norm to kluczowa sprawa, zwłaszcza w farmacji czy chemii analitycznej. Świadectwo jakości potwierdza, że produkt jest nie tylko zgodny z normami, ale również można go bezpiecznie używać. W laboratoriach warto regularnie sprawdzać i dokumentować wyniki, żeby mieć pewność, że wszystko jest na czasie z obowiązującymi standardami i zasadami bezpieczeństwa.

Pytanie 34

Na podstawie informacji zawartych w tabeli określ, który parametr spośród podanych należy oznaczyć w pierwszej kolejności.

Tabela. Sposoby utrwalania próbek wody i ścieków, miejsce analizy, dopuszczalny czas przechowywania próbek
Oznaczany parametrRodzaj naczynia do przechowywania próbkiSposób utrwalania próbkiMiejsce wykonania analizyDopuszczalny czas przechowywania próbki
Chlorkiszklane
lub polietylenowe
-laboratorium96 godzin
Chlor pozostałyszklane-w miejscu
pobrania próbki
-
ChZTszklanezakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium24 godziny
Kwasowośćszklane
lub polietylenowe
schłodzenie
do temperatury 2-5°C
laboratorium4 godziny
Manganszklane
lub polietylenowe
zakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium48 godziny

A. Chemiczne zapotrzebowanie na tlen (ChZT).
B. Mangan.
C. Chlor pozostały.
D. Kwasowość.
Odpowiedzi takie jak 'Chemiczne zapotrzebowanie na tlen (ChZT)', 'Kwasowość' czy 'Mangan' są nieprawidłowe w kontekście priorytetów w oznaczaniu parametrów jakości wody. Chemiczne zapotrzebowanie na tlen, choć istotne, jest wskaźnikiem obciążenia organicznego, który niekoniecznie odzwierciedla bieżący stan dezynfekcji wody. Oznaczanie ChZT powinno następować po ocenie wskaźników dezynfekcji, ponieważ jego analiza wymaga więcej czasu i jest mniej pilna w kontekście bezpieczeństwa zdrowotnego. Kwasowość z kolei jest parametrem, który może mieć wpływ na stabilność wody, jednak nie jest bezpośrednio związana z ryzykiem biologicznym, co sprawia, że nie powinna być pierwszym priorytetem w procedurach monitorowania. Mangan jest związkem, który wpływa na barwę i smak wody, ale jego obecność nie wskazuje na skuteczność dezynfekcji. Pomijając oznaczanie chloru pozostałego, można przeoczyć kluczowy element gwarantujący bezpieczeństwo, co jest sprzeczne z dobrymi praktykami zarządzania jakością wody, które kładą nacisk na bieżące monitorowanie i reagowanie na zagrożenia.

Pytanie 35

Sączenie osadów kłaczkowatych odbywa się przy użyciu sączków

A. rzadkie
B. bardzo gęste
C. średnio gęste
D. twarde
Odpowiedź 'rzadkie' jest poprawna, ponieważ do sączenia osadów kłaczkowatych, takich jak osady z procesu oczyszczania ścieków czy osady w laboratoriach chemicznych, najczęściej stosuje się sączki rzadkie, które charakteryzują się większymi porami. Rzadkie sączki pozwalają na skuteczne oddzielanie cząstek stałych od cieczy, minimalizując przy tym ryzyko zatykania się materiału filtracyjnego. Stosowane są w różnych aplikacjach, w tym w analizach chemicznych oraz w przemyśle, gdzie kluczowe jest szybkie i efektywne usuwanie osadów. Zgodnie z normami ISO 4788, które dotyczą sprzętu laboratoryjnego, dobór odpowiedniego sączka jest istotny dla uzyskania precyzyjnych wyników analitycznych. Przykładem zastosowania mogą być laboratoria zajmujące się badaniem wody, gdzie osady kłaczkowate mogą wpływać na jakość wyników analizy i dlatego ważne jest, aby używać sączków o odpowiedniej gęstości, aby uniknąć błędów w pomiarach.

Pytanie 36

Czystość konkretnego odczynnika chemicznego wynosi: 99,9-99,99%. Jakiego rodzaju jest ten odczynnik?

A. czysty do analizy.
B. techniczny.
C. chemicznie czysty.
D. czysty.
Odpowiedź "czysty do analizy" jest poprawna, ponieważ odczynniki chemiczne o poziomie czystości wynoszącym 99,9-99,99% są klasyfikowane jako czyste do analizy, co oznacza, że spełniają wysokie standardy czystości wymagane do prowadzenia precyzyjnych analiz chemicznych. Takie substancje są niezbędne w laboratoriach analitycznych, gdzie dokładność wyników jest kluczowa. Przykłady zastosowania obejmują analizę substancji aktywnych w farmaceutyce, gdzie nawet niewielkie zanieczyszczenia mogą wpłynąć na skuteczność leku. Zgodnie z normami, takimi jak ISO 17025, laboratoria muszą korzystać z odczynników o określonych parametrach czystości, aby zapewnić wiarygodność i powtarzalność wyników. Odczynniki czyste do analizy są również stosowane w badaniach środowiskowych, gdzie precyzyjne pomiary są kluczowe dla oceny jakości wody czy powietrza. Wybór odpowiednich odczynników gwarantuje, że wyniki są nie tylko dokładne, ale także zgodne z regulacjami prawnymi i standardami jakości.

Pytanie 37

Najskuteczniejszą techniką separacji ketonu oraz kwasu karboksylowego obecnych w roztworze benzenowym jest

A. ekstrakcja roztworem zasady
B. destylacja z parą wodną
C. zatężenie i krystalizacja
D. ekstrakcja chloroformem
Ekstrakcja roztworem zasady to najskuteczniejsza metoda rozdziału ketonu i kwasu karboksylowego w benzenie ze względu na różnice w ich właściwościach chemicznych. Kwas karboksylowy, dzięki swojej grupie karboksylowej (-COOH), jest substancją, która może ulegać dysocjacji w roztworze zasadowym, co prowadzi do powstania jonów karboksylanowych. Te jony są rozpuszczalne w wodzie, co ułatwia ich separację od ketonu, który z reguły nie reaguje z zasadami i pozostaje w fazie organicznej. Praktycznym przykładem zastosowania tej metody jest rozdzielanie kwasu octowego od acetonu w laboratorium chemicznym. Zastosowanie odpowiednich zasad, takich jak NaOH, pozwala na efektywne wydzielenie kwasu w postaci rozpuszczalnej w wodzie, co umożliwia dalsze oczyszczanie i analizy. Dobrymi praktykami w tej metodzie są również kontrola pH oraz monitorowanie temperatury, co zapewnia optymalne warunki dla rozdziału substancji. Takie podejście odpowiada standardom analitycznym w chemii organicznej, gdzie czystość substancji oraz ich skuteczna separacja mają kluczowe znaczenie.

Pytanie 38

Urządzenie pokazane na ilustracji jest przeznaczone do

A. ekstrakcji ciecz-ciecz
B. dekantacji
C. sedymentacji
D. ługowania
Dekantacja, ekstrakcja ciecz-ciecz oraz sedymentacja to techniki, które mają swoje specyficzne zastosowania i różnią się zasadniczo od ługowania. Dekantacja polega na oddzielaniu cieczy od ciał stałych lub od innych cieczy, które się ze sobą nie mieszają, poprzez powolne wylewanie górnej warstwy cieczy po jej osadzeniu. Typowym zastosowaniem dekantacji jest separacja wody od osadów w procesach oczyszczania ścieków. Ekstrakcja ciecz-ciecz natomiast polega na wydobywaniu substancji rozpuszczonej w jednej cieczy, przenosząc ją do innej cieczy, w której rozpuszcza się lepiej. Jest to technika często wykorzystywana w chemii organicznej do separacji związków chemicznych. Sedymentacja jest procesem, w którym cząstki stałe osiadają na dnie cieczy pod wpływem siły grawitacji. Zjawisko to jest stosowane w wielu dziedzinach, od geologii po inżynierię środowiska. Typowe błędy w rozumieniu tych procesów polegają na ich myleniu z ługowaniem; brak jest zrozumienia, że ługowanie wymaga zastosowania odpowiednich reagentów i jest procesem chemicznym, a nie tylko fizycznym oddzielaniem substancji. Każda z tych metod ma swoje miejsce w różnych aplikacjach przemysłowych i laboratoryjnych, dlatego ważne jest, aby dobrze rozumieć różnice między nimi, aby móc skutecznie dobierać odpowiednie techniki w zależności od potrzeb.

Pytanie 39

Próbki wody, które mają być badane pod kątem zawartości krzemu, powinny być przechowywane w pojemnikach

A. ze szkła borowo-krzemowego
B. z kwarcu
C. z tworzywa sztucznego
D. ze szkła sodowego
Chociaż przechowywanie próbek w naczyniach ze szkła kwarcowego czy borowo-krzemowego może wydawać się sensowne, nie jest to najlepszy pomysł, gdy mowa o krzemie. Kwarc, choć jest trwały, może wprowadzać krzemionkę do próbki, przez co wyniki mogą być fałszywe. Z kolei szkło borowo-krzemowe też może mieć trochę krzemu, co znowu wpływa na pomiar. A szkło sodowe, no tutaj to już w ogóle, bo reaguje z różnymi substancjami w wodzie, zwłaszcza przy mocnych kwasach lub zasadach. Dużo osób myśli, że całe szkło jest neutralne, ale to nieprawda - ich właściwości mogą być bardzo różne. To wszystko prowadzi do tego, że źle dobrane materiały do przechowywania próbek mogą nam zepsuć wyniki analizy, co w badaniach środowiskowych czy przy ocenie jakości wody pitnej może mieć poważne skutki. Dlatego ważne jest, żeby używać naczyń, które są odpowiednie i nie dodają niczego do naszych próbek.

Pytanie 40

W przypadku odczynnika, w którym nawet najczulsze techniki analizy chemicznej nie są w stanie wykryć zanieczyszczeń, a jego badanie wymaga zastosowania metod opartych na zjawiskach fizycznych, zalicza się on do kategorii czystości

A. czysty do analizy
B. czysty
C. chemicznie czysty
D. techniczny
Odpowiedź "chemicznie czysty" jest prawidłowa, ponieważ odnosi się do substancji, w której zanieczyszczenia chemiczne są na tak niskim poziomie, że nie można ich wykryć nawet za pomocą zaawansowanych technik analizy chemicznej. W praktyce oznacza to, że substancja ta jest odpowiednia do zastosowań wymagających najwyższej klasy czystości, takich jak w laboratoriach analitycznych, produkcji farmaceutyków czy w materiałach do badań naukowych. W zgodzie z normami ISO oraz standardami dla chemikaliów do analizy, substancje chemicznie czyste muszą spełniać określone wymagania dotyczące zawartości zanieczyszczeń, co czyni je niezastąpionymi w precyzyjnych analizach. Na przykład, do analizy spektroskopowej często używa się chemicznie czystych rozpuszczalników, które nie wprowadzają dodatkowych sygnałów do pomiarów, co pozwala uzyskać wyniki o wysokiej rozdzielczości i dokładności.