Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 14 maja 2025 12:25
  • Data zakończenia: 14 maja 2025 12:38

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Która z wymienionych czynności należy do konserwacji elektrycznej w mieszkaniach?

A. Zmiana wszystkich końcówek śrubowych w puszkach rozgałęźnych
B. Sprawdzenie stanu izolacji oraz powłok przewodów
C. Weryfikacja czasu działania zabezpieczenia przeciwzwarciowego
D. Zamiana wszystkich źródeł oświetlenia w oprawach
Sprawdzenie stanu izolacji i powłok przewodów jest kluczowym elementem konserwacji instalacji elektrycznych w mieszkaniach. Izolacja przewodów jest niezbędna do zapewnienia bezpieczeństwa użytkowania, ponieważ uszkodzona lub niewłaściwa izolacja może prowadzić do zwarć, pożarów, a także porażenia prądem. Regularne inspekcje stanu izolacji powinny być przeprowadzane zgodnie z obowiązującymi standardami, takimi jak norma PN-IEC 60364, która określa wymagania dotyczące instalacji elektrycznych w obiektach budowlanych. Przykładowe metody oceny stanu izolacji obejmują pomiar rezystancji przy użyciu megomierza. Zastosowanie odpowiednich technik, takich jak testy izolacji, pozwala na wczesne wykrycie problemów i ich naprawę, co przekłada się na dłuższą żywotność instalacji oraz zwiększa bezpieczeństwo mieszkańców. Dbanie o stan izolacji to nie tylko spełnienie wymogów prawnych, ale także odpowiedzialność za bezpieczeństwo domowników i ich majątek.

Pytanie 4

Który z wymienionych symboli literowych odnosi się do przewodu samonośnego?

A. YKY
B. OMY
C. GsLGs
D. AsXSn
Przewody samonośne są specyficznym typem przewodów używanych w instalacjach elektrycznych, a ich oznaczenie jest ściśle regulowane przez normy branżowe. YKY, OMY oraz GsLGs to oznaczenia, które nie odnoszą się do przewodów samonośnych. YKY to przewód z izolacją PVC, stosowany głównie do instalacji wewnętrznych oraz zewnętrznych, ale nie jest przystosowany do montażu samonośnego. OMY to przewód stosowany w zastosowaniach niskonapięciowych, również nie przewidziany do samonośnych instalacji. GsLGs to przewód przeznaczony do użytku w obszarach o dużej wilgotności, jednak jego konstrukcja nie spełnia wymogów dla przewodów samonośnych. Typowe błędy myślowe w tej kwestii polegają na myleniu różnych typów przewodów i nieznajomości ich zastosowań. Właściwe rozpoznanie przewodów samonośnych jest kluczowe dla zapewnienia bezpieczeństwa elektrycznego oraz efektywności energetycznej, dlatego ważne jest, aby stosować się do standardów i dobrych praktyk branżowych.

Pytanie 5

Jakie minimalne wymiary powinien mieć przewód ochronny miedziany w przypadku przewodów fazowych miedzianych o przekrojach 25 mm2 i 35 mm2?

A. 16 mm2
B. 10 mm2
C. 20 mm2
D. 12 mm2
Minimalny przekrój miedzianego przewodu ochronnego powinien wynosić 16 mm2 przy miedzianych przewodach fazowych o przekrojach 25 mm2 i 35 mm2. Takie wymagania wynikają z obliczeń związanych z bezpieczeństwem elektrycznym oraz ochroną przed porażeniem prądem. W polskich normach dotyczących instalacji elektrycznych, takich jak PN-IEC 60364, podano zasady doboru przewodów ochronnych, które uwzględniają maksymalne prądy zwarciowe oraz czas wyłączenia w przypadku awarii. Odpowiedni przekrój przewodu ochronnego jest kluczowy dla zapewnienia skutecznej ochrony instalacji oraz osób korzystających z urządzeń elektrycznych. W praktyce, dobór właściwego przekroju w instalacjach przemysłowych i budowlanych ma na celu minimalizację ryzyka uszkodzenia instalacji oraz zapewnienie odpowiedniego poziomu bezpieczeństwa. Warto również zwrócić uwagę na to, że stosując przewody o odpowiednim przekroju, zmniejszamy straty energii oraz ryzyko przegrzewania się materiałów, co jest istotne z perspektywy trwałości i niezawodności instalacji.

Pytanie 6

Przedstawiony na rysunku przyrząd służy do

Ilustracja do pytania
A. sprawdzania ciągłości połączeń w instalacji.
B. pomiaru parametrów oświetlenia.
C. lokalizacji przewodów w instalacji elektrycznej.
D. bezdotykowego pomiaru rezystancji przewodów.
Detektory przewodów elektrycznych to specjalistyczne narzędzia, które zostały zaprojektowane z myślą o lokalizacji przewodów w instalacjach elektrycznych. W związku z tym, koncepcja ich użycia do sprawdzania ciągłości połączeń może prowadzić do nieporozumień. Sprawdzanie ciągłości wymaga zastosowania innych narzędzi, takich jak multimetru, które mierzą opór elektryczny w obwodach, a nie identyfikują ukrytych przewodów. Również bezdotykowy pomiar rezystancji przewodów nie jest funkcjonalnością detektora przewodów, co jest kluczowe do zrozumienia. Użycie detektora w tym kontekście może prowadzić do fałszywego poczucia bezpieczeństwa, gdyż nie dostarcza informacji o jakości połączeń elektrycznych czy ich stanu technicznego. Poza tym, sugerowanie, że urządzenie to służy do pomiaru parametrów oświetlenia, jest zupełnie mylne, ponieważ detektory przewodów nie są przeznaczone do oceny natężenia lub jakości światła. Kluczowe jest zrozumienie, że każde z tych narzędzi ma swoje ściśle określone zastosowanie i nie powinno być używane zamiennie. Pamiętajmy, że efektywna praca w branży elektrycznej wymaga znajomości odpowiednich narzędzi oraz ich prawidłowego zastosowania, co jest zgodne z obowiązującymi normami bezpieczeństwa i praktykami branżowymi.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Na podstawie wybranych informacji dobierz wyłącznik nadprądowy do zabezpieczenia obwodu silnika trójfazowego klatkowego o prądzie znamionowym In = 5,5 A?

A. In = 6 A, charakterystyka B, krotność In = 3 do 5
B. In = 16 A, charakterystyka C, krotność In = 5 do 10
C. In = 6 A, charakterystyka C, krotność In = 5 do 10
D. In = 16 A, charakterystyka B, krotność In = 3 do 5
Wybór wyłączników nadprądowych dla silników trójfazowych wymaga zrozumienia kilku kluczowych aspektów, które niestety nie zostały uwzględnione w niepoprawnych odpowiedziach. Po pierwsze, wyłącznik o prądzie znamionowym 16 A jest zdecydowanie zbyt wysoki dla silnika o prądzie znamionowym 5,5 A. Taki wybór może prowadzić do braku odpowiedniego zabezpieczenia obwodu, co skutkuje ryzykiem uszkodzenia silnika w przypadku przeciążenia lub zwarcia. Wyłącznik powinien być dostosowany do wartości prądu roboczego, aby szybko reagował na niebezpieczne warunki. Kolejnym aspektem jest charakterystyka wyłącznika. Wybór charakterystyki B jest niewłaściwy, ponieważ jest ona zaprojektowana tak, aby zadziałać przy znacznie mniejszych prądach rozruchowych, co może prowadzić do fałszywych zadziałań podczas normalnej pracy silnika. Silniki klatkowe, zwłaszcza podczas rozruchu, mogą generować wysokie prądy, a charakterystyka C jest odpowiednia do ich tolerowania. Ponadto, krotności In w przedziale 3 do 5 mogą nie uwzględniać wszystkich wymagań bezpieczeństwa i wydajności. W praktyce, niewłaściwe dobranie wyłącznika może prowadzić do częstych awarii instalacji oraz zwiększonego ryzyka uszkodzenia urządzeń. Dlatego kluczowe jest przestrzeganie norm i zasad doboru zabezpieczeń, aby zapewnić optymalne funkcjonowanie systemu elektrycznego.

Pytanie 10

Jakiego łącznika używa się do zarządzania oświetleniem w klatce schodowej przy zastosowaniu automatu schodowego?

A. Dzwonkowego
B. Krzyżowego
C. Schodowego
D. Hotelowego
Wybór innych łączników do sterowania oświetleniem w klatkach schodowych może prowadzić do nieefektywnych i niewygodnych rozwiązań. Łącznik krzyżowy jest stosowany do sterowania jednym źródłem światła z wielu lokalizacji, co w kontekście klatki schodowej może być w niektórych przypadkach niewłaściwe, jeśli nie ma potrzeby włączania i wyłączania światła w różnych punktach. Użycie łącznika krzyżowego bez odpowiedniego zaplanowania może prowadzić do komplikacji w obwodzie i potencjalnych problemów z działaniem. Łącznik hotelowy, z kolei, jest przeznaczony do specyficznych instalacji w hotelach, gdzie goście mogą korzystać z różnych źródeł światła w pokojach, bez możliwości sterowania ogólnym oświetleniem korytarza. Taki system nie jest dedykowany do standardowego użytku w domach lub budynkach mieszkalnych, co czyni go mniej praktycznym wyborem dla klatki schodowej. Warto również zauważyć, że łącznik dzwonkowy charakteryzuje się inną funkcjonalnością i skutecznością, co jest kluczowe w sytuacjach, gdzie oświetlenie powinno być włączane i wyłączane szybko i efektywnie, np. podczas wchodzenia lub wychodzenia z klatki schodowej. Myląc zastosowanie tych łączników, można łatwo stworzyć nieprzyjazne i niepraktyczne warunki użytkowania, co z pewnością wpłynie na komfort i bezpieczeństwo użytkowników.

Pytanie 11

Do czego przeznaczone są kleszcze przedstawione na ilustracji?

Ilustracja do pytania
A. Do montażu zacisków zakleszczających.
B. Do zaciskania końcówek tulejkowych na żyłach wielodrutowych.
C. Do formowania oczek na końcach żył jednodrutowych.
D. Do zaprasowywania końców przewodów w połączeniach wsuwanych.
Te kleszcze, co są na obrazku, to narzędzie do robienia oczek na końcach żyłek, które mają tylko jeden drut. Mają takie stożkowe szczęki, które fajnie pozwalają wyprofilować drut, żeby dobrze się łączył z innymi częściami instalacji elektrycznej. Można je zobaczyć w akcji tam, gdzie trzeba zrobić mocne i trwałe połączenia, co jest ważne zarówno w przemyśle, jak i w domach. Te oczka pomagają przyczepić przewody do zacisków, a to jest zgodne z normami, które mówią, jak to wszystko powinno być robione, żeby było bezpiecznie i trwale. Dobrze używać takich narzędzi, bo w przeciwnym razie można łatwo uszkodzić drut. Gdy dobrze uformujemy drut kleszczami, zmniejszamy ryzyko zwarć i innych problemów technicznych, co ma duże znaczenie, gdy pracuje się z elektryką.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jakie oznaczenia oraz jaka minimalna wartość prądu znamionowego powinna mieć wkładka topikowa, aby chronić przewody przed skutkami zwarć i przeciążeń w obwodzie jednofazowego bojlera elektrycznego o parametrach znamionowych: PN = 3 kW, UN = 230 V?

A. aR 16 A
B. gG 16 A
C. aM 20 A
D. gB 20 A
Wkładka topikowa oznaczona jako gG 16 A jest odpowiednia do ochrony obwodów elektrycznych, w tym przypadku obwodu jednofazowego bojlera elektrycznego o mocy znamionowej 3 kW i napięciu 230 V. Oznaczenie gG (ogólne zabezpieczenie, przystosowane do ochrony obwodów przed przeciążeniami oraz zwarciami) wskazuje, że wkładka ta ma zdolność do przerwania obwodu zarówno w przypadku zwarcia, jak i przeciążenia. Analizując parametry bojlera, obliczamy prąd znamionowy przy pomocy wzoru: I = P / U, co daje I = 3000 W / 230 V ≈ 13 A. Wkładka gG 16 A będzie odpowiednia, ponieważ jej nominalny prąd przewyższa obliczony prąd znamionowy bojlera, a jednocześnie zapewnia odpowiednie zabezpieczenie przed skutkami zwarć. W praktyce wkładki gG są powszechnie stosowane w instalacjach domowych oraz przemysłowych, co gwarantuje ich niezawodność oraz efektywność w odpowiednich zastosowaniach. Dla bezpieczeństwa zaleca się również regularne kontrolowanie stanu wkładek oraz ich wymianę, aby zapewnić optymalne funkcjonowanie systemu elektrycznego.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Na którym rysunku przedstawiono zgodne ze schematem połączenie układu sterowania oświetleniem?

Ilustracja do pytania
A. B.
B. A.
C. D.
D. C.
Schemat C został zaprezentowany w sposób, który odpowiada zasadom prawidłowego montażu instalacji elektrycznych. W tym schemacie przewód fazowy (L) jest właściwie podłączony do jednego z łączników, co umożliwia sterowanie oświetleniem w sposób zgodny z normami. Przewód neutralny (N) nie jest połączony z łącznikami, co jest zgodne z dobrymi praktykami w instalacjach oświetleniowych, gdzie przewody neutralne zazwyczaj podłączane są bezpośrednio do źródła światła lub rozdzielnicy. Taki układ zapewnia bezpieczeństwo oraz minimalizuje ryzyko porażenia prądem. Zastosowanie schematu C w praktyce pozwala na efektywne i bezpieczne sterowanie oświetleniem, co jest kluczowe w projektowaniu oraz wykonawstwie instalacji elektrycznych. Warto również zwrócić uwagę na konieczność przestrzegania odpowiednich norm, takich jak PN-IEC 60364, które regulują sposób wykonywania instalacji elektrycznych, aby były one zarówno funkcjonalne, jak i bezpieczne dla użytkowników.

Pytanie 19

Które z poniższych parametrów technicznych odnoszą się do przekaźnika bistabilnego?

A. Liczba biegunów, rodzaj charakterystyki, prąd znamionowy, szerokość w modułach
B. Napięcie zasilania, prąd obciążenia, wartość prądu impulsu sterującego, opóźnienie zadziałania, sygnalizacja załączenia
C. Napięcie znamionowe, znamionowy prąd różnicowy zadziałania, prąd znamionowy ciągły, obciążalność zwarciowa, częstotliwość znamionowa, liczba biegunów
D. Typ modułu, zakres zliczania, rodzaj wyjścia, parametry wyjścia, napięcie zasilania, tryby pracy licznika
Analizując podane odpowiedzi, można zauważyć, że wiele z nich odnosi się do parametrów technicznych innych typów urządzeń, co prowadzi do zamieszania. Na przykład, odpowiedź dotycząca typów modułów, zakresu zliczania czy rodzajów wyjścia jest bardziej związana z licznikami elektronicznymi niż przekaźnikami bistabilnymi. Liczniki mają swoje unikalne funkcje, takie jak zliczanie impulsów, co nie ma zastosowania w kontekście przekaźnika bistabilnego. Wiele osób może mylić te dwa urządzenia, myśląc, że mają one podobne zastosowania, co jest błędne. Kolejny przykład to podanie parametrów takich jak prąd znamionowy czy liczba biegunów, które są bardziej związane z przekaźnikami jedno- lub wielobiegunowymi, a nie z bistabilnymi. Niezrozumienie różnicy między tymi typami przekaźników może prowadzić do błędnych decyzji przy doborze komponentów w projektach automatyzacji. Ponadto, niektóre odpowiedzi zawierają specyfikacje dotyczące obciążalności zwarciowej oraz częstotliwości znamionowej, co jest charakterystyczne dla urządzeń zabezpieczających, takich jak wyłączniki różnicowoprądowe. W kontekście przekaźników bistabilnych, te informacje są zbędne, ponieważ ich działanie opiera się na mechanizmie zatrzymaniu stanu, a nie na regularnym przełączaniu. Zrozumienie tych różnic jest kluczowe dla skutecznego projektowania systemów automatyki i unikania kosztownych błędów w doborze komponentów.

Pytanie 20

W jakiej z poniższych sytuacji poślizg silnika indukcyjnego będzie najmniejszy?

A. Silnik będzie pracować na biegu jałowym
B. Silnik działa w nominalnych warunkach zasilania oraz obciążenia
C. Silnik będzie zasilany prądem w kierunku przeciwnym
D. Podczas zasilania silnika jego wirnik będzie stał
Analizując pozostałe opcje, warto zauważyć, że zasilenie silnika przeciwprądem prowadzi do sytuacji, w której wirnik nie ma możliwości obrotów, co generuje maksymalny poślizg. W takim przypadku wirnik staje się właściwie statyczny, a energia nie jest efektywnie przetwarzana. Sytuacja ta nie tylko powoduje straty, ale również może prowadzić do uszkodzeń silnika. Z kolei, gdy wirnik silnika jest całkowicie nieruchomy, co ma miejsce w przypadku, gdy silnik jest zasilany bez obciążenia lub niesprawny, poślizg osiąga wartość maksymalną, ponieważ nie ma żadnego ruchu, co prowadzi do nieefektywnego wykorzystania energii. Praca silnika na biegu jałowym może sprawiać wrażenie podobnej do sytuacji z wirnikiem nieruchomym, jednakże w przypadku biegu jałowego wirnik wykonuje pewne obroty, co obniża poślizg. Wreszcie, praca silnika w znamionowych warunkach zasilania i obciążenia również nie zapewnia minimalnego poślizgu, ponieważ obciążenie wprowadza różnice prędkości wynikające z oporu mechanicznego oraz charakterystyki samego silnika. Ważne jest, aby zrozumieć, że optymalizacja pracy silników indukcyjnych, w tym zmniejszenie poślizgu, jest kluczowym elementem w kontekście efektywności energetycznej oraz długowieczności urządzeń.

Pytanie 21

Jaka maksymalna wartość może mieć impedancja pętli zwarcia w trójfazowym systemie elektrycznym o napięciu nominalnym 230/400 V, aby ochrona przeciwporażeniowa przy awarii izolacji była skuteczna, wiedząc, że odpowiednie szybkie wyłączenie tego obwodu ma zapewnić instalacyjny wyłącznik nadprądowy B20?

A. 6,6 Ω
B. 3,8 Ω
C. 4,0 Ω
D. 2,3 Ω
Wartość 2,3 Ω jest prawidłowa dla impedancji pętli zwarcia w trójfazowym obwodzie elektrycznym o napięciu 230/400 V, ponieważ gwarantuje wystarczająco niską impedancję, aby wyłącznik nadprądowy B20 mógł zadziałać w przypadku uszkodzenia izolacji. Zgodnie z zasadami ochrony przeciwporażeniowej, aby zapewnić skuteczną reakcję wyłącznika, impedancja pętli zwarcia powinna być niższa niż wartość krytyczna, ustalona na podstawie prądu zwarciowego, który jest niezbędny do wyzwolenia wyłącznika. W przypadku B20, przy nominalnym prądzie 20 A, minimalny prąd zwarciowy powinien wynosić co najmniej 100 A, co odpowiada maksymalnej impedancji 2,3 Ω. W praktyce oznacza to, że w przypadku wystąpienia zwarcia, wyłącznik zareaguje w odpowiednim czasie, minimalizując ryzyko porażenia prądem. Zgodnie z normą PN-IEC 60364-4-41, dobór odpowiedniej impedancji pętli zwarcia jest kluczowym elementem w projektowaniu instalacji elektrycznych.

Pytanie 22

Co oznacza oznaczenie IP00 widoczne na obudowie urządzenia elektrycznego?

A. Wykorzystanie separacji ochronnej.
B. Brak ochrony przed wilgocią i pyłem.
C. Brak klasy ochronności przed porażeniem.
D. Najwyższy poziom ochrony.
Odpowiedzi sugerujące najwyższy stopień ochronności, zastosowanie separacji ochronnej oraz zerową klasę ochronności przed porażeniem nie są poprawne w kontekście oznaczenia IP00. Warto zwrócić uwagę, że najwyższy stopień ochronności jest zazwyczaj reprezentowany przez oznaczenia IP67 lub IP68, gdzie pierwsza cyfra wskazuje na całkowitą ochronę przed pyłem, a druga przed wodą. Odpowiedź sugerująca zastosowanie separacji ochronnej myli się, ponieważ separacja dotyczy różnych aspektów bezpieczeństwa, a nie bezpośrednio ochrony przed wnikaniem wilgoci czy kurzu. Zerowa klasa ochronności przed porażeniem, oznaczana przez klasę II, odnosi się do braku ochrony przez uziemienie, co również nie ma związku z oznaczeniem IP00. Często pojawiającym się błędem myślowym jest mylenie oznaczeń IP z innymi klasami ochrony, np. klasą bezpieczeństwa. Kluczowe jest zrozumienie, że klasyfikacja IP dotyczy specyficznie odporności obudowy na czynniki zewnętrzne, podczas gdy inne klasy ochrony dotyczą zabezpieczeń przed porażeniem elektrycznym czy innymi zagrożeniami. Właściwe zrozumienie klasyfikacji IP jest kluczowe dla bezpiecznego użytkowania urządzeń elektrycznych i zapobiegania niebezpieczeństwom związanym z ich niewłaściwym zastosowaniem.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Który z podanych odbiorników energii elektrycznej charakteryzuje się najkorzystniejszym współczynnikiem mocy w aspekcie ekonomicznym?

A. Piec oporowy
B. Silnik uniwersalny
C. Wzbudnik indukcyjny
D. Silnik asynchroniczny
Piec oporowy jest odbiornikiem energii elektrycznej, który charakteryzuje się bardzo wysokim współczynnikiem mocy wynoszącym blisko 1. Oznacza to, że prawie cała energia elektryczna jest przekształcana w ciepło, co czyni go bardzo efektywnym urządzeniem w zastosowaniach grzewczych. W praktyce, piece oporowe są powszechnie wykorzystywane w domach i przemysłu do ogrzewania pomieszczeń, wody oraz w procesach technologicznych wymagających precyzyjnego i kontrolowanego źródła ciepła. Dzięki ich wysokiej efektywności energetycznej, użytkownicy mogą znacząco obniżyć koszty eksploatacyjne. Ponadto, ich działanie jest zgodne z normami efektywności energetycznej, co wpływa na zmniejszenie negatywnego wpływu na środowisko. Warto zwrócić uwagę, że stosowanie pieców oporowych powinno być dostosowane do konkretnego zastosowania, co może wymagać analizy kosztów oraz rozwoju systemów automatyzacji, aby maksymalnie wykorzystać ich potencjał.

Pytanie 25

Narzędzie przedstawione na ilustracji przeznaczone jest

Ilustracja do pytania
A. do zaciskania końcówek tulejkowych.
B. do docinania przewodów.
C. do zaciskania końcówek oczkowych.
D. do ściągania izolacji z żył przewodów.
Odpowiedź jest prawidłowa, ponieważ narzędzie przedstawione na ilustracji to szczypce do ściągania izolacji, które są specjalistycznym narzędziem używanym w elektryce do precyzyjnego usuwania izolacji z przewodów elektrycznych. Dzięki charakterystycznemu kształtowi ostrzy oraz zastosowanemu mechanizmowi regulacji, te szczypce umożliwiają bezpieczne usuwanie izolacji bez ryzyka uszkodzenia samej żyły przewodowej. W praktyce, umiejętność prawidłowego użycia tego narzędzia jest kluczowa w instalacjach elektrycznych, gdzie niezbędne jest zachowanie integralności przewodów. Standardy branżowe, takie jak IEC 60079 lub ANSI/NFPA 70E, podkreślają znaczenie stosowania odpowiednich narzędzi do zapewnienia bezpieczeństwa i efektywności pracy. W związku z tym, znajomość i umiejętność korzystania z narzędzi do ściągania izolacji przyczynia się do jakości i bezpieczeństwa wykonania instalacji elektrycznych.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Jakim oznaczeniem charakteryzuje się przewód jednożyłowy z żyłą wykonaną z aluminium, w izolacji z PVC, o przekroju 2,5 mm2, przeznaczony na napięcie znamionowe izolacji 500 V?

A. YLY 500 V 2,5 mm2
B. YDY 500 V 2,5 mm2
C. ALY 500 V 2,5 mm2
D. ADY 500 V 2,5 mm2
Odpowiedź ADY 500 V 2,5 mm2 jest jak najbardziej trafna. To standardowy symbol przewodu jednożyłowego wykonanego z aluminium, który ma izolację z PVC, czyli polichlorku winylu. W tej nazwie 'A' oznacza, że materiał żyły to aluminium, 'D' informuje nas, że mamy do czynienia z PVC, a 'Y' pokazuje, że to przewód jednożyłowy. Wiedza o takich oznaczeniach jest naprawdę ważna w inżynierii, bo dzięki temu można dobrze dobierać przewody do różnych zastosowań. To jest kluczowe dla bezpieczeństwa instalacji elektrycznych. Przewody o średnicy 2,5 mm2 są szeroko stosowane w budynkach mieszkalnych i przemysłowych, gdzie potrzebna jest odpowiednia wydolność prądowa. Napięcie 500 V oznacza maksymalne napięcie, które można stosować, co jest zgodne z normą PN-EN 60228 dotyczącą przewodów elektrycznych.

Pytanie 28

Jakie materiały są wykorzystywane do izolacji żył przewodów elektrycznych?

A. Polwinit i guma
B. Polwinit i mika
C. Mika i silikon
D. Silikon i guma
Polwinit, czyli PVC, oraz guma to dwa naprawdę ważne materiały, które używa się do izolacji żył w przewodach elektrycznych. Dają one gwarancję, że wszystko będzie działać bezpiecznie i przez długi czas. Polwinit jest znany ze swojej odporności na różne chemikalia i wysokie temperatury, dlatego często znajdziesz go w kablach niskiego i średniego napięcia. Ma fajne właściwości mechaniczne i elektryczne, na przykład niską przewodność elektryczną, co czyni go super materiałem do izolacji. Guma natomiast jest elastyczna i świetnie sprawdza się tam, gdzie przewody muszą się poruszać lub być zginane. To ważne w sytuacjach, gdzie są narażone na wibracje. Normy IEC 60227 i IEC 60502 pokazują, jak ważne jest korzystanie z odpowiednich materiałów, żeby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych. Polwinitowe i gumowe izolacje są używane w wielu miejscach – od domów po przemysł, a nawet w motoryzacji. Dobrze wiedzieć, że odporność tych materiałów na różne czynniki może naprawdę wpłynąć na bezpieczeństwo całego systemu elektrycznego.

Pytanie 29

Jaka jest znamionowa sprawność silnika jednofazowego przy danych: PN = 3,7 kW (moc mechaniczna), UN = 230 V, IN = 21,4 A oraz cos φN = 0,95?

A. 0,71
B. 0,75
C. 0,79
D. 0,95
Zrozumienie wyniku sprawności silnika wymaga znajomości pojęcia mocy, napięcia oraz prądu, a także współczynnika mocy. Odpowiedzi, które wskazują na wartości takie jak 0,95, 0,75 czy 0,71, opierają się na niepełnym zrozumieniu tych pojęć. Przykładowo, wybór 0,95 może sugerować, że użytkownik pomylił sprawność z współczynnikiem mocy, co jest powszechnym błędem. Współczynnik mocy jest miarą efektywności wykorzystania energii, ale nie mierzy strat samego silnika, dlatego nie może być bezpośrednio uznawany za sprawność. Z kolei wartości takie jak 0,75 czy 0,71 mogą wynikać z błędnego obliczenia lub nieprawidłowego zrozumienia danych wejściowych. Aby poprawnie ocenić sprawność silnika, kluczowe jest zrozumienie, że sprawność to stosunek mocy mechanicznej do mocy elektrycznej dostarczanej do silnika. Niskie wartości sprawności wskazują na wysokie straty energii, co jest niekorzystne w kontekście eksploatacji silników. W branży energetycznej, zgodnie z normami IEC, dąży się do maksymalizacji efektywności energetycznej, co oznacza, że silniki o sprawności poniżej 0,80 są uważane za nieefektywne. W praktyce, wybierając silnik, warto zwrócić uwagę na jego parametry, aby uniknąć wyższych kosztów eksploatacji i zapewnić lepszą wydajność systemu.

Pytanie 30

Kontrolę przeciwpożarową wyłącznika prądu powinno się przeprowadzać w terminach określonych przez producenta, jednak nie rzadziej niż raz na

A. trzy lata
B. dwa lata
C. rok
D. pięć lat
Regularne przeglądy przeciwpożarowe wyłączników prądu są kluczowe dla zapewnienia bezpieczeństwa instalacji elektrycznych. Zgodnie z przepisami i zaleceniami producentów, przegląd powinien być przeprowadzany nie rzadziej niż raz do roku, co pozwala na wykrycie i naprawę ewentualnych usterek, które mogą prowadzić do poważnych zagrożeń. Przykładowo, niewłaściwe działanie wyłącznika może skutkować brakiem ochrony przed przeciążeniem lub zwarciem, co w skrajnych przypadkach prowadzi do pożaru. Warto również pamiętać, że w obiektach o wysokim ryzyku pożarowym, takich jak zakłady przemysłowe czy magazyny, częstotliwość przeglądów może być jeszcze wyższa, aby zapewnić maksymalne bezpieczeństwo. Współczesne normy i standardy branżowe, takie jak norma PN-EN 61439, podkreślają znaczenie regularnych inspekcji i konserwacji urządzeń elektrycznych w kontekście ochrony przeciwpożarowej. Praktyka ta nie tylko chroni mienie, ale również życie ludzi, co czyni ją niezbędnym elementem zarządzania bezpieczeństwem w każdym przedsiębiorstwie.

Pytanie 31

Przed dokonaniem pomiarów rezystancji izolacyjnej obwodu oświetleniowego, oprócz odłączenia zasilania, co jeszcze należy zrobić?

A. zamontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
B. zamontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
C. wymontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
D. wymontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
Wymontowanie źródeł światła i zamknięcie łączników instalacyjnych przed pomiarem rezystancji izolacji obwodu oświetleniowego jest kluczowym krokiem, który ma na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. Podczas testowania rezystancji izolacji ważne jest, aby żadne źródło ładunku nie było podłączone do obwodu, ponieważ może to prowadzić do fałszywych odczytów oraz uszkodzenia urządzeń. Zamknięcie łączników instalacyjnych eliminuje ryzyko przypadkowego włączenia obwodu w trakcie testu. Zgodnie z normą PN-EN 61557, przed przeprowadzeniem pomiarów należy upewnić się, że obwód jest całkowicie odłączony od zasilania, a wszelkie elementy, które mogą wprowadzić zmienność w pomiarach, są usunięte. Praktyczne zastosowanie tej procedury znajduje zastosowanie w przemyśle budowlanym oraz w konserwacji instalacji elektrycznych, gdzie bezpieczeństwo i dokładność pomiarów są priorytetowe.

Pytanie 32

Jaki stopień ochrony powinno mieć urządzenie, które jest odporne na działanie wody zalewającej obudowę z każdej strony?

A. IPX2
B. IPX5
C. IPX3
D. IPX4
Wybierając stopień ochrony IPX4, IPX3, lub IPX2, można łatwo wprowadzić się w błąd co do faktycznej odporności urządzenia na działanie wody. IPX4 oznacza, że urządzenie jest odporne na zachlapania wodą z dowolnego kierunku, co jest niewystarczające dla sytuacji, w której woda może być skierowana na urządzenie w postaci strumienia. IPX3 z kolei zapewnia ochronę przed wodą padającą pod kątem do 60 stopni od pionu, co nie gwarantuje bezpieczeństwa, gdy woda jest kierowana bezpośrednio na urządzenie. Z kolei IPX2 oferuje ochronę tylko przed wodą padającą pod kątem do 15 stopni, co jest niewłaściwe dla urządzeń, które mogą być narażone na intensywny deszcz czy inne formy strug wodnych. Typowe błędy w myśleniu prowadzą do wyboru niewłaściwego stopnia ochrony na podstawie niewłaściwych założeń dotyczących warunków eksploatacji. Właściwe zrozumienie norm IP jest kluczowe, aby uniknąć uszkodzeń sprzętu, co może prowadzić do dużych kosztów napraw oraz zagrożeń dla bezpieczeństwa użytkowników. Dlatego zawsze należy dokładnie analizować wymagania środowiskowe przed wyborem sprzętu, a klasyfikacje IP powinny być stosowane jako punkt odniesienia dla projektowania i doboru urządzeń odpornych na działanie wody.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jakie narzędzia powinny być zastosowane przy trasowaniu instalacji elektrycznej w ścianach w pomieszczeniach mieszkalnych?

A. Ołówek, poziomnica, miarka taśmowa, sznurek traserski
B. Ołówek, miarka taśmowa, kleszcze monterskie, młotek
C. Poziomnica, kleszcze monterskie, zestaw wkrętaków, młotek
D. Zestaw wkrętaków, kleszcze monterskie, sznurek traserski, młotek
Wybór odpowiedzi "Ołówek, poziomnica, przymiar taśmowy, sznurek traserski" jest właściwy, ponieważ te narzędzia są kluczowe dla precyzyjnego trasowania instalacji elektrycznej podtynkowej w pomieszczeniach mieszkalnych. Ołówek służy do nanoszenia punktów oraz linii na ścianach, co ułatwia późniejsze wiercenie i układanie kabli. Poziomnica jest niezastąpiona przy sprawdzaniu poziomu instalacji, co jest niezbędne dla zachowania estetyki i funkcjonalności. Przymiar taśmowy pozwala na dokładne mierzenie odległości, co jest kluczowe dla precyzyjnego układania kabli, gniazdek oraz przełączników. Sznurek traserski umożliwia szybkie i łatwe zaznaczanie prostych linii na dużych powierzchniach, co znacznie przyspiesza proces trasowania. Te narzędzia są zgodne z najlepszymi praktykami branżowymi oraz standardami bezpieczeństwa, co czyni je niezbędnymi w procesie przygotowawczym przed wykonaniem instalacji elektrycznej.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Który typ silnika elektrycznego najczęściej stosuje się w urządzeniach gospodarstwa domowego?

A. Silnik krokowy
B. Silnik synchroniczny trójfazowy
C. Silnik liniowy
D. Silnik indukcyjny jednofazowy
Silniki indukcyjne jednofazowe są najczęściej stosowane w urządzeniach gospodarstwa domowego ze względu na ich prostotę konstrukcji, niezawodność oraz stosunkowo niskie koszty produkcji. Jednofazowe silniki indukcyjne działają w oparciu o zasadę indukcji elektromagnetycznej, gdzie prąd zmienny przepływający przez uzwojenie stojana wytwarza pole magnetyczne, które indukuje prąd w wirniku. To z kolei generuje siłę napędową, która wprawia wirnik w ruch obrotowy. Tego typu silniki są powszechnie stosowane w urządzeniach takich jak pralki, lodówki, wentylatory czy miksery. Ich zaletą jest brak szczotek komutatora, co eliminuje problem iskrzenia i konieczność częstej konserwacji. Dzięki swojej prostocie, silniki te charakteryzują się długą żywotnością i są odporne na przeciążenia. Ponadto są stosunkowo ciche i energooszczędne, co czyni je idealnym wyborem do zastosowań domowych. Standardy przemysłowe i dobre praktyki również preferują użycie jednofazowych silników indukcyjnych w kontekście urządzeń gospodarstwa domowego, podkreślając ich efektywność i trwałość.

Pytanie 39

Jakie może być najczęstsze uzasadnienie nadpalenia izolacji jednego z przewodów neutralnych w listwie N rozdzielnicy w mieszkaniu?

A. Zbyt duży przekrój uszkodzonego przewodu
B. Zbyt duża moc urządzenia
C. Błędnie dobrana wartość nominalna wyłącznika nadprądowego
D. Luźne połączenie w listwie neutralnej
Poluzowane połączenie w listwie neutralnej jest najczęstszą przyczyną nadpalenia izolacji przewodów. Gdy połączenie nie jest wystarczająco mocne, pojawia się opór, co prowadzi do powstawania ciepła. Z czasem, to ciepło może spalić izolację przewodu, co jest szczególnie niebezpieczne, ponieważ może prowadzić do zwarcia lub pożaru. W praktyce, regularne sprawdzanie i dokręcanie połączeń elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa instalacji. Zgodnie z wytycznymi normy PN-IEC 60364, należy zwracać szczególną uwagę na jakości wykonania połączeń, aby zminimalizować ryzyko awarii. W przypadku stwierdzenia poluzowanych połączeń, zaleca się ich niezwłoczne naprawienie oraz przegląd całej instalacji elektrycznej, aby upewnić się, że wszystkie połączenia są prawidłowo wykonane. Przykładowo, w instalacjach przemysłowych stosowanie odpowiednich narzędzi do dokręcania oraz regularne przeglądy mogą znacznie zredukować ryzyko wystąpienia problemów związanych z poluzowanymi połączeniami.

Pytanie 40

Który z poniższych sposobów ochrony przed porażeniem elektrycznym jest weryfikowany przez pomiar rezystancji pętli zwarcia w instalacji elektrycznej?

A. Uziemienie ochronne
B. Umieszczenie części dostępnych poza zasięgiem ręki
C. Separacja elektryczna
D. Samoczynne wyłączanie zasilania
Uziemienie ochronne jest istotnym elementem systemów ochrony przed porażeniem, jednak polega na stworzeniu niskooporowego połączenia z ziemią, a nie na pomiarze rezystancji pętli zwarcia. Jego głównym celem jest zapewnienie, że w przypadku awarii prądu, nadmiar energii zostanie bezpiecznie odprowadzony do ziemi. Choć ważne, nie jest to metoda, która sama w sobie gwarantuje szybkie odłączenie zasilania. Separacja elektryczna to inny środek, który ma na celu unikanie niebezpiecznych kontaktów między różnymi obwodami, ale również nie jest bezpośrednio związana z pomiarem rezystancji pętli zwarcia. Działa na zasadzie fizycznego oddzielenia części instalacji, co minimalizuje ryzyko porażenia, ale nie zmienia parametrów elektrycznych samej instalacji. Umieszczenie części dostępnych poza zasięgiem ręki, mimo że może zmniejszyć ryzyko kontaktu z niebezpiecznymi elementami, nie jest odpowiednim rozwiązaniem, gdyż nie eliminuje ryzyka porażenia w sytuacjach awaryjnych. W każdej z tych koncepcji brakuje kluczowego odniesienia do mechanizmu działania samoczynnego wyłączania zasilania, który jest bezpośrednio związany z pomiarem rezystancji pętli zwarcia. To pomiar ten dostarcza informacji, które są kluczowe dla oceny, czy instalacja elektryczna jest w stanie bezpiecznie odciąć zasilanie w sytuacji awaryjnej, co czyni go fundamentalnym dla zapewnienia bezpieczeństwa elektrycznego.