Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 21 maja 2025 10:46
  • Data zakończenia: 21 maja 2025 11:06

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Aby podłączyć wylot zimnego powietrza z parownika monoblokowej pompy ciepła typu powietrze-woda o współczynniku COP = 3,5, która podgrzewa wodę o mocy 7 kW, należy zastosować

A. rury PVC o średnicy 20 mm
B. rury miedzianej o średnicy 25 mm
C. rury stalowej o średnicy 125 mm
D. rury PVC o średnicy 125 mm
Wybór rur PVC o średnicy 20 mm to zły pomysł, bo taka średnica jest zdecydowanie za mała, żeby zapewnić właściwy przepływ powietrza w systemie pompy ciepła. Kiedy projektujemy instalacje HVAC, trzeba uwzględnić wymagania dotyczące przepływu, szczególnie w przypadku urządzeń o większej mocy, jak pompy ciepła. Rura o średnicy 20 mm może powodować zbyt duży opór, przez co efektywność systemu spadnie, a użytkownicy poczują się mniej komfortowo. Rury miedziane o średnicy 25 mm mogą być używane w innych systemach, ale nie będą najlepszym wyborem przy wylocie zimnego powietrza, bo ich właściwości termiczne i koszt mogą nie być adekwatne do wymagań. Z kolei rury stalowe o średnicy 125 mm też nie są trafnym wyborem, bo stal jest ciężka i podatna na korozję, co w instalacjach wentylacyjnych może prowadzić do dużych kosztów utrzymania. Niezrozumienie tych rzeczy często prowadzi do błędów w projektowaniu systemów wentylacyjnych, gdzie dobór odpowiedniej średnicy i materiału rur jest kluczowy dla efektywności energetycznej i długoterminowej niezawodności instalacji.

Pytanie 2

W porowatych skałach o niskiej wilgotności znajdują się zasoby zmagazynowanej energii

A. nieodnawialnej
B. petrotermalnej
C. konwencjonalnie nieodnawialnej
D. hydrotermalnej
Odpowiedzi takie jak 'hydrotermiczna' czy 'nieodnawialna' są nietrafione, bo w kontekście suchych skał nie pasują do tego, co mówimy o zmagazynowywaniu energii. Hydrotermalne źródła energii zazwyczaj są w wilgotnych miejscach, gdzie gorące płyny geotermalne mogą być wykorzystane do produkcji energii. A w suchych skałach brak wody sprawia, że takie źródła się nie tworzą. Z kolei określenie 'nieodnawialna' dotyczy ogółu zasobów, a nie konkretnego typu energii związanej z porowatymi skałami, więc to też jest mylące. Odpowiedź 'konwencjonalnie nieodnawialnej' też nie pasuje, bo nie wyjaśnia konkretnego kontekstu dotyczącego petrotermicznych zasobów. Często popełniane błędy to pomijanie kluczowych cech geologicznych skał oraz mylenie różnych typów zasobów energetycznych z ich właściwościami fizycznymi. Żeby dobrze zrozumieć, jak działa złoże węglowodorowe, ważne jest, żeby odróżniać różne rodzaje energii i ich geologiczne uwarunkowania.

Pytanie 3

Kolektory słoneczne instalowane na gruncie przy użyciu konstrukcji nośnej są szczególnie narażone na

A. znacznie gorsze warunki nasłonecznienia w porównaniu do dachu
B. większe opady śniegu niż na dachu
C. nierównomierne osiadanie fundamentów
D. zwiększone straty energii cieplnej w kierunku gruntu
Analizując inne odpowiedzi, można zauważyć, że pierwsza z nich sugeruje, iż kolektory słoneczne na powierzchni terenu mają znacznie słabsze warunki napromieniowania niż te zamontowane na dachu. W rzeczywistości, napromieniowanie zależy od wielu czynników, takich jak miejsce montażu, kąt nachylenia oraz obecność przeszkód terenowych. Kolektory na dachu mają często lepszą ekspozycję na słońce, ale odpowiednio umieszczone kolektory na ziemi mogą również osiągać dobre wyniki. Ponadto, jest to często mylone z pojęciem zakłóceń związanych z otoczeniem, które mogą wpływać na wydajność, ale nie jest to automatyczna reguła. Druga odpowiedź odnosi się do większego zaśnieżenia niż na dachu. W rzeczywistości, dachy mogą gromadzić więcej śniegu, co może ograniczać dostęp światła słonecznego do kolektorów, zwłaszcza w obszarach o dużych opadach śniegu. Kwestia zasypania śniegiem nie jest więc jednoznaczna. Kolejne stwierdzenie o zwiększonej stracie energii cieplnej do gruntu jest mylne, ponieważ straty ciepła mogą występować w każdym systemie, ale nie są one bezpośrednio związane z lokalizacją montażu kolektorów. Ostatnia odpowiedź, dotycząca nierównego osiadania fundamentów, jest najtrafniejsza, ponieważ to właśnie fundamenty muszą być odpowiednio zaprojektowane i wykonane, aby unikać problemów związanych z osiadaniem, a nie lokalizacja samego kolektora.

Pytanie 4

Korzystając z danych zamieszczonych w tabeli, wskaż kolektor słoneczny o najwyższej sprawności optycznej.

Rodzaj parametruKolektor 1Kolektor 2Kolektor 3Kolektor 4
Transmisyjność pokrywy przezroczystej0,920,920,860,86
Emisyjność absorbera0,050,850,120,05
Absorpcyjność absorbera0,950,850,950,04

A. Kolektor 4.
B. Kolektor 2.
C. Kolektor 3.
D. Kolektor 1.
Wybór kolektorów słonecznych, takich jak Kolektor 2, 3 czy 4, wskazuje na pewne niedopatrzenia w ocenie ich sprawności optycznej. Ważnym aspektem przy ocenie efektywności kolektora jest zrozumienie, że sama transmisyjność pokrywy nie wystarczy. Wysoka transmisyjność bez odpowiednio niskiej emisyjności absorbera może być myląca, ponieważ skutkuje tym, że nawet jeśli promieniowanie słoneczne dostanie się do wnętrza kolektora, to straty ciepła mogą przewyższać zyski. Kolektory te mogą także wykazywać wysoką absorpcyjność, ale jeśli emisyjność jest zbyt wysoka, efektywnie ogranicza to ich zdolność do gromadzenia energii cieplnej. Często niezdolność do uwzględnienia wszystkich trzech kluczowych parametrów prowadzi do błędnych wyborów. To podejście jest niezgodne z praktykami branżowymi, które na pierwszym miejscu stawiają kompleksową ocenę wydajności. Dlatego kluczowe jest zrozumienie interakcji pomiędzy tymi parametrami oraz ich praktycznego wpływu na efektywność systemów opartych na energii słonecznej. Warto także zwrócić uwagę na aktualne standardy branżowe, takie jak normy IEC 61215, które zalecają holistyczne podejście do oceny kolektorów słonecznych.

Pytanie 5

Aby zabezpieczyć obieg grzewczy w sytuacji, gdy ciśnienie w instalacji solarnej zbyt mocno wzrasta, co powinno się zastosować?

A. grupę pompową
B. podgrzewacz wody
C. zawór bezpieczeństwa
D. regulator temperatury
Zawór bezpieczeństwa to mega ważny element, jeśli chodzi o ochronę instalacji solarnej przed zbyt wysokim ciśnieniem. Kiedy ciśnienie w układzie wzrasta ponad dopuszczalny poziom, zawór automatycznie się otwiera, wypuszczając nadmiar wody albo pary. W ten sposób zapobiega się wszelkim awariom, co jest kluczowe dla bezpieczeństwa. Normy branżowe, takie jak PN-EN 12828, jasno mówią, jak istotne jest to zabezpieczenie w systemach grzewczych. Na przykład, w instalacji solarnej w domu, zawór bezpieczeństwa działa jak tarcza chroniąca system i ludzi w środku przed nieprzyjemnościami. A tak swoją drogą, pamiętaj, żeby regularnie sprawdzać zawory bezpieczeństwa – to nie tylko kwestia przepisów, ale też bezpieczeństwa całej instalacji.

Pytanie 6

W trakcie konserwacji instalacji centralnego ogrzewania do czynnika grzewczego wprowadza się inhibitory w celu

A. pozbycia się kamienia kotłowego z systemu
B. oczyszczenia czynnika grzewczego z zanieczyszczeń
C. zmniejszenia korozji instalacji
D. poprawy przewodności cieplnej czynnika grzewczego
Odpowiedzi sugerujące, że inhibitory służą do oczyszczania czynnika grzewczego z zanieczyszczeń, usuwania kamienia kotłowego lub zwiększania przewodności cieplnej, są nieprawidłowe. W rzeczywistości, oczyszczanie czynnika grzewczego z zanieczyszczeń wymaga zastosowania innych procedur, takich jak chemiczne czyszczenie instalacji. Usuwanie kamienia kotłowego jest procesem, który można zrealizować dzięki metodom mechanicznym lub chemicznym, ale nie jest to zadanie inhibitorów korozji. Co więcej, zwiększenie przewodności cieplnej czynnika grzewczego nie jest celem stosowania inhibitorów, ponieważ ich głównym zadaniem jest ochrona przed korozją, a nie modyfikacja właściwości termicznych. Zrozumienie roli inhibitorów korozji jest kluczowe dla prawidłowego utrzymania systemów grzewczych. Odpowiednie zarządzanie chemikaliami w systemie grzewczym oraz ich właściwe dobieranie zgodnie z normami i najlepszymi praktykami branżowymi, może znacząco wpłynąć na efektywność i bezpieczeństwo instalacji. Błędy w interpretacji funkcji inhibitorów mogą prowadzić do poważnych konsekwencji, takich jak przyspieszone zużycie elementów systemu, co w dłuższej perspektywie wiąże się z wyższymi kosztami eksploatacyjnymi oraz ryzykiem wystąpienia awarii.

Pytanie 7

W Polsce płaskie kolektory słoneczne powinny być umieszczane na dachu budynku, skierowane w stronę

A. zachodnią
B. południową
C. wschodnią
D. północną
Kolektory słoneczne płaskie powinny być zorientowane na południe, aby maksymalizować ilość otrzymywanego promieniowania słonecznego przez cały dzień. Dzięki takiej orientacji, kolektory są w stanie wykorzystać maksymalne nasłonecznienie, zwłaszcza w godzinach szczytowych, kiedy słońce znajduje się najwyżej na niebie. W Polsce, ze względu na nasze położenie geograficzne, orientacja południowa jest kluczowa dla uzyskania optymalnej efektywności energetycznej. Przykładowo, instalacje w orientacji południowej mogą zwiększyć wydajność kolektorów o 15-30% w porównaniu do innych kierunków. Dobre praktyki wskazują, że przy projektowaniu systemów solarnych należy także uwzględniać kąt nachylenia kolektorów, który powinien wynosić od 30 do 45 stopni, co dodatkowo wspiera efektywność zbierania energii. W związku z tym, podejmowanie decyzji o lokalizacji i orientacji kolektorów powinno być oparte na analizach nasłonecznienia oraz lokalnych warunkach klimatycznych, co przyczynia się do maksymalizacji zysków energetycznych.

Pytanie 8

Aby zobrazować za pomocą symboli graficznych ogólny przebieg oraz wyposażenie instalacji grzewczej podczas jej funkcjonowania, należy skorzystać z rysunku

A. szczegółowego
B. schematycznego
C. aksonometrycznego
D. zasadniczego
Odpowiedź schematycznego rysunku jest poprawna, ponieważ takie rysunki są powszechnie stosowane do przedstawiania ogólnych przebiegów oraz wyposażenia instalacji grzewczych. Rysunki schematyczne umożliwiają zrozumienie ogólnej struktury systemu bez wchodzenia w szczegóły poszczególnych komponentów. Za pomocą symboli graficznych i uproszczonych przedstawień, schematy te ułatwiają identyfikację kluczowych elementów instalacji, takich jak kotły, pompy, grzejniki oraz ich wzajemne połączenia. Zastosowanie rysunków schematycznych jest zgodne z normami branżowymi, takimi jak PN-EN 13306, które podkreślają znaczenie jednolitych symboli i oznaczeń w dokumentacji technicznej. Dzięki nim zarówno inżynierowie, jak i technicy mają możliwość szybkiej analizy oraz komunikacji dotyczącej systemów grzewczych. Przykładem zastosowania takiego rysunku mogą być projekty instalacji w budynkach mieszkalnych, gdzie schematy pomagają w planowaniu i późniejszym serwisowaniu systemu grzewczego.

Pytanie 9

Uchwyt PV bezpiecznika powinien być zamontowany na szynie DIN przy użyciu

A. śrub
B. zatrzasków
C. kołków montażowych
D. nitów
Montaż uchwytów PV bezpieczników na szynie DIN za pomocą nitów jest nieodpowiedni ze względu na brak możliwości łatwego demontażu. Nity tworzą trwałe połączenie, co w przypadku konieczności konserwacji lub wymiany elementów może prowadzić do znacznych trudności. W środowisku przemysłowym, gdzie elastyczność i adaptacja są kluczowe, takie podejście może prowadzić do nieefektywności i zwiększenia kosztów. Podobnie, użycie kołków montażowych nie jest zalecane, ponieważ również wymagają one precyzyjnego wiercenia otworów oraz dodatkowego sprzętu, co może zwiększać czas montażu i ryzyko błędów. Śruby, z drugiej strony, mogą oferować stabilność, ale ich montaż jest bardziej czasochłonny i wymaga regularnego sprawdzania dokręcenia, co w dłuższej perspektywie może prowadzić do problemów z utrzymaniem odpowiedniego połączenia. Wiele osób może myśleć, że bardziej skomplikowane metody montażu są bardziej niezawodne, jednak w praktyce to prostota i efektywność są kluczowe w nowoczesnych instalacjach elektroenergetycznych. Dlatego ważne jest, aby stosować odpowiednie metody zgodnie z zaleceniami producentów i normami branżowymi, aby zapewnić efektywność oraz bezpieczeństwo systemu.

Pytanie 10

Jakie elementy powinny być użyte do zamontowania panelu fotowoltaicznego na dachu o nachyleniu?

A. profil wielorowkowy oraz kotwy krokwiowe
B. profil wielorowkowy oraz kołki rozporowe
C. stelaż z trójkątnych ram
D. śruby rzymskie
Użycie śrub rzymskich w montażu paneli fotowoltaicznych na dachu spadzistym może wydawać się intuicyjne, jednak nie jest to podejście zgodne z dobrymi praktykami inżynieryjnymi. Śruby rzymskie, choć mogą zapewnić pewne mocowanie, nie są optymalnym rozwiązaniem dla tego typu instalacji. Nie oferują one odpowiedniego poziomu sztywności ani stabilności, co może prowadzić do luźnego montażu paneli, a w konsekwencji do ich uszkodzenia. Stelaże z ram trójkątnych również nie są rekomendowane, gdyż w sytuacji dużych obciążeń, mogą nie zapewniać dostatecznej wytrzymałości. Zastosowanie materiałów o mniejszych parametrach wytrzymałościowych, takich jak stelaże trójkątne, zwiększa ryzyko awarii, co jest niezgodne z normami budowlanymi. Z kolei profil wielorowkowy i kołki rozporowe to rozwiązanie, które nie może zapewnić odpowiedniej stabilności na dachu spadzistym, gdyż kołki rozporowe, w zależności od materiału dachu, mogą nie trzymać się wystarczająco mocno, co jest kluczowe w kontekście obciążeń spowodowanych wiatrem czy opadami. Typowe błędy myślowe prowadzące do takich wniosków wynikają z niedostatecznego zrozumienia dynamicznych obciążeń działających na konstrukcje dachowe oraz specyfiki montażu paneli fotowoltaicznych. Dla zapewnienia bezpieczeństwa i efektywności instalacji, ważne jest stosowanie odpowiednich elementów montażowych, zgodnych z obowiązującymi normami oraz standardami branżowymi.

Pytanie 11

Która z boków dachu jest najodpowiedniejsza do instalacji kolektorów słonecznych?

A. Zachodnia
B. Wschodnia
C. Północna
D. Południowa
Montaż kolektorów słonecznych na dachu południowym jest uważany za najbardziej efektywny, ponieważ ta strona dachu otrzymuje najwięcej promieniowania słonecznego w ciągu dnia. W zależności od lokalizacji geograficznej, dachy skierowane na południe mogą korzystać ze słońca przez większą część dnia, co znacznie zwiększa wydajność systemu solarnego. Na przykład, w Polsce, instalacje na dachu południowym mogą osiągać ponad 80% efektywności w porównaniu z innymi kierunkami. W praktyce oznacza to, że kolektory słoneczne zamontowane na tej stronie będą produkować więcej energii cieplnej, co przekłada się na niższe rachunki za energię i szybszy zwrot z inwestycji. Ponadto, zgodnie z dobrymi praktykami i standardami branżowymi, zaleca się unikanie zacienienia dachu, co jest istotne na południowej stronie, gdzie słońce jest najbardziej intensywne. Instalacja powinna być również skierowana pod odpowiednim kątem, aby maksymalizować eksponowanie na promieniowanie słoneczne przez cały rok.

Pytanie 12

Zgodnie z danymi zawartymi w przedstawionej w tabeli suma długości 2 obiegów w instalacji z pompą ciepła DHP-C wielkości 8 nie może przekraczać

Maksymalne długości obiegu
DHP-H,
DHP-C,
DHP-L
Obliczona, maksymalna długość obiegów w m
Wielkość1 obieg2 obiegi3 obiegi4 obiegi
6< 390< 2 x 425
8< 300< 2 x 325
10< 270< 2 x 395
12< 190< 2 x 350
16< 70< 2 x 175< 3 x 1834 x 197

A. 650 m
B. 630 m
C. 690 m
D. 700 m
Wybór odpowiedzi 650 m jako maksymalnej długości dwóch obiegów dla pompy ciepła DHP-C o wielkości 8 jest poprawny. Dane w tabeli jasno określają, iż dla tej konkretnej wielkości pompy, długość obiegów nie powinna przekraczać 650 metrów, aby zapewnić efektywność i prawidłowe działanie systemu grzewczego. Przekroczenie tej długości może prowadzić do spadku efektywności energetycznej oraz zwiększenia zużycia energii, co jest niekorzystne zarówno z ekonomicznego, jak i ekologicznego punktu widzenia. W praktyce, odpowiednia długość obiegów ma kluczowe znaczenie dla optymalizacji pracy pompy ciepła, co potwierdzają normy oraz zalecenia branżowe, takie jak te zawarte w dokumentacji producentów i standardach instalacyjnych. Na przykład, zbyt długie obiegi mogą skutkować większym oporem hydraulicznych, co wpływa na obniżenie wydajności systemu i może prowadzić do jego uszkodzenia. Utrzymanie odpowiedniej długości obiegów jest zatem kluczowe dla długotrwałego działania instalacji grzewczej.

Pytanie 13

Na podstawie danych zamieszczonych w tabeli określ miesięczne koszty pokrycia strat energii w zbiorniku SB-200. Przyjmij, że: 1 miesiąc = 30 dni, koszt 1 kWh = 0,50 zł, temperatura wody w zbiorniku 60°C.

Typ wymiennikaSB-200
SBZ-200
SB-250
SBZ-250
SB-300
SBZ-300
Pojemność znamionowal200250300
Ciśnienie znamionoweMPazbiornik 0,6, wężownice 1,0
Moc wężownicy dolnej/górnej*kW40/2937/3153/31
Dobowa energia**kWh2,02,12,7
* Przy parametrach 80/10/45 °C
** Przy utrzymaniu stałej temperatury wody 60 °C

A. 12,00 zł
B. 45,00 zł
C. 30,00 zł
D. 60,00 zł
Poprawna odpowiedź to 30,00 zł, co wynika z prawidłowego zastosowania wzoru na obliczenie miesięcznych kosztów pokrycia strat energii. Aby obliczyć miesięczne koszty, należy wziąć pod uwagę dobowe straty energii, które w przypadku zbiornika SB-200 wynoszą 2 kWh. Następnie, mnożymy tę wartość przez liczbę dni w miesiącu, co daje 60 kWh (2 kWh x 30 dni). Koszt energii elektrycznej wynosi 0,50 zł za kWh, co prowadzi do obliczenia 60 kWh x 0,50 zł = 30 zł. Zrozumienie tego procesu jest kluczowe, ponieważ pozwala na realistyczne oszacowanie kosztów eksploatacyjnych systemów grzewczych i zbiorników. Wiedza ta jest istotna w kontekście optymalizacji kosztów operacyjnych oraz efektywności energetycznej. W praktyce, aby zminimalizować straty energii, można stosować różne metody izolacji zbiorników oraz monitorowania temperatury, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 14

Przechowując rury preizolowane na otwartej przestrzeni w różnych warunkach pogodowych, nie ma potrzeby chronienia ich przed

A. wilgocią
B. wiatrem
C. ekstremalnymi temperaturami
D. promieniowaniem UV
Wybór opcji 'wiatrem' jako odpowiedzi prawidłowej opiera się na zasadach dotyczących składowania rur preizolowanych. Rury te, ze względu na swoje właściwości izolacyjne oraz konstrukcyjne, nie są wrażliwe na działanie wiatru, ponieważ ich mechaniczne właściwości nie ulegają osłabieniu pod wpływem siły wiatru. W praktyce, rury preizolowane mogą być składowane na zewnątrz w różnych warunkach atmosferycznych, a ich struktura nie wymaga specjalnych zabezpieczeń przed wiatrem. Zgodnie z normą PN-EN 253, która dotyczy rur preizolowanych, kluczowe jest jedynie zabezpieczenie przed czynnikami, które mogą wpływać na ich izolacyjność, jak wilgoć, ekstremalne temperatury oraz promieniowanie UV. W przypadku wilgoci, niewłaściwe składowanie może prowadzić do kondensacji, co z kolei wpływa na właściwości izolacyjne, a ekstremalne temperatury mogą powodować odkształcenia materiałów. Rury powinny być również chronione przed promieniowaniem UV, które może degradacja materiału polimerowego. Dlatego odpowiednie środki zabezpieczające powinny być stosowane w odniesieniu do wilgoci, ekstremalnych temperatur oraz promieniowania UV, a nie w odniesieniu do wiatru.

Pytanie 15

Aby oszacować koszty realizacji instalacji fotowoltaicznej na etapie planowania, właściciel nieruchomości powinien otrzymać kosztorys

A. powykonawczy
B. inwestorski
C. końcowy
D. ofertowy
Kosztorys końcowy, powykonawczy i inwestorski to terminy, które często mylone są z kosztorysem ofertowym, jednak nie pełnią one tej samej funkcji. Kosztorys końcowy jest dokumentem, który powstaje po zakończeniu realizacji projektu i zawiera ostateczne zestawienie kosztów, które mogą różnić się od szacunków przedstawionych wcześniej. Jego rola polega na podsumowaniu wydatków oraz ocenie budżetu projektu, a nie na pomocy w początkowej fazie planowania. Kosztorys powykonawczy, z kolei, ma na celu przedstawienie szczegółowych kosztów po zakończeniu robót i jest używany do rozliczenia z wykonawcą. W praktyce, nie można go zastosować w momencie, gdy inwestor dopiero rozważa podjęcie decyzji o inwestycji. Kosztorys inwestorski jest z kolei narzędziem, które skupia się na analizie opłacalności inwestycji, jednak również nie jest używany w fazie ofertowania. Typowe błędy myślowe, które prowadzą do wyboru tych nieprawidłowych odpowiedzi, obejmują mylenie etapu projektowania z etapem realizacji oraz nieznajomość różnic pomiędzy poszczególnymi rodzajami kosztorysów. Aby skutecznie ocenić koszty inwestycji, niezbędne jest zrozumienie, że kosztorys ofertowy jest nie tylko pierwszym krokiem w procesie, ale także kluczowym narzędziem w negocjacjach z wykonawcami oraz w planowaniu finansowym.

Pytanie 16

Gdzie powinien być zainstalowany zawór bezpieczeństwa w zamkniętej instalacji centralnego ogrzewania?

A. przed grzejnikami zarówno na gałęzi zasilającej, jak i powrotnej
B. w dolnej części każdego pionu oraz przed naczyniem wzbiorczym
C. na przyłączach pionów do przewodów rozprowadzających
D. bezpośrednio na kotłach lub wymiennikach ciepła w górnej części ich przestrzeni wodnej
Montaż zaworu bezpieczeństwa w nieodpowiednich miejscach, takich jak przed grzejnikami, w dolnej części pionów czy na przyłączach pionów do przewodów rozprowadzających, nie spełnia podstawowych wymogów bezpieczeństwa i efektywności instalacji centralnego ogrzewania. Umieszczanie zaworu przed grzejnikami może prowadzić do zbyt późnego odcięcia nadmiaru ciśnienia, co naraża system na uszkodzenia. Ponadto, umiejscowienie zaworu w dolnej części pionów nie pozwala na efektywne usunięcie nadmiaru ciśnienia, gdyż gorąca woda ma tendencję do unikania dół, co może prowadzić do zjawisk przegrzewania w górnych częściach instalacji. Zawór bezpieczeństwa powinien być w odpowiedniej lokalizacji, aby działał w chwilach krytycznych, co jest kluczowe dla zapobiegania awariom i zagrożeniom. Montaż na przyłączach pionów również nie zapewnia wymaganego poziomu ochrony, gdyż zawór powinien być umiejscowiony jak najbliżej źródła ciepła. Standardy branżowe oraz przepisy budowlane jasno określają wymagania dotyczące lokalizacji zaworu bezpieczeństwa, podkreślając, że niewłaściwe umiejscowienie może prowadzić do katastrofalnych skutków, w tym do zniszczenia urządzeń oraz zagrożenia dla użytkowników instalacji.

Pytanie 17

Opis projektu instalacji wodnej wskazuje, że ma być zrealizowana z polipropylenu. Jakie oznaczenie posiada ten materiał?

A. PE
B. PEX/Al/PEX
C. Cu
D. PP
Odpowiedź "PP" jest poprawna, ponieważ polipropylen jest materiałem szeroko stosowanym w instalacjach wodnych, charakteryzującym się wysoką odpornością na chemikalia oraz niską przewodnością cieplną. Rozwiązania z polipropylenu są często wykorzystywane w systemach ciepłej i zimnej wody użytkowej, a także w instalacjach grzewczych. Dzięki swoim właściwościom, takim jak odporność na korozję oraz łatwość w montażu, polipropylen pozwala na tworzenie trwałych i niezawodnych instalacji. Jest to materiał, który spełnia standardy jakościowe, takie jak PN-EN 1451-1, co potwierdza jego przydatność w zastosowaniach budowlanych. W praktyce, rury polipropylenowe są łączone za pomocą technologii zgrzewania, co zapewnia szczelność i wytrzymałość połączeń. Warto również zauważyć, że polipropylen jest materiałem lekkim, co ułatwia transport i montaż, a jego dostępność na rynku sprawia, że jest chętnie wybieranym rozwiązaniem przez wykonawców instalacji wodnych.

Pytanie 18

Jak długo utrzymujemy elementy łączone w technologii klejonej?

A. 1-2 min.
B. 5-10 sek.
C. 15-30 sek.
D. 35-60 sek.
Przyjęcie czasów przytrzymywania elementów klejonych w przedziale 5-10 sek. jest niewłaściwe, ponieważ zbyt krótki okres może nie zapewnić wystarczającej adhezji między powierzchniami. Kleje, szczególnie te używane w przemyśle meblarskim i budowlanym, wymagają określonego czasu wiązania, aby osiągnąć pełną wydolność, co jest niezbędne do zapewnienia trwałości połączenia. Czas 35-60 sek. oraz 1-2 min. także nie są optymalne, ponieważ mogą prowadzić do nadmiernego utwardzenia kleju, co w efekcie powoduje trudności w ustawieniu elementów w trakcie klejenia. Zbyt długi czas przytrzymywania może spowodować, że klej zacznie twardnieć przed właściwym umiejscowieniem elementów, prowadząc do błędów w montażu i konieczności ponownego wykonania prac. W rzeczywistości, zrozumienie właściwego czasu przytrzymywania jest kluczowe w kontekście technologii klejonej, ponieważ każdy rodzaj kleju ma swoje specyfikacje i wymagania dotyczące czasu wiązania. Dlatego ważne jest, aby stosować się do zaleceń producentów klejów oraz przyjętych norm branżowych, aby uniknąć problemów związanych z nieodpowiednią jakością połączeń, co może prowadzić do awarii w przyszłości.

Pytanie 19

Pompę solarną należy zainstalować na rurze

A. zasilającym
B. bezpieczeństwa
C. powrotnym
D. napełniającym
Wybór niewłaściwego przewodu do montażu pompy solarnej może prowadzić do różnych problemów, które negatywnie wpływają na wydajność całego systemu. Montaż na przewodzie zasilającym nie jest zalecany, ponieważ w takim przypadku pompa byłaby narażona na działanie ciepłej cieczy z kolektorów. Taki układ może prowadzić do sytuacji, w której pompa będzie pracować w warunkach przegrzania, co z kolei może skrócić jej żywotność oraz obniżyć efektywność systemu. Montaż na przewodzie bezpieczeństwa jest także niewłaściwy, ponieważ ten element jest dedykowany do ochrony systemu przed nadmiernym ciśnieniem i nie powinien być obciążany dodatkowymi komponentami, takimi jak pompy. Wreszcie, umieszczenie pompy na przewodzie napełniającym, który jest odpowiedzialny za dostarczanie cieczy do systemu, może prowadzić do zatorów i problemów z ciśnieniem, co w rezultacie wpłynie na cały układ. Kluczowe jest zrozumienie, że poprawna lokalizacja pompy jest nie tylko kwestią techniczną, ale także wpływa na bezpieczeństwo i niezawodność systemu. Warto zaznaczyć, że przygotowanie i instalacja systemów solarnych powinny opierać się na obowiązujących normach i dobrych praktykach, które zawierają szczegółowe wytyczne dotyczące montażu poszczególnych komponentów, w tym pomp. Zastosowanie się do tych standardów zapewnia nie tylko efektywność energetyczną, ale również długotrwałą i bezpieczną pracę instalacji.

Pytanie 20

Jaki jest maksymalny współczynnik przenikania ciepła (Uc max) dla zewnętrznych ścian nowych obiektów budowlanych od 01.01.2017 r. przy t1 ≥ 16°C?

A. 0,23 W/m2 · K
B. 0,28 W/m2 · K
C. 0,25 W/m2 · K
D. 0,20 W/m2 · K
Nieprawidłowe odpowiedzi na pytanie dotyczące maksymalnego współczynnika przenikania ciepła dla ścian zewnętrznych nowych budynków często wynikają z nieaktualnych informacji lub niezrozumienia zmieniających się przepisów budowlanych. Warto zauważyć, że współczynniki przenikania ciepła, takie jak 0,20 W/m² · K czy 0,25 W/m² · K, są zbyt niskie lub zbyt wysokie w kontekście obowiązujących norm. W przypadku wartości 0,20 W/m² · K, można myśleć, że jest to wymóg stricte energetyczny, jednak takie wartości mogą dotyczyć starszych regulacji, które nie uwzględniają najnowszych standardów. Z kolei wartość 0,25 W/m² · K jest również mylna, ponieważ wprowadza niepotrzebną mylność co do wymagań technicznych. Odpowiedź 0,28 W/m² · K jest całkowicie niezgodna z aktualnymi normami, gdyż taka wartość wskazuje na znacznie gorsze właściwości izolacyjne, co może prowadzić do znacznego wzrostu kosztów ogrzewania i obniżenia komfortu cieplnego mieszkańców. Zrozumienie aktualnych przepisów jest kluczowe dla projektowania budynków, które są nie tylko energooszczędne, ale także komfortowe w użytkowaniu. Wartości współczynnika U są określane na podstawie obliczeń opartych na materiałach budowlanych, a ich poprawne dobranie pozwala na osiągnięcie efektywności energetycznej budynku, co jest niezbędne w kontekście zrównoważonego rozwoju oraz ochrony środowiska.

Pytanie 21

Jakie materiały mogą być zastosowane do wykonania absorbera w panelach słonecznych?

A. aluminium lub mosiądzu
B. miedzi lub żeliwa
C. plastiku lub stali
D. aluminium lub miedzi
Absorber w kolektorach słonecznych jest kluczowym elementem, który odpowiada za przechwytywanie promieniowania słonecznego i przekształcanie go w ciepło. Materiały takie jak aluminium i miedź charakteryzują się doskonałymi właściwościami przewodzenia ciepła, co czyni je idealnymi do zastosowania w tych systemach. Aluminium jest lekkie, odporne na korozję oraz łatwe w obróbce, co sprawia, że jest powszechnie stosowane w budowie absorberów. Miedź, z kolei, ma jeszcze lepsze właściwości przewodzenia ciepła, co pozwala na szybsze i efektywniejsze przekazywanie energii cieplnej. Dobre praktyki branżowe zalecają używanie tych materiałów, aby zapewnić maksymalną efektywność kolektorów słonecznych, co jest kluczowe w kontekście odnawialnych źródeł energii i efektywności energetycznej budynków. Warto także zauważyć, że odpowiedni dobór materiałów wpływa na trwałość systemu oraz jego zdolność do pracy w zmiennych warunkach atmosferycznych.

Pytanie 22

Który z poniższych czynników może powodować głośną pracę pompy obiegowej podczas startu słonecznej instalacji grzewczej?

A. Nieprawidłowo dobrana średnica rur instalacyjnych
B. Niska temperatura cieczy solarnej
C. Duża ilość powietrza w systemie
D. Niewłaściwy rodzaj cieczy solarnej
Poprawna odpowiedź wynika z faktu, że duża ilość powietrza w instalacji solarnej może prowadzić do powstawania pęcherzy powietrznych, które przemieszcza się przez pompę obiegową, potęgując hałas podczas jej pracy. Powietrze w systemie obiegowym może również ograniczać przepływ płynu solarnego, co wpływa na wydajność całego układu grzewczego. Standardy branżowe, takie jak normy ISO dotyczące instalacji grzewczych, podkreślają znaczenie odpowiedniego odpowietrzania systemu, co jest kluczowe dla jego prawidłowego funkcjonowania. W praktyce, aby uniknąć problemów z hałasami generowanymi przez pompę, zaleca się regularne sprawdzanie systemu na obecność powietrza oraz stosowanie odpowiednich zaworów odpowietrzających. Dbałość o poprawne odpowietrzanie instalacji nie tylko zwiększa komfort użytkowania, ale również wydłuża żywotność pompy i całego systemu grzewczego.

Pytanie 23

Aby chronić linię napowietrzną przed skutkami wyładowań atmosferycznych, jakie zabezpieczenie powinno być zastosowane?

A. wyłącznik nadprądowy
B. wyłącznik różnicowoprądowy
C. bezpieczniki mocy
D. ogranicznik przepięciowy
Choć wyłącznik różnicowoprądowy, wyłącznik nadprądowy oraz bezpieczniki mocy pełnią ważne funkcje w systemach elektroenergetycznych, nie są one zaprojektowane do bezpośredniego zabezpieczania urządzeń przed skutkami wyładowań atmosferycznych. Wyłącznik różnicowoprądowy, którego zadaniem jest wykrywanie różnicy prądów między przewodami fazowymi a neutralnym, służy głównie do ochrony ludzi przed porażeniem prądem elektrycznym. Jego działanie opiera się na wykrywaniu prądów upływowych, a nie na ograniczaniu przepięć, które mogą wystąpić w wyniku wyładowań atmosferycznych. Wyłącznik nadprądowy zabezpiecza przed przeciążeniem i zwarciem, detektując wzrost prądu, ale nie jest w stanie zredukować skutków krótkotrwałych, lecz intensywnych szczytów napięcia, które mogą wystąpić podczas burzy. Bezpieczniki mocy są używane do ochrony przed zwarciami i przeciążeniami w obwodach wysokoprądowych, jednak podobnie jak powyższe urządzenia, nie oferują ochrony przed przepięciami. W praktyce, wiele osób może mylnie uważać, że wszelkie rodzaje zabezpieczeń elektrycznych zapewniają kompleksową ochronę, jednak nie uwzględniają one specyficznych zagrożeń związanych z wyładowaniami atmosferycznymi. Kluczowe jest zrozumienie, że każdy typ zabezpieczenia ma swoje zastosowanie i ograniczenia, dlatego do ochrony przed skutkami burz należy stosować wyspecjalizowane urządzenia, takie jak ograniczniki przepięciowe, które są zaprojektowane do absorpcji nadmiarowego napięcia i tym samym ochrony infrastruktury. Zastosowanie odpowiednich rozwiązań w zakresie ochrony przed przepięciami jest nie tylko dobrym zwyczajem, lecz również wymogiem w profesjonalnych instalacjach elektrycznych.

Pytanie 24

Podczas dłuższej nieobecności mieszkańców budynku jednorodzinnego występuje brak odbioru energii cieplnej z kolektora słonecznego, zatem na sterowniku systemu solarnego należy ustawić funkcję trybu

A. urlopowego
B. monowalentnego
C. chłodzenia pasywnego
D. grzewczego
Wybór trybu monowalentnego jest nieodpowiedni, ponieważ jest on przeznaczony do sytuacji, gdy system solarny ma pracować jako jedyne źródło ciepła, co w przypadku dłuższej nieobecności użytkowników może prowadzić do niewłaściwego działania instalacji. Tryb grzewczy z kolei normalnie funkcjonuje w warunkach, gdy użytkownicy są obecni, a system wymaga stałego odbioru ciepła, co również jest nieadekwatne w sytuacji braku użytkowników. Ponadto, tryb chłodzenia pasywnego, choć użyteczny w kontekście chłodzenia budynku, nie ma zastosowania w kontekście zarządzania ciepłem w zasobnikach solarnych w czasie nieobecności. Typowym błędem myślowym jest założenie, że w każdej sytuacji, gdy system nie jest w pełni wykorzystywany, można po prostu przełączyć go na inny tryb bez rozważenia jego funkcji. Należy pamiętać, że różne tryby mają konkretne cele i funkcje, a ich niewłaściwe ustawienie podczas dłuższej nieobecności użytkowników może prowadzić do problemów z efektywnością energetyczną, a nawet do uszkodzenia systemu. Dlatego tak ważne jest odpowiednie skonfigurowanie systemu przed wyjazdem, co potwierdzają standardy branżowe dotyczące instalacji solarnych, które zalecają stosowanie trybu urlopowego w takich przypadkach.

Pytanie 25

Instalacja paneli fotowoltaicznych nie wymaga uzyskania pozwolenia na budowę, o ile jej wysokość nie jest większa niż 3 m, a moc elektryczna wynosi mniej niż

A. 20 kW
B. 10 kW
C. 40 kW
D. 30 kW
Odpowiedzi 20 kW, 30 kW oraz 10 kW są nieprawidłowe, ponieważ nie uwzględniają aktualnych regulacji dotyczących wymagań dla instalacji fotowoltaicznych. Przede wszystkim, ograniczenie do 20 kW jest zbyt niskie, ponieważ moc instalacji do 40 kW nie wymaga pozwolenia na budowę, a więc liczby te są mylne w kontekście realnych możliwości instalacyjnych. W przypadku mocy 30 kW, można zauważyć, że mimo iż jest to instalacja, która może być użyteczna w wielu domach, to jednak nie odpowiada na pytanie, gdyż moc ta mieści się w granicach, które wciąż wymagają zgłoszenia, a nie pozwolenia. Najniższa odpowiedź, czyli 10 kW, również nie oddaje rzeczywistego zakresu mocy, który może być zainstalowany bez większych formalności. Dlatego ważne jest, aby świadomi użytkownicy instalacji fotowoltaicznych rozumieli, że przepisy są stworzone po to, aby uprościć proces instalacji dla większych mocy, co sprzyja ich szerszemu wdrożeniu. Zrozumienie tych norm prawnych jest kluczowe dla efektywnego wdrażania odnawialnych źródeł energii w Polsce oraz ich wpływu na środowisko i gospodarkę. Używanie nieprawidłowych wartości mocy prowadzi do błędnych wniosków i ogranicza możliwości korzystania z dostępnych dotacji oraz programów wsparcia dla energetyki odnawialnej.

Pytanie 26

Na podstawie danych producenta rur ogrzewania podłogowego zawartych w tabeli określ maksymalne ciśnienie robocze.

MaterialPE-RT/EVOH/PE-RT, PE-RT/AL/PE-RT
ŚredniceDN/OD 16, 18 mm
Ciśnienie nominalnePN 6 (bar) klasa 4, 20-60 °C
Długości handloweZwoje 200, 400 m

A. 16 barów.
B. 4 bary.
C. 18 barów.
D. 6 barów.
Odpowiedź 6 barów jest poprawna, ponieważ zgodnie z danymi producenta rur ogrzewania podłogowego, maksymalne ciśnienie robocze dla rur wykonanych z materiałów PE-RT/EVOH/PE-RT i PE-RT/AL/PE-RT wynosi PN 6, co odpowiada 6 barom. Tabela producenta wskazuje, że ciśnienie to dotyczy rur o średnicach DN/OD 16 oraz 18 mm, które mogą pracować w temperaturach od 20 do 60°C. W praktyce, przy doborze rur do systemu ogrzewania podłogowego, ważne jest, aby nie przekraczać wskazanych wartości ciśnienia roboczego, ponieważ może to prowadzić do uszkodzenia instalacji, a także obniżenia jej efektywności. Dobór odpowiedniego ciśnienia jest istotny nie tylko dla bezpieczeństwa, ale również dla zapewnienia efektywności energetycznej systemu grzewczego. W branży stosuje się różne normy, takie jak PN-EN 1264, które regulują wymagania dotyczące systemów ogrzewania podłogowego, w tym maksymalne ciśnienia robocze.

Pytanie 27

Kocioł na pellet w ciągu jednej doby wykorzystuje 20 kg paliwa. Jaki będzie całkowity koszt paliwa w przeciągu 30 dni, jeśli worek z 200 kg pelletu kosztuje 250 zł?

A. 750,00 zł
B. 12,50 zł
C. 37,50 zł
D. 5 000,00 zł
Obliczenie kosztu paliwa zużywanego przez kocioł na pellet wymaga zrozumienia kilku kluczowych aspektów. Kocioł zużywa 20 kg paliwa dziennie, co oznacza, że przez 30 dni zużyje 600 kg (20 kg/dzień * 30 dni). W celu przeliczenia kosztów, musimy najpierw ustalić, ile kosztuje 1 kg pelletu. Woreczek o wadze 200 kg kosztuje 250 zł, zatem koszt 1 kg to 250 zł / 200 kg = 1,25 zł. Następnie, mnożymy koszt 1 kg przez całkowite zużycie pelletu w ciągu miesiąca: 600 kg * 1,25 zł/kg = 750 zł. Taki proces obliczania kosztów pozwala na lepsze zarządzanie budżetem na ogrzewanie i planowanie zakupów paliwa, co jest szczególnie istotne w kontekście sezonowego użytkowania kotłów na pellet. Wiedza na temat kosztów eksploatacyjnych pozwala również na efektywniejsze podejmowanie decyzji zakupowych oraz optymalizację wydatków na energię. Stosowanie materiałów pomocniczych, jak wykresy lub kalkulatory kosztów, jest zalecane w celu łatwiejszego zrozumienia tego procesu.

Pytanie 28

Z jakiego rodzaju materiału można zrealizować instalację łączącą kolektory słoneczne z zasobnikiem na ciepłą wodę użytkową?

A. Polietylen.
B. Polipropylen.
C. Poliamid.
D. Stal stopowa.
Wybór materiału do budowy instalacji łączącej kolektory słoneczne z zasobnikiem ciepłej wody użytkowej jest kluczowy dla efektywności i trwałości całego systemu. Polipropylen, polietylen oraz poliamid, pomimo że są popularnymi materiałami używanymi w różnych instalacjach, nie są odpowiednie do tego typu zastosowań. Polipropylen i polietylen, będąc tworzywami sztucznymi, mają ograniczoną odporność na wysokie temperatury. W systemach solarnych, gdzie temperatura wody może sięgać nawet 95 stopni Celsjusza, te materiały mogą ulegać deformacjom, co prowadzi do nieszczelności i utraty efektywności systemu. Poliamid, chociaż bardziej odporny na temperaturę niż polipropylen czy polietylen, ma problem z odpornością na działanie wody gorącej, co w dłuższym czasie może prowadzić do degradacji materiału. W kontekście instalacji słonecznych ważne jest, aby zastosowane materiały były zgodne z normami i wymaganiami, jak np. EN 10088 dla stali, które zapewniają odpowiednią jakość i trwałość. Często popełnianym błędem jest mylenie materiałów kompozytowych z metalowymi, co prowadzi do przekonania, że wszystkie tworzywa sztuczne mogą zastąpić stal w wymagających aplikacjach. Dlatego kluczowe jest, aby przy wyborze materiałów kierować się ich właściwościami fizycznymi oraz warunkami, w jakich będą stosowane, unikając pułapek wynikających z niedoinformowania o właściwościach materiałów.

Pytanie 29

W jakim dokumencie powinny być odnotowane wszystkie działania wykonane przez montera pompy ciepła w trakcie realizacji gwarancyjnych prac serwisowych?

A. W instrukcji serwisowej
B. W karcie gwarancyjnej
C. Na fakturze za wykonaną pracę
D. W dokumentacji techniczno-ruchowej
Zobaczmy, co się mówi o innych dokumentach, które raczej nie powinny mieć szczegółowych opisów działań montera. Na przykład dokumentacja techniczno-ruchowa, chociaż jest ważna w użytkowaniu i konserwacji, zazwyczaj skupia się na specyfikacjach technicznych i ogólnych zasadach działania, a nie na detalach serwisu. Instrukcja serwisowa dostarcza ogólnych informacji o konserwacji, ale nie powinna zawierać dokładnych zapisów tego, co było robione podczas serwisu. A faktura za wykonaną pracę to dokument finansowy potwierdzający transakcję, ale nie ma w sobie szczegółów o pracach serwisowych ani nie nadaje się do archiwizacji informacji technicznych. Także nie ma to nic wspólnego z przyszłą ochroną gwarancyjną. Dlatego mylenie tych dokumentów z kartą gwarancyjną może w przyszłości sprawić problemy w dochodzeniu praw gwarancyjnych i w kolejnych działaniach serwisowych. Ważne, żeby ogarnąć, że karta gwarancyjna służy do dokumentowania wykonanych prac i jest podstawą do ewentualnych roszczeń, a inne dokumenty mają swoje zupełnie inne funkcje.

Pytanie 30

Jakim kolorem jest wyłącznie oznaczony przewód ochronny PE?

A. niebieski
B. czerwony
C. żółto-zielony
D. brązowy
Przewód ochronny PE (Protective Earth) jest oznaczony kolorem żółto-zielonym zgodnie z międzynarodowymi normami, takimi jak IEC 60446 oraz PN-EN 60446. Oznaczenie to ma na celu jednoznaczne rozróżnienie przewodów ochronnych od przewodów zasilających oraz innych przewodów w instalacjach elektrycznych. Przewód PE pełni kluczową funkcję w zapewnieniu bezpieczeństwa użytkowników urządzeń elektrycznych poprzez odprowadzenie prądu doziemnego w przypadku awarii, co minimalizuje ryzyko porażenia prądem. Użycie koloru żółto-zielonego jest standaryzowane na całym świecie, co ułatwia rozpoznawanie przewodów ochronnych, niezależnie od kraju. W praktyce, przewody PE są stosowane w instalacjach domowych i przemysłowych, w tym w urządzeniach takich jak gniazdka, maszyny przemysłowe, a także w instalacjach fotowoltaicznych. Dzięki jednoznacznemu oznaczeniu, technicy i elektrycy mogą szybko zidentyfikować przewody ochronne, co jest kluczowe dla bezpieczeństwa podczas prac serwisowych.

Pytanie 31

Jak często należy przeprowadzać pomiar rezystancji poszczególnych ogniw w akumulatorach?

A. co 6 miesięcy
B. codziennie
C. raz w miesiącu
D. raz w roku
Pojęcie regularności w pomiarze rezystancji ogniw akumulatorowych jest kluczowe dla utrzymania ich w dobrym stanie. Często spotykane jest przekonanie, że pomiar należy przeprowadzać raz w miesiącu, jednak takie podejście jest niepraktyczne i nieefektywne. Częstsze pomiary mogą prowadzić do niepotrzebnego zużycia sprzętu pomiarowego oraz mogą wprowadzać w błąd z powodu naturalnych fluktuacji wynikających z warunków pracy akumulatorów. Z kolei pomiar raz w roku nie jest wystarczający, aby zauważyć ewentualne problemy z akumulatorami w odpowiednim czasie. W przypadku akumulatorów, które są użytkowane w intensywnych warunkach, takich jak systemy zasilania UPS, długie przerwy między pomiarami mogą prowadzić do poważnych usterek, które mogłyby być wykryte znacznie wcześniej. Odpowiedź sugerująca codzienne pomiary jest niepraktyczna i może prowadzić do nadmiernego obciążenia systemów monitorujących oraz błędów pomiarowych, przez co rezultaty mogą być mylące. Kluczowe jest znalezienie równowagi między częstotliwością pomiarów a ich rzeczywistą użytecznością, co w praktyce oznacza przyjęcie sześciomiesięcznego cyklu, który pozwala na dokładną ocenę stanu akumulatorów, minimalizując jednocześnie koszty i czas potrzebny na pomiary.

Pytanie 32

Jakie oznaczenie wskazuje, że produkt jest odporny na pył i wodę oraz zabezpieczony przed wodnym strumieniem pod dowolnym kątem?

A. IP65
B. IP44
C. IP35
D. IP55
Oznaczenie IP65 wskazuje, że produkt jest w pełni chroniony przed pyłem oraz zraszaniem wodą z dowolnego kąta, co jest istotne w kontekście zastosowań zarówno w warunkach domowych, jak i przemysłowych. W standardzie IP, pierwszy cyfra (6) oznacza całkowitą ochronę przed pyłem, co jest kluczowe dla urządzeń używanych w środowiskach, gdzie zanieczyszczenia mogą wpływać na ich działanie. Druga cyfra (5) natomiast wskazuje, że urządzenie jest odporne na strumienie wody, co chroni je przed uszkodzeniami w przypadku deszczu lub kontaktu z wodą. Przykładowo, produkty z oznaczeniem IP65 są powszechnie wykorzystywane w oświetleniu ogrodowym, systemach monitoringu oraz w urządzeniach elektronicznych stosowanych na zewnątrz, gdzie narażone są na zmienne warunki atmosferyczne. Dostosowanie się do norm IP jest podstawowym elementem projektowania urządzeń, które mają zapewnić bezpieczeństwo i trwałość w trudnych warunkach eksploatacji.

Pytanie 33

Przetwornica napięcia to urządzenie stosowane w systemach fotowoltaicznych do

A. ochrony akumulatora przed przeładowaniem
B. przemiany napięcia zmiennego w napięcie stałe
C. zapewnienia stabilnego napięcia w akumulatorze
D. przemiany napięcia stałego w napięcie zmienne
Przetwornica napięcia odgrywa kluczową rolę w instalacjach fotowoltaicznych, gdzie napięcie stałe (DC) generowane przez panele słoneczne musi być przekształcone na napięcie zmienne (AC), aby mogło być efektywnie wykorzystywane w domowych systemach elektrycznych i integrowane z siecią energetyczną. Ta konwersja jest niezbędna, ponieważ większość urządzeń domowych, takich jak lodówki, telewizory czy oświetlenie, działa na napięciu zmiennym. Przykłady zastosowania przetwornic obejmują systemy off-grid, gdzie energia słoneczna jest przechowywana w akumulatorach i wykorzystywana w sposób ciągły. Zgodnie z najlepszymi praktykami, przetwornice powinny być odpowiednio dobrane do mocy generowanej przez panele oraz wymaganej mocy obciążenia, aby zapewnić efektywność energetyczną i długowieczność systemu. Standardy międzynarodowe, takie jak IEC 62109, regulują bezpieczeństwo i wydajność przetwornic, co jest istotne dla zapewnienia niezawodności systemów OZE.

Pytanie 34

Który z poniższych rodzajów zbiorników nie powinien być używany do przechowywania biogazu?

A. Suchego tłokowego niskociśnieniowego
B. Membranowego dachowego
C. Sferycznego membranowego
D. Suchego stalowego wysokociśnieniowego
Wybór niewłaściwego zbiornika do magazynowania biogazu może prowadzić do wielu niebezpieczeństw oraz nieefektywności w zarządzaniu tym zasobem. Zbiorniki membranowe dachowe i sferyczne membranowe są projektowane z myślą o niskim ciśnieniu, co sprzyja bezpiecznemu przechowywaniu biogazu. Biogaz, ze względu na swoją specyfikę, wymaga odpowiednich warunków przechowywania, które uwzględniają nie tylko ciśnienie, ale także temperaturę i wilgotność. Zastosowanie zbiornika suchego stalowego wysokociśnieniowego może nie tylko prowadzić do ryzyka eksplozji, ale także generować dodatkowe koszty związane z utrzymywaniem takiego ciśnienia. Wielu użytkowników mylnie zakłada, że wysokie ciśnienie może zwiększyć efektywność przechowywania, podczas gdy w rzeczywistości może to prowadzić do destabilizacji systemu. Ponadto, stosowanie odpowiednich zbiorników jest zgodne z najlepszymi praktykami branżowymi, które zalecają wykorzystanie rozwiązań minimalizujących ryzyko. Warto zatem zwrócić uwagę na zalecenia dotyczące magazynowania biogazu, które jasno określają, że lepsze rezultaty uzyskuje się przy niskociśnieniowych systemach przechowywania, co pozwala na zabezpieczenie zarówno infrastruktury, jak i samego biogazu przed nieprzewidzianymi zdarzeniami.

Pytanie 35

Ciśnienie ustawione na zaworze zabezpieczającym w systemie grzewczym z zastosowaniem pompy ciepła powinno wynosić

A. 9 barów
B. 6 barów
C. 1 bar
D. 2 bary
Nastawa zaworu bezpieczeństwa w instalacji grzewczej z pompą ciepła powinna wynosić 6 barów, co odpowiada standardom dla tego typu systemów. Pompy ciepła są projektowane do pracy w określonym zakresie ciśnienia, a 6 barów stanowi odpowiednią wartość zabezpieczającą przed nadmiernym wzrostem ciśnienia, co może prowadzić do uszkodzenia instalacji. W praktyce, zawór bezpieczeństwa powinien otworzyć się, gdy ciśnienie wewnętrzne przekroczy ustaloną wartość, a 6 barów jest powszechnie przyjętą normą dla większości systemów grzewczych. Przykład zastosowania to instalacje ogrzewania podłogowego, gdzie nadmiar ciśnienia może zniszczyć rury. Wybór odpowiedniej nastawy zaworu bezpieczeństwa jest kluczowy dla zapewnienia bezpieczeństwa i niezawodności systemu. Zgodnie z normami PN-EN 12828 oraz PN-EN 12831, należy regularnie kontrolować i konserwować te urządzenia, aby zapewnić ich prawidłowe działanie, co przekłada się na efektywność energetyczną oraz długowieczność instalacji grzewczej.

Pytanie 36

System centralnego ogrzewania z pompą ciepła, która wykorzystuje ciepło z gruntu jako jedyne źródło ciepła, określa się mianem układu

A. kombinowanym
B. monowalentnym
C. ambiwalentnym
D. biwalentnym
Instalacja centralnego ogrzewania z pompą ciepła, która korzysta wyłącznie z energii geotermalnej, nazywana jest układem monowalentnym. Oznacza to, że system ten jako jedyne źródło ciepła zaspokaja potrzeby grzewcze budynku, co jest szczególnie korzystne w kontekście efektywności energetycznej. W takich systemach pompa ciepła pozyskuje ciepło z gruntu, co pozwala na wykorzystanie odnawialnych źródeł energii. Przykłady zastosowania to domy jednorodzinne, które mogą korzystać z gruntowych wymienników ciepła, jak kolektory poziome czy pionowe sondy geotermalne. Warto zaznaczyć, że projektowanie i instalacja takich systemów powinny opierać się na normach, takich jak PN-EN 14511, które regulują klasyfikację pomp ciepła oraz ich wydajność. W praktyce, układy monowalentne mogą wykazywać wysoką efektywność i przyczyniać się do znacznych oszczędności energii oraz redukcji emisji CO2, co jest zgodne z nowoczesnymi trendami w budownictwie ekologicznym.

Pytanie 37

Na podstawie danych zawartych w tabeli oblicz koszt materiałów niezbędnych do wymiany 50 metrów sieci biogazu uzbrojonej w 3 zasuwy i 2 trójniki.

Nazwa urządzeniaJednostka miaryCena jednostkowa (zł)
Rura PEm30,00
Zasuwaszt.300,00
Trójnikszt.250,00

A. 900 zł
B. 2 900 zł
C. 1 500 zł
D. 500 zł
Poprawna odpowiedź to 2900 zł, co zostało obliczone na podstawie dokładnej analizy kosztów materiałów do wymiany sieci biogazu. W przypadku takich projektów kluczowe jest precyzyjne określenie ilości oraz cen jednostkowych materiałów, co pozwala na dokładne oszacowanie całkowitych kosztów. W tym przypadku, 50 metrów sieci biogazu wymagało zakupu rur, zasuw oraz trójników. Zastosowanie zasuw umożliwia kontrolowanie przepływu biogazu, co jest niezbędne w wielu instalacjach biogazowych. Z kolei trójniki są istotne, gdyż pozwalają na rozgałęzianie instalacji, co jest często wymagane w praktycznych zastosowaniach. Przy planowaniu takich projektów warto zwrócić uwagę na standardy branżowe, takie jak normy dotyczące jakości materiałów oraz ich zgodności z przepisami budowlanymi. Dobre praktyki obejmują także uwzględnienie potencjalnych kosztów serwisowania i konserwacji, co może wpłynąć na całkowity budżet projektu.

Pytanie 38

W jednym cyklu obiegu wody nie wolno łączyć rur ze stali ocynkowanej z rurami

A. polipropylenowymi
B. miedzianymi
C. polietylenowymi warstwowymi
D. polietylenowymi sieciowanymi
Połączenie rur stalowych ocynkowanych z rurami polietylenowymi sieciowanymi, polipropylenowymi czy polietylenowymi warstwowymi wydaje się na pierwszy rzut oka bardziej akceptowalne, jednakże każda z tych opcji niesie ze sobą istotne problemy, które mogą prowadzić do nieefektywności systemu. Rury polietylenowe, choć często stosowane w instalacjach wodociągowych, różnią się w zakresie temperatury pracy oraz odporności chemicznej w porównaniu do stali ocynkowanej. Połączenia między tymi materiałami mogą prowadzić do problemów z uszczelnieniem, co w efekcie może skutkować wyciekami. Polipropylen, z drugiej strony, ma inną rozszerzalność cieplną, co może powodować naprężenia w miejscach połączeń, zwłaszcza w systemach narażonych na zmiany temperatury. Ponadto, zarówno polietylenowe sieciowane, jak i polipropylenowe rury nie mają tej samej nośności, co może prowadzić do problemów z wytrzymałością całego systemu. Typowym błędem myślowym jest przyjęcie, że wszystkie tworzywa sztuczne można ze sobą łączyć bez konsekwencji. W rzeczywistości każdy materiał wymaga starannego rozważenia i analizy, aby uniknąć potencjalnych problemów z korozją, przeciekami i uszkodzeniami. Kluczowe jest zrozumienie interakcji pomiędzy różnymi materiałami, aby zapewnić trwałość i niezawodność instalacji wodociągowych.

Pytanie 39

Podaj aktualną wartość współczynnika przewodzenia ciepła dla zewnętrznej ściany pomieszczenia, gdzie temperatura wynosi 20°C, zgodnie z rozporządzeniem dotyczącym warunków technicznych, jakim powinny odpowiadać budynki oraz ich lokalizacja?

A. Maks. 0,5 W/m2K
B. Maks. 0,25 W/m2K
C. Min. 0,3 W/m2K
D. Min. 0,25 W/m2K
Wartości współczynnika przenikania ciepła dla ścian zewnętrznych mają kluczowe znaczenie w kontekście efektywności energetycznej budynków. Odpowiedzi, które sugerują inne wartości, mogą prowadzić do poważnych konsekwencji w projektowaniu i budowie obiektów. Na przykład stwierdzenie, że minimalna wartość wynosi 0,25 W/m2K, jest mylące, ponieważ odnosi się do maksymalnej dozwolonej wartości według obowiązujących przepisów. Przyjęcie błędnego założenia, jak np. 0,5 W/m2K, może skutkować zastosowaniem nieefektywnych materiałów izolacyjnych, co prowadzi do znacznych strat ciepła. Ponadto, projektowanie budynków z tak dużym współczynnikiem przenikania ciepła zwiększa zapotrzebowanie na energię do ogrzewania, co nie tylko podnosi koszty eksploatacji, ale także negatywnie wpływa na środowisko. W dłuższej perspektywie, ignorowanie zasad dotyczących efektywności energetycznej może skutkować koniecznością przeprowadzania kosztownych modernizacji budynków, aby spełnić aktualne normy. Kluczowe jest zatem zrozumienie, że każdy budynek powinien być projektowany z myślą o zastosowaniu nowoczesnych rozwiązań technologicznych, które nie tylko spełniają normy, ale także przyczyniają się do obniżenia kosztów eksploatacyjnych i ochrony zasobów naturalnych.

Pytanie 40

Zgodnie z obowiązującymi regulacjami, jaka powinna być minimalna odległość między budynkiem mieszkalnym a elektrownią wiatrową, której maksymalna wysokość wieży razem z promieniem skrzydeł wynosi 150 m?

A. 1000 m
B. 1500 m
C. 500 m
D. 2000 m
Wybór krótszych odległości, jak 500 m, 1000 m czy 2000 m, nie jest dobrym pomysłem, bo opiera się na błędnych założeniach o wpływie elektrowni wiatrowych na ich otoczenie. Odpowiedzi te nie biorą pod uwagę, że wyższe wieże i dłuższe skrzydła generują hałas, a do tego mogą powodować cień, co naprawdę wpływa na ludzi w pobliskich budynkach. Ustawienie elektrowni za blisko, jak 500 m, może spowodować dużo skarg na hałas i inne problemy w codziennym życiu. 1000 m też nie wystarcza, bo nie uwzględnia lokalnych warunków, które mogą nasilać dźwięki. Choć 2000 m może się wydawać lepsze, to z kolei może być niepraktyczne dla rozwoju przestrzeni i ekonomiki inwestycji. Ważne, żeby zrozumieć, że regulacje dotyczące minimalnych odległości opierają się na badaniach i doświadczeniach z całego świata, a nieprawidłowe podejście do tych spraw może prowadzić do konfliktów i spowolnienia rozwoju odnawialnych źródeł energii.