Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 15 kwietnia 2025 16:01
  • Data zakończenia: 15 kwietnia 2025 16:44

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na jakiej odległości od startu trasy usytuowany jest punkt 1/5+78,00 m?

A. 578,00 m
B. 2578,00 m
C. 1578,00 m
D. 278,00 m
Odpowiedź 1578,00 m jest prawidłowa, ponieważ punkt oznaczony jako 1/5+78,00 m oznacza, że od początku trasy, który jest punktem odniesienia, do punktu 1/5 znajdują się 1578,00 m. Przy obliczeniach można spotkać się z różnymi systemami oznaczania odległości, co w praktyce oznacza, że kluczowe jest zrozumienie konwencji i sposobu, w jaki różne punkty są numerowane lub oznaczane. Standardy branżowe, takie jak normy ISO dotyczące pomiarów geodezyjnych, jasno określają, jak należy interpretować tego typu oznaczenia. Dla inżynierów i specjalistów zajmujących się planowaniem tras, umiejętność prawidłowego odczytywania takich informacji jest niezbędna, zwłaszcza w kontekście projektowania infrastruktury transportowej, gdzie precyzyjne określenie odległości jest kluczowe dla bezpieczeństwa i efektywności ruchu drogowego.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Z jaką precyzją w odniesieniu do najbliższych punktów poziomej sieci geodezyjnej powinno się przeprowadzić pomiar inwentaryzacyjny włazu studzienki kanalizacyjnej?

A. 0,10 m
B. 0,50 m
C. 0,30 m
D. 0,20 m
Pomiar inwentaryzacyjny włazu studzienki kanalizacyjnej to sprawa dość poważna, więc wymagana dokładność 0,10 m to w sumie nic dziwnego. Jak wiemy, precyzyjne pomiary są mega ważne w geodezji. Na przykład, jeśli właz jest w miejscu, gdzie jest dużo zabudowań, to każda zmiana w układzie drogowym może wpłynąć na to, jak studzienki są lokalizowane. Jak się pomyli w pomiarze, to później mogą być problemy z dostępem do tych studzienek, a to nie jest to, co chcemy. Przykłady standardów, jak norma PN-EN ISO 17123, pokazują, że taka dokładność to nie jest tylko wymysł, ale konieczność w inwentaryzacji budynków. Starając się trzymać tych wytycznych, dajemy sobie szansę na bezpieczną i efektywną pracę z infrastrukturą, która jest pod ziemią.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Przeprowadzając pomiar kąta w dwóch pozycjach lunety, możliwe jest zredukowanie błędu

A. pionu optycznego
B. libelli okrągłej
C. kolimacji
D. urządzenia odczytowego
Odpowiedź "kolimacji" jest poprawna, ponieważ kolimacja odnosi się do procesu ustawiania instrumentów pomiarowych w taki sposób, aby ich osie były zgodne z osią referencyjną. W kontekście pomiarów kątowych, wykonywanie pomiaru w dwóch położeniach lunety pozwala na eliminację błędów związanych z niewłaściwą kolimacją lunety. Przykładowo, jeśli luneta jest źle skalibrowana, można to uwidocznić i skorygować, wykonując pomiar w dwóch różnych położeniach, co zapewnia lepszą dokładność i powtarzalność wyników. W praktyce, takie działania są zgodne z najlepszymi praktykami stosowanymi w geodezji i inżynierii, gdzie precyzyjne pomiary są kluczowe dla uzyskania wiarygodnych danych. Ponadto, standardy takie jak normy ISO dla instrumentów pomiarowych kładą duży nacisk na kalibrację i kolimację jako podstawowe elementy zapewnienia jakości pomiarów.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Plan zagospodarowania terenu powinien być wykonany na podstawie aktualnej mapy

A. branżowej
B. inwentaryzacyjnej
C. topograficznej
D. zasadniczej
Odpowiedź "zasadnicza" jest poprawna, ponieważ projekt zagospodarowania działki lub terenu należy sporządzić na podstawie mapy zasadniczej, która jest oficjalnym dokumentem zawierającym szczegółowe informacje o terenach, w tym granice działek, infrastrukturę oraz istniejące zagospodarowanie. Mapa zasadnicza jest kluczowym narzędziem w procesie planowania przestrzennego, ponieważ odzwierciedla aktualny stan zagospodarowania przestrzennego oraz umożliwia analizę i projektowanie nowych rozwiązań. W praktyce, architekci i planiści często korzystają z map zasadniczych w celu oceny potencjału działki, identyfikacji ograniczeń (np. strefy ochrony środowiska) oraz planowania przyszłego zagospodarowania. Dobre praktyki w zakresie sporządzania projektów uwzględniają również aktualizację mapy zasadniczej, aby zapewnić zgodność z obowiązującymi przepisami prawa budowlanego i lokalnymi planami zagospodarowania przestrzennego. Dodatkowo, znajomość mapy zasadniczej jest niezbędna w kontekście pozyskiwania pozwoleń na budowę oraz w procesach inwestycyjnych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Azymut węzłowy został obliczony na podstawie 4 ciągów poligonowych, w których zarejestrowano:
− ciąg nr I - 5 kątów,
− ciąg nr II - 4 kąty,
− ciąg nr III - 3 kąty,
− ciąg nr IV - 2 kąty.
Który z ciągów ma największą wagę?

A. Ciąg I
B. Ciąg III
C. Ciąg II
D. Ciąg IV
Ciąg II oraz Ciąg III mogą wydawać się na pierwszy rzut oka odpowiednimi odpowiedziami, lecz ich błędne rozumienie wagi obliczeń geodezyjnych prowadzi do nieprawidłowych wniosków. Waga pomiarów kątowych w poligonach nie jest bezpośrednio związana z ilością pomiarów, ale z ich jakością i powiązaniem z błędami pomiarowymi. Zrozumienie tego aspektu jest kluczowe w geodezji, aby odpowiednio ocenić niezawodność wyników. Ciąg I, który zawiera 5 kątów, nie ma większej wagi, tylko dlatego, że ma więcej pomiarów, ponieważ każdy dodatkowy kąt wprowadza potencjalne błędy i niepewność. W praktyce, kąt w ciągu, który ma mniejszą ilość pomiarów, będzie bardziej wiarygodny. Warto również zauważyć, że w geodezyjnych metodach obliczeniowych, takich jak triangulacja czy poligonowanie, większa liczba pomiarów nie zawsze przekłada się na lepsze wyniki. Często występuje zależność pomiędzy ilością pomiarów a ich jakością. Dlatego dla właściwego zrozumienia tematu, kluczowe jest uwzględnienie zasadności pomiarów i ich wpływu na końcowe rezultaty. Zbyt duża liczba pomiarów wprowadza ryzyko kumulacji błędów i niepewności, co jest sprzeczne z dążeniem do uzyskania jak najwyższej precyzji.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Kontrolę numeracji pikiet na szkicu oraz w dzienniku pomiarowym wykonuje się podczas pomiarów terenowych, aby zapewnić

A. zgodność prowadzenia szkicu polowego i dziennika pomiarowego
B. poprawność prowadzenia dziennika pomiarowego
C. poprawność prowadzenia szkicu polowego
D. poprawność przy kartowaniu pikiet na mapę
Zgodność prowadzenia szkicu polowego i dziennika pomiarowego jest kluczowym aspektem w procesie pomiarów terenowych, ponieważ obie te formy dokumentacji muszą odzwierciedlać te same dane pomiarowe i ich układ w terenie. Utrzymanie spójności między szkicem a dziennikiem pomiarowym pozwala na skuteczne śledzenie postępu prac oraz zapewnia, że późniejsza analiza danych będzie oparta na rzetelnych informacjach. Przykładowo, w przypadku wykrycia błędów w jednej z form dokumentacji, ich identyfikacja i korekta będą znacznie łatwiejsze, gdy obie dokumentacje będą ze sobą zgodne. W branży geodezyjnej istnieją ustalone standardy, które nakładają obowiązek prowadzenia takich dokumentów w sposób ułatwiający ich wzajemne weryfikowanie. W praktyce, podczas realizacji pomiarów, geodeta powinien regularnie sprawdzać, czy numery pikiet w szkicu odpowiadają tym wpisanym w dzienniku, co minimalizuje ryzyko błędów oraz ułatwia dalsze etapy pracy, takie jak kartowanie czy przygotowanie mapy. Właściwe utrzymanie zgodności dokumentacji jest nie tylko kwestią organizacyjną, ale również wpływa na jakość końcowych rezultatów pracy geodezyjnej.

Pytanie 17

Precyzja graficzna mapy odpowiada długości terenowej, która wynosi 0,1 mm na mapie. Z jaką precyzją został zaznaczony punkt na mapie w skali 1:5000?

A. ± 50,00 m
B. ± 0,50 m
C. ± 0,05 m
D. ± 5,00 m
Wybór odpowiedzi ± 50,00 m, ± 0,05 m lub ± 5,00 m pokazuje, że mamy do czynienia z pewnymi nieporozumieniami, jeśli chodzi o interpretację skali mapy i przeliczanie jednostek. Przy skali 1:5000 ważne jest, żeby zrozumieć, że jednostka na mapie odpowiada pięciokrotnemu powiększeniu w rzeczywistości. Odpowiedź ± 50,00 m jest zdecydowanie za duża, co sugeruje, że mogłeś się pomylić w zrozumieniu skali. Podobnie, ± 0,05 m pomija fakt, że 0,1 mm na mapie to tak naprawdę 0,5 m w terenie, więc ta odpowiedź też nie jest trafiona. Odpowiedź ± 5,00 m pokazuje, że myślisz o większym błędzie pomiarowym, ale nie uwzględnia skali. Te błędy mogą naprawdę wpłynąć na ważne rzeczy, jak planowanie przestrzenne, gdzie precyzyjna lokalizacja punktów ma kluczowe znaczenie. Więc warto zwracać uwagę na detale dotyczące skali i przeliczania jednostek, żeby uniknąć pomyłek i mieć pewność, że wyniki będą rzetelne.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Znając, że kontrola pomiarów z łaty w tachimetrii klasycznej wyrażona jest równaniem 2s = g + d, oblicz wartość odczytu z łaty kreski środkowej, jeśli odczyt z łaty kreski górnej wynosi g = 2 200 mm, a odczyt z łaty kreski dolnej to d = 1 600 mm?

A. s = 1,8 m
B. s = 1,7 m
C. s = 1,9 m
D. s = 2,0 m
Odpowiedź s = 1,9 m jest poprawna i wynika z zastosowania wzoru 2s = g + d, gdzie g to odczyt z łaty kreski górnej, a d to odczyt z łaty kreski dolnej. W tym przypadku mamy g = 2200 mm i d = 1600 mm. Podstawiając te wartości do wzoru, otrzymujemy: 2s = 2200 mm + 1600 mm, co daje 2s = 3800 mm. Dzieląc przez 2, uzyskujemy s = 1900 mm, co po przeliczeniu na metry daje 1,9 m. Takie obliczenia są kluczowe w tachimetrii, gdzie precyzyjne pomiary wysokości są niezbędne do określenia różnic terenu oraz do tworzenia dokładnych modeli topograficznych. Zastosowanie tego wzoru jest szerokie, od prac inżynieryjnych po geodezję, gdzie precyzja jest kluczowa dla sukcesu projektów budowlanych i infrastrukturalnych. Dobre praktyki w tej dziedzinie wymagają również odpowiedniej kalibracji sprzętu oraz uwzględnienia czynników atmosferycznych, które mogą wpływać na pomiary.

Pytanie 20

Mapa zasadnicza to rodzaj map

A. fizjologicznych
B. gospodarczych
C. społecznych
D. sozologicznych
Wybór map sozologicznych, społecznych czy fizjologicznych to rzeczywiście nie jest najlepszy pomysł. Mapy sozologiczne są bardziej nastawione na ochronę środowiska i zasoby naturalne, a nie na pokazanie cech terenu w ujęciu ekonomicznym. Właściwie, one nie dostarczają informacji o infrastrukturze gospodarczej, więc nie mogą być w zasadzie uznawane za mapę zasadniczą. Mapy społeczne, no, one mówią o demografii i podziale ludności, a więc też są zupełnie gdzie indziej. A co do map fizjologicznych – takie coś w kartografii w ogóle nie istnieje! Fajnie jest znać te pojęcia, ale trzeba je dobrze rozróżniać, bo nie mają one wiele wspólnego z funkcją mapy zasadniczej. Warto po prostu zrozumieć, jakie są różnice między tymi rodzajami map, żeby nie wprowadzać się w błąd.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Korzystając z którego z poniższych wzorów można obliczyć teoretyczną sumę kątów lewych w otwartym ciągu poligonowym, dowiązanym dwustronnie?

A. [β] = AP + AK - n × 200g
B. [α] = AK + AP - n × 200g
C. [α] = AK - AP + n × 200g
D. [β] = AP - AK + n × 200g
Wszystkie inne odpowiedzi zawierają elementy, które mogą wprowadzać w błąd, ponieważ nie uwzględniają kluczowego aspektu obliczania kątów w otwartym ciągu poligonowym. Na przykład, odpowiedzi sugerujące dodawanie lub odejmowanie kątów w sposób, który nie uwzględnia różnicy między kątami zewnętrznymi a wewnętrznymi, prowadzą do błędnych wyników. Często błędne zrozumienie zagadnienia wynika z mylnego przekonania, że sumy kątów w poligonach zamkniętych i otwartych są takie same, co jest nieprawdziwe. W przypadku poligonów otwartych, kąt wewnętrzny odgrywa inną rolę, a jego obliczenia muszą być dostosowane, by uwzględniały liczbę boków oraz charakterystykę geometrii. Używanie niewłaściwych wzorów, takich jak dodawanie dodatkowych kątów bez uwzględnienia ich rzeczywistego wpływu na geometrię poligonu, prowadzi do poważnych błędów w pomiarach. Dlatego ważne jest, aby przy podejmowaniu decyzji o wyborze wzoru kierować się nie tylko intuicją, ale także solidnym zrozumieniem zasad geometrii i metrologii, które są podstawą efektywnej i precyzyjnej pracy w dziedzinie geodezji i inżynierii.

Pytanie 26

Jaką precyzję graficzną można osiągnąć dla mapy o skali 1:2000, jeśli średni błąd lokalizacji elementu terenowego na tej mapie wynosi ±0,1 mm w skali mapy?

A. ±0,02 m
B. ±0,2 m
C. ±2 m
D. ±0,002 m
Wybór innych odpowiedzi może wynikać z nieprawidłowego zrozumienia relacji między skalą mapy a rzeczywistymi wymiarami w terenie. Odpowiedzi takie jak ±0,002 m, ±2 m czy ±0,02 m są błędne ze względu na niewłaściwe przeliczenie błędu pomiarowego w kontekście skali. Na przykład, odpowiedź ±0,002 m mogłaby wynikać z pomylenia jednostek lub niezrozumienia, że przeliczenie dotyczy skali, a nie jedynie wartości błędu. Z kolei ±2 m to znacznie większa wartość, która nie znajduje zastosowania w kontekście mapy w skali 1:2000. Tego rodzaju oszacowania mogą prowadzić do poważnych błędów w pracach geodezyjnych, gdzie precyzja jest kluczowa. Dodatkowo, odpowiedź ±0,02 m również nie odzwierciedla właściwego przeliczenia, ponieważ jest to wartość, która nie odpowiada założonemu błędowi pomiarowemu. Problemem jest często brak umiejętności przeliczania błędów pomiarów w kontekście skali, co jest podstawą w geodezji i kartografii. Dobrze zrozumiane zasady przeliczania błędów w zależności od skali mapy są niezbędne, aby uniknąć nieporozumień i błędnych interpretacji w praktyce zawodowej.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jaką maksymalną liczbę boków może mieć jednostronnie nawiązany wielokąt?

A. 4 boki
B. 3 boki
C. 2 boki
D. 5 boków
Wybór innych opcji, takich jak 5, 3 czy 4 boki, wynika z nieporozumienia odnośnie definicji poligonów jednostronnie nawiązanych. Poligon ten, jak sama nazwa wskazuje, charakteryzuje się tym, że jest formą zamkniętą, której wierzchołki są połączone w sposób umożliwiający ich zamknięcie, jednakże jednocześnie nie może mieć więcej niż dwóch boków ze względu na reguły geometrii. W przypadku odpowiedzi wskazujących na 3 boki, 4 boki czy 5 boków, pojawia się typowy błąd myślowy związany z interpretacją poligonu jako figury wielokątnej, co wprowadza w błąd. Tego typu koncepcje są powszechnie spotykane, szczególnie w kontekście nauczania geometrii, gdzie uczniowie często mylą definicje figur. Aby wyjaśnić, dlaczego te odpowiedzi są nieprawidłowe, warto zaznaczyć, że każdy dodany bok w rzeczywistości przekształca jednostronnie nawiązany poligon w inną klasę figur, co narusza definicję jednostronnych poligonów. Z tego powodu, dla prawidłowego rozumienia koncepcji geometrycznych, kluczowe jest precyzyjne zaznajomienie się z definicjami i regułami rządzącymi poszczególnymi typami figur, co jest istotne w kontekście nauk matematycznych i inżynierskich.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Zmiany wynikające z wywiadu terenowego powinny być oznaczone kolorem

A. żółtym
B. czarnym
C. czerwonym
D. brązowym
Zaznaczanie zmian na mapie wywiadu terenowego czerwonym kolorem to naprawdę dobra praktyka w kartografii. Czerwony często używa się do oznaczania rzeczy, które są ważne, jak zmiany w infrastrukturze czy jakieś zagrożenia środowiskowe. Używając czerwieni, w szybki sposób możemy pokazać najistotniejsze info, co jest mega ważne, gdy podejmujemy decyzje. Na przykład, jak obserwujemy zmiany w gruntach, to obszary na czerwono mogą wskazywać miejsca, gdzie coś się mocno zmieniło, jak urbanizacja czy degradacja. Fajnie jest także mieć legendę na mapie, która wyjaśnia, co oznaczają kolory, bo to ułatwia zrozumienie danych. W kontekście GIS kolorowanie jest kluczowe dla wizualizacji, a dobre dobranie kolorów poprawia jakość analizy i interpretacji wyników.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Długość boku kwadratowej działki zmierzona w terenie wynosi 10 m. Jaka jest powierzchnia tej działki na mapie w skali 1:500?

A. 40,0 cm2
B. 400,0 cm2
C. 0,4 cm2
D. 4,0 cm2
Poprawna odpowiedź to 4,0 cm², ponieważ aby obliczyć powierzchnię działki kwadratowej w skali 1:500, musimy najpierw przeliczyć rzeczywiste wymiary działki. Długość boku działki wynosi 10 m, co w skali 1:500 przekłada się na 10 m / 500 = 0,02 m, czyli 2 cm na mapie. Powierzchnia kwadratu obliczana jest jako długość boku podniesiona do kwadratu, zatem 2 cm * 2 cm = 4 cm². Przykładowo, w planowaniu przestrzennym i geodezji, ważne jest, aby stosować odpowiednie skale, aby uzyskać dokładne odwzorowanie wymiarów rzeczywistych na mapach, co ma kluczowe znaczenie w procesach takich jak podział gruntów czy przygotowanie projektów budowlanych. Zastosowanie skal pozwala na precyzyjne przedstawienie dużych obszarów na małej powierzchni, co jest niezbędne w dokumentacji geodezyjnej oraz urbanistycznej.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Mapy zasadniczej nie sporządza się w skali

A. 1:1000
B. 1:5000
C. 1:10000
D. 1:2000
Odpowiedź 1:10000 jest prawidłowa, ponieważ mapy zasadnicze są tworzone w skali 1:10000, co jest zgodne ze standardami określonymi w przepisach dotyczących geodezji i kartografii. Ta skala jest optymalna dla prezentacji lokalnych szczegółów w terenie, co czyni ją niezwykle przydatną w działaniach związanych z urbanistyką, planowaniem przestrzennym oraz w procesach inwestycyjnych. Właściwe odwzorowanie terenu w tej skali umożliwia dokładne pomiary i analizy, które są niezbędne w planowaniu budynków, dróg oraz infrastruktury. Mapy w tej skali są zazwyczaj wykorzystywane w projektach budowlanych, gdzie precyzyjne odwzorowanie elementów terenu, takich jak granice działek, sieci uzbrojenia terenu oraz istniejące obiekty, jest kluczowe dla skutecznego zarządzania inwestycją. Zgodność z normami, takimi jak PN-ISO 19110, podkreśla znaczenie jakości danych w procesach geoinformacyjnych, co sprawia, że skala 1:10000 jest szeroko uznawana jako standardowa w polskiej geodezji.

Pytanie 36

System informacyjny, który umożliwia zbieranie, aktualizację i udostępnianie danych o sieciach uzbrojenia terenu GESUT, to

A. ewidencja geometryczna systemu uzbrojenia terenu
B. geodezyjna ewidencja sieci uzbrojenia terenu
C. ewidencja geometryczna sieci uzbrojenia terenu
D. ewidencja geodezyjna systemu urządzeń technicznych
Geodezyjna ewidencja sieci uzbrojenia terenu (GESUT) jest kluczowym narzędziem w zarządzaniu infrastrukturą przestrzenną. Odpowiedź, która wskazuje na geodezyjną ewidencję, jest prawidłowa, ponieważ koncentruje się na precyzyjnym zbieraniu i utrzymywaniu danych geodezyjnych dotyczących sieci uzbrojenia, takich jak wodociągi, kanalizacje czy linie energetyczne. GESUT umożliwia nie tylko aktualizację tych danych, ale także ich udostępnianie różnym użytkownikom, co ma istotne znaczenie w kontekście planowania przestrzennego i zarządzania kryzysowego. Przykładowo, w sytuacji awarii sieci wodociągowej, szybki dostęp do map GESUT może znacząco przyspieszyć działania naprawcze. Dodatkowo, zgodnie z dobrymi praktykami branżowymi, ewidencja ta powinna być zgodna z krajowymi standardami, co pozwala na jej integrację z innymi systemami informacyjnymi, w tym ewidencją gruntów i budynków. Takie zintegrowane podejście wspiera efektywne zarządzanie infrastrukturą oraz podnosi jakość świadczonych usług.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Jakiej z wymienionych zasad nie wolno zastosować podczas sporządzania szkicu terenu przy pomiarze sytuacyjnym metodą ortogonalną?

A. Wpisania miar bieżących zdejmowanych punktów prostopadle do linii pomiarowej
B. Wpisania rzędnych punktów zdejmowanych równolegle do prostokątnej linii domiaru
C. Podania domiarów biegunowych (α, d) punktów, które są zdejmowane
D. Podania miary bieżącej (0,00) przy początkowym punkcie linii pomiarowej
Podanie domiarów biegunowych (α, d) zdejmowanych punktów nie jest zasadą stosowaną w metodzie ortogonalnej, ponieważ ta metoda opiera się na pomiarze prostopadłym do linii podstawowej oraz na określeniu odległości w kierunkach prostopadłych do tej linii. Przy pomiarach ortogonalnych kluczowe jest zachowanie prostokątności, co umożliwia precyzyjne wyznaczenie położenia punktów w przestrzeni. W praktyce, jeśli chcemy zmierzyć odległości i kąty, stosuje się metody, które umożliwiają dokładne określenie pozycji w oparciu o rzędne i odległości w kierunkach prostokątnych. Znajomość zasad stosowanych w różnych metodach pomiarowych jest istotna dla uzyskania dokładnych i wiarygodnych wyników, co jest kluczowe w geodezji i kartografii. Na przykład, w terenie, gdzie niemożliwe jest stosowanie domiarów biegunowych, możemy skupić się na pomiarach ortogonalnych przy pomocy teodolitu lub tachimetru, co zapewnia wysoką precyzję.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Jeśli pomiar na łacie niwelacyjnej w kierunku wstecznym wyniósł 3549, a na łacie w kierunku przednim 0506, jaka jest różnica wysokości na pozycji niwelatora?

A. -4,055 m
B. -3,043 m
C. +3,043 m
D. +4,055 m
Odpowiedź +3,043 m jest poprawna, ponieważ obliczenie różnicy wysokości na stanowisku niwelatora opiera się na zasadzie, że różnica ta jest równa odczytowi na łacie wstecz minus odczytowi na łacie w przód. W tym przypadku, mamy 3549 mm (odczyt wstecz) minus 0506 mm (odczyt w przód). Wykonując to obliczenie: 3549 - 506 = 3043 mm. Przekształcając milimetry na metry, otrzymujemy 3,043 m, co oznacza, że niwelator znajdował się na wyższej wysokości względem łaty w przód. W praktyce, takie obliczenia są kluczowe w geodezji i budownictwie, gdyż pozwalają na precyzyjne ustalanie różnic wysokości, co jest niezbędne przy wyznaczaniu poziomów budynków, dróg czy innych konstrukcji. Zgodnie z zaleceniami branżowymi, ważne jest również, aby przed przystąpieniem do pomiarów sprawdzić kalibrację sprzętu, aby zapewnić dokładność wyników pomiarów.