Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 25 maja 2025 20:45
  • Data zakończenia: 25 maja 2025 20:58

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

W instalacji zasilającej bez osuszaczy, przewód do rozprowadzania sprężonego powietrza powinien być układany ze spadkiem w kierunku przepływu powietrza, wynoszącym blisko

A. 11%
B. 5%
C. 13%
D. 1%
Przewód rozprowadzający sprężone powietrze powinien być montowany ze spadkiem wynoszącym około 1% w kierunku przepływu powietrza z kilku istotnych powodów. Przede wszystkim, taki spadek umożliwia efektywne usuwanie wilgoci, która jest nieodłącznym towarzyszem sprężonego powietrza. Wilgoć, będąc cięższa od powietrza, gromadzi się w dolnych partiach przewodów, co może prowadzić do korozji ich wnętrza oraz obniżenia efektywności systemu. Przy odpowiednim nachyleniu, woda jest skutecznie odprowadzana, co znacząco poprawia wydajność systemu sprężonego powietrza. W praktyce, montując przewody ze spadkiem 1%, można zobaczyć znaczną różnicę w ilości zanieczyszczeń i osadów w zbiornikach, co przekłada się na dłuższą żywotność sprzętu i zmniejszenie kosztów utrzymania. Dobrymi praktykami w branży są regularne inspekcje i konserwacja systemów sprężonego powietrza, co powinno obejmować również kontrolę nachylenia przewodów. Warto również odnosić się do standardów, takich jak ISO 8573, które definiują jakość sprężonego powietrza i podkreślają znaczenie eliminacji wilgoci w systemach pneumatycznych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Wskaż operator używany w języku IL, który musi być uwzględniony w programie sterującym, aby zrealizować instrukcję skoku do etykiety FUN_1?

A. CAL FUN_1
B. RET FUN_1
C. JMP FUN_1
D. LD FUN_1
Wybór jednego z pozostałych operatorów, takich jak LD, CAL lub RET, wskazuje na nieporozumienie dotyczące funkcji tych instrukcji w kontekście programowania w języku IL. Operator LD (load) jest używany do załadowania wartości do rejestru, co jest istotne w przypadku, gdy chcemy przetworzyć dane. Użycie go w miejsce JMP oznacza, że programista myli proces ładowania wartości z kontrolowaniem przepływu wykonania programu. CAL (call) z kolei jest stosowany do wywoływania podprogramów, co jest przydatne w kontekście modularnego programowania, ale nie służy do przechodzenia do etykiety w głównym programie. RET (return) kończy działanie podprogramu i zwraca kontrolę do miejsca, z którego został wywołany, przez co nie może być użyty do skoków w obrębie głównego programu. Takie podejście prowadzi do nieefektywnego zarządzania kodem, a także może skutkować błędami logicznymi w programie. Typowym błędem myślowym jest mylenie ogólnych instrukcji manipulacji danymi z instrukcjami kontrolującymi przepływ programu, co może prowadzić do nieprawidłowego działania aplikacji w rzeczywistych systemach automatyki.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Podczas serwisowania układów hydraulicznych, jakie działanie jest kluczowe?

A. Sprawdzenie szczelności połączeń
B. Malowanie rurociągów
C. Sprawdzenie jakości farby na urządzeniach
D. Usuwanie zanieczyszczeń z powierzchni zewnętrznych
Sprawdzenie szczelności połączeń w układach hydraulicznych to kluczowy krok w procesie serwisowania. Wszelkie nieszczelności mogą prowadzić do wycieków płynów, co z kolei może skutkować spadkiem ciśnienia roboczego, co jest niebezpieczne dla całego systemu. Nieszczelności mogą także prowadzić do zanieczyszczenia płynu hydraulicznego, co ma negatywny wpływ na wydajność i trwałość pompy oraz innych elementów układu. Regularne sprawdzanie szczelności pomaga w wykrywaniu potencjalnych problemów zanim doprowadzą one do poważniejszych awarii. Dzięki temu można zapewnić dłuższą żywotność układu i uniknąć kosztownych napraw. Stosując odpowiednie metody diagnostyczne, takie jak testy ciśnieniowe czy użycie specjalnych płynów detekcyjnych, można zlokalizować nawet najmniejsze nieszczelności. W praktyce, konserwacja i sprawdzanie szczelności połączeń jest nie tylko dobrą praktyką, ale wręcz standardem w branży, który zapewnia bezpieczne i efektywne działanie układów hydraulicznych.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jakie polecenie w środowisku programowania sterowników PLC pozwala na przesłanie programu z urządzenia do komputera?

A. Single Read
B. Chart Status
C. Upload
D. Download
Polecenie Upload jest kluczowym elementem pracy z programowalnymi sterownikami logicznymi (PLC) i pozwala na przesyłanie programu z urządzenia do komputera. Dzięki temu inżynierowie mają możliwość archiwizacji, analizy i modyfikacji programów, co jest niezbędne w kontekście efektywnego zarządzania systemami automatyki. Przykładowo, w przypadku konieczności aktualizacji programu, operator może przesłać aktualną wersję na komputer, aby zachować wszelkie wprowadzone zmiany w bezpiecznym miejscu. Również w sytuacjach awaryjnych, gdy nastąpią nieprawidłowości w działaniu maszyny, przesyłanie programu może umożliwić szybszą diagnozę problemu. Zgodnie z dobrymi praktykami branżowymi, regularne wykonywanie operacji Upload jest niezbędne do zapewnienia bezpieczeństwa i niezawodności systemów automatyki, umożliwiając powrót do stabilnych wersji oprogramowania oraz umożliwiając zespołom inżynierskim analizowanie rozwoju projektu.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jaki blok powinien być użyty w systemie sterującym do zliczania impulsów, które występują w odstępach krótszych niż czas jednego cyklu programu sterownika?

A. Dzielnik częstotliwości
B. Szybki licznika (HSC)
C. Czasowy TON (o opóźnionym załączaniu)
D. Czasowy TOF (o opóźnionym wyłączaniu)
Szybki licznik (HSC) jest idealnym rozwiązaniem w sytuacjach, gdy konieczne jest zliczanie impulsów, które występują w odstępach krótszych niż cykl programowy sterownika. Blok HSC wykorzystuje sprzętowy licznik zegara, co pozwala na rejestrację impulsów z dużą częstotliwością bez straty danych. W praktyce, zastosowanie HSC można zauważyć w systemach automatyki, gdzie monitorowane są sygnały z czujników, takich jak enkodery czy czujniki przepływu. Dzięki temu, HSC umożliwia szybkie reagowanie na zmiany w procesie, co jest niezbędne w aplikacjach wymagających precyzyjnego zarządzania czasem. Warto również zaznaczyć, że wykorzystanie HSC jest zgodne z najlepszymi praktykami w inżynierii, które zalecają stosowanie rozwiązań sprzętowych do zadań czasowo krytycznych dla maksymalizacji wydajności i niezawodności systemu. Użycie HSC pozwala także na optymalizację obciążenia CPU sterownika, co jest kluczowe w bardziej złożonych aplikacjach, gdzie liczne operacje wymagają precyzyjnego zarządzania cyklem programowym.

Pytanie 13

Zidentyfikuj sieć przemysłową z topologią w kształcie pierścienia.

A. Profibus DP
B. Modbus
C. InterBus-S
D. LonWorks
InterBus-S jest standardem komunikacyjnym wykorzystywanym w automatyce przemysłowej, który charakteryzuje się topologią pierścieniową. Ta struktura sieciowa umożliwia efektywną komunikację między urządzeniami oraz zapewnia wysoki poziom niezawodności i elastyczności. W topologii pierścieniowej każde urządzenie jest połączone z dwoma innymi, co oznacza, że sygnał przechodzi przez wszystkie węzły sieci w jednym kierunku. Dzięki temu, w przypadku awarii jednego z urządzeń, możliwe jest kontynuowanie komunikacji, co jest istotne dla utrzymania ciągłości procesów przemysłowych. InterBus-S znajduje zastosowanie w różnych aplikacjach, takich jak systemy automatyki w zakładach produkcyjnych, gdzie kontrola i monitoring procesów są kluczowe. Przykładem praktycznego zastosowania może być integracja czujników i napędów w systemach robotyki przemysłowej, gdzie szybkość i niezawodność komunikacji są kluczowe. W branży automatyki stosuje się najlepsze praktyki, takie jak projektowanie z uwzględnieniem redundancji, co czyni InterBus-S odpowiednim wyborem dla krytycznych aplikacji przemysłowych.

Pytanie 14

Na rysunkach technicznych cienką linią dwupunktową oznacza się

A. linie gięcia przedmiotów ukazanych w rozwinięciu
B. przejścia pomiędzy jedną powierzchnią a drugą w miejscach delikatnie zaokrąglonych
C. powierzchnie elementów, które są poddawane obróbce powierzchniowej
D. widoczne krawędzie oraz wyraźne kontury obiektów w widokach i przekrojach
Linie dwupunktowe cienkie na rysunkach technicznych mają kluczowe znaczenie w procesie projektowania oraz produkcji elementów mechanicznych. Oznaczają one miejsca gięcia w przedmiotach przedstawionych w rozwinięciu, co pozwala na precyzyjne określenie kierunków oraz miejsc, w których materiał powinien być zginany. Przykładowo, w procesie produkcji blacharskiej, stosowanie tych linii jest niezwykle istotne, ponieważ umożliwia wykonanie elementów o zamierzonym kształcie oraz zapewnia ich prawidłowy montaż. Współczesne standardy branżowe, takie jak ISO 128-23, podkreślają znaczenie odpowiedniego oznaczania linii gięcia w dokumentacji technicznej. Dzięki temu możliwe jest uniknięcie błędów w obróbce oraz zapewnienie zgodności z wymaganiami technicznymi. W rezultacie, zrozumienie roli linii dwupunktowych cienkich w rysunkach technicznych jest niezbędne dla każdego inżyniera i technika, co przyczynia się do efektywności procesów produkcyjnych oraz jakości finalnych wyrobów.

Pytanie 15

Jakie elementy powinny być zacienione na rysunku technicznym przekroju komponentu?

A. Tylko o kształtach obrotowych.
B. O kształtach oczywistych.
C. Żebra.
D. Wyrwania.
Wybór "Wyrwania" jako poprawnej odpowiedzi jest zgodny z zasadami rysunku technicznego oraz praktycznymi aspektami projektowania detali. W rysunku technicznym przekroju detalu zakreskowane elementy są kluczowe dla zrozumienia struktury i funkcji komponentu. Wyrwania, które są usuniętymi fragmentami, są ważne, ponieważ umożliwiają przedstawienie wewnętrznych elementów, które w przeciwnym razie byłyby niewidoczne. Przykładem mogą być otwory lub wcięcia, które są istotne dla montażu lub działania detalu. W praktyce, projektanci muszą przestrzegać norm, takich jak ISO 128 oraz ISO 1101, które określają zasady zakreskowania oraz prezentacji detali na rysunkach technicznych. Dzięki tym standardom, komunikacja pomiędzy inżynierami, producentami i wykonawcami jest bardziej klarowna. Prawidłowe zrozumienie, które elementy należy zakreskować, jest niezbędne w procesie projektowania, aby zapewnić, że wszystkie kluczowe aspekty konstrukcji są jasno przedstawione i zrozumiane przez wszystkich zainteresowanych.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jak skutecznie programować sterownik PLC w celu sterowania silnikiem elektrycznym?

A. Zmienić napięcie wejściowe na wyższe, co może być niebezpieczne
B. Zaprojektować algorytm sterowania uwzględniający warunki startu i zatrzymania
C. Zwiększyć ilość podłączonych przewodów, co zwykle nie jest konieczne
D. Zainstalować dodatkowe czujniki podczerwieni, aby monitorować otoczenie
Programowanie sterownika PLC do sterowania silnikiem elektrycznym to zadanie wymagające uwzględnienia wielu czynników. Kluczem do sukcesu jest zaprojektowanie algorytmu sterowania, który uwzględnia warunki startu, zatrzymania oraz inne istotne elementy procesu sterowania. Algorytm powinien być przemyślany w kontekście bezpieczeństwa oraz efektywności energetycznej. Dobre praktyki branżowe wskazują, że należy używać strukturyzowanego podejścia do programowania, które umożliwia łatwe utrzymanie i modyfikację kodu w przyszłości. Przykładowo, przed uruchomieniem silnika należy upewnić się, że wszystkie warunki startowe są spełnione, a w przypadku zatrzymania – że proces ten odbywa się w sposób kontrolowany. Moim zdaniem, warto także uwzględnić mechanizmy zabezpieczające przed przeciążeniem silnika. Istotnym elementem jest również testowanie algorytmu w różnych scenariuszach przed wdrożeniem go w rzeczywistym środowisku.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

W procesie automatyzacji produkcji, jaką rolę pełni czujnik indukcyjny?

A. Monitorowanie wilgotności
B. Kontrola poziomu płynów
C. Detekcja obecności metalowych obiektów
D. Pomiar temperatury
Czujnik indukcyjny to niezwykle ważny element w automatyzacji produkcji, szczególnie w branżach, gdzie kluczowe jest wykrywanie obecności metalowych obiektów. Działa na zasadzie zmiany pola elektromagnetycznego w momencie, gdy obiekt metalowy zbliża się do czujnika. Taki mechanizm działania pozwala na skuteczną detekcję metali bez konieczności fizycznego kontaktu z obiektem, co jest nieocenione w aplikacjach, gdzie kontakt może być niebezpieczny lub niewygodny. Przykłady zastosowań obejmują linie montażowe, gdzie czujniki indukcyjne kontrolują obecność metalowych części, czy systemy bezpieczeństwa, gdzie monitorują obecność metalowych elementów w krytycznych punktach systemu. Czujniki te charakteryzują się również dużą trwałością i odpornością na warunki środowiskowe, co czyni je niezastąpionymi w trudnych warunkach przemysłowych. Dzięki swojej precyzji i niezawodności, czujniki indukcyjne są powszechnie stosowane w różnych gałęziach przemysłu, od motoryzacyjnego po spożywczy, zapewniając efektywność i bezpieczeństwo procesów technologicznych.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Który z wymienionych fragmentów kodu assemblera wskazuje na realizację operacji dodawania przez procesor?

A. SUB
B. ADD
C. DIV
D. MUL
Kod 'ADD' jest skrótem od angielskiego słowa 'addition', co w kontekście programowania assemblerowego oznacza operację dodawania. W zasadzie instrukcja ta instruuje procesor, aby dodał wartości znajdujące się w dwóch rejestrach lub pomiędzy rejestrami a pamięcią. Przykładowo, jeśli mamy rejestry R1 i R2, używając instrukcji 'ADD R1, R2', procesor doda wartość z R2 do wartości w R1 i zapisze wynik z powrotem w R1. To podejście jest kluczowe w obliczeniach arytmetycznych i w wielu algorytmach przetwarzania danych. Dodatkowo, stosowanie instrukcji 'ADD' w kodzie assemblera jest zgodne z najlepszymi praktykami w programowaniu niskopoziomowym, gdzie precyzyjne zarządzanie operacjami arytmetycznymi jest niezbędne dla wydajności aplikacji. Użycie tej instrukcji jest również powszechne w kontekście optymalizacji kodu, gdzie reducowanie liczby operacji arytmetycznych przekłada się na szybsze działanie programów.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jakie są cele stosowania systemów do monitorowania parametrów pracy urządzeń mechatronicznych?

A. Poprawy wizerunku firmy
B. Obniżenia kosztów zatrudnienia
C. Skrócenia czasu naprawy urządzenia
D. Zwiększenia częstotliwości przeglądów urządzenia
Wybór przyczyn zastosowania systemów monitorowania parametrów pracy urządzeń mechatronicznych jest istotnym zagadnieniem, które wymaga zrozumienia rzeczywistych korzyści płynących z tych systemów. Odpowiedzi sugerujące, że celem ich wdrożenia jest zmniejszenie kosztów zatrudnienia, są mylące. Efektywność systemów monitorowania nie polega na redukcji etatów, ale na zwiększeniu efektywności personelu poprzez dostarczanie im narzędzi do szybkiej diagnozy i reakcji na problemy. Z kolei poprawa wizerunku firmy, choć może być konsekwencją efektywnego zarządzania urządzeniami, nie jest bezpośrednim celem monitorowania. W rzeczywistości, wizerunek firmy kształtują przede wszystkim wyniki operacyjne oraz jakość produktów, które są efektem skutecznej kontroli i utrzymania sprawności urządzeń. Ponadto, zwiększenie częstotliwości przeglądów urządzeń nie jest efektem systemów monitorowania. Te systemy mają na celu optymalizację przeglądów poprzez precyzyjne określenie momentu, w którym urządzenie wymaga interwencji, co w rezultacie może prowadzić do zmniejszenia ich liczby, a nie zwiększenia. Typowe błędy myślowe związane z tymi odpowiedziami polegają na uproszczeniu roli systemów monitorowania do jednego aspektu, podczas gdy rzeczywiste korzyści są wieloaspektowe i złożone, obejmujące zarówno oszczędności kosztów, jak i poprawę efektywności operacyjnej.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Na podstawie przedstawionych danych katalogowych narzędzia skrawającego określ wartość grubości warstwy skrawanej, którą należy ustawić w obrabiarce CNC dla obróbki zgrubnej stali.

Rodzaj obróbkiDokładność obróbkiChropowatość powierzchni
(Ra) μm
Zakres posuwów
mm/obr
Zakres głębokości
mm
Obróbka dokładnaIT6-IT90,32÷1,250,05÷0,30,5÷2
Obróbka średniodokładnaIT9-IT112,5÷50,2÷0,52÷4
Obróbka zgrubnaIT12-IT1410÷40≥0,4≥4

A. 5,0 mm
B. 0,5 mm
C. 2,0 mm
D. 0,8 mm
Odpowiedź "5,0 mm" jest poprawna, ponieważ odpowiada minimalnej wartości głębokości skrawania dla obróbki zgrubnej stali, która według danych katalogowych narzędzia skrawającego powinna wynosić co najmniej 4 mm. W obróbce zgrubnej kluczowe jest zastosowanie odpowiedniej głębokości skrawania, aby efektywnie usunąć większe ilości materiału w krótszym czasie, co jest szczególnie istotne w przypadku stali, gdzie twardość materiału wymaga zastosowania bardziej agresywnych parametrów obróbczych. Dodatkowo, wybór głębokości skrawania na poziomie 5,0 mm pozwala na zminimalizowanie liczby przejść, co przekłada się na oszczędności czasu i kosztów produkcji. Zgodnie z normami branżowymi, takie zgrubne obróbki powinny być wykonywane z uwzględnieniem odpowiednich parametrów skrawania, aby uniknąć uszkodzeń narzędzia oraz zapewnić jakość powierzchni obrabianej. W praktyce, stosując głębokość skrawania równą 5,0 mm, operatorzy maszyn CNC mogą osiągnąć optymalne wyniki produkcyjne, co jest kluczowe w przemyśle obróbczo-mechanicznym.

Pytanie 29

Który z poniższych kwalifikatorów działań w metodzie SFC odnosi się do uzależnień czasowych?

A. L
B. S
C. N
D. R
Kwalifikator 'L' w metodzie SFC (Sequential Function Chart) odnosi się do opóźnienia czasowego, co jest kluczowym mechanizmem w programowaniu sterowników PLC. Umożliwia on wprowadzenie zaplanowanego opóźnienia przed przejściem do następnego kroku w sekwencji działań. Jest to niezwykle istotne w aplikacjach, gdzie synchronizacja i czas reakcji mają krytyczne znaczenie, na przykład w systemach automatyki przemysłowej. W praktyce, zastosowanie opóźnienia może być użyte do zapewnienia, że sprzęt wykonawczy ma wystarczająco dużo czasu na zakończenie jednego zadania przed rozpoczęciem kolejnego, co minimalizuje ryzyko błędów i kolizji. Na przykład, w systemie linii produkcyjnej, może być niezbędne, aby roboty miały czas na przeniesienie komponentów, zanim uruchomi się kolejny proces. Użycie kwalifikatora 'L' jest zgodne z najlepszymi praktykami projektowania systemów automatyki, gdzie czas i synchronizacja działań są kluczowe dla efektywności i bezpieczeństwa operacji.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Do precyzyjnego pomiaru natężenia prądu elektrycznego w układach mechatronicznych zaleca się wykorzystanie amperomierza o

A. jak najmniejszej rezystancji wewnętrznej
B. dowolnej wartości rezystancji wewnętrznej, ponieważ nie wpływa ona na uzyskany wynik
C. jak największej rezystancji wewnętrznej
D. rezystancji wewnętrznej równej rezystancji odbiornika
Użycie amperomierza z jak najmniejszą rezystancją wewnętrzną jest kluczowe dla uzyskania dokładnych pomiarów natężenia prądu elektrycznego w układach mechatronicznych. Amperomierz, będąc elementem pomiarowym, powinien mieć minimalny wpływ na obwód, w którym jest włączony. Im mniejsza rezystancja wewnętrzna, tym mniej energii z obwodu odbierze amperomierz, co przekłada się na dokładniejsze odczyty. W praktyce, jeśli użyjemy amperomierza o dużej rezystancji, może to prowadzić do znacznego spadku natężenia prądu w obwodzie, co skutkuje błędnym pomiarem. Przykładem zastosowania wysokiej jakości amperomierzy o niskiej rezystancji wewnętrznej są aplikacje w elektronice, w których precyzyjne pomiary prądu są niezbędne do właściwego funkcjonowania urządzeń. Standardy branżowe, takie jak IEC 61010, podkreślają znaczenie używania urządzeń pomiarowych, które minimalizują wpływ na badany obwód.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Jakie działanie podejmowane w trakcie konserwacji napędu elektrycznego jest sprzeczne z zasadami obsługi urządzeń?

A. Oczyszczenie zabrudzonych styków łączników za pomocą pilnika.
B. Usunięcie kurzu i wyczyszczenie radiatorów z brudu za pomocą szmatki.
C. Obserwacja działania wentylatorów poprzez słuchanie wydawanego przez nie hałasu.
D. Weryfikacja połączeń elektrycznych przy użyciu omomierza
Odpowiedź "Oczyszczenie pilnikiem zabrudzonych styków łączników" jest prawidłowa, ponieważ stosowanie pilnika do czyszczenia styków może prowadzić do ich mechanicznego uszkodzenia. Styk elektryczny jest elementem, który powinien zapewniać doskonały kontakt przewodzący, a jego powierzchnia musi być gładka i wolna od zarysowań. Użycie pilnika może spowodować mikrouszkodzenia, które zmniejszą przewodność elektryczną i zwiększą oporność, co w konsekwencji może prowadzić do przegrzewania się i awarii całego napędu elektrycznego. Zalecane metody czyszczenia styków to użycie specjalnych środków chemicznych i narzędzi, takich jak szczoteczki czy ściereczki, które są przeznaczone do czyszczenia elementów elektrycznych. Standardy branżowe, takie jak IEC 60364, podkreślają znaczenie zachowania integralności styków elektrycznych, co jest kluczowe dla bezpiecznej i efektywnej pracy urządzeń elektrycznych.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

W tabeli podano dane techniczne sterownika PLC. Jakim maksymalnym prądem można obciążyć sterownik, dołączając do jego wyjścia silnik?

Dane techniczne
Napięcie zasilająceAC/DC 24 V
Wejścia:
Zakres dopuszczalny
Przy sygnale „0"
Przy sygnale „1"
Prąd wejściowy

DC 20,4 ... 28,8 V
maks. AC/DC 5 V
min. AC/DC 12 V
2,5 mA
Wyjścia:
Rodzaj
Prąd ciągły

4 przekaźnikowe
10 A - przy obciążeniu rezystancyjnym,
3 A - przy obciążeniu indukcyjnym

A. 7,0 A
B. 3,0 A
C. 2,5 A
D. 10,0 A
Odpowiedź 3,0 A jest poprawna, ponieważ zgodnie z danymi technicznymi sterownika PLC, jego maksymalny prąd obciążenia wynosi 3 A. Przy podłączeniu silnika do wyjścia sterownika należy zawsze zwrócić uwagę na jego parametry, ponieważ zarówno prąd, jak i napięcie zasilające muszą być zgodne z danymi katalogowymi urządzenia. W przypadku obciążeń indukcyjnych, takich jak silniki, warto również wziąć pod uwagę prąd rozruchowy, który może być znacznie wyższy od prądu nominalnego. Praktyczne zastosowanie tej wiedzy jest kluczowe, gdyż niewłaściwe dobranie prądu obciążenia może prowadzić do uszkodzenia sterownika oraz obniżenia efektywności całego systemu. W branży automatyki przemysłowej podstawowe zasady dobierania obciążeń są ujęte w normach takich jak IEC 61131, które zalecają odpowiednie dobieranie komponentów w celu zapewnienia trwałości oraz niezawodności systemów. Zrozumienie tych aspektów jest niezwykle istotne, zwłaszcza w kontekście projektowania i eksploatacji instalacji automatyki.