Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 22 maja 2025 12:37
  • Data zakończenia: 22 maja 2025 13:08

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Który rodzaj smaru powinien być regularnie uzupełniany w smarownicy pneumatycznej?

A. Pastę
B. Proszek
C. Olej
D. Silikon
Olej jest kluczowym środkiem smarnym w smarownicach pneumatycznych, ponieważ zapewnia niezbędne smarowanie ruchomych części oraz minimalizuje tarcie, co przekłada się na dłuższa żywotność urządzenia. W kontekście smarownic pneumatycznych, olej ułatwia również transport powietrza, co jest istotne dla efektywności działania systemu. W praktyce, regularne uzupełnianie oleju w smarownicach zapewnia optymalne warunki pracy, co jest zgodne z zaleceniami producentów urządzeń oraz normami branżowymi. Na przykład, w systemach pneumatycznych stosuje się oleje syntetyczne lub mineralne, które są dedykowane do konkretnego zastosowania, co zwiększa ich skuteczność oraz zmniejsza ryzyko awarii. Przy odpowiednim doborze oleju, można także poprawić efektywność energetyczną urządzeń, co jest istotne w kontekście oszczędności oraz zrównoważonego rozwoju.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Który rodzaj prądów i napięć można zmierzyć miernikiem przedstawionym na rysunku?

Ilustracja do pytania
A. Prąd stały i zmienny, napięcia tylko zmienne.
B. Prąd tylko zmienny, napięcia tylko zmienne.
C. Prąd stały i zmienny, napięcia stałe i zmienne.
D. Prąd tylko zmienny, napięcia stałe i zmienne.
Ten miernik, który widzisz na zdjęciu, to cęgowy miernik prądu. Jest naprawdę praktyczny, bo pozwala na pomiar prądów zmiennych oraz napięć, zarówno stałych, jak i zmiennych. Dzięki zastosowaniu cęgów, możesz zmierzyć natężenie prądu bez stykania się z przewodami, co znacznie poprawia bezpieczeństwo. Z tego, co widzę na oznaczeniach, możesz używać go do pomiaru prądu w trybie AC, co jest super przydatne, zwłaszcza w elektryce, gdzie prąd zmienny to norma. Dodatkowo, jego funkcje pomiaru napięcia, zarówno stałego, jak i zmiennego, sprawiają, że nadaje się do różnych zastosowań, na przykład w diagnostyce urządzeń elektronicznych czy przy pracach instalacyjnych. Pamiętaj tylko, żeby zawsze ustawiać miernik prawidłowo przed pomiarem i trzymać się zasad bezpieczeństwa. Uważam, że ten miernik to must-have dla każdego elektryka i technika zajmującego się instalacjami elektrycznymi.

Pytanie 5

Jaką czynność należy przeprowadzić, aby zwiększyć średnicę otworu i umożliwić osadzenie w nim łba śruby?

A. Wiercenie wtórne
B. Rozwiercanie
C. Wiercenie
D. Pogłębianie
Wiercenie to proces robienia otworów, ale w tym przypadku to nie jest najlepszy wybór do powiększania średnicy otworu. Ono bardziej nadaje się do tworzenia nowych otworów, a nie do zmiany tych, które już są. Wiercenie wtórne też nie jest idealne, bo koncentruje się na uzupełnianiu istniejących otworów, a my potrzebujemy coś więcej. Rozwiercanie może działać w tej sytuacji, ale jest trudniejsze i może uszkodzić materiał, bo wymaga większej precyzji. Kiedy wybierasz metodę obróbcą, musisz brać pod uwagę wymagania projektu i materiał, z którego zrobiony jest element. Wiele osób myśli, że można te metody stosować zamiennie, a to prowadzi do problemów jak źle dobrane średnice otworów, co może zrujnować konstrukcję lub utrudnić montaż.

Pytanie 6

Jaki przyrząd pomiarowy jest używany do wyznaczenia poziomu skrzynki montowanej jako osłona dla zamontowanego elektrozaworu?

A. Klepsydra
B. Mikrometr
C. Poziomnica
D. Kątomierz
Poziomnica jest narzędziem kontrolno-pomiarowym, które służy do określenia poziomu w różnych zastosowaniach budowlanych i montażowych. Jej działanie opiera się na małym pojemniku wypełnionym cieczą i zamontowanej w nim bąbelkowej poziomicy, która wskazuje, czy dany obiekt znajduje się w poziomie. Użycie poziomnicy jest kluczowe w przypadku montażu skrzynek na elektrozawory, ponieważ zapewnia, że elementy te będą stabilne i prawidłowo funkcjonujące, co ma bezpośredni wpływ na ich efektywność operacyjną. Przykładowo, w systemach hydraulicznych, niezrównoważone montaż skrzynki może prowadzić do awarii, a nawet uszkodzenia sprzętu. Dobre praktyki branżowe zazwyczaj zalecają korzystanie z poziomnicy przed finalnym zamocowaniem elementów, co pozwala na eliminację potencjalnych błędów i zapewnienie długotrwałej niezawodności systemu. Ponadto, poziomnice są często używane w budownictwie i instalacjach, gdzie precyzyjne ustawienie jest niezbędne, co czyni je narzędziem nieodzownym w każdej pracowni oraz na placu budowy.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Aby zweryfikować ciągłość układów elektrycznych, wykorzystuje się

A. watomierz
B. amperomierz
C. woltomierz
D. omomierz
Omomierz jest urządzeniem pomiarowym, które służy do pomiaru rezystancji elektrycznej, a jego zastosowanie w zakresie sprawdzania ciągłości połączeń elektrycznych jest kluczowe. W praktyce, omomierz jest wykorzystywany do wykrywania ewentualnych przerw w obwodach oraz oceny jakości połączeń. Na przykład, w instalacjach elektrycznych, przed oddaniem do użytkowania, ważne jest, aby sprawdzić, czy wszystkie połączenia są prawidłowo wykonane i czy nie występują utraty kontaktu. Normy takie jak PN-IEC 60364-6 podkreślają znaczenie przeprowadzania pomiarów ciągłości przewodów ochronnych, co można zrealizować właśnie przy pomocy omomierza. Warto również zauważyć, że pomiar ciągłości powinien być wykonywany w stanie nieenergetycznym instalacji, co zapewnia bezpieczeństwo oraz dokładność pomiarów. Umiejętność posługiwania się omomierzem w kontekście sprawdzania połączeń elektrycznych jest istotna dla każdego elektryka, a także dla osób zajmujących się konserwacją i przeglądami instalacji elektrycznych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Na podstawie wyników pomiarów rezystancji zestyków przycisków S1 i S2 przedstawionych w tabeli można wnioskować, że

Pomiar rezystancji zestyku w Ω
przycisku zwiernego S1przycisku rozwiernego S2
przed wciśnięciem przyciskupo wciśnięciu przyciskuprzed wciśnięciem przyciskupo wciśnięciu przycisku
00
A. przycisk S1 jest sprawny, przycisk S2 jest uszkodzony.
B. przycisk S1 jest uszkodzony, przycisk S2 jest sprawny.
C. oba przyciski są uszkodzone.
D. oba przyciski są sprawne.
Na podstawie analizy wyników pomiarów rezystancji zestyków przycisków S1 i S2, można jednoznacznie stwierdzić, że odpowiedź wskazująca na uszkodzenie obu przycisków jest prawidłowa. Przycisk S1, będący przyciskiem zwiernym, powinien wykazywać rezystancję bliską 0 Ω po wciśnięciu. W przypadku, gdy jego rezystancja wynosi nieskończoność, oznacza to, że mechanizm zwierny nie funkcjonuje prawidłowo. Analogicznie, przycisk S2 powinien mieć rezystancję nieskończoną przed wciśnięciem, jednak wartość 0 Ω wskazuje, że styk jest w ciągłym połączeniu, co również potwierdza jego uszkodzenie. Tego typu analizy są kluczowe w diagnostyce elektronicznej, ponieważ pozwalają na szybkie zidentyfikowanie i rozwiązanie problemów w układach sterowania. Dobre praktyki branżowe wymagają regularnego testowania komponentów w celu zapewnienia ich niezawodności i bezpieczeństwa operacyjnego. W przypadku awarii, niezbędna jest wymiana uszkodzonych elementów, a także dokładne sprawdzenie pozostałych komponentów w celu zapobieżenia dalszym problemom. Zrozumienie tych zasad jest istotne dla każdego technika zajmującego się serwisowaniem urządzeń elektronicznych.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Do metod oceny stanu łożysk tocznych nie zalicza się pomiaru

A. prędkości
B. hałasów
C. wibracji
D. ciepłoty
Pomiar prędkości to nie najlepsza metoda do oceny stanu łożysk tocznych. W praktyce zazwyczaj korzysta się z analizy drgań, szumów i temperatury. Analiza drgań to fajna technika, bo monitorując drgania, można zauważyć, czy coś jest nie tak, na przykład, czy łożysko ma luz albo jest uszkodzone. Z kolei pomiar szumów daje nam dodatkowe info o stanie łożysk, bo zmieniające się dźwięki mogą wskazywać na problemy. A co do temperatury — jeśli zaczyna rosnąć, to może być znak, że coś się dzieje, jak na przykład zbyt duże tarcie lub słabe smarowanie. W przemyśle, na przykład motoryzacyjnym czy w transporcie kolejowym, regularne sprawdzanie drgań i temperatury łożysk jest mega ważne, żeby maszyny działały sprawnie i bezawaryjnie. Ustalenie norm dla tolerancji drgań i temperatur dla różnych typów łożysk to standardy, które pomagają w zarządzaniu utrzymaniem ruchu, co zresztą potwierdzają normy ISO 10816.

Pytanie 14

Na której ilustracji przedstawiono prawidłowe zaciśnięcie końcówki przewodu w obszarze z izolacją?

Ilustracja do pytania
A. Na ilustracji 1.
B. Na ilustracji 2.
C. Na ilustracji 4.
D. Na ilustracji 3.
Prawidłowe zaciśnięcie końcówki przewodu w obszarze z izolacją, przedstawione na ilustracji 4, jest kluczowe dla zapewnienia trwałego i bezpiecznego połączenia elektrycznego. Na tej ilustracji widać, że zacisk obejmuje zarówno izolację, jak i przewody, co jest zgodne z najlepszymi praktykami w branży. Takie podejście zapobiega odsłonięciu przewodów, co mogłoby prowadzić do zwarć lub uszkodzeń. Prawidłowe zaciśnięcie jest również zgodne z normami, takimi jak IEC 60947, które definiują wymagania dla urządzeń i elementów stosowanych w instalacjach elektrycznych. Prawidłowo wykonane połączenie gwarantuje nie tylko bezpieczeństwo, ale także efektywność działania instalacji. W praktyce, zapewnienie odpowiedniego zacisku może wpłynąć na żywotność urządzeń oraz zmniejszenie ryzyka awarii. Dlatego istotne jest, aby osoby zajmujące się instalacjami elektrycznymi miały świadomość tych standardów oraz umiejętność ich stosowania w codziennej pracy, co przyczynia się do ogólnego bezpieczeństwa i jakości instalacji elektrycznych.

Pytanie 15

Element elektroniczny przedstawiony na rysunku to

Ilustracja do pytania
A. dioda.
B. tranzystor.
C. kondensator.
D. rezystor.
Zrozumienie różnicy pomiędzy tranzystorem, kondensatorem, diodą i rezystorem jest kluczowe dla każdego, kto zajmuje się elektroniką. Kondensatory to elementy, które gromadzą energię elektryczną w polu elektrycznym, a ich budowa opiera się na dwóch przewodnikach oddzielonych dielektrykiem. Zazwyczaj mają tylko dwa wyprowadzenia i są używane do filtracji sygnałów oraz stabilizacji napięcia w zasilaczach. W przypadku rezystorów, ich funkcją jest ograniczenie przepływu prądu w obwodzie, a także dzielenie napięcia. Rezystory również mają dwa wyprowadzenia. Dioda z kolei działa jako jednokierunkowy zawór dla prądu, pozwalając mu płynąć tylko w jednym kierunku, co czyni ją niezbędnym elementem w prostownikach. Typowe błędy myślowe, które mogą prowadzić do pomyłek w identyfikacji tych elementów, obejmują mylenie ich podstawowych funkcji oraz nieznajomość ich charakterystycznych wyprowadzeń. Diody i kondensatory, mimo że odgrywają ważne role w obwodach, są łatwiejsze do zidentyfikowania ze względu na ich prostszą konstrukcję. W kontekście tego pytania, brak zrozumienia podstawowych różnic pomiędzy tymi elementami może prowadzić do błędnych odpowiedzi i nieporozumień w praktycznej elektronice.

Pytanie 16

Z tabeli wynika, że orientacyjna siła siłownika o średnicy tłoka 12 mm, tłoczyska 6 mm, przy ciśnieniu roboczym 4 bar uzyskiwana podczas powrotu wynosi

Orientacyjna siła uzyskana na siłowniku w zależności od zadanego ciśnienia
Średnica tłokaŚrednica tłoczyskaPowierzchnia pracy mm²Ciśnienie robocze (bar)
12345678910
siła w N
ø12ø6wysuw = 1131123344557687990102113
powrót = 858172534425159687685
ø16ø8wysuw = 20120406080100121141161181201
powrót = 151153045607590106121136151
ø20ø10wysuw = 314316394126157188220251283314
powrót = 23624477194118141165189212236
ø25ø10wysuw = 4914998147196245295344393442491
powrót = 4124182124165206247289330371412
A. 80 N
B. 45 N
C. 34 N
D. 60 N
Poprawna odpowiedź wynosi 34 N, co jest wartością uzyskaną bezpośrednio z tabeli. W przypadku siłownika o średnicy tłoka 12 mm i tłoczyska 6 mm przy ciśnieniu roboczym 4 bar, siła uzyskiwana podczas powrotu jest kluczowym parametrem do określenia wydajności oraz skuteczności systemu pneumatycznego. W praktyce, znajomość siły uzyskiwanej przez siłownik jest niezbędna przy projektowaniu urządzeń automatyki, w których siłowniki są stosowane do wykonywania pracy mechanicznej. Na przykład, w systemach transportu wewnętrznego, siłowniki pneumatyczne mogą być używane do podnoszenia i przesuwania różnych elementów, dlatego tak ważne jest, aby dobrać odpowiednie parametry do wymagań aplikacji. Wartość ta powinna być również zgodna z normami i standardami branżowymi, które definiują dopuszczalne wartości sił dla danych konstrukcji siłowników. Zrozumienie tych parametrów pozwala na efektywne projektowanie oraz optymalizację procesów w automatyce przemysłowej.

Pytanie 17

Symbol przedstawiony na rysunku należy umieścić na urządzeniu

Ilustracja do pytania
A. zasilanym trójfazowo.
B. emitującym światło.
C. o szybko wirujących elementach.
D. o groźnej promieniotwórczości.
Odpowiedź "o groźnej promieniotwórczości" jest poprawna, ponieważ symbol przedstawiony na rysunku to międzynarodowy znak ostrzegawczy używany do oznaczania obecności promieniowania jonizującego. Symbol ten informuje użytkowników o zagrożeniu związanym z materiałami lub urządzeniami emitującymi promieniowanie, które mogą być szkodliwe dla zdrowia. Zgodnie z normą ISO 7010, znaki ostrzegawcze powinny być widoczne i zrozumiałe, aby skutecznie informować o potencjalnym ryzyku. Przykładem zastosowania tego symbolu są laboratoria, zakłady przemysłowe oraz miejsca, gdzie składowane są materiały radioaktywne. W takich lokalizacjach, odpowiednie oznakowanie i przestrzeganie procedur bezpieczeństwa jest kluczowe, aby zminimalizować ryzyko narażenia pracowników i osób postronnych na szkodliwe skutki promieniowania. Użycie tego symbolu jest zgodne z najlepszymi praktykami w dziedzinie zarządzania bezpieczeństwem, które wymagają identyfikacji i oznaczania zagrożeń, co jest istotne dla ochrony zdrowia publicznego.

Pytanie 18

Osoba pracująca z urządzeniami pneumatycznymi emitującymi głośny dźwięk jest narażona na

A. uszkodzenie narządu słuchu
B. zmiany w układzie kostnym
C. uszkodzenie skóry dłoni
D. porażenie prądem elektrycznym
Uszkodzenie narządu słuchu w wyniku narażenia na wysokie natężenie dźwięku w miejscu pracy jest poważnym zagrożeniem zdrowotnym, które można zminimalizować poprzez wdrożenie odpowiednich środków ochrony. Zgodnie z normami, takimi jak ISO 9612, ocena ryzyka hałasu powinna być regularnie przeprowadzana, a pracownicy powinni być informowani o potencjalnych zagrożeniach. Stosowanie ochronników słuchu, takich jak nauszniki lub wkładki, jest kluczowym elementem strategii redukcji ekspozycji na hałas. Przykładowo, pracownik obsługujący kompresory powietrzne, które generują dźwięk o poziomie przekraczającym 85 dB, powinien zawsze korzystać z odpowiedniego sprzętu ochronnego. Dodatkowo, regularne kontrole słuchu mogą pomóc w wczesnym wykryciu ewentualnych uszkodzeń, co jest zgodne z najlepszymi praktykami w zarządzaniu bezpieczeństwem pracy.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Na podstawie przedstawionej tabliczki znamionowej transformatora wskaż zależność, która określa jego przekładnię napięciową.

Ilustracja do pytania
A. K = 12/230 U
B. K = 80/0,83 U
C. K = 12/0,83 U
D. K = 230/12 U
Niepoprawne odpowiedzi pokazują, że można nie do końca zrozumieć relacje między napięciami na uzwojeniach w transformatorze. Na przykład, w przypadku pierwszej błędnej odpowiedzi, K = 12/230 U, to tak naprawdę mamy stosunek napięcia wtórnego do pierwotnego, co jest zupełnie odwrotne. Takie obliczenie może bardzo łatwo wprowadzić w błąd, sugerując że napięcie wtórne jest większe od pierwotnego, a to jest sprzeczne z zasadami działania transformatora, który tutaj działa jako obniżający napięcie. Druga błędna odpowiedź, K = 80/0,83 U, pokazuje złe wartości napięć, które w żaden sposób nie pasują do tego, co widnieje na tabliczce znamionowej. Wykorzystywanie przypadkowych value do obliczeń wskazuje na braki w zrozumieniu podstawowych zasad dotyczących transformacji napięć. Odpowiedź K = 12/0,83 U również jest niepoprawna, bo nie uwzględnia rzeczywistych napięć z specyfikacji transformatora. Takie pomyłki mogą wynikać z mylenia pojęć i złego podejścia do analizy danych technicznych. Ważne jest, aby zrozumieć, jak działa przekładnia napięciowa transformatora, bo to pozwala ocenić jego możliwości oraz odpowiednie zastosowania w inżynierii. Błędy w interpretacji mogą prowadzić do tego, że systemy elektryczne będą nieefektywne, a nawet niebezpieczne.

Pytanie 23

Osoba obsługująca urządzenie generujące drgania, takie jak młot pneumatyczny, powinna być przede wszystkim wyposażona

A. w gogle ochronne
B. w odzież ochronną
C. w hełm ochronny
D. w rękawice antywibracyjne
Rękawice antywibracyjne to naprawdę ważna rzecz dla ludzi, którzy pracują z maszynami, które drżą, jak na przykład młot pneumatyczny. Te drgania mogą prowadzić do poważnych problemów zdrowotnych, na przykład do zespołu wibracyjnego, który uszkadza nerwy i stawy. Dlatego właśnie te rękawice są zaprojektowane tak, żeby pochłaniać te drgania, co bardzo pomaga w zmniejszeniu ich wpływu na dłonie i ramiona. Z własnego doświadczenia powiem, że dzięki nim praca staje się znacznie bardziej komfortowa, a czas, kiedy można bezpiecznie używać sprzętu, naprawdę się wydłuża. Widzisz to często w budownictwie, gdzie pracownicy używają młotów wyburzeniowych. Normy ISO 5349 mówią, że takie rękawice to dobry sposób na to, żeby zminimalizować ryzyko zdrowotne związane z długotrwałym narażeniem na drgania.

Pytanie 24

Pralka automatyczna nie reaguje po naciśnięciu przycisku zasilania. Co może być przyczyną takiej sytuacji?

A. niewłaściwym zerowaniem obudowy silnika pralki
B. brakiem zasilania elektrycznego
C. usterką silnika pralki
D. brakiem dopływu wody do urządzenia
Brak zasilania napięciem elektrycznym jest najczęstszą przyczyną, dla której pralka automatyczna nie reaguje po wciśnięciu przycisku zasilania. W praktyce, przed rozpoczęciem jakiejkolwiek diagnostyki, warto upewnić się, że urządzenie jest prawidłowo podłączone do gniazdka i że gniazdko jest sprawne. Testowanie gniazdka za pomocą innego urządzenia, np. lampki, może potwierdzić obecność napięcia. W sytuacji, gdy zasilanie jest prawidłowe, dalsza kontrola powinna obejmować przewody zasilające i wtyczki, które mogą ulec uszkodzeniu. W standardzie instalacji elektrycznych, aby zapewnić bezpieczeństwo urządzeń, należy stosować odpowiednie zabezpieczenia, takie jak bezpieczniki czy wyłączniki różnicowoprądowe. Ponadto, regularne przeglądy instalacji elektrycznej są zalecane, aby unikać problemów związanych z zasilaniem, co jest zgodne z dobrymi praktykami w dziedzinie bezpieczeństwa urządzeń AGD.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Demontaż niepodłączonego elementu, przedstawionego na rysunku, zamontowanego na szynie DIN wymaga użycia

Ilustracja do pytania
A. klucza z regulowaną szerokością rozstawu szczęk.
B. wkrętaka płaskiego.
C. wkrętaka o specjalnych końcówkach.
D. klucza nasadowego.
Wybór wkrętaka płaskiego jako narzędzia do demontażu elementu zamontowanego na szynie DIN jest prawidłowy, ponieważ ten typ narzędzia został zaprojektowany do odciągania dźwigni blokującej, która jest typową konstrukcją w urządzeniach montowanych na szynach DIN, jak np. wyłączniki nadprądowe. W praktyce, aby wymontować ten element, należy najpierw zlokalizować dźwignię blokującą, a następnie włożyć wkrętak płaski w szczelinę i delikatnie pociągnąć, co pozwala na zwolnienie mechanizmu blokującego. Tego rodzaju operacje są powszechne w instalacjach elektrycznych, gdzie konieczna jest wymiana lub konserwacja urządzeń. Prawidłowe użycie narzędzi, takich jak wkrętaki płaskie, jest zgodne z normami bezpieczeństwa oraz dobrymi praktykami, które zalecają użycie odpowiednich narzędzi do konkretnego zadania, co minimalizuje ryzyko uszkodzenia urządzeń oraz zapewnia bezpieczeństwo użytkownika.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

W jaki sposób można zmienić kierunek obrotów wału w trójfazowym silniku indukcyjnym?

A. obniżyć częstotliwość zasilania
B. podłączyć przewód neutralny
C. zwiększyć obciążenie
D. zamienić miejscami dwa dowolne fazowe przewody zasilające
Żeby zmienić kierunek wirowania wału w silniku indukcyjnym trójfazowym, wystarczy zamienić ze sobą dwa przewody zasilające. To takie proste! Chodzi o to, żeby zmienić kolejność, w jakiej napięcie działa na uzwojenia silnika. W silnikach trójfazowych, wirujące pole magnetyczne jest tworzone przez zasilanie fazowe, a jego kierunek jest zależny od tego, w jakiej kolejności te fazy są podłączone. Jak zamienisz te przewody, to zmienia się sekwencja faz, a to prowadzi do tego, że kierunek wirowania się odwraca. W praktyce to jest często wykorzystywane i jeżeli robisz to na zgodnych zasadach bezpieczeństwa, nie ma ryzyka, że coś się zepsuje. W wielu branżach przemysłowych, gdzie używa się silników trójfazowych, umiejętność zmiany kierunku wirowania jest ważna, żeby maszyny działały prawidłowo, na przykład przy transporcie materiałów czy w produkcji. Zmiana kierunku wirowania sprawia też, że silnik lepiej dopasowuje się do zmieniających się warunków, co jest super istotne w efektywnym zarządzaniu energią.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

W wyniku incydentu u rannego wystąpił krwotok zewnętrzny, a w ranie pozostało ciało obce. Co należy zrobić w pierwszej kolejności?

A. wezwać pomoc i nałożyć opatrunek uciskowy powyżej rany siedzącego rannego
B. usunąć ciało obce, położyć rannego i wezwać lekarza
C. nałożyć jałowy opatrunek na ranę siedzącego rannego i wezwać lekarza
D. założyć jałowy opatrunek na ranę i umieścić rannego z uniesionymi kończynami powyżej poziomu serca
Usunięcie obcego ciała z rany może się wydawać słuszne, ale w praktyce to dość ryzykowne. Może to prowadzić do większego krwawienia lub dodatkowych uszkodzeń tkanek. Tak naprawdę zasada pierwszej pomocy mówi, żeby unikać wszelkich działań, które mogą pogorszyć sytuację, w tym usuwania ciał obcych, które mogą działać jak „korki”, ograniczając krwotok. W przypadku krwotoku ważne jest, by zmniejszyć przepływ krwi, a najlepszym sposobem jest ucisk na ranę i uniesienie kończyn. Użycie opatrunku uciskowego to standard w pierwszej pomocy, bo skutecznie zmniejsza krwawienie i stabilizuje poszkodowanego. Nie zapominaj, że zawsze trzeba wezwać pomoc, ale najpierw skup się na podstawowych zasadach opieki nad poszkodowanym. Niezrozumienie tych rzeczy może spowodować opóźnienia w skutecznej pomocy i zwiększyć ryzyko zdrowotnych konsekwencji.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakim symbolem literowym określa się zmienną wyjściową w sterowniku PLC?

A. T
B. R
C. Q
D. I
Odpowiedź Q jest poprawna, ponieważ w systemach programowalnych sterowników logicznych (PLC) zmienne wyjściowe oznaczane są właśnie tym symbolem. Wyjścia są sygnałami, które sterownik generuje na podstawie przetworzonych danych wejściowych oraz zaimplementowanych algorytmów. Standardowe oznaczenia w programowaniu PLC opierają się na konwencjach przyjętych w branży, gdzie 'I' oznacza wejścia (Input), 'Q' wyjścia (Output), 'R' jest często używane dla rejestrów, a 'T' odnosi się do timerów. Przykładem zastosowania zmiennych wyjściowych jest kontrola urządzeń wykonawczych, takich jak silniki, siłowniki czy zawory. Na przykład, w prostym procesie automatyzacji, sygnał wyjściowy Q0.0 może być użyty do włączania lub wyłączania silnika w odpowiedzi na warunki zdefiniowane przez czujniki wejściowe. Zrozumienie tych oznaczeń jest kluczowe dla efektywnego programowania i diagnostyki systemów automatyki przemysłowej, co jest zgodne z normami IEC 61131-3, które definiują struktury programowania w PLC.

Pytanie 34

W układzie elektropneumatycznym przedstawionym na ilustracji należy zamontować zawór rozdzielający w wersji

Wersja zaworuW1W2W3W4
Liczba cewek1212
Typ zaworu4/24/35/25/2
Biegunowość zasilaniadowolnadowolnadowolnadowolna
Ilustracja do pytania
A. W1.
B. W2.
C. W4.
D. W3.
Zawór W4 to naprawdę dobry wybór w tym układzie elektropneumatycznym, bo pasuje do wymagań dla systemu z dwoma siłownikami pneumatycznymi. To zawór 5/2, więc ma pięć portów i dwie pozycje. Dzięki temu możemy bardzo dokładnie sterować siłownikami 1M1 i 1M2. W praktyce oznacza to, że każdy z siłowników możemy kontrolować niezależnie, co jest kluczowe, gdy potrzebujemy różne cykle robocze. Wybierając W4, możemy też korzystać ze standardowych komponentów w układach pneumatycznych, co potem ułatwia modyfikacje i konserwację. Przy projektowaniu takich układów trzeba zwracać uwagę na normy branżowe, jak ISO 4414, które mówią o bezpieczeństwie i efektywności w systemach pneumatycznych. Użycie odpowiedniego zaworu jest istotne, bo to zapewnia płynność pracy i zmniejsza ryzyko awarii spowodowanej złym doborem komponentów. Kiedy myślimy nad wyborem zaworu, ważne, żeby uwzględnić takie rzeczy jak ciśnienie robocze, przepływ i rodzaj medium, bo to wszystko wpływa na wydajność układu.

Pytanie 35

Ile minimalnie 8 bitowych portów we/wy powinien posiadać mikrokontroler PIC wyposażony w szeregowy
8-bitowy przetwornik analogowo-cyfrowy oznaczony ADC0831, aby można było zrealizować układ mechatroniczny przedstawiony na rysunku?

Ilustracja do pytania
A. 4 porty.
B. 3 porty.
C. 2 porty.
D. 5 portów.
Odpowiedź, że mikrokontroler PIC powinien mieć minimum 2 porty we/wy, jest prawidłowa z uwagi na sposób komunikacji z przetwornikiem analogowo-cyfrowym ADC0831 oraz wymagania dotyczące sterowania silnikiem krokowym. Przetwornik ADC0831 wykorzystuje szeregowy interfejs komunikacyjny, co pozwala na przesyłanie danych za pomocą jednego portu. Dokładniej, jeden port wejściowy jest wymagany do odbioru 8-bitowej informacji analogowej przetworzonej na sygnał cyfrowy. Z drugiej strony, do sterowania silnikiem krokowym EDE1200 potrzebny jest przynajmniej jeden port wyjściowy, który będzie odpowiedzialny za przekazywanie sygnałów sterujących, takich jak kierunek oraz impulsy krokowe. W praktyce, wiele systemów mechatronicznych stosuje minimalizację liczby portów, co jest zgodne z dobrą praktyką inżynieryjną, aby uprościć projekt oraz zmniejszyć koszty produkcji. Dzięki temu, odpowiedź sugerująca 2 porty we/wy stanowi optymalne rozwiązanie, które spełnia wymagania funkcjonalne układu, jednocześnie pozwalając na efektywne zarządzanie zasobami mikrokontrolera.

Pytanie 36

Na rysunku przedstawiono tabliczkę znamionową

Ilustracja do pytania
A. transformatora.
B. silnik indukcyjnego.
C. silnika prądu stałego.
D. autotransformatora.
Odpowiedź, która wskazuje na silnik indukcyjny, jest poprawna, ponieważ tabliczka znamionowa zawiera kluczowe informacje charakterystyczne dla tego typu urządzenia. Silniki indukcyjne, szczególnie te z klatką szczebelkową, są powszechnie stosowane w różnych aplikacjach przemysłowych ze względu na swoją prostotę, niezawodność oraz efektywność energetyczną. Oznaczenie typu SKg 100L-4B sugeruje, że jest to silnik trójfazowy o określonej mocy, prędkości obrotowej oraz napięciu. Ważne jest, aby przy wyborze silnika zwracać uwagę na jego parametry znamionowe, które decydują o jego przydatności do określonych zadań. Na przykład, silniki indukcyjne są wykorzystywane do zasilania pomp, wentylatorów oraz wielu innych maszyn, gdzie wymagana jest stała moc i niezawodność. Zrozumienie właściwości tabliczki znamionowej pozwala na lepsze dopasowanie urządzenia do specyficznych warunków pracy oraz zapewnienie jego długotrwałej eksploatacji, co jest kluczowe w kontekście utrzymania efektywności procesów produkcyjnych.

Pytanie 37

W trakcie pracy z urządzeniem hydraulicznym pracownik poślizgnął się na plamie oleju i doznał zwichnięcia kostki. Jakie czynności należy podjąć, aby udzielić pierwszej pomocy poszkodowanemu?

A. Przyłożyć zimny okład na zwichnięty staw i unieruchomić go
B. Zabandażować kostkę i przewieźć pacjenta do lekarza
C. Nastawić staw i zabandażować kostkę
D. Podać leki przeciwbólowe
Jak masz zwichnięty staw, to schłodzenie go zimnym okładem i unieruchomienie to naprawdę istotne kroki. Zimny okład zmniejsza obrzęk i ból, co jest zgodne z zasadami pierwszej pomocy, które mówią, że lód trzeba stosować w ciągu pierwszych 48 godzin po kontuzji. Zimno powoduje, że naczynia krwionośne się kurczą, przez co przepływ krwi do uszkodzonego miejsca jest mniejszy, a to znaczy, że obrzęk się nie powiększa. Unieruchomienie stawu to też ważna sprawa, bo pomaga zapobiec dalszym uszkodzeniom i stabilizuje kontuzjowany obszar, co zmniejsza ból. W praktyce powinieneś użyć elastycznego bandaża, żeby dobrze zabezpieczyć kostkę, bo to standard w takich sytuacjach. Nie zapomnij też monitorować stanu poszkodowanego i jeśli coś jest nie tak, to skontaktować się z lekarzem. Dobra pierwsza pomoc opiera się na wytycznych organizacji zajmujących się zdrowiem, więc możesz zwiększyć szansę na szybki powrót do zdrowia.

Pytanie 38

Siłownik, zasilany sprężonym powietrzem o ciśnieniu roboczym 8 barów, działa z prędkością 50 cykli na minutę i zużywa 1,4 litra powietrza w trakcie jednego cyklu. Jakie parametry powinna mieć sprężarka tłokowa do zasilania siłownika?

A. wydajność 3,6 m3/h, ciśnienie maksymalne 0,7 MPa
B. wydajność 5,3 m3/h, ciśnienie maksymalne 0,7 MPa
C. wydajność 5,3 m3/h, ciśnienie maksymalne 1,0 MPa
D. wydajność 3,6 m3/h, ciśnienie maksymalne 1,0 MPa
Odpowiedzi z wydajnością 3,6 m3/h są błędne, ponieważ nie spełniają podstawowych wymagań dla zasilania siłownika sprężonym powietrzem. Siłownik potrzebuje 4,2 m3/h (jak to przeliczymy z litrów na metry sześcienne), więc sprężarka musi mieć moc do dostarczania przynajmniej tyle powietrza. Ta wydajność 3,6 m3/h na pewno nie wystarczy, by pokryć potrzeby, a siłownik mógłby mieć problemy z pełnym cyklem roboczym. To by wpłynęło na działanie całego systemu. Dodatkowo, maksymalne ciśnienie 0,7 MPa (7 bar) to za mało, bo siłownik działa przy ciśnieniu 8 barów. Jeśli sprężarka nie dostarczy odpowiedniego ciśnienia, to wyjdą problemy z wydajnością siłownika i mogą być awarie. W praktyce coś takiego to już ryzyko, a to się nie trzyma zasad dobrej praktyki w projektowaniu systemów pneumatycznych, gdzie trzeba dobierać urządzenia z odpowiednią wydajnością i parametrami, żeby wszystko działało bez zarzutu.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Układ mechatroniczny jest zbudowany z elementu wykonawczego funkcjonującego w specjalnej osłonie, pod wysokim ciśnieniem roboczym, oraz z komponentów sterujących połączonych wzmocnionymi przewodami pneumatycznymi, które są mocowane za pomocą złączy wtykowych. Osoba obsługująca ten układ może być szczególnie narażona na uderzenie

A. siłownikiem
B. tłoczyskiem siłownika
C. nieprawidłowo zamocowanym przewodem pneumatycznym
D. przerwanym przewodem pneumatycznym
Odpowiedź "źle zamocowanym przewodem pneumatycznym" jest prawidłowa, ponieważ nieprawidłowe mocowanie przewodów pneumatycznych może prowadzić do sytuacji, w której przewód może się odłączyć lub spowodować niekontrolowane ruchy elementów wykonawczych. Zgodnie z normami bezpieczeństwa w przemyśle, takimi jak ISO 4414, kluczowe jest, aby przewody pneumatyczne były prawidłowo zamocowane i zabezpieczone przed wszelkimi uszkodzeniami mechanicznymi. Przykładem może być zastosowanie złączy wtykowych, które powinny być regularnie kontrolowane pod kątem ich stanu technicznego. W praktyce, w systemach mechatronicznych, należy także stosować odpowiednie uchwyty i prowadnice, które minimalizują ryzyko przypadkowego usunięcia przewodu. Niezapewnienie prawidłowego mocowania przewodu pneumatycznego może prowadzić do poważnych wypadków, w tym do uderzeń osób pracujących w pobliżu układów mechatronicznych. Dlatego szkolenia dla personelu eksploatującego takie systemy powinny kłaść duży nacisk na techniki prawidłowego mocowania i kontroli stanu przewodów pneumatycznych.