Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 19 maja 2025 22:39
  • Data zakończenia: 19 maja 2025 22:50

Egzamin zdany!

Wynik: 33/40 punktów (82,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Kotły z paleniskiem są odpowiednie do spalania materiałów charakteryzujących się wysoką zawartością żużla?

A. narzutowym
B. rusztowym
C. przednim
D. korytkowym
Kotły z paleniskiem rusztowym są najczęściej stosowane do spalania materiałów o wysokiej zawartości żużla, ponieważ ich konstrukcja umożliwia efektywne odprowadzanie popiołów oraz żużla powstającego podczas procesu spalania. Palenisko rusztowe charakteryzuje się dużą powierzchnią grzewczą, co pozwala na równomierne spalanie paliwa. Dzięki różnym typom rusztów, takim jak ruszty stałe czy ruchome, możliwe jest dostosowanie procesu spalania do specyficznych właściwości paliwa, co zwiększa efektywność energetyczną kotła. Przykładem zastosowania kotłów rusztowych mogą być elektrociepłownie, które wykorzystują węgiel o dużej zawartości popiołu. Dodatkowo, zgodnie z normami emisji, kotły te są zaprojektowane w taki sposób, aby minimalizować emisję zanieczyszczeń, co jest istotnym aspektem w kontekście ochrony środowiska. Warto także zauważyć, że wiele nowoczesnych kotłów rusztowych jest wyposażonych w systemy automatycznego podawania paliwa, co zwiększa komfort eksploatacji oraz efektywność procesu spalania.

Pytanie 2

Paliwo uzyskane z kompresji trocin, które są generowane podczas obróbki drewna oraz innych procesów związanych z jego przetwarzaniem, to

A. ekogroszek
B. zrębki
C. ziarno
D. pelet
Pelet to paliwo stałe, które powstaje poprzez sprasowanie trocin, wiórów oraz innych odpadów drzewnych. Jest to produkt ściśle związany z wykorzystaniem surowców drzewnych w sposób efektywny i ekologiczny. Pelet charakteryzuje się wysoką gęstością energetyczną, co sprawia, że jest chętnie stosowany w piecach i kotłach na biomasę. Dzięki odpowiedniej technologii produkcji, pelet cechuje się niską wilgotnością oraz stałą wielkością, co ułatwia jego transport i magazynowanie. Zastosowanie peletu w systemach grzewczych przyczynia się do redukcji emisji spalin oraz wykorzystania odnawialnych źródeł energii. Warto również zauważyć, że pelet podlega różnym normom jakościowym, co zapewnia jego wysoką efektywność spalania oraz minimalizację osadów popiołu, co jest istotne w kontekście ochrony środowiska. Pelet może być wykorzystywany w domach jednorodzinnych, a także w przemyśle, gdzie coraz częściej zastępuje tradycyjne paliwa kopalne.

Pytanie 3

Izolacja przewodów elektrycznych w odcieniu żółto-zielonym określa przewody

A. fazowe
B. neutralne
C. ochronne
D. zerowe
Izolacja przewodów elektrycznych w kolorze żółto-zielonym jest standardem stosowanym w Polsce do oznaczania przewodów ochronnych. Przewody te pełnią kluczową rolę w zapewnieniu bezpieczeństwa instalacji elektrycznych, co jest zgodne z normą PN-IEC 60446. Ich głównym zadaniem jest ochrona przed porażeniem elektrycznym poprzez uziemienie metalowych części instalacji, które w normalnych warunkach nie przewodzą prądu. Przewody ochronne łączą się z systemem uziemiającym, co sprawia, że w przypadku zwarcia prąd płynie w bezpieczny sposób do ziemi, minimalizując ryzyko dla użytkowników. Przykładem zastosowania przewodów ochronnych jest ich wykorzystanie w instalacjach elektrycznych w budynkach mieszkalnych oraz w urządzeniach przemysłowych. Zgodnie z przepisami, każda instalacja elektryczna musi być wyposażona w przewody ochronne, co jest niezbędnym elementem zapewniającym bezpieczeństwo użytkowników.

Pytanie 4

W Polsce płaskie kolektory słoneczne powinny być umieszczane na dachu budynku, skierowane w stronę

A. północną
B. zachodnią
C. wschodnią
D. południową
Kolektory słoneczne płaskie powinny być zorientowane na południe, aby maksymalizować ilość otrzymywanego promieniowania słonecznego przez cały dzień. Dzięki takiej orientacji, kolektory są w stanie wykorzystać maksymalne nasłonecznienie, zwłaszcza w godzinach szczytowych, kiedy słońce znajduje się najwyżej na niebie. W Polsce, ze względu na nasze położenie geograficzne, orientacja południowa jest kluczowa dla uzyskania optymalnej efektywności energetycznej. Przykładowo, instalacje w orientacji południowej mogą zwiększyć wydajność kolektorów o 15-30% w porównaniu do innych kierunków. Dobre praktyki wskazują, że przy projektowaniu systemów solarnych należy także uwzględniać kąt nachylenia kolektorów, który powinien wynosić od 30 do 45 stopni, co dodatkowo wspiera efektywność zbierania energii. W związku z tym, podejmowanie decyzji o lokalizacji i orientacji kolektorów powinno być oparte na analizach nasłonecznienia oraz lokalnych warunkach klimatycznych, co przyczynia się do maksymalizacji zysków energetycznych.

Pytanie 5

Elektrownie wodne, które czerpią energię z ruchu wody, nazywamy elektrowniami

A. przepływowymi
B. regulacyjnymi
C. szczytowo-pompowymi
D. cieplnymi
Wybór odpowiedzi regulacyjne, cieplne i szczytowo-pompowe wskazuje na nieporozumienia związane z funkcjonowaniem różnych typów elektrowni wodnych. Elektrownie regulacyjne są projektowane do zarządzania przepływem wody w rzekach w sposób kontrolowany, co pozwala na utrzymanie stałego poziomu wody w zbiornikach, ale nie koncentrują się na bezpośrednim wykorzystaniu naturalnego przepływu wody, jak ma to miejsce w elektrowniach przepływowych. Z kolei elektrownie cieplne polegają na spalaniu paliw kopalnych do generowania ciepła, które jest następnie przekształcane w energię elektryczną, co jest całkowicie odmiennym procesem od wykorzystania energii wodnej. Elektrownie szczytowo-pompowe z kolei działają na zasadzie magazynowania energii, podnosząc wodę do wyższych zbiorników w czasie niskiego zapotrzebowania na energię, a następnie uwalniając ją do wytwarzania energii w okresach szczytowego zapotrzebowania. Takie różnice w mechanizmach działania tych elektrowni mogą prowadzić do błędów w klasyfikacji i zrozumieniu ich funkcji. Zrozumienie podstawowych różnic między tymi typami elektrowni jest kluczowe w kontekście rozwoju i zarządzania systemami energetycznymi, co jest zgodne z najlepszymi praktykami w zakresie zrównoważonego rozwoju i efektywności energetycznej.

Pytanie 6

Kolektory słoneczne płaskie powinny być umieszczane na dachu budynku, zwrócone w stronę

A. wschodnią
B. zachodnią
C. północną
D. południową
Kolektory słoneczne płaskie powinny być zorientowane w kierunku południowym, ponieważ to ustawienie maksymalizuje ilość promieniowania słonecznego, które mogą być absorbowane przez ich powierzchnię. W Polsce, ze względu na położenie geograficzne, największa ilość energii słonecznej dociera z kierunku południowego w ciągu całego dnia. To oznacza, że kolektory ustawione w tym kierunku będą generować najwięcej energii cieplnej, co jest kluczowe dla efektywności systemu. Dobrą praktyką jest również uwzględnienie kątów nachylenia kolektorów, które powinny wynosić od 30 do 45 stopni, co dodatkowo zwiększa ich wydajność. W kontekście standardów branżowych, zaleca się, aby instalacje solarne były projektowane przez wykwalifikowanych specjalistów, którzy wezmą pod uwagę także lokalne warunki meteorologiczne i architektoniczne budynków, co może wpłynąć na optymalizację wydajności systemu oraz jego długoterminową opłacalność.

Pytanie 7

Instalacja gruntowej pompy ciepła wymaga zbudowania kolektora poziomego jako dolnego źródła. W tym przypadku kolektor poziomy to

A. system rurek zakopanych pod powierzchnią gruntu poniżej strefy przemarzania
B. kolektor umiejscowiony płasko na dachu zwrócony w stronę południową
C. system rur zakopanych pionowo na głębokości około 30 metrów
D. wężownica w wymienniku c.w.u.
Kolektor poziomy w gruntowej pompie ciepła to system rurek zakopanych na głębokości poniżej strefy przemarzania, co jest kluczowe dla efektywności działania tego typu instalacji. Wysokiej jakości kolektor poziomy umożliwia wymianę ciepła z gruntem, który ma bardziej stabilną temperaturę w porównaniu z powietrzem. Właściwe umiejscowienie kolektora poniżej strefy przemarzania, zazwyczaj na głębokości od 0,8 do 1,5 metra, zapewnia, że ciepło jest odbierane efektywnie przez rurki wypełnione czynnikiem roboczym. Przykłady zastosowania obejmują domy jednorodzinne oraz budynki użyteczności publicznej, gdzie systemy te są projektowane z uwzględnieniem lokalnych warunków klimatycznych. Zgodnie z dobrymi praktykami branżowymi, projektanci instalacji ciepłowniczych powinni również uwzględniać właściwe obliczenia dotyczące długości i zakupu rur, aby zapewnić odpowiednią wydajność energetyczną oraz zgodność z normami EN 14511 i EN 14825.

Pytanie 8

Jakie materiały mogą być zastosowane do wykonania absorbera w panelach słonecznych?

A. miedzi lub żeliwa
B. aluminium lub miedzi
C. aluminium lub mosiądzu
D. plastiku lub stali
Absorber w kolektorach słonecznych jest kluczowym elementem, który odpowiada za przechwytywanie promieniowania słonecznego i przekształcanie go w ciepło. Materiały takie jak aluminium i miedź charakteryzują się doskonałymi właściwościami przewodzenia ciepła, co czyni je idealnymi do zastosowania w tych systemach. Aluminium jest lekkie, odporne na korozję oraz łatwe w obróbce, co sprawia, że jest powszechnie stosowane w budowie absorberów. Miedź, z kolei, ma jeszcze lepsze właściwości przewodzenia ciepła, co pozwala na szybsze i efektywniejsze przekazywanie energii cieplnej. Dobre praktyki branżowe zalecają używanie tych materiałów, aby zapewnić maksymalną efektywność kolektorów słonecznych, co jest kluczowe w kontekście odnawialnych źródeł energii i efektywności energetycznej budynków. Warto także zauważyć, że odpowiedni dobór materiałów wpływa na trwałość systemu oraz jego zdolność do pracy w zmiennych warunkach atmosferycznych.

Pytanie 9

W celu określenia liczby godzin pracy zatrudnionych w kosztorysie szczegółowym stosuje się

A. dziennik budowy
B. oferta sprzedaży producenta
C. harmonogram robót
D. katalog nakładów rzeczowych
Harmonogram robót, choć istotny w zarządzaniu projektem budowlanym, nie pełni funkcji określenia ilości godzin pracy w sposób szczegółowy. Harmonogram jest narzędziem, które pokazuje czas trwania poszczególnych etapów pracy oraz zależności między nimi, ale nie dostarcza szczegółowych danych dotyczących konkretnych nakładów rzeczowych. Z kolei dziennik budowy to dokument, który rejestruje postęp prac oraz wszelkie zdarzenia na budowie, ale także nie zawiera szczegółowych informacji o czasach pracy. Może być użyty do monitorowania realizacji harmonogramu, jednak nie jest narzędziem do bezpośredniego wyliczania godzin pracy. Oferta sprzedaży producenta dotyczy produktów i usług, które mogą być wykorzystane w projekcie, ale nie zawiera informacji o czasie pracy pracowników ani o nakładach rzeczowych. Powszechnym błędem jest mylenie tych narzędzi, co może prowadzić do nieprawidłowych oszacowań kosztów. Kluczowym elementem skutecznego kosztorysowania jest zrozumienie, jakie dokumenty dostarczają odpowiednich informacji i jak je prawidłowo wykorzystywać w praktyce.

Pytanie 10

Aby chronić linię napowietrzną przed skutkami wyładowań atmosferycznych, jakie zabezpieczenie powinno być zastosowane?

A. ogranicznik przepięciowy
B. wyłącznik nadprądowy
C. wyłącznik różnicowoprądowy
D. bezpieczniki mocy
Choć wyłącznik różnicowoprądowy, wyłącznik nadprądowy oraz bezpieczniki mocy pełnią ważne funkcje w systemach elektroenergetycznych, nie są one zaprojektowane do bezpośredniego zabezpieczania urządzeń przed skutkami wyładowań atmosferycznych. Wyłącznik różnicowoprądowy, którego zadaniem jest wykrywanie różnicy prądów między przewodami fazowymi a neutralnym, służy głównie do ochrony ludzi przed porażeniem prądem elektrycznym. Jego działanie opiera się na wykrywaniu prądów upływowych, a nie na ograniczaniu przepięć, które mogą wystąpić w wyniku wyładowań atmosferycznych. Wyłącznik nadprądowy zabezpiecza przed przeciążeniem i zwarciem, detektując wzrost prądu, ale nie jest w stanie zredukować skutków krótkotrwałych, lecz intensywnych szczytów napięcia, które mogą wystąpić podczas burzy. Bezpieczniki mocy są używane do ochrony przed zwarciami i przeciążeniami w obwodach wysokoprądowych, jednak podobnie jak powyższe urządzenia, nie oferują ochrony przed przepięciami. W praktyce, wiele osób może mylnie uważać, że wszelkie rodzaje zabezpieczeń elektrycznych zapewniają kompleksową ochronę, jednak nie uwzględniają one specyficznych zagrożeń związanych z wyładowaniami atmosferycznymi. Kluczowe jest zrozumienie, że każdy typ zabezpieczenia ma swoje zastosowanie i ograniczenia, dlatego do ochrony przed skutkami burz należy stosować wyspecjalizowane urządzenia, takie jak ograniczniki przepięciowe, które są zaprojektowane do absorpcji nadmiarowego napięcia i tym samym ochrony infrastruktury. Zastosowanie odpowiednich rozwiązań w zakresie ochrony przed przepięciami jest nie tylko dobrym zwyczajem, lecz również wymogiem w profesjonalnych instalacjach elektrycznych.

Pytanie 11

Jakie cechy posiada słoma jako biopaliwo?

A. niska kaloryczność wynosząca około 15 MJ/kg
B. duża kaloryczność wynosząca około 25 MJ/kg
C. znaczna emisja CO2 do atmosfery podczas spalania
D. wysoka odporność na wilgoć
Słoma jako biopaliwo wykazuje niską kaloryczność, oscylującą wokół 15 MJ/kg, co czyni ją mniej efektywnym źródłem energii w porównaniu do innych biopaliw, takich jak drewno czy pelet, które mogą osiągać wartość do 25 MJ/kg. To ograniczenie kaloryczności sprawia, że jej użycie w instalacjach energetycznych wymaga dostosowania technologii spalania oraz efektywnego zarządzania surowcem. Przykładowo, w piecach przemysłowych z odpowiednimi systemami odzysku ciepła, słoma może być wykorzystana w procesach produkcyjnych, takich jak suszenie czy ogrzewanie w zakładach przetwórstwa rolno-spożywczego. Zgodnie z normami dotyczącymi biopaliw, kluczowe jest także uwzględnienie aspektów ekologicznych, takich jak zmniejszenie emisji CO2 w porównaniu do paliw kopalnych, co czyni słomę atrakcyjnym rozwiązaniem w kontekście zrównoważonego rozwoju i ochrony środowiska. W praktyce, wybór słomy jako paliwa powinien być poprzedzony szczegółową analizą lokalnych warunków oraz dostępności surowca, co jest zgodne z dobrą praktyką branżową.

Pytanie 12

Kolor izolacji przewodu łączącego regulator ładowania z dodatnim biegunem akumulatora powinien być

A. niebieski
B. brązowy
C. czerwony
D. czarny
Izolacja przewodu łączącego regulator ładowania z dodatnim zaciskiem akumulatora powinna być w kolorze czerwonym, co jest zgodne z szeroko przyjętymi standardami w branży motoryzacyjnej oraz elektroinstalacyjnej. Kolor czerwony zazwyczaj oznacza przewody zasilające lub dodatnie, co ma na celu ułatwienie identyfikacji i eliminację błędów podczas instalacji. Przykładem dobrych praktyk może być instalacja w systemach fotowoltaicznych, gdzie przewody dodatnie są również oznaczone kolorem czerwonym, co ułatwia ich odróżnienie od przewodów ujemnych, zazwyczaj czarnych. W ten sposób zwiększa się bezpieczeństwo użytkowania, minimalizując ryzyko zwarcia czy błędnego podłączenia. Warto również pamiętać, że zgodnie z normami IEC (International Electrotechnical Commission), stosowanie odpowiednich kolorów dla przewodów zasilających jest istotnym elementem nie tylko dla bezpieczeństwa, ale także dla ułatwienia diagnostyki i serwisowania systemów elektrycznych.

Pytanie 13

Ciepło pozyskiwane z otoczenia do produkcji ciepłej wody użytkowej jest używane przez

A. pompę ciepła
B. kolektor płaski
C. wymiennik ciepła
D. ogniwo fotowoltaiczne
Prawidłowa odpowiedź to pompa ciepła, która jest urządzeniem służącym do przenoszenia ciepła z jednego miejsca do innego, wykorzystując energię termalną zawartą w otoczeniu. Pompy ciepła mogą pobierać ciepło z powietrza, wody lub gruntu, co czyni je wszechstronnym rozwiązaniem dla systemów ogrzewania i przygotowania ciepłej wody użytkowej. W praktyce pompy ciepła są szeroko stosowane w budownictwie ekologicznym i w domach z systemami OZE, co pozwala na znaczne ograniczenie kosztów energii oraz redukcję emisji CO2. Dzięki wysokiej efektywności energetycznej, pompy ciepła mogą osiągnąć współczynniki wydajności (COP) wynoszące 3-5, co oznacza, że na każdy 1 kWh zużytej energii elektrycznej są w stanie wytworzyć 3-5 kWh ciepła. Zastosowanie pomp ciepła w systemach przygotowania ciepłej wody użytkowej jest więc zarówno ekonomiczne, jak i ekologiczne, zgodne z zasadami zrównoważonego rozwoju i certyfikacjami takimi jak BREEAM czy LEED.

Pytanie 14

Wartość robót przewidywana przez inwestora jest ustalana w kosztorysie

A. ofertowym
B. zamiennym
C. powykonawczym
D. inwestorskim
Odpowiedź 'inwestorskim' jest prawidłowa, ponieważ koszty robót inwestycyjnych są szczegółowo analizowane i przewidywane w kosztorysie inwestorskim. Kosztorys inwestorski to dokument, który określa przewidywane koszty realizacji projektu budowlanego, biorąc pod uwagę wszystkie niezbędne wydatki związane z jego realizacją. W ramach tego kosztorysu uwzględnia się koszty materiałów, robocizny, transportu oraz innych wydatków związanych z realizacją projektu. Dobrym przykładem może być sytuacja, w której inwestor planuje budowę nowego obiektu budowlanego. Przygotowując kosztorys inwestorski, dokładnie analizuje wszystkie etapy inwestycji, co pozwala na efektywne zarządzanie budżetem oraz minimalizowanie ryzyka wystąpienia nieprzewidzianych wydatków. Kosztorys inwestorski jest zgodny z normami i dobrymi praktykami branżowymi, co zwiększa jego wiarygodność jako narzędzia do planowania finansowego w procesie inwestycyjnym.

Pytanie 15

Jakie rodzaje kolektorów słonecznych są najbardziej odpowiednie do montażu w orientacji pionowej?

A. Próżniowe o bezpośrednim przepływie przez absorber.
B. Z przykryciem ze szkła antyrefleksyjnego.
C. Z selektywną powłoką absorbera.
D. Płaskie.
Płaskie kolektory słoneczne charakteryzują się prostą konstrukcją, ale mają ograniczoną wydajność przy montażu w pozycji pionowej. Ich działanie opiera się na absorpcji promieni słonecznych przez płaską powierzchnię, która jest zwykle nachylona pod określonym kątem w celu maksymalizacji ekspozycji na słońce. Jednak gdy są montowane pionowo, efektywność ich działania drastycznie spada, co wynika z nieoptymalnego kąta padania promieni słonecznych. Z kolei kolektory z selektywną powłoką absorbera, mimo że oferują lepszą absorpcję, również nie są idealnym rozwiązaniem w pionowej pozycji, gdyż ich konstrukcja zakłada efektywne działanie w określonym kącie nachylenia. Ponadto, kolektory z przykryciem ze szkła antyrefleksyjnego mogą poprawiać wydajność, ale ich skuteczność również jest uzależniona od kąta nachylenia i nie są one zaprojektowane do pracy w pozycji pionowej. Zrozumienie tych aspektów jest kluczowe dla efektywnego wykorzystania energii słonecznej, a błędne założenia dotyczące montażu mogą prowadzić do znaczących strat energetycznych i nieoptymalnej pracy systemu. Niezrozumienie zasad fizyki oraz właściwości materiałów prowadzi do powszechnych mylnych przekonań, które mogą skutkować nieefektywną inwestycją w odnawialne źródła energii.

Pytanie 16

Czynnik przenoszący ciepło z dolnego źródła do pompy oraz z pompy do instalacji o oznaczeniu A/A dotyczy pomp ciepła, w których dolnym źródłem ciepła jest

A. grunt, a górnym powietrze wewnętrzne lub woda grzewcza; w instalacji dolnego źródła krąży solanka, natomiast w instalacji grzewczej krąży woda
B. powietrze wywiewane, natomiast górnym powietrze wewnętrzne; czynnikiem pośredniczącym jest czynnik roboczy pompy ciepła
C. grunt, a górnym powietrze wewnętrzne; czynnikiem pośredniczącym między dolnym źródłem ciepła a pompą ciepła jest roztwór glikolu, natomiast między pompą ciepła a górnym źródłem ciepła powietrze
D. woda powierzchniowa lub głębinowa, a górnym powietrze wewnętrzne lub woda grzewcza; czynnikiem pośredniczącym jest woda
Odpowiedź wskazująca, że dolnym źródłem ciepła jest powietrze wywiewane, a górnym powietrze wewnętrzne, jest prawidłowa, ponieważ opisuje pracę pompy ciepła typu A/A. W takim systemie pompa ciepła wykorzystuje powietrze wywiewane z budynku jako źródło ciepła, co jest szczególnie efektywne w kontekście wentylacji mechanicznej. W praktyce, energia cieplna z powietrza wywiewanego jest przekazywana do czynnika roboczego pompy ciepła, który następnie przetwarza tę energię, aby ogrzewać powietrze wewnętrzne lub wodę grzewczą. Stosowanie tego typu rozwiązań jest zgodne z najnowszymi standardami efektywności energetycznej, takie jak normy EN 14511, które definiują testy i parametry dla pomp ciepła. Efektywność tego systemu podnosi również zastosowanie zaawansowanych filtrów, które poprawiają jakość powietrza wewnętrznego, co jest kluczowe w kontekście zdrowia użytkowników. Warto również zaznaczyć, że systemy te są coraz częściej wykorzystywane w budynkach pasywnych i niskoenergetycznych, gdzie efektywność energetyczna jest kluczowym czynnikiem. Zastosowanie takich rozwiązań przyczynia się do zmniejszenia kosztów eksploatacji oraz obniżenia emisji CO2.

Pytanie 17

Jakiego rodzaju złączkę powinno się zastosować do łączenia paneli słonecznych?

A. UDW2
B. URI
C. WAGO
D. MC4
Złączki MC4 są standardem w branży fotowoltaicznej, a ich zastosowanie w łączeniu paneli słonecznych jest powszechnie uznawane za najlepszą praktykę. Wyróżniają się one wysoką odpornością na warunki atmosferyczne oraz łatwością montażu, co czyni je idealnym rozwiązaniem dla instalacji PV. Złączki te są zaprojektowane tak, aby zapewnić szczelne i bezpieczne połączenia, co minimalizuje ryzyko korozji i utraty wydajności systemu. Dzięki zastosowaniu złączek MC4, można osiągnąć wysoką wydajność energetyczną oraz długoterminową niezawodność instalacji. Przykładem ich zastosowania jest łączenie modułów w systemach grid-tied, gdzie istotne jest, aby połączenia były stabilne i odporne na działanie promieni UV oraz niskich temperatur. Dodatkowo, złącza MC4 są kompatybilne z szeroką gamą produktów na rynku, co zwiększa ich uniwersalność i ułatwia integrację z innymi komponentami systemu fotowoltaicznego. Używanie złączek MC4 jest zgodne z normami międzynarodowymi, takimi jak IEC 62852, co dodatkowo potwierdza ich wysoką jakość i bezpieczeństwo.

Pytanie 18

Turbina, która posiada dwie lub trzy długie, smukłe łopatki o kształcie parabolicznym, łączące się u góry i dołu osi obrotu, wykorzystywana do pozyskiwania energii wiatru, to turbina

A. Magnusa
B. Savoniusa
C. Giromil
D. Darrieusa
Odpowiedzi Magnusa, Giromil oraz Savonius odzwierciedlają różne typy turbin wiatrowych, które mają swoje unikalne cechy i zastosowania, ale nie pasują do opisanego w pytaniu schematu. Turbina Magnusa, znana z wykorzystania efektu Magnusa, składa się z cylindrycznych elementów, które obracają się pod wpływem wiatru, co pozwala na generowanie siły nośnej. Jest to zupełnie inna zasada działania niż w przypadku turbiny Darrieusa, która polega na obrotach łopat wokół pionowej osi. Z kolei turbina Giromil, która jest mniej powszechna, jest zbudowana z łopat, które mają specyficzny kształt, ale nie charakteryzują się paraboliczną formą, jak wymaga opis pytania. Turbina Savoniusa, będąca jedną z najprostszych konstrukcji, działa na zasadzie zbierania wiatru w wklęsłych łopatkach, co również nie odpowiada opisowi turbiny Darrieusa. Typowe błędy myślowe przy wyborze tych odpowiedzi mogą obejmować mylenie konstrukcji turbin oraz nieprawidłowe przypisywanie funkcji i zastosowań do niewłaściwych typów turbin. Kluczowe jest zrozumienie, że różne konstrukcje turbin wiatrowych są projektowane z myślą o różnych warunkach wiatrowych i efektywności, co czyni ich wybór krytycznym dla uzyskania optymalnych wyników w produkcji energii.

Pytanie 19

Jakie jest optymalne nachylenie kolektora słonecznego zamontowanego na fasadzie budynku na konsoli ściennej?

A. 70°
B. 65°
C. 45°
D. 30°
Kąt nachylenia kolektora słonecznego ma kluczowe znaczenie dla efektywności jego działania. W przypadku montażu na fasadzie budynku, zalecany kąt wynoszący 45° sprzyja optymalnemu wykorzystaniu promieniowania słonecznego przez większość roku. Taki kąt pozwala na maksymalne naświetlenie kolektora zarówno w okresie letnim, kiedy słońce jest wysoko na niebie, jak i w zimie, gdy jego kąt padania jest niższy. Dodatkowo, kąt 45° ułatwia również odprowadzanie śniegu i wody deszczowej, co zmniejsza ryzyko uszkodzeń systemu. Dobrą praktyką jest także uwzględnienie lokalnych warunków klimatycznych oraz orientacji budynku, co może wpłynąć na ostateczny wybór kąta nachylenia. W kontekście standardów, zaleca się konsultację z fachowcami, którzy mogą przeprowadzić symulacje lub analizy, aby dostosować kąt do specyficznych warunków konkretnego miejsca. Wiedza ta jest niezbędna dla osób zajmujących się projektowaniem i instalacją systemów fotowoltaicznych oraz solarnych.

Pytanie 20

W przypadku bardzo dużych różnic poziomu wody (H>500 m) optymalnym rozwiązaniem jest wykorzystanie turbiny wodnej

A. Kaplana
B. Francisa
C. Deriaza
D. Peltona
Turbina Peltona jest idealnym rozwiązaniem do zastosowania w warunkach dużych spadków wody, szczególnie gdy wysokość spadku przekracza 500 metrów. Działa ona na zasadzie impulsu, co oznacza, że wykorzystuje energię kinetyczną spadającej wody do napędu wirnika. Wysokie spadki wody generują dużą prędkość strumienia, co czyni turbiny Peltona bardzo efektywnymi w takich warunkach. Przykłady zastosowania turbin Peltona można znaleźć w elektrowniach wodnych, takich jak elektrownia HPP Tignes we Francji, gdzie wykorzystuje się tę technologię do produkcji energii elektrycznej z dużych wysokości. Turbiny Peltona są również preferowane w miejscach, gdzie dostępne jest ograniczone przepływy wody, ale bardzo wysoka energia potencjalna. W kontekście dobrych praktyk branżowych, turbiny Peltona są zgodne z normami IEC 60041 dotyczącymi badań hydraulicznych turbin wody, co zapewnia ich niezawodność i wysoką wydajność.

Pytanie 21

Aby osiągnąć optymalną efektywność w słonecznej instalacji grzewczej do podgrzewania wody w basenie podczas lata, kolektory powinny być ustawione w stosunku do poziomu pod kątem

A. 45°
B. 30°
C. 90°
D. 60°
Kąt nachylenia kolektorów słonecznych jest kluczowym parametrem wpływającym na ich wydajność. Ustawienie kolektorów pod kątem 30° w sezonie letnim pozwala na optymalne wykorzystanie promieni słonecznych, które w tym okresie są najbardziej intensywne i wysoko na niebie. W Polsce, która znajduje się na szerokości geograficznej około 52°N, ten kąt jest zgodny z zaleceniami ekspertów w dziedzinie energii odnawialnej. Przy takim nachyleniu kolektory są w stanie maksymalnie zbierać energię słoneczną, co przekłada się na efektywniejszy proces podgrzewania wody w basenie. Zastosowanie tego standardowego kąta nachylenia pozwala nie tylko na zwiększenie wydajności instalacji, ale także na obniżenie kosztów eksploatacyjnych, co jest istotne dla użytkowników. W praktyce, dostosowanie kąta nachylenia do warunków lokalnych i pory roku jest elementem dobrych praktyk w projektowaniu systemów solarnych.

Pytanie 22

Na instalacji fotowoltaicznej zaobserwowano, że panele fotowoltaiczne generują energię prądu stałego, jednak nie jest ona przekształcana na energię prądu zmiennego. Jakie urządzenie jest odpowiedzialne za konwersję prądu stałego produkowanego przez instalację fotowoltaiczną na prąd zmienny?

A. Przekładnik napięciowy
B. Watomierz
C. Prostownik
D. Inwerter
Inwerter to kluczowe urządzenie w systemach fotowoltaicznych, którego podstawową funkcją jest przekształcanie prądu stałego (DC) w prąd zmienny (AC). Panele fotowoltaiczne generują energię w postaci prądu stałego, która nie może być bezpośrednio wykorzystywana w większości aplikacji domowych ani nie może być wprowadzana do sieci elektroenergetycznej, gdyż ta operuje na prądzie zmiennym. Dlatego inwertery pełnią nie tylko rolę technologiczną, ale także zapewniają zgodność z przepisami i normami dotyczącymi jakości energii. W praktyce inwertery są odpowiedzialne za monitorowanie parametrów pracy systemu, optymalizację produkcji energii oraz zabezpieczenie przed przeciążeniem czy innymi nieprawidłowościami. Dobre praktyki branżowe wskazują na znaczenie wyboru inwertera o odpowiedniej mocy i funkcjach, takich jak monitoring online, co pozwala na bieżąco kontrolować wydajność instalacji.

Pytanie 23

Kiedy temperatura zasilania systemu grzewczego wynosi 70°C, w jakim trybie powinna działać pompa ciepła?

A. monowalentnym
B. biwalentnym rozdzielonym
C. biwalentnym równoległym
D. monoenergetycznym
Jak mamy temperaturę zasilania 70°C, to system monoenergetyczny może być problematyczny. System ten opiera się tylko na jednym źródle ciepła, co powoduje, że jest mniej elastyczny, jeśli chodzi o zmieniające się warunki na zewnątrz. Nie radzi sobie dobrze przy niskich temperaturach, co może skutkować wyższymi kosztami i większą emisją zanieczyszczeń. Z drugiej strony, system biwalentny rozdzielony, który działa na dwóch źródłach ciepła, też nie zawsze sobie poradzi w sytuacjach, gdzie jedno źródło nie daje rady dostarczyć wystarczającej energii do ogrzewania. Wybór systemu monowalentnego, opartego wyłącznie na pompie ciepła, może być kiepskim pomysłem, szczególnie w przypadku wyższych temperatur, bo wiele pomp nie działa efektywnie przy takich warunkach. Często ludzie popełniają błędy, bo nie doceniają, jak ważna jest elastyczność źródeł ciepła i zbyt dużo ufają jednemu rozwiązaniu, nie analizując konkretnych potrzeb budynku i warunków zewnętrznych, co może prowadzić do problemów z komfortem i efektywnością energetyczną.

Pytanie 24

W trakcie przerwy urlopowej przewiduje się brak odbioru ciepła z kolektorów słonecznych. Aby uniknąć przegrzania systemu solarnego, konieczne jest aktywowanie w sterowniku opcji chłodzenia, która polega na

A. opróżnieniu instalacji na czas przerwy urlopowej
B. zmianie czynnika w instalacji na czas przerwy urlopowej
C. działaniu pomp obiegowych w nocy
D. zatrzymaniu pomp obiegowych
No więc, praca pomp obiegowych w nocy to naprawdę świetny sposób na to, żeby nie dopuścić do przegrzania instalacji solarnej. Kiedy jesteśmy na urlopie i nie korzystamy z energii, temperatura w układzie może poszybować w górę, co w ogóle nie jest dobre dla kolektorów ani innych elementów instalacji. Włączając pompy nocą, zapewniamy cyrkulację cieczy i w ten sposób odprowadzamy nadmiar ciepła do zbiornika, co pomaga utrzymać stabilną temperaturę. Uważam, że to naprawdę ważne, żeby tak robić, bo to zgodne z zasadami efektywnego zarządzania energią. Wiele nowoczesnych systemów ma automatyczne sterowanie, które może to ogarnąć w odpowiednim czasie, co znacząco wpływa na trwałość i wydajność instalacji. Na przykład w miejscach z dużym nasłonecznieniem, to naprawdę może uratować system przed przegrzaniem i zmniejszyć ryzyko awarii.

Pytanie 25

Aby zabezpieczyć instalację solarną przed przegrzaniem czynnika grzewczego, co należy zastosować?

A. grawitacyjne krążenie czynnika grzewczego
B. obejście pompy obiegowej z użyciem zaworu kulowego
C. czynnik grzewczy, który nie zamarza
D. zasilanie rezerwowe UPS
Niektóre z proponowanych odpowiedzi, mimo że mogą wydawać się logiczne, nie odpowiadają rzeczywistości i nie są adekwatnymi metodami ochrony przed przegrzaniem czynnika grzewczego w instalacji solarnej. Użycie niezamarzającego czynnika grzewczego, na przykład, nie jest bezpośrednim zabezpieczeniem przed przegrzaniem, lecz raczej rozwiązaniem problemu związane z niskimi temperaturami. Taki czynnik, mimo że zapobiega zamarzaniu, nie chroni instalacji przed nadmiernym wzrostem temperatury, co może mieć miejsce w warunkach intensywnego nasłonecznienia. Z kolei obejście pompy obiegowej z zaworem kulowym teoretycznie może pomóc w regulacji przepływu, ale nie zastępuje aktywnego zabezpieczenia, jakim jest zasilanie UPS. W sytuacji awarii zasilania, pompa przestaje działać, co może prowadzić do stagnacji czynnika i przegrzania. Grawitacyjne krążenie czynnika grzewczego, chociaż ma swoje zastosowanie w niektórych typach systemów, nie jest wystarczające w nowoczesnych instalacjach solarnych, gdzie wymagana jest stała kontrola i regulacja przepływu, aby zapewnić efektywność i bezpieczeństwo. Błędem myślowym jest tutaj poleganie na pasywnych systemach, które mogą nie zapewnić odpowiedniego zarządzania temperaturą w przypadku nieprzewidywalnych zdarzeń.

Pytanie 26

Kiedy powinien być przeprowadzany przegląd techniczny kotła na biomasę?

A. przynajmniej dwa razy w roku
B. raz w roku, najlepiej przed rozpoczęciem sezonu grzewczego
C. jeden raz w roku, najlepiej po zakończeniu sezonu grzewczego
D. co dwa lata
Kiedy mówimy o przeglądzie technicznym kotła na biomasę, to warto pamiętać, że najlepiej robić to raz w roku. Najlepszy moment to przed sezonem grzewczym, bo wtedy można znaleźć jakieś potencjalne usterki na czas. Takie przeglądy to nie tylko kwestia bezpieczeństwa, ale też efektywności kotła. Regularne sprawdzanie stanu technicznego kotła pomaga uniknąć problemów i wydatków w przyszłości. Przykładowo, ważne jest, żeby sprawdzić palnik, wymiennik ciepła czy systemy bezpieczeństwa. Jak wiadomo, normy, takie jak PN-EN 303-5, mówią, że te kontrole są ważne dla ochrony środowiska i bezpieczeństwa użytkowników. Nie bez znaczenia jest, żeby przeglądów dokonywali fachowcy, bo tylko oni będą w stanie zauważyć wszelkie nieprawidłowości i zasugerować, co należy poprawić.

Pytanie 27

Wskaż, w oparciu o przedstawiony fragment instrukcji, na jakiej minimum głębokości poniżej lokalnej granicy przemarzania gruntu, należy montować kolektory gruntowe.

W przypadku gruntów o niskim stopniu wilgotności (grunt suchy, piaszczysty) układy spiralne mogą powodować znaczne wychłodzenie gruntu i zamarzanie parownika w pompie ciepła, wobec czego zdecydowanie bardziej bezpieczne jest stosowanie układów płaskich lub kolektorów pionowych. Kolektory poziome, w postaci pętli rur o jednakowej długości, układa się w odległości minimum 0,5÷1,0 m od siebie, na głębokości 30÷40 cm poniżej granicy przemarzania gruntu, co w Polsce stanowi w zależności od rejonu 0,8÷1,4 m.

A. 10 cm
B. 50 cm
C. 20 cm
D. 30 cm
Poprawna odpowiedź to 30 cm, co wynika z zaleceń zawartych w instrukcji dotyczącej montażu kolektorów gruntowych. Kolektory te powinny być umieszczone na głębokości od 30 do 40 cm poniżej lokalnej granicy przemarzania gruntu, aby zapewnić ich prawidłowe funkcjonowanie. W Polsce granica ta wynosi od 0,8 do 1,4 m, co oznacza, że minimalna głębokość montażu kolektorów powinna wynosić 30 cm poniżej tej granicy, co zapewnia odpowiednią ochronę przed wpływem mrozu. W praktyce oznacza to, że montując kolektory, należy zwrócić uwagę na lokalne warunki geologiczne i klimatyczne, aby dostosować głębokość ich ułożenia do specyfikacji technicznych. Przykład zastosowania to instalacje systemów ogrzewania geotermalnego, gdzie odpowiednia głębokość montażu kolektorów jest kluczowa dla efektywności energetycznej budynku. Zgodnie z najlepszymi praktykami, warto również zwrócić uwagę na rozmieszczenie kolektorów, które powinno wynosić od 0,5 do 1,0 m między poszczególnymi pętlami, aby zapewnić optymalne warunki pracy systemu.

Pytanie 28

Koszt materiałów do instalacji paneli słonecznych w domu jednorodzinnym wynosi 9 000 zł. Aby zamontować system na płaskim dachu, potrzeba 16 godzin pracy dwóch wykwalifikowanych pracowników, których stawka za godzinę wynosi 25,00 zł. Firma instalacyjna dolicza narzut na materiały w wysokości 20%. Jaki jest łączny koszt zamontowania systemu solarnego?

A. 9 800 zł
B. 11 600 zł
C. 10 800 zł
D. 12 600 zł
Aby obliczyć całkowity koszt montażu instalacji solarnej, należy uwzględnić zarówno koszt materiałów, jak i koszt pracy. Koszt materiałów wynosi 9 000 zł. Dodatkowo, firma instalacyjna nalicza 20% narzut na materiały, co oznacza, że dodajemy 1 800 zł (20% z 9 000 zł), co daje nam łączny koszt materiałów równy 10 800 zł. Następnie obliczamy koszt pracy: dwóch wykwalifikowanych pracowników pracuje po 16 godzin, co daje łącznie 32 godziny. Przy stawce 25 zł za godzinę, całkowity koszt pracy wynosi 800 zł (32 godziny x 25 zł). Dodając koszt materiałów i pracy, otrzymujemy 10 800 zł + 800 zł = 11 600 zł. Ta odpowiedź jest zgodna z dobrymi praktykami w zakresie wyceny projektów instalacji solarnych, które zawsze powinny obejmować wszystkie koszty związane z realizacją projektu, aby nie narazić się na nieprzewidziane wydatki podczas jego realizacji.

Pytanie 29

Jak należy łączyć miedziane rury z rurami ze stali ocynkowanej?

A. Zaciska się miedzianą rurę na stalowej rurze
B. Używa się specjalnej złączki mosiężnej jako przejściowej
C. Lutuje się stalową złączkę do miedzianej rury
D. Lutuje się miedzianą złączkę do stalowej rury
Stosowanie specjalnej przejściowej złączki mosiężnej jest właściwym rozwiązaniem przy łączeniu rur miedzianych ze stalowymi. Mosiądz, będący stopem miedzi i cynku, stanowi doskonały materiał do takich zastosowań, ponieważ łączy w sobie korzystne właściwości obu metali. Złączki mosiężne zapewniają trwałe i szczelne połączenia, które są odporne na korozję oraz różnice temperatur. W praktyce, w instalacjach wodociągowych czy grzewczych, gdzie często występują różne materiały, zastosowanie mosiądzu jako łącznika minimalizuje ryzyko wystąpienia reakcji galwanicznych, które mogą prowadzić do osłabienia połączeń. Ważne jest, aby podczas montażu zapewnić odpowiednią jakość złączek oraz przestrzegać norm i standardów branżowych, takich jak PN-EN 1254, które regulują kwestie dotyczące materiałów i metod łączenia rur. Dobrą praktyką jest również stosowanie uszczelek, aby zapewnić szczelność połączenia, co jest kluczowe w instalacjach hydraulicznych.

Pytanie 30

Za jakość realizacji prac montażowych oraz użytych materiałów przy instalacji systemu grzewczego z zastosowaniem pompy ciepła odpowiada

A. majster budowlany
B. wykonawca
C. inwestor
D. inspektor nadzoru
Wykonawca jest odpowiedzialny za jakość robót montażowych oraz zastosowanych materiałów w instalacjach grzewczych, w tym przy użyciu pomp ciepła. To on musi zapewnić, że wszystkie elementy systemu są zgodne z projektem oraz obowiązującymi normami, co jest kluczowe dla prawidłowego funkcjonowania całej instalacji. Przykładem może być prawidłowe zamontowanie jednostek wewnętrznych i zewnętrznych pompy ciepła, które muszą być umiejscowione w odpowiednich warunkach technicznych, aby zapewnić ich efektywność energetyczną. Dobre praktyki wskazują na konieczność wykorzystania materiałów wysokiej jakości, które są certyfikowane i spełniają standardy branżowe, co przekłada się na długotrwałość i niezawodność systemu. Odpowiedzialność wykonawcy obejmuje również przeprowadzenie stosownych testów oraz kontroli jakości, co jest zgodne z normami PN-EN 14511 dla pomp ciepła. Właściwe podejście wykonawcy do jakości robót przekłada się na zadowolenie inwestora oraz efektywność energetyczną obiektu.

Pytanie 31

Co oznacza symbol PE-HD na rurze?

A. polietylen o średniej gęstości
B. homopolimer polietylenu
C. polietylen o niskiej gęstości
D. polietylen o wysokiej gęstości
Oznaczenie PE-HD odnosi się do polietylenu wysokiej gęstości, który jest jednym z najczęściej stosowanych tworzyw sztucznych w branży budowlanej oraz przemysłowej. PE-HD charakteryzuje się wysoką odpornością na chemikalia, działanie wysokich temperatur oraz promieniowanie UV, co czyni go idealnym materiałem do produkcji rur wykorzystywanych w różnych systemach wodociągowych, kanalizacyjnych oraz gazowych. Dzięki swojej gęstości i strukturze, PE-HD ma również dobrą odporność na uszkodzenia mechaniczne, co jest szczególnie ważne w przypadku instalacji w trudnych warunkach. Standardy ISO 4427 oraz EN 12201 określają wymagania techniczne dla rur PE-HD, co zapewnia ich wysoką jakość oraz niezawodność. W praktyce, rury oznaczone jako PE-HD są powszechnie stosowane do transportu wody pitnej oraz ścieków, a także w systemach irygacyjnych. Warto również zauważyć, że proces recyklingu PE-HD jest stosunkowo prosty, co przyczynia się do zrównoważonego rozwoju i ochrony środowiska.

Pytanie 32

Gdzie należy zamontować zewnętrzną jednostkę powietrznej pompy ciepła?

A. bezpośrednio przy zewnętrznej ścianie budynku z czerpnią powietrza zwróconą w stronę ściany
B. w odległości co najmniej 0,5 m od zewnętrznej ściany z wyrzutnią powietrza skierowaną w stronę ściany
C. bezpośrednio przy zewnętrznej ścianie budynku z wyrzutnią powietrza kierującą się w stronę ściany
D. w odległości co najmniej 0,5 m od zewnętrznej ściany z wyrzutnią powietrza skierowaną poza ścianę
Wybierając tę odpowiedź, dobrze trafiłeś. Montaż zewnętrznego zespołu powietrznej pompy ciepła przynajmniej 0,5 m od ściany z wyrzutnią powietrza skierowaną na zewnątrz jest naprawdę dobrym rozwiązaniem. Dzięki temu powietrze swobodnie krąży i nie ma ryzyka zastoju, co jest kluczowe dla efektywnego działania urządzenia. Z mojego doświadczenia, jeśli zachowasz odpowiednią odległość, to ciepłe powietrze łatwiej się rozprasza i nie wraca znów do wlotu, co mogłoby obniżyć wydajność. Dobrze jest też unikać miejsc z przeszkodami, bo to może zablokować przepływ powietrza. Pamiętaj też, aby mieć na uwadze, jak blisko są inne obiekty – hałas generowany przez pompę może być ważny, szczególnie w otoczeniu mieszkalnym. Trzymanie się tych zasad pomoże wydłużyć żywotność urządzenia i zyskać lepszą efektywność energetyczną.

Pytanie 33

Podczas dłuższej nieobecności mieszkańców budynku jednorodzinnego występuje brak odbioru energii cieplnej z kolektora słonecznego, zatem na sterowniku systemu solarnego należy ustawić funkcję trybu

A. grzewczego
B. chłodzenia pasywnego
C. monowalentnego
D. urlopowego
Ustawienie trybu urlopowego na sterowniku solarnym jest kluczowe w sytuacji, gdy użytkownicy budynku jednorodzinnego są nieobecni przez dłuższy czas. Tryb urlopowy ma na celu minimalizację strat energetycznych oraz ochronę systemu przed ewentualnymi uszkodzeniami. W tym trybie system solarny ogranicza pracę pomp i innych komponentów, co pozwala zaoszczędzić energię, a jednocześnie chronić instalację przed przegrzaniem, gdy odbiór ciepła z zasobnika jest niewystarczający. Przykładem zastosowania trybu urlopowego może być sytuacja, gdy właściciele domu wyjeżdżają na wakacje; w tym czasie, aby uniknąć przegrzania lub zamarznięcia instalacji, ustawienie trybu urlopowego zapewnia, że system działa w trybie oszczędzania energii. Dobrą praktyką jest zapoznać się z instrukcją obsługi urządzenia oraz regularnie kontrolować, czy tryby pracy są odpowiednio ustawione w zależności od aktualnej sytuacji. W kontekście standardów, wiele producentów rekomenduje użycie trybu urlopowego, aby efektywnie zarządzać energią i minimalizować ryzyko awarii.

Pytanie 34

Informacje o projekcie instalacji solarnej, których nie można zobrazować w formie rysunków, znajdują się w

A. kosztorysie
B. opisie technicznym
C. certyfikacie technicznym
D. założeniach techniczno-ekonomicznych
Opis techniczny projektu instalacji solarnej jest dokumentem, który zawiera szczegółowe informacje na temat technologii, zastosowanych materiałów, parametrów systemu oraz zasad działania. W odróżnieniu od innych dokumentów, takich jak kosztorys czy certyfikat techniczny, opis techniczny kładzie nacisk na aspekty funkcjonalne i konstrukcyjne, które nie mogą być w pełni przedstawione w formie rysunków. Na przykład, opis techniczny może zawierać szczegółowe informacje dotyczące efektywności paneli słonecznych, ich wymagań dotyczących instalacji oraz interakcji z innymi systemami energetycznymi. Kluczowe jest, aby dokument ten był zgodny z normami branżowymi (np. PN-EN 61215 dotycząca wydajności modułów fotowoltaicznych) oraz zapewniał przejrzystość dla wszystkich interesariuszy projektu, w tym inwestorów i wykonawców. Dzięki temu, zrozumienie technicznych aspektów instalacji pozwala na optymalizację jej działania oraz efektywności energetycznej.

Pytanie 35

Aby połączyć dwie stalowe rury o identycznej średnicy z gwintem zewnętrznym, jakie złącze należy zastosować?

A. złączki wkrętnej, znanej jako nypl.
B. łącznika zaprasowywano-gwintowanego.
C. łącznika zaprasowywanego.
D. złączki nakrętnej, określanej jako mufy.
Złączka nakrętna, czyli mufa, jest idealnym rozwiązaniem do łączenia dwóch stalowych rur o tej samej średnicy, które zakończone są gwintem zewnętrznym. Mufa dysponuje wewnętrznymi gwintami, co pozwala na ich nakręcenie na zewnętrzne gwinty rur. Tego rodzaju połączenie jest niezwykle trwałe i pozwala na uzyskanie szczelności, co jest kluczowe w instalacjach hydraulicznych i grzewczych. W praktyce, mufa jest często stosowana w systemach wodociągowych oraz w instalacjach gazowych, gdzie bezpieczeństwo i szczelność są niezbędne. Dobrą praktyką jest również stosowanie odpowiednich smarów lub uszczelek podczas montażu, aby zminimalizować ryzyko nieszczelności. Warto zaznaczyć, że zgodnie z normami branżowymi, zastosowanie mufy w takich sytuacjach jest powszechnie akceptowane i rekomendowane przez specjalistów w dziedzinie hydrauliki. Dzięki temu połączenie jest nie tylko funkcjonalne, ale również spełnia wysokie standardy bezpieczeństwa.

Pytanie 36

Na podstawie fragmentu katalogu producenta regulatora ładowania dobierz zabezpieczenie do regulatora Solarix PRS 2020.

Regulator ładowania STECA Solarix PRSPRS 1010PRS 1515PRS 2020PRS 3030
Parametry operacyjne
Napięcie systemu12V (24V)
Zużycie własne< 4 mA
Strona wejściowa DC
Maksymalne napięcie obwodu otwartego Uoc paneli< 47 V
Maksymalny prąd wejściowy (Imax)10 A15 A20 A30 A
Strona wyjściowa DC
Napięcie akumulatorów9V ... 17 V (17,1 V ... 34 V)
Maksymalny prąd obciążenia10 A15 A20 A30 A
Zakończenie ładowania13,9 V (27,8 V)
Ładowanie boost14,4 V (28,8 V)
Ładowanie wyrównawcze14,7 V (29,4 V)
Załączenie po rozłączeniu (LVR)12,4 V ... 12,7 V (24,8 V ... 25,4 V)
Rozłączenie akumulatora (LVD)11,2 V ... 11,6 V (22,4 V ... 23,2 V))
Warunki pracy
Temperatura otoczenia-25°C ÷ +50°C
Montaż i podłączenie
Terminal16 mm2 / 25 mm2 - AWG 6 / 4
OchronaIP 32
Wymiary (D x W x G)187 x 96 x 45 mm
Masa345 g

A. 30 A
B. 10 A
C. 15 A
D. 20 A
Wybranie zabezpieczenia o wartości 20 A dla regulatora ładowania Solarix PRS 2020 jest prawidłowe, ponieważ maksymalny prąd wejściowy (I_max) zgodnie z informacjami zawartymi w katalogu producenta wynosi właśnie 20 A. Dobrze dobrane zabezpieczenie jest kluczowe dla efektywnej pracy systemu fotowoltaicznego, ponieważ chroni zarówno regulator, jak i akumulatory przed nadmiernym prądem, który mógłby prowadzić do ich uszkodzenia lub skrócenia żywotności. W praktyce, zabezpieczenie powinno być dostosowane do maksymalnych parametrów urządzenia, aby zapewnić optymalne działanie. W branży fotowoltaicznej zaleca się stosowanie zabezpieczeń o wartości nieprzekraczającej maksymalnego prądu wejściowego, co zmniejsza ryzyko przeciążenia. Przy doborze zabezpieczeń niezbędne jest również uwzględnienie warunków pracy oraz specyfiki instalacji, co jest istotnym elementem w zgodności z normami bezpieczeństwa. Warto także pamiętać, że właściwe zabezpieczenie wpływa na stabilność oraz wydajność całego systemu, co jest kluczowe dla inwestycji w odnawialne źródła energii.

Pytanie 37

Aby osiągnąć maksymalną wydajność przez cały rok w instalacji solarnej do podgrzewania wody użytkowej w Polsce, konieczne jest ustawienie kolektorów w odpowiednim kierunku pod kątem w stosunku do poziomu:

A. 45°
B. 90°
C. 20°
D. 70°
Ustawienie kolektorów słonecznych pod kątem 45° jest kluczowe dla maksymalnej efektywności systemu podgrzewania wody w Polsce. Taki kąt nachylenia jest optymalny ze względu na średnią szerokość geograficzną kraju, która wynosi 52°N. Zgodnie z praktykami branżowymi, kąt ten powinien być o 10-15 stopni mniejszy od szerokości geograficznej, co sprawia, że 45° to idealny wybór. Przy takim nachyleniu, kolektory mogą efektywnie zbierać promieniowanie słoneczne przez cały rok, co jest szczególnie istotne w kontekście sezonowych zmian nasłonecznienia. Przykładowo, zimą, gdy słońce znajduje się nisko nad horyzontem, kąt 45° pozwala na maksymalizację absorpcji promieni słonecznych, co przekłada się na lepsze wyniki w konwersji energii słonecznej na ciepło w systemie grzewczym. Warto także pamiętać, że powiązane z tego standardy, takie jak PN-EN 12975, określają wymagania dotyczące wydajności kolektorów słonecznych, które wzmacniają praktykę ustawienia ich pod odpowiednim kątem. Takie podejście nie tylko zwiększa efektywność energetyczną, ale również przyczynia się do obniżenia kosztów eksploatacyjnych systemu.

Pytanie 38

Co oznacza symbol sprężarkowej pompy ciepła B/A?

A. dolne źródło solanka, gromadzenie energii powietrze
B. dolne źródło woda, gromadzenie energii woda
C. dolne źródło woda, gromadzenie energii powietrze
D. dolne źródło powietrze, gromadzenie energii woda
Odpowiedź 'źródło dolne solanka, odbiornik energii powietrze' jest prawidłowa, ponieważ w kontekście sprężarkowych pomp ciepła stosuje się różne źródła dolne oraz odbiorniki energii. W tym przypadku solanka stanowi medium, które pobiera ciepło z gruntu, co jest typowe dla systemów gruntowych, a powietrze jako odbiornik energii wskazuje, że system wykorzystuje powietrze do ogrzewania budynku. Tego rodzaju rozwiązania są szczególnie efektywne w klimatach o umiarkowanych temperaturach, gdzie grunt utrzymuje względnie stałą temperaturę. Przykłady zastosowania obejmują systemy ogrzewania budynków jednorodzinnych oraz obiektów przemysłowych, gdzie nie ma możliwości zastosowania gruntowych wymienników ciepła. Ponadto, zgodnie z normami branżowymi, takie systemy wymagają odpowiedniego projektowania i dostosowania do specyficznych warunków lokalnych. Warto również zaznaczyć, że pompy ciepła oparte na solance mają wysoką efektywność energetyczną, co przekłada się na niższe koszty eksploatacji oraz mniejszy wpływ na środowisko, jeśli porównamy je do tradycyjnych systemów grzewczych.

Pytanie 39

Podstawą do stworzenia kosztorysu szczegółowego są

A. harmonogramy robót
B. katalogi producentów
C. katalogi nakładów rzeczowych
D. wytyczne organizacji budowy
Katalogi nakładów rzeczowych stanowią fundamentalne źródło informacji w procesie opracowywania kosztorysów szczegółowych, ponieważ zawierają szczegółowe dane dotyczące kosztów materiałów, robocizny oraz innych nakładów związanych z realizacją projektu budowlanego. Dzięki tym katalogom wykonawcy mogą precyzyjnie ocenić, jakie zasoby będą potrzebne do realizacji zadania oraz jakie będą ich koszty. Na przykład, w przypadku budowy budynku mieszkalnego, katalogi te pozwalają na oszacowanie ilości i kosztów materiałów budowlanych, takich jak cegły, cement czy stal. W praktyce, korzystając z obowiązujących standardów kosztorysowania, takich jak KNR (Katalogi Nakładów Rzeczowych), wykonawcy mogą dokonać analizy kosztów na etapie planowania, co jest kluczowe dla efektywnego zarządzania budżetem projektu. Zastosowanie katalogów nakładów rzeczowych poprawia dokładność kosztorysów, co z kolei wpływa na lepsze zarządzanie ryzykiem finansowym związanym z realizacją inwestycji.

Pytanie 40

Zestaw paneli słonecznych składa się z panelu fotowoltaicznego, regulatora ładowania oraz dwóch akumulatorów połączonych równolegle, każdy o napięciu 12 V. Jakie urządzenie należy zastosować, aby dostosować ten zestaw do zasilania odbiornika prądu zmiennego 230V/50Hz?

A. Prostownik jednopołówkowy 230V
B. Inwerter 12V DC / 230V AC
C. Prostownik dwupołówkowy 230V
D. Inwerter 24V DC / 230V AC
Inwerter 12V DC / 230V AC jest odpowiednim urządzeniem do zasilania odbiornika prądu zmiennego z zestawu fotowoltaicznego, który operuje na napięciu stałym 12 V. W zestawie znajduje się panel fotowoltaiczny, regulator ładowania oraz dwa akumulatory połączone równolegle, co oznacza, że cała instalacja pracuje na napięciu 12 V. Inwerter konwertuje napięcie stałe (DC) z akumulatorów na napięcie zmienne (AC) o standardowej wartości 230 V, co pozwala na zasilanie typowych domowych urządzeń elektrycznych. Przykłady zastosowania obejmują zasilanie sprzętu AGD, oświetlenia czy urządzeń elektronicznych w miejscach, gdzie dostęp do sieci energetycznej jest ograniczony lub niemożliwy. Zastosowanie inwertera 12 V DC / 230 V AC jest zgodne z normami i dobrymi praktykami branżowymi, gdzie dobór odpowiedniego inwertera jest kluczowy dla efektywności oraz bezpieczeństwa całej instalacji elektrycznej. Warto również przyjrzeć się parametrom technicznym inwertera, takim jak moc wyjściowa oraz wydajność, aby zapewnić, że spełni on wymagania zasilania wszystkich podłączonych urządzeń.