Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 15 maja 2025 17:25
  • Data zakończenia: 15 maja 2025 17:41

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W obiekcie zasilanym napięciem 400 V (3/N/PE 50Hz) zainstalowano następujące urządzenia:
1. przepływowy podgrzewacz wody - 12 kW - obwód trójfazowy
2. zmywarka - 3,5 kW - obwód jednofazowy
3. kuchenka elektryczna - 9,5 kW - obwód trójfazowy
4. pralka automatyczna - 4,5 kW - obwód jednofazowy

Każde z urządzeń stanowi odrębny obwód w tablicy rozdzielczej. Jakie wyłączniki instalacyjne należy zastosować z odpowiednimi wartościami prądu znamionowego, według kolejności dla każdego urządzenia (w kolejności 1,2,3,4)?

A. 20 A, 16 A, 16 A, 20 A
B. 20 A, 16 A, 20 A, 16 A
C. 16 A, 20 A, 20 A, 16 A
D. 16 A, 20 A, 20 A, 16 A
Wybór innych wartości prądów znamionowych dla wyłączników instalacyjnych może prowadzić do niewłaściwej ochrony odbiorników i stwarzać ryzyko ich uszkodzenia, a nawet pożaru. Dla przykładu, zastosowanie wyłącznika o prądzie 16 A dla kuchenki elektrycznej o mocy 9,5 kW w obwodzie 3-fazowym jest błędne, ponieważ moc ta wymaga przynajmniej 20 A. Prąd znamionowy wyłączników powinien być zawsze dobrany na podstawie obliczeń mocy i zastosowanej metody ochrony. Wybór zbyt niskiego prądu znamionowego może prowadzić do częstego wyłączania się zabezpieczenia, co nie tylko jest niewygodne, ale także może doprowadzić do uszkodzenia urządzenia przez nienależyte zasilanie. Z kolei użycie wyłącznika o zbyt wysokim prądzie może nie zapewnić odpowiedniej ochrony przed przeciążeniem, co stwarza ryzyko przegrzania i uszkodzenia przewodów. W normach instalacyjnych oraz w praktyce inżynierskiej kluczowe jest przestrzeganie zasad doboru zabezpieczeń, które uwzględniają zarówno moc odbiorników, jak i ich charakterystykę. Istotne jest również, aby uwzględniać współczynniki obciążenia, które mogą wpływać na rzeczywisty pobór prądu przez urządzenia. Dlatego też właściwe zrozumienie i stosowanie tych zasad jest niezbędne dla zapewnienia bezpieczeństwa instalacji elektrycznych.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jakie urządzenia elektryczne są częścią instalacji przyłączeniowej obiektu budowlanego?

A. Zabezpieczenia nadprądowe poszczególnych obwodów
B. Wyłącznik różnicowoprądowy oraz ograniczniki przepięć
C. Transformator słupowy z rozłącznikiem
D. Zabezpieczenia przedlicznikowe oraz licznik energii elektrycznej
Zabezpieczenia przedlicznikowe i licznik energii to naprawdę ważne elementy, które wchodzą w skład przyłącza budynku. Te zabezpieczenia, jak wyłączniki nadprądowe i różnicowoprądowe, mają za zadanie chronić zarówno instalację, jak i nas samych przed przeciążeniem czy porażeniem prądem. Licznik energii z kolei pozwala nam śledzić, ile energii zużywamy, co jest potrzebne przy rozliczeniach z dostawcą prądu. Jeśli dobrze dobierzemy te zabezpieczenia, to zgodnie z normami PN-IEC 60364, będziemy w lepszej sytuacji. W razie awarii, zabezpieczenia powinny odciąć zasilanie, co chroni sprzęt i nas, ludzi, w budynku. Wszystko sprowadza się do tego, żeby dobrze zamontować i dobrać te elementy, bo to klucz do bezpieczeństwa i sprawności energetycznej budynku. Dlatego ważne, żeby wartości prądowe były dopasowane tak, by instalacja działała optymalnie i uniknęła nagłych przerw w dostawie energii.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Podczas wymiany uszkodzonego gniazda wtykowego w instalacji ukrytej prowadzonej w rurkach karbowanych zauważono, że na skutek poluzowania zacisku izolacja jednego z przewodów na kilku centymetrach straciła elastyczność oraz zmieniła kolor. Jak należy zrealizować naprawę uszkodzenia?

A. Wymienić uszkodzony przewód na nowy o takim samym przekroju
B. Założyć gumowy wężyk na uszkodzoną izolację przewodu
C. Wymienić wszystkie przewody na nowe o większym przekroju
D. Pomalować uszkodzoną izolację przewodu
Nałożenie gumowego wężyka na uszkodzoną izolację przewodu jest działaniem tymczasowym i nieodpowiednim w kontekście standardów bezpieczeństwa. Choć może to wydawać się praktycznym rozwiązaniem, nie eliminuje ono problemu, jakim jest uszkodzenie izolacji. W rzeczywistości, gumowy wężyk nie zapewni odpowiedniej ochrony przed wpływem czynników zewnętrznych, takich jak wilgoć oraz zanieczyszczenia, które mogą prowadzić do dalszych uszkodzeń. Ponadto, niepoprawne jest również zakładanie, że nałożenie wężyka rozwiąże kwestię bezpieczeństwa elektrycznego, ponieważ w przypadku długotrwałego kontaktu z prądem, uszkodzenie może prowadzić do poważnych incydentów, w tym porażenia prądem. Wymiana wszystkich przewodów na nowe o większym przekroju nie jest uzasadniona, gdyż w tym przypadku wystarczy wymienić tylko uszkodzony element, co jest bardziej ekonomiczne i praktyczne. Polakierowanie uszkodzonej izolacji również nie jest właściwym podejściem, ponieważ nie przywraca to właściwości izolacyjnych materiału, a jedynie maskuje problem. Kluczowym błędem myślowym jest mylenie działania doraźnego z trwałym rozwiązaniem problemu. Takie podejście nie jest zgodne z zasadami dobrej praktyki inżynieryjnej, które wymagają trwałych i skutecznych rozwiązań w zakresie zabezpieczeń elektrycznych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Przed dokonaniem pomiaru rezystancji izolacji w instalacji elektrycznej najpierw należy odciąć napięcie zasilające, a potem

A. usunąć z opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, odłączyć silniki trójfazowe
B. zamontować do opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, włączyć silniki trójfazowe
C. zamontować do opraw źródła światła, włączyć odbiorniki jednofazowe do gniazd wtyczkowych, włączyć silniki trójfazowe
D. usunąć z opraw źródła światła, wyłączyć odbiorniki jednofazowe z gniazd wtyczkowych, odłączyć silniki trójfazowe
To, co napisałeś, jest trochę nie tak. Wybór złej sekwencji działań przed pomiarem rezystancji izolacji może prowadzić do różnych kłopotów, zarówno z bezpieczeństwem, jak i z jakością wyników. Na przykład, jeśli nie wymontujesz źródeł światła i nie wyłączysz jednofazowych odbiorników, to narażasz się na ryzyko porażenia prądem. Włączenie ich przed testem może dać złe wyniki i stwarza niebezpieczeństwo dla osoby przeprowadzającej pomiar. To jest sprzeczne z zasadą, że trzeba upewnić się, że wszystko jest odcięte od prądu. Dobrze jest pamiętać, że podłączanie urządzeń bez wcześniejszego ich rozłączenia może wprowadzić niechciane napięcia do obwodu, co grozi uszkodzeniem sprzętu pomiarowego i może wprowadzić zamieszanie w diagnozowaniu stanu izolacji. Często takie pomyłki wynikają z braku wiedzy o odpowiednich zasadach bezpieczeństwa oraz testów elektrycznych, co może prowadzić do błędów w pomiarach, a nawet do zagrożenia dla zdrowia i życia. Dlatego ważne jest, żeby zawsze trzymać się ustalonych norm i dobrych praktyk przed przystąpieniem do jakichkolwiek prac związanych z instalacją elektryczną.

Pytanie 11

Przed włożeniem uzwojenia do żłobków silnika indukcyjnego należy

A. wstawić w nie kliny ochronne
B. pokryć je lakierem elektroizolacyjnym
C. wyłożyć je izolacją żłobkową
D. pokryć je olejem elektroizolacyjnym
Wybór niewłaściwych metod przygotowania uzwojenia przed umieszczeniem go w żłobkach silnika indukcyjnego może prowadzić do poważnych konsekwencji. Na przykład smarowanie uzwojeń lakierem elektroizolacyjnym może wydawać się sensowne, jednakże nie zapewnia ono wystarczającej ochrony przed wpływem czynników zewnętrznych oraz uszkodzeń mechanicznych. Lakier, choć może pełnić rolę elektroizolacyjną, nie jest wystarczającym zabezpieczeniem, gdyż może nie tworzyć solidnej bariery ochronnej, co w konsekwencji prowadzi do awarii. Podobnie, umieszczanie klinów zabezpieczających może być mylnie postrzegane jako wystarczające zabezpieczenie; kliny są przede wszystkim wykorzystywane do stabilizacji uzwojenia, ale nie chronią go przed zewnętrznymi czynnikami. Smarowanie uzwojenia olejem elektroizolacyjnym jest również niewłaściwe, ponieważ olej może prowadzić do degradacji materiałów izolacyjnych oraz wprowadzać zanieczyszczenia, które mogą negatywnie wpłynąć na wydajność silnika. Właściwe przygotowanie uzwojeń wymaga zrozumienia ich funkcji oraz roli, jaką pełnią w strukturze silnika indukcyjnego. Izolacja żłobkowa nie tylko chroni uzwojenie, ale także wspiera efektywność energetyczną silnika, co jest szczególnie istotne w kontekście współczesnych norm dotyczących oszczędności energii i redukcji emisji.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Zmierzono różnicowy prąd zadziałania wyłączników różnicowoprądowych w instalacji elektrycznej. Jaki wniosek można wyciągnąć z pomiarów przedstawionych w tabeli?

Nr wyłącznikaOznaczenieRóżnicowy prąd zadziałania
IP 304 40-30-AC25 mA
IIP 304 40-100-AC70 mA
IIIP 302 25-30-AC12 mA

A. Wszystkie wyłączniki nadają się do dalszej eksploatacji.
B. Żaden wyłącznik nie nadaje się do dalszej eksploatacji.
C. Wyłącznik nr II nie nadaje się do dalszej eksploatacji.
D. Wyłącznik nr III nie nadaje się do dalszej eksploatacji.
Wyłącznik różnicowoprądowy, zwany także wyłącznikiem RCD, jest kluczowym elementem ochrony w instalacjach elektrycznych. Jego podstawowym zadaniem jest wykrywanie prądów różnicowych, które mogą wskazywać na nieprawidłowości w obwodzie, takie jak zwarcia doziemne. Zgodnie z normą PN-EN 61008-1, wyłącznik powinien zadziałać przy prądzie różnicowym wynoszącym 50% jego wartości nominalnej, co dla wyłącznika nr III wynosi 15 mA (50% z 30 mA). Zmierzona wartość zadziałania tego wyłącznika wynosząca 12 mA jest poniżej wspomnianego progu, co oznacza, że nie zadziałał on w sytuacji, gdy powinien. W praktyce, użycie wyłącznika, który nie spełnia tych norm, stwarza zagrożenie dla użytkowników, ponieważ nie zapewnia on odpowiedniej ochrony przed porażeniem prądem elektrycznym. Dlatego wyłącznik nr III nie nadaje się do dalszej eksploatacji i powinien być wymieniony na nowy, aby zagwarantować bezpieczeństwo instalacji elektrycznej.

Pytanie 14

Który z podanych łączników instalacyjnych dysponuje dwoma klawiszami i trzema zaciskami przyłączeniowymi?

A. Łącznik krzyżowy
B. Łącznik schodowy pojedynczy
C. Łącznik schodowy podwójny
D. Łącznik świecznikowy
Wybór innego typu łącznika, takiego jak łącznik schodowy podwójny, prowadzi do nieporozumienia dotyczącego jego funkcji i zastosowania. Łącznik schodowy podwójny jest zaprojektowany do pracy w układzie schodowym, gdzie umożliwia kontrolę nad tym samym źródłem światła z dwóch różnych miejsc. Posiada on jednak inną liczbę zacisków oraz inny sposób podłączenia w porównaniu do łącznika świecznikowego. Dodatkowo, łącznik schodowy pojedynczy również nie jest odpowiednią odpowiedzią, ponieważ jego konstrukcja zakłada jedynie jeden klawisz i dwa zaciski, co nie spełnia warunków postawionych w pytaniu. Z kolei łącznik krzyżowy, choć jest elementem integrującym w bardziej złożonych systemach oświetleniowych, nie odpowiada wymaganiom związanym z dwoma klawiszami i trzema zaciskami. Kluczowym błędem myślowym, który może prowadzić do nieprawidłowych wyborów, jest niezrozumienie różnicy między funkcjami różnych typów łączników i ich zastosowaniem w praktyce. Wybierając nieodpowiedni typ łącznika, można nie tylko zakłócić działanie całej instalacji elektrycznej, ale również zwiększyć ryzyko awarii. Świadomość różnic pomiędzy poszczególnymi typami łączników to klucz do efektywnego projektowania oraz bezpiecznej eksploatacji systemów oświetleniowych.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

W trakcie korzystania z instalacji elektrycznej często dochodzi do zadziałania wyłącznika różnicowoprądowego. Jakie mogą być przyczyny tej usterki?

A. Częściowe zwarcie w instalacji elektrycznej pomiędzy przewodem L a PE
B. Zwarcie w instalacji elektrycznej pomiędzy przewodem L a N
C. Wykorzystywanie urządzeń o zbyt dużej mocy
D. Użycie wyłącznika o zbyt długim czasie reakcji
Częściowe zwarcie między przewodem L a PE to jedna z najczęstszych przyczyn, przez które wyłącznik różnicowoprądowy (RCD) może zadziałać. Tego typu zwarcie grozi niebezpiecznymi sytuacjami, bo prąd upływowy może pojawiać się na obudowach urządzeń, co zagraża bezpieczeństwu osób je używających. Te wyłączniki są zaprojektowane, żeby w momencie wykrycia różnicy prądów automatycznie przerywać obwód, co oznacza, że prąd może płynąć do ziemi przez niezamierzony kanał, na przykład przez osobę dotykającą urządzenia. Dlatego warto regularnie testować RCD, co jest zalecane przez normy, takie jak PN-EN 60947-2. To naprawdę ważne dla naszej ochrony przed porażeniem w instalacjach elektrycznych. Jeśli masz problemy z RCD, dobrze byłoby zlecić sprawdzenie instalacji elektrycznej profesjonalnemu elektrykowi, żeby zidentyfikował problem i usunął przyczynę zwarcia, co pozwoli nam bezpiecznie korzystać z urządzeń elektrycznych.

Pytanie 17

Aby zmierzyć wartości elektryczne o stałym przebiegu, należy zastosować miernik o budowie

A. elektromagnetycznym
B. ferrodynamicznym
C. magnetoelektrycznym
D. elektrodynamicznym
Miernik o ustroju magnetoelektrycznym jest szczególnie odpowiedni do pomiaru wielkości elektrycznych o przebiegu stałym, ponieważ jego działanie opiera się na interakcji pola magnetycznego z prądem elektrycznym, co pozwala na dokładne i stabilne odczyty. W urządzeniach tych zastosowane są magnesy trwałe oraz ruchome cewki, co zapewnia wysoką czułość i precyzję pomiaru. Przykładem zastosowania mierników magnetoelektrycznych są laboratoria badawcze oraz instalacje przemysłowe, gdzie wymagane są dokładne pomiary prądu stałego, na przykład podczas testowania elementów elektronicznych. Standardy branżowe, takie jak IEC 61010, podkreślają istotność stosowania odpowiednich technik pomiarowych, co sprawia, że wybór miernika magnetoelektrycznego jest zgodny z dobrymi praktykami w zakresie bezpieczeństwa i dokładności pomiarów. Dodatkowo, mierniki te są często wykorzystywane w sprzęcie pomiarowym, takim jak multimetry, które są niezbędne w codziennej pracy inżynierów i techników w różnych branżach.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Jakie materiały są wykorzystywane do izolacji żył przewodów elektrycznych?

A. Mika i silikon
B. Polwinit i guma
C. Silikon i guma
D. Polwinit i mika
Polwinit, czyli PVC, oraz guma to dwa naprawdę ważne materiały, które używa się do izolacji żył w przewodach elektrycznych. Dają one gwarancję, że wszystko będzie działać bezpiecznie i przez długi czas. Polwinit jest znany ze swojej odporności na różne chemikalia i wysokie temperatury, dlatego często znajdziesz go w kablach niskiego i średniego napięcia. Ma fajne właściwości mechaniczne i elektryczne, na przykład niską przewodność elektryczną, co czyni go super materiałem do izolacji. Guma natomiast jest elastyczna i świetnie sprawdza się tam, gdzie przewody muszą się poruszać lub być zginane. To ważne w sytuacjach, gdzie są narażone na wibracje. Normy IEC 60227 i IEC 60502 pokazują, jak ważne jest korzystanie z odpowiednich materiałów, żeby zapewnić bezpieczeństwo i niezawodność instalacji elektrycznych. Polwinitowe i gumowe izolacje są używane w wielu miejscach – od domów po przemysł, a nawet w motoryzacji. Dobrze wiedzieć, że odporność tych materiałów na różne czynniki może naprawdę wpłynąć na bezpieczeństwo całego systemu elektrycznego.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Przedstawione w tabeli parametry techniczne dotyczą

Parametry techniczne
  • Moc przyłączeniowa
  • Rodzaj przyłącza
  • Rodzaj uziomu
  • Typy przewodów
  • Liczba obwodów

A. instalacji odgromowej budynku.
B. linii kablowej zasilającej budynek.
C. linii napowietrznej niskiego napięcia.
D. instalacji elektrycznej.
Wybór instalacji elektrycznej jako poprawnej odpowiedzi jest zasłużony, ponieważ parametry techniczne przedstawione w tabeli, takie jak moc przyłączeniowa, rodzaj przyłącza, uziemienie oraz liczba obwodów, są kluczowe dla prawidłowego zaprojektowania i funkcjonowania instalacji elektrycznej w obiektach budowlanych. Moc przyłączeniowa wskazuje na maksymalne zapotrzebowanie na energię elektryczną, co jest istotne przy doborze odpowiednich przewodów i zabezpieczeń. Rodzaj przyłącza oraz system uziemienia są niezwykle ważne dla bezpieczeństwa użytkowników, gdyż wpływają na właściwe odprowadzenie ładunków elektrycznych i ochronę przed porażeniem prądem. Typy przewodów oraz liczba obwodów są również kluczowe dla zapewnienia stabilności i elastyczności instalacji, umożliwiając podział obciążenia oraz efektywne zarządzanie energią w budynku. Zgodność z normami PN-IEC 60364 oraz innymi standardami branżowymi jest niezbędna dla osiągnięcia wysokich standardów bezpieczeństwa oraz efektywności energetycznej.

Pytanie 24

Jaką maksymalną wartość impedancji pętli zwarcia należy przyjąć w trójfazowym układzie elektrycznym o napięciu 230/400 V, aby zabezpieczenie przeciwporażeniowe działało prawidłowo w przypadku uszkodzenia izolacji, zakładając, że zasilanie tego obwodu ma być odłączone przez instalacyjny wyłącznik nadprądowy B20?

A. 2,30 Ω
B. 3,83 Ω
C. 1,15 Ω
D. 0,56 Ω
Wybór błędnych wartości impedancji pętli zwarcia może wynikać z niewłaściwego zrozumienia zasad działania wyłączników nadprądowych oraz ich charakterystyk. Na przykład, 0,56 Ω i 1,15 Ω to wartości znacznie zbyt niskie, co może sugerować, że osoba odpowiedzialna za projektowanie lub pomiar nie uwzględniała wymaganych parametrów dla wyłącznika B20. Tego rodzaju wartości mogą prowadzić do nieefektywnej ochrony, gdyż w przypadku zwarcia obwód może zadziałać zbyt szybko, zanim układ zabezpieczeń zdąży dopełnić swojej funkcji. Wartości 3,83 Ω również są nieprawidłowe, ponieważ przekraczają dopuszczalny limit. W praktyce, zbyt wysoka impedancja pętli zwarcia oznacza, że prąd zwarciowy może być niewystarczający, aby wyzwolić zabezpieczenie. Należy zauważyć, że zgodnie z normami, takimi jak PN-IEC 60364, odpowiednie wartości impedancji są kluczowe dla działania systemów zabezpieczeń. Dlatego ważne jest, aby przy projektowaniu oraz ocenie instalacji elektrycznych przestrzegać wytycznych, by zapewnić odpowiedni poziom bezpieczeństwa, eliminując słabe punkty, które mogą prowadzić do niebezpiecznych sytuacji.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Kontrolę przeciwpożarową wyłącznika prądu powinno się przeprowadzać w terminach określonych przez producenta, jednak nie rzadziej niż raz na

A. pięć lat
B. dwa lata
C. rok
D. trzy lata
Wybór odpowiedzi, która sugeruje dłuższy okres między przeglądami, jest błędny i może prowadzić do poważnych konsekwencji. W kontekście przeglądów przeciwpożarowych wyłączników prądu, istotne jest, aby każde urządzenie było regularnie monitorowane pod kątem sprawności. Wiele osób mylnie uważa, że rzadkie przeglądy, takie jak co dwa lub trzy lata, są wystarczające, co w rzeczywistości może prowadzić do niedopuszczalnego ryzyka. Wyłączniki prądu są kluczowymi elementami systemów zabezpieczeń elektrycznych, a ich awaria w momencie, gdy są najbardziej potrzebne, może prowadzić do katastrofalnych skutków. Użytkownicy często zapominają, że komponenty elektryczne mogą ulegać zużyciu oraz że czynniki zewnętrzne, takie jak wilgoć czy zanieczyszczenia, mogą wpływać na ich działanie. Dlatego przegląd roczny jest nie tylko zalecany, ale wręcz obligatoryjny, aby zapewnić ich prawidłowe funkcjonowanie. Ponadto, regulacje prawne w wielu krajach określają, że organizacje powinny mieć opracowane procedury konserwacji urządzeń elektrycznych, w tym wyłączników, co dodatkowo podkreśla znaczenie regularnych przeglądów. Ignorowanie tego aspektu jest niezgodne z dobrą praktyką inżynierską oraz wymogami normatywnymi, co może prowadzić do konieczności ponoszenia kosztów naprawy uszkodzeń lub nawet strat materialnych i osobowych w wyniku awarii.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jaka jest minimalna wartość rezystancji izolacji przewodu, gdy mierzymy induktorem w sieci o napięciu znamionowym badanego obwodu U < 500 V?

A. ≥ 0,5 MΩ
B. < 0,5 MΩ
C. ≥ 0,25 MΩ
D. < 0,25 MΩ
Odpowiedź z wartością ≥ 0,5 MΩ jest całkiem w porządku. Zgodnie z normami, jak PN-EN 61557-1, dla przewodów w sieciach do 500 V, ta minimalna wartość rezystancji izolacji wynosi właśnie 0,5 MΩ. To ważne, bo pomaga utrzymać bezpieczeństwo i zmniejsza ryzyko porażenia prądem czy zwarć w instalacjach elektrycznych. W praktyce, zanim technicy zaczną pracować przy instalacjach, zawsze wykonują pomiary rezystancji, żeby sprawdzić, czy wszystko jest w porządku. Jakby okazało się, że wartość jest niższa niż 0,5 MΩ, to trzeba działać, na przykład wymienić uszkodzone przewody lub poprawić izolację. Regularne sprawdzanie rezystancji izolacji to też dobry sposób na konserwację, co jest całkiem zgodne z najlepszymi praktykami w branży.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Który z pomiarów służy do oceny efektywności zabezpieczenia przed dotykiem bezpośrednim w instalacjach do 1 kV?

A. Rezystancji uziemienia
B. Impedancji zwarciowej
C. Rezystancji izolacji
D. Napięcia dotykowego
Impedancja zwarciowa, napięcie dotykowe, a także rezystancja uziemienia to istotne parametry w kontekście bezpieczeństwa instalacji elektrycznych, lecz nie są one bezpośrednio związane z oceną skuteczności ochrony przed dotykiem bezpośrednim. Impedancja zwarciowa odnosi się do zachowania się instalacji podczas zwarcia, co ma znaczenie dla ochrony przed zwarciami, ale nie mówi nic o izolacyjności systemu. Napięcie dotykowe to wartość napięcia, jaką może otrzymać osoba mająca kontakt z elementami instalacji. Choć jego pomiar jest ważny, nie zastępuje on analizy rezystancji izolacji, która jest kluczowym wskaźnikiem stanu technicznego izolacji. Z kolei rezystancja uziemienia ma za zadanie zminimalizować potencjalne napięcia występujące w przypadku uszkodzenia izolacji, ale również nie pokazuje bezpośrednio skuteczności izolacji samej w sobie. Wiele osób myli te pojęcia, co może prowadzić do niepoprawnych wniosków i braku odpowiednich działań naprawczych. W kontekście norm i dobrych praktyk, np. IEC 60364, kluczowe jest zrozumienie, że prawidłowa izolacja jest fundamentem bezpieczeństwa, a pomiar rezystancji izolacji jest jednym z podstawowych działań w utrzymaniu instalacji elektrycznych.

Pytanie 36

Do którego rodzaju ochrony przeciwporażeniowej zaliczane są środki ochrony opisane w tabeli?

1.Urządzenia ochronne różnicowoprądowe o znamionowym prądzie różnicowym nieprzekraczającym 30 mA.
2.Dodatkowe połączenia wyrównawcze ochronne.

A. Ochrony podstawowej.
B. Ochrony przez zastosowanie bardzo niskiego napięcia.
C. Ochrony przy uszkodzeniu (dodatkowej).
D. Ochrony uzupełniającej.
No, musisz przyznać, że rozróżnienie różnych rodzajów ochrony przeciwporażeniowej to ważna sprawa, jeśli chcesz mieć pewność, że wszystko działa jak należy. Kiedy mówisz o ochronie podstawowej, ochronie przy uszkodzeniu czy bardzo niskim napięciu, to czasami można się pogubić, bo myślisz, że wystarczy tylko jedna z tych metod. Ochrona podstawowa to jakby pierwsza linia obrony, ale nie zawsze wystarczy. Gdy jest zagrożenie, trzeba pomyśleć o dodatkowej ochronie. Ochrona przy uszkodzeniu, jak bezpieczniki i wyłączniki nadprądowe, też nie zawsze da sobie radę w trudnych sytuacjach. Z tego, co widziałem, ludzie czasem mylą różne typy zabezpieczeń i to może prowadzić do poważnych problemów, bo nie rozumieją, że te dodatkowe środki są naprawdę konieczne. Zrozumienie tego łączenia podstawowej i uzupełniającej ochrony jest kluczowe dla budowy bezpiecznych instalacji. Dobrze też sięgnąć do norm, żeby wiedzieć, jak to wszystko ma działać.

Pytanie 37

Jaka jest maksymalna moc kuchni elektrycznej zamontowanej w lokalu zasilanym napięciem 400/230V, jeśli obwód zasilający jest chroniony przez wyłącznik nadprądowy typu S-303 CLS6-C10/3?

A. 2,9 kW
B. 3,9 kW
C. 9,6 kW
D. 6,9 kW
W przypadku odpowiedzi, które wskazują na inne wartości mocy, istotne jest zrozumienie kilku kluczowych zasad dotyczących obliczeń mocy oraz właściwego doboru zabezpieczeń dla urządzeń elektrycznych. Na przykład, wiele osób może błędnie sądzić, że maksymalna moc kuchenki elektrycznej może być wyższa niż wskazywana przez wyłącznik, nie uwzględniając, że każdy obwód zasilający ma swoje ograniczenia wynikające z zastosowanych zabezpieczeń. Warto również zauważyć, że przy zasilaniu z napięcia 230 V, przy założeniu, że używamy wyłącznika o prądzie znamionowym 10 A, obliczona moc wynosi tylko 2,3 kW, co jest znacznie poniżej potrzebnej mocy dla typowej kuchenki, która zazwyczaj wymaga większej mocy do efektywnego gotowania. Z kolei założenie, że można użyć wartości mocy 9,6 kW, jest niezgodne z parametrami wyłącznika, co może prowadzić do niebezpieczeństwa przeciążenia i awarii instalacji. Warto pamiętać, że każda instalacja elektryczna powinna być projektowana zgodnie z obowiązującymi normami, a także z praktykami, które zapewniają nie tylko skuteczność, ale przede wszystkim bezpieczeństwo użytkowników. Ustalając maksymalną moc dla urządzeń elektrycznych, należy zawsze odnosić się do specyfikacji producenta oraz obowiązujących przepisów, co pozwoli uniknąć nieprzewidzianych problemów i zagrożeń.

Pytanie 38

Jakim kolorem oznaczona jest wkładka topikowa, której wartość prądu znamionowego wynosi 20 A?

A. czerwony
B. szary
C. niebieski
D. żółty
Wybór innych kolorów wkładek topikowych może prowadzić do poważnych błędów w zabezpieczeniach instalacji elektrycznych. Szary kolor odpowiada wkładkom o prądzie znamionowym 6 A, co oznacza, że zastosowanie go w miejscu o pełnym obciążeniu 20 A może skutkować ich zbyt wczesnym przepaleniem, co z kolei może doprowadzić do uszkodzeń sprzętu oraz potencjalnych zagrożeń pożarowych. Żółty oznacza wkładki o wartości 10 A, co również jest niewystarczające dla prądów sięgających 20 A. Czerwony kolor jest przypisany wkładkom o prądzie znamionowym 16 A, co również nie zabezpiecza adekwatnie instalacji, która wymaga wytrzymałości 20 A. Kluczowym błędem myślowym jest błędne założenie, że każdy kolor mógłby być stosowany wymiennie w zależności od dostępności, co jest absolutnie nieprawidłowe. Przy wyborze wkładek topikowych należy kierować się nie tylko ich dostępnością, ale przede wszystkim normami oraz prądami znamionowymi, by uniknąć ryzyka awarii. Wiedza na temat tych norm oraz ich praktyczne zastosowanie jest niezbędne dla każdego profesjonalisty w branży elektrycznej.

Pytanie 39

Jakie czynności nie są częścią przeglądów instalacji elektrycznej?

A. przyjęcia do eksploatacji
B. oględzin
C. przeprowadzania konserwacji i napraw
D. pomiarów napięcia oraz rezystancji izolacji
Przyjęcie do eksploatacji instalacji elektrycznej to proces, który następuje po zakończeniu wszystkich działań związanych z jej budową oraz po przeprowadzeniu wymaganych testów i pomiarów. Proces ten nie jest częścią regularnych przeglądów instalacji elektrycznej, które koncentrują się głównie na ocenie stanu technicznego, wykonaniu pomiarów, takich jak napięcia oraz rezystancje izolacji, a także na przeprowadzaniu oględzin wizualnych oraz ocenie bezpieczeństwa użytkowania instalacji. Przyjęcie do eksploatacji obejmuje natomiast sprawdzenie, czy instalacja została wykonana zgodnie z projektem oraz obowiązującymi normami, takimi jak PN-IEC 60364. W praktyce oznacza to, że przed oddaniem instalacji do użytku, wszystkie jej elementy muszą być starannie skontrolowane, a wyniki pomiarów muszą spełniać określone normy, co przekłada się na bezpieczeństwo użytkowników oraz standardy jakości. Warto zauważyć, że odpowiednie dokumenty potwierdzające przyjęcie do eksploatacji są niezbędne dla przyszłych przeglądów oraz konserwacji.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.