Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 3 maja 2025 12:49
  • Data zakończenia: 3 maja 2025 13:37

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W trakcie instalacji systemu Windows, zaraz po rozpoczęciu instalacji w trybie graficznym, istnieje możliwość otwarcia Wiersza poleceń (konsoli) za pomocą kombinacji klawiszy

A. CTRL + SHIFT
B. SHIFT + F10
C. CTRL + Z
D. ALT + F4
Kombinacja klawiszy SHIFT + F10 podczas instalacji systemu Windows jest kluczowym skrótem, który umożliwia otwarcie Wiersza poleceń (konsoli) w trybie graficznym. Jest to niezwykle przydatne narzędzie, które pozwala na zaawansowane operacje, takie jak zarządzanie dyskami, modyfikacja plików konfiguracyjnych, czy uruchamianie skryptów. Użycie Wiersza poleceń w tym etapie instalacji może być konieczne w sytuacjach problemowych, na przykład, gdy zachodzi potrzeba dostosowania ustawień sieciowych lub przeprowadzenia diagnostyki sprzętowej przed zakończeniem procesu instalacji. Praktycznym zastosowaniem tego skrótu jest możliwość uruchomienia polecenia DISKPART, które pozwala na zarządzanie partycjami dyskowymi i sprawdzenie ich stanu. To podejście jest zgodne z najlepszymi praktykami branżowymi, które zalecają korzystanie z narzędzi wiersza poleceń w sytuacjach, gdy interfejs graficzny nie wystarcza do rozwiązania problemów. Pamiętaj, że znajomość tych skrótów i funkcji może znacznie przyspieszyć i uprościć proces instalacji systemu operacyjnego.

Pytanie 2

W standardzie IEEE 802.3af metoda zasilania różnych urządzeń sieciowych została określona przez technologię

A. Power under Control
B. Power over Internet
C. Power over Ethernet
D. Power over Classifications
Power over Ethernet (PoE) to technologia, która pozwala na jednoczesne przesyłanie danych i energii elektrycznej przez standardowe kable Ethernet, co czyni ją niezwykle praktycznym rozwiązaniem w zastosowaniach sieciowych. W standardzie IEEE 802.3af, PoE umożliwia dostarczanie do 15,4 W energii do urządzeń, takich jak kamery IP, punkty dostępu bezprzewodowego oraz telefony VoIP. Dzięki zastosowaniu PoE, instalacja takich urządzeń jest znacznie uproszczona, ponieważ nie wymaga osobnego zasilania, co z kolei zmniejsza koszty oraz czas potrzebny na wdrożenie systemów. Przykłady praktycznego wykorzystania PoE obejmują instalacje w biurach, gdzie punkty dostępu Wi-Fi mogą być łatwo rozmieszczane bez konieczności dostępu do gniazdek elektrycznych. Standard IEEE 802.3af, wprowadzony w 2003 roku, stanowi podstawę dla wielu nowoczesnych rozwiązań sieciowych, a jego implementacja jest zgodna z zaleceniami innych standardów, co zapewnia kompatybilność i wydajność. To sprawia, że PoE stało się standardem w wielu branżach, w tym w systemach zabezpieczeń i automatyce budynkowej.

Pytanie 3

Jak nazywa się metoda dostępu do medium transmisyjnego z detekcją kolizji w sieciach LAN?

A. IPX/SPX
B. WINS
C. CSMA/CD
D. NetBEUI
NetBEUI, WINS i IPX/SPX to protokoły komunikacyjne, które są często mylone z metodami dostępu do medium transmisyjnego, ale nie pełnią one tej samej funkcji co CSMA/CD. NetBEUI to protokół stosowany głównie w małych sieciach lokalnych, który nie wymaga skomplikowanej konfiguracji, ale nie obsługuje wykrywania kolizji, co czyni go mniej efektywnym w bardziej rozbudowanych infrastrukturach. WINS, z kolei, to usługa, która mapuje nazwy komputerów na adresy IP w sieciach Windows, ale nie jest odpowiedzialna za zarządzanie dostępem do medium transmisyjnego. IPX/SPX to zestaw protokołów, który był popularny w sieciach Novell, jednak jego użycie spadło na rzecz TCP/IP i nie zajmuje się mechanizmami wykrywania kolizji. Typowe myślenie, które prowadzi do wyboru tych odpowiedzi, opiera się na skojarzeniu protokołów z funkcjami sieciowymi, a nie na zrozumieniu ich rzeczywistych ról. Użytkownicy mogą uważać, że wszystkie wymienione opcje mają podobne znaczenie, jednak kluczowe jest zrozumienie różnic między metodą dostępu do medium a protokołami komunikacyjnymi. Przy projektowaniu sieci ważne jest, aby wybrać odpowiednie narzędzia i metody zgodne z aktualnymi standardami branżowymi, co zapewnia niezawodność i wydajność transmisji danych.

Pytanie 4

Do jakiego celu służy program fsck w systemie Linux?

A. do przeprowadzania testów wydajności serwera WWW poprzez generowanie dużej liczby żądań
B. do nadzorowania parametrów pracy i efektywności komponentów komputera
C. do identyfikacji struktury sieci oraz analizy przepustowości sieci lokalnej
D. do oceny kondycji systemu plików oraz lokalizacji uszkodzonych sektorów
Program fsck (File System Consistency Check) jest narzędziem w systemie Linux, które służy do oceny stanu systemu plików oraz identyfikacji uszkodzeń w strukturze danych. Działa on na poziomie niskim, analizując metadane systemu plików, takie jak inode'y, bloki danych oraz struktury katalogów. W przypadku uszkodzeń, fsck potrafi wprowadzać odpowiednie korekty, co jest kluczowe dla zachowania integralności danych. Przykładowo, jeśli system plików został niepoprawnie zamknięty z powodu awarii zasilania, uruchomienie fsck przy następnym starcie systemu umożliwia skanowanie i naprawę potencjalnych uszkodzeń, co zapobiega dalszym problemom z dostępem do danych. Zgodność z dobrymi praktykami branżowymi zaleca regularne wykonywanie operacji fsck w celu monitorowania stanu systemu plików, szczególnie na serwerach oraz w systemach, które przechowują krytyczne dane. Warto również pamiętać, że przed przeprowadzeniem operacji fsck na zamontowanym systemie plików, należy go odmontować, aby uniknąć ryzyka naruszenia jego integralności.

Pytanie 5

Do zarządzania przydziałami przestrzeni dyskowej w systemach Windows 7 oraz Windows 8 wykorzystywane jest narzędzie

A. dcpromo
B. fsutil
C. perfmon
D. query
fsutil to potężne narzędzie w systemach Windows, które umożliwia zarządzanie różnymi aspektami systemu plików oraz przydziałami dyskowymi. Jego funkcje obejmują, między innymi, zarządzanie woluminami, optymalizację przestrzeni dyskowej oraz monitorowanie i konfigurację systemu plików. Dzięki fsutil administratorzy mogą na przykład tworzyć, usuwać i modyfikować punkty montowania oraz zarządzać dostępem do dysków. Użycie tego narzędzia jest kluczowe w optymalizacji wydajności oraz w zarządzaniu przestrzenią na dysku, co jest szczególnie ważne w środowiskach o dużych wymaganiach dotyczących pamięci. Ponadto, fsutil wspiera różne typy systemów plików, umożliwiając administratorom elastyczne zarządzanie danymi. Przykład zastosowania fsutil to komenda 'fsutil sparse setflag', która umożliwia ustawienie flagi na plikach sparse, co pozwala na efektywniejsze wykorzystanie przestrzeni dyskowej.

Pytanie 6

Zainstalowanie w komputerze przedstawionej karty pozwoli na

Ilustracja do pytania
A. bezprzewodowe połączenie z siecią LAN z użyciem interfejsu BNC
B. rejestrację, przetwarzanie oraz odtwarzanie obrazu telewizyjnego
C. zwiększenie wydajności magistrali komunikacyjnej komputera
D. podłączenie dodatkowego urządzenia peryferyjnego, takiego jak skaner lub ploter
Karta przedstawiona na obrazku to karta telewizyjna, która umożliwia rejestrację przetwarzanie oraz odtwarzanie sygnału telewizyjnego. Takie karty są używane do odbierania sygnału telewizyjnego na komputerze pozwalając na oglądanie telewizji bez potrzeby posiadania oddzielnego odbiornika. Karta tego typu zazwyczaj obsługuje różne standardy sygnału telewizyjnego takie jak NTSC PAL i SECAM co czyni ją uniwersalnym narzędziem do odbioru telewizji z różnych regionów świata. Ponadto karty te mogą mieć wbudowane funkcje nagrywania co pozwala na zapisywanie programów telewizyjnych na dysku twardym do późniejszego odtwarzania. Dzięki temu użytkownik może łatwo zarządzać nagranymi materiałami korzystając z oprogramowania do edycji i archiwizacji. Karty telewizyjne często współpracują z aplikacjami które umożliwiają zaawansowane funkcje takie jak zmiana kanałów planowanie nagrań czy dodawanie efektów specjalnych podczas odtwarzania. Montaż takiej karty w komputerze zwiększa jego funkcjonalność i pozwala na bardziej wszechstronne wykorzystanie urządzenia w kontekście multimediów.

Pytanie 7

Jakiego typu dane są przesyłane przez interfejs komputera osobistego, jak pokazano na ilustracji?

Bit
startu
Bit
danych
Bit
danych
Bit
stopu
Bit
startu
Bit
danych
Bit
startu
Bit
danych
Bit
danych
Bit
stopu
Bit
startu
Bit
danych
Bit
stopu

A. Szeregowy synchroniczny
B. Równoległy asynchroniczny
C. Równoległy synchroniczny
D. Szeregowy asynchroniczny
Transmisja danych przez interfejs równoległy asynchroniczny wymaga przesyłania kilku bitów jednocześnie co jest realizowane za pomocą wielu linii sygnałowych W ten sposób dane są przesyłane szybciej niż w przypadku interfejsów szeregowych jednak wymaga to synchronizacji wszystkich linii co jest bardziej skomplikowane i kosztowne Podczas gdy ten typ transmisji był popularny w starszych drukarkach i innych urządzeniach peryferyjnych dzisiaj jest rzadziej stosowany ze względu na wysoki koszt opracowania i utrzymania Transmisja szeregowa synchroniczna różni się od asynchronicznej tym że wymaga synchronizacji zegara pomiędzy nadajnikiem a odbiornikiem Oznacza to że zarówno urządzenie przesyłające jak i odbierające muszą dokładnie zsynchronizować swoje zegary aby zagwarantować poprawność danych Choć zwiększa to skuteczność i szybkość transmisji wymaga to dodatkowych linii do przesyłania sygnału zegara co powoduje większe komplikacje w budowie urządzeń Przykładem może być SPI lub I2C które choć efektywne są bardziej skomplikowane niż transmisja szeregowa asynchroniczna Równoległa transmisja synchroniczna to najbardziej zaawansowany typ transmisji jednocześnie przesyłający wiele bitów z pełną synchronizacją zegara Umożliwia to błyskawiczne przesyłanie dużych ilości danych na krótkich dystansach jednak jej koszt zarówno w projektowaniu jak i produkcji jest znaczny co powoduje że jest rzadko stosowana w standardowych interfejsach komputerowych Te różne podejścia choć mają swoje zalety są często trudniejsze do implementacji i mniej praktyczne niż proste i szeroko stosowane interfejsy szeregowe asynchroniczne które oferują wystarczającą szybkość i niezawodność dla większości zastosowań

Pytanie 8

Określ właściwą sekwencję działań potrzebnych do zamontowania procesora w gnieździe LGA na nowej płycie głównej, która jest odłączona od zasilania?

A. 5, 6, 1, 7, 2, 3, 4
B. 5, 7, 6, 1, 4, 3, 2
C. 5, 2, 3, 4, 1, 6, 7
D. 5, 1, 7, 3, 6, 2, 4
Aby poprawnie zamontować procesor w gnieździe LGA na nowej płycie głównej, należy rozpocząć od lokalizacji gniazda procesora, co jest kluczowe dla dalszych działań. Po zidentyfikowaniu gniazda, odginamy dźwignię i otwieramy klapkę, co umożliwia umiejscowienie procesora w gnieździe. Następnie należy ostrożnie włożyć procesor, uważając na odpowiednie dopasowanie pinów oraz kierunek montażu, co jest zgodne z oznaczeniami na płycie głównej. Po umieszczeniu procesora, zamykamy klapkę i dociągamy dźwignię, co zapewnia stabilne połączenie. W kolejnych krokach nakładamy pastę termoprzewodzącą, co jest niezbędne do efektywnego odprowadzania ciepła, a następnie montujemy układ chłodzący, który powinien być odpowiednio dobrany do specyfikacji procesora. Na końcu podłączamy układ chłodzący do zasilania, co jest kluczowe dla prawidłowego działania systemu. Taka struktura montażu jest zgodna z najlepszymi praktykami w branży i zapewnia długotrwałą wydajność systemu komputerowego.

Pytanie 9

W lokalnej sieci uruchomiono serwer odpowiedzialny za przydzielanie dynamicznych adresów IP. Jaką usługę należy aktywować na tym serwerze?

A. ISA
B. DCHP
C. DNS
D. DHCP
Odpowiedź o DHCP jest jak najbardziej na miejscu. DHCP, czyli Dynamic Host Configuration Protocol, to całkiem sprytny wynalazek, bo automatycznie przypisuje adresy IP w sieciach. Dzięki temu, każde urządzenie w lokalnej sieci dostaje swój adres i inne potrzebne info, jak maska podsieci czy serwery DNS. W praktyce, w biurach czy w domach, gdzie mamy sporo sprzętu podłączonego do netu, DHCP naprawdę ułatwia życie. Nie musimy biegać i ręcznie ustawiać adresy na każdym z urządzeń. To super rozwiązanie, które można znaleźć w różnych standardach, jak na przykład RFC 2131 i RFC 2132. Działa to na routerach, serwerach czy nawet w chmurze, co jeszcze bardziej upraszcza zarządzanie siecią. Z tego, co widziałem, to w wielu miejscach jest to teraz standard.

Pytanie 10

Jakie urządzenie sieciowe zostało pokazane na diagramie sieciowym?

Ilustracja do pytania
A. koncentrator
B. ruter
C. modem
D. przełącznik
Ruter to takie urządzenie, które pomaga zarządzać ruchem w sieciach komputerowych. Głównie zajmuje się tym, by dane znalazły najefektywniejszą drogę między różnymi sieciami. To naprawdę ważne, zwłaszcza w większych sieciach, bo dobrze skonfigurowany ruter sprawia, że wszystko działa sprawnie. Łączy na przykład sieci w naszych domach z Internetem albo zarządza ruchem w dużych firmach. Ciekawe, że nowoczesne rutery oferują różne dodatkowe funkcje, jak filtrowanie pakietów czy zarządzanie jakością usług, co może naprawdę poprawić wydajność. Chociaż trzeba pamiętać, że ważne jest, aby odpowiednio skonfigurować zabezpieczenia, regularnie aktualizować oprogramowanie i monitorować wydajność. To wszystko sprawia, że rutery są kluczowym elementem w dzisiejszych sieciach, zwłaszcza z rozwojem chmury i większymi wymaganiami co do szybkości przesyłu danych.

Pytanie 11

Fragment pliku httpd.conf serwera Apache przedstawia się jak na diagramie. W celu zweryfikowania prawidłowego funkcjonowania strony WWW na serwerze, należy wprowadzić w przeglądarkę

Listen 8012
Server Name localhost:8012

A. http://localhost
B. http://localhost:8080
C. http://localhost:apache
D. http://localhost:8012
Odpowiedź http://localhost:8012 jest poprawna, ponieważ w pliku konfiguracyjnym httpd.conf serwera Apache podano dyrektywę Listen 8012. Oznacza to, że serwer Apache nasłuchuje na porcie 8012. W praktyce oznacza to, że aby uzyskać dostęp do usług oferowanych przez serwer Apache na lokalnej maszynie, należy skorzystać z adresu URL, który specyfikuje ten port. Standardowo serwery HTTP działają na porcie 80, jednak w przypadku, gdy korzystamy z niestandardowego portu jak 8012, musimy go jawnie podać w adresie URL. Praktyczne zastosowanie tego typu konfiguracji jest powszechne w środowiskach deweloperskich, gdzie często konfiguruje się wiele instancji serwera do różnych zastosowań, używając różnych portów. Pamiętaj, aby upewnić się, że port nie jest blokowany przez zapory sieciowe, co mogłoby uniemożliwić dostęp do serwera. Konfiguracja serwera na nietypowych portach może również służyć celom bezpieczeństwa, utrudniając potencjalnym atakom automatyczne ich wykrycie. Zawsze warto zapewnić, że dokumentacja projektu jest aktualizowana i zawiera informacje o wykorzystywanych portach.

Pytanie 12

Urządzeniem wykorzystywanym do formowania kształtów oraz grawerowania m.in. w materiałach drewnianych, szklanych i metalowych jest ploter

A. tnący
B. bębnowy
C. laserowy
D. solwentowy
Odpowiedź "laserowy" jest poprawna, ponieważ plotery laserowe są zaawansowanymi urządzeniami służącymi do precyzyjnego wycinania oraz grawerowania w różnych materiałach, takich jak drewno, szkło czy metal. Działają one na zasadzie technologii laserowej, która generuje skoncentrowany promień światła zdolny do cięcia i grawerowania. Dzięki temu możliwe jest uzyskanie bardzo skomplikowanych kształtów oraz detali, które byłyby trudne do osiągnięcia przy użyciu innych metod. Przykładowe zastosowania ploterów laserowych obejmują produkcję elementów dekoracyjnych, personalizowanych przedmiotów, oznaczeń oraz prototypów w różnych branżach, w tym w reklamie, rzemiośle i inżynierii. Ponadto, w kontekście standardów branżowych, plotery laserowe często spełniają normy dotyczące bezpieczeństwa i precyzji, co czyni je niezastąpionym narzędziem w nowoczesnym wytwarzaniu.

Pytanie 13

Co należy zrobić, gdy podczas uruchamiania komputera procedura POST sygnalizuje błąd odczytu lub zapisu pamięci CMOS?

A. zapisać nowe dane w pamięci EEPROM płyty głównej
B. wymienić baterię układu lub przeprowadzić wymianę płyty głównej
C. wyjąć moduł pamięci RAM, oczyścić styki modułu i ponownie zamontować pamięć
D. przywrócić domyślne ustawienia w BIOS Setup
Przy błędzie odczytu/zapisu pamięci CMOS nie jest właściwe podejmowanie działań związanych z przywracaniem ustawień fabrycznych BIOS Setup. Choć przywracanie tych ustawień może czasami rozwiązać problemy konfiguracyjne, w kontekście błędu CMOS proces ten nie eliminuje przyczyny, jaką jest z reguły rozładowana bateria. Zmiana ustawień BIOS nie wpłynie na zapisanie danych w pamięci CMOS, która jest zależna od źródła zasilania. Ponadto, programowanie pamięci EEPROM płyty głównej również nie jest odpowiednim rozwiązaniem. EEPROM, choć przechowuje dane, jest bardziej skomplikowanym procesem, który zazwyczaj jest wykonywany w kontekście aktualizacji oprogramowania układowego, a nie w przypadku błędów w pamięci CMOS. Wymontowanie modułu pamięci RAM i czyszczenie jego styków nie ma związku z problemami dotyczącymi pamięci CMOS, gdyż RAM i CMOS to dwa różne typy pamięci, z różnymi funkcjami i mechanizmami działania. Pamięć RAM jest ulotna i nie przechowuje danych po wyłączeniu zasilania, podczas gdy pamięć CMOS jest zaprojektowana do przechowywania ustawień nawet po odłączeniu od zasilania. Dlatego podejmowanie działań związanych z RAM nie jest zasadne. Kluczowym błędem myślowym w tej sytuacji jest niedostrzeganie różnicy pomiędzy różnymi typami pamięci i ich funkcjonalnościami, co prowadzi do niewłaściwych wniosków odnośnie do przyczyn błędów i ich rozwiązań.

Pytanie 14

Którego urządzenia z zakresu sieci komputerowych dotyczy symbol przedstawiony na ilustracji?

Ilustracja do pytania
A. Punktu dostępowego
B. Rutera
C. Przełącznika
D. Koncentratora
Symbol przedstawia rutera jednego z kluczowych urządzeń w infrastrukturze sieciowej. Rutery pełnią funkcję kierowania pakietów danych między różnymi sieciami komputerowymi. Ich głównym zadaniem jest określenie najefektywniejszej ścieżki dla danych co umożliwia skuteczną komunikację pomiędzy urządzeniami w różnych segmentach sieci. W praktyce rutery są używane zarówno w małych sieciach domowych jak i w dużych sieciach korporacyjnych oraz w Internecie. Dzięki protokołom takim jak OSPF czy BGP rutery mogą dynamicznie dostosowywać się do zmian w topologii sieci. Standardowe rutery działają na trzeciej warstwie modelu OSI co oznacza że operują na poziomie adresów IP co pozwala na zaawansowane zarządzanie ruchem sieciowym. Rutery mogą także oferować dodatkowe funkcje takie jak translacja adresów NAT czy tworzenie sieci VPN. Zrozumienie działania ruterów jest kluczowe dla każdej osoby pracującej w dziedzinie sieci komputerowych gdyż poprawne skonfigurowanie tych urządzeń może znacząco wpłynąć na wydajność i bezpieczeństwo sieci.

Pytanie 15

Funkcję S.M.A.R.T. w twardym dysku, która jest odpowiedzialna za nadzorowanie i wczesne ostrzeganie o możliwych awariach, można uruchomić poprzez

A. komendę chkdsk
B. interfejs sterowania
C. BIOS płyty głównej
D. rejestr systemowy
Aktywacja funkcji S.M.A.R.T. (Self-Monitoring, Analysis and Reporting Technology) w BIOS-ie płyty głównej jest kluczowym krokiem w monitorowaniu stanu dysku twardego. Wybór tej opcji pozwala na włączenie mechanizmu monitorującego, który zbiera dane dotyczące działania dysku oraz wykrywa wczesne oznaki ewentualnych usterek, co może zapobiec utracie danych. Użytkownicy mogą to zrobić, wchodząc do ustawień BIOS-u, gdzie często istnieje opcja umożliwiająca włączenie S.M.A.R.T. dla podłączonych dysków. W praktyce, regularne monitorowanie stanu dysku twardego jest zgodne z najlepszymi praktykami zarządzania danymi, takimi jak regularne tworzenie kopii zapasowych oraz stosowanie rozwiązań zabezpieczających. Proaktywny monitoring stanu dysku twardego nie tylko zwiększa bezpieczeństwo danych, ale także przedłuża żywotność urządzenia poprzez wcześniejsze wykrywanie problemów.

Pytanie 16

Jaką minimalną liczbę bitów potrzebujemy w systemie binarnym, aby zapisać liczbę heksadecymalną 110 (h)?

A. 16 bitów
B. 9 bitów
C. 3 bity
D. 4 bity
Aby zrozumieć, dlaczego do zapisania liczby heksadecymalnej 110 (h) potrzebne są 9 bity w systemie binarnym, należy najpierw przekształcić tę liczbę do postaci binarnej. Liczba heksadecymalna 110 (h) odpowiada wartości dziesiętnej 256. W systemie binarnym, liczby są zapisywane jako ciągi zer i jedynek, a każda cyfra binarna (bit) reprezentuje potęgę liczby 2. Aby obliczyć, ile bitów jest potrzebnych do zapisania liczby 256, musimy znaleźć najmniejszą potęgę liczby 2, która jest większa lub równa 256. Potęgi liczby 2 są: 1 (2^0), 2 (2^1), 4 (2^2), 8 (2^3), 16 (2^4), 32 (2^5), 64 (2^6), 128 (2^7), 256 (2^8). Widzimy, że 256 to 2^8, co oznacza, że potrzebujemy 9 bitów, aby uzyskać zakres od 0 do 255. Zatem mamy 9 możliwych kombinacji bitów do przedstawienia wszystkich wartości od 0 do 512. W praktyce, w kontekście komunikacji i przechowywania danych, znajomość konwersji między systemami liczbowymi jest kluczowa dla inżynierów oraz programistów i ma zastosowanie w wielu dziedzinach, takich jak projektowanie układów scalonych, programowanie oraz w analizie danych.

Pytanie 17

Jak wygląda liczba 356 w systemie binarnym?

A. 101100100
B. 110011010
C. 110011000
D. 100001100
Liczba 356 w systemie dziesiętnym przekształcona na system binarny daje wynik 101100100. Aby zrozumieć ten proces, należy zastosować metodę dzielenia przez 2. Rozpoczynamy od podziału liczby 356 przez 2, zapisując resztę. Kontynuujemy dzielenie wyniku aż do osiągnięcia zera. W rezultacie otrzymujemy kolejno reszty: 0, 0, 1, 1, 0, 0, 1, 0, 1, co w odwróconej kolejności daje 101100100. Zrozumienie konwersji między systemami liczbowymi jest fundamentalne w informatyce, szczególnie w kontekście programowania, gdzie operacje na liczbach binarnych są powszechne. W praktyce, umiejętność zamiany liczb między systemami jest niezbędna w takich obszarach jak algorytmy, kompresja danych, czy programowanie niskopoziomowe. Dobrą praktyką jest stosowanie narzędzi lub prostych skryptów do konwersji, aby uniknąć ręcznych błędów.

Pytanie 18

Jakim parametrem definiuje się stopień zmniejszenia mocy sygnału w danej parze przewodów po przejściu przez cały tor kablowy?

A. tłumienie
B. długość
C. przenik zdalny
D. przenik zbliżny
Tłumienie jest kluczowym parametrem w telekomunikacji, który określa, o ile moc sygnału maleje podczas jego przejścia przez medium, takie jak przewody czy tor kablowy. W praktyce, tłumienie można opisać jako straty energii sygnału, które mogą wynikać z różnych czynników, takich jak opór, absorpcja materiału oraz zakłócenia elektromagnetyczne. Przykładowo, w instalacjach telekomunikacyjnych, takich jak światłowody lub kable miedziane, odpowiednie pomiary tłumienia są niezbędne do zapewnienia jakości sygnału. W branży telekomunikacyjnej standardy, takie jak ITU-T G.652 dla światłowodów, określają maksymalne poziomy tłumienia, aby gwarantować niezawodność transmisji. Zrozumienie tego parametru jest istotne dla projektowania sieci oraz doboru odpowiednich komponentów, co w efekcie przekłada się na lepszą jakość usług świadczonych użytkownikom.

Pytanie 19

Układy sekwencyjne stworzone z grupy przerzutników, zazwyczaj synchronicznych typu D, wykorzystywane do magazynowania danych, to

A. rejestry
B. bramki
C. kodery
D. dekodery
Rejestry to układy sekwencyjne, które składają się z przerzutników, najczęściej typu D, i służą do przechowywania danych w postaci binarnej. Dzięki synchronizacji z sygnałem zegarowym, rejestry umożliwiają precyzyjne wprowadzanie i odczytywanie danych w określonych momentach. Ich zastosowanie jest niezwykle szerokie, od małych mikrokontrolerów po zaawansowane procesory. W standardowych architekturach komputerowych rejestry są kluczowymi elementami, które przechowują tymczasowe dane, adresy czy wyniki operacji arytmetycznych. Przykładowo, rejestry w procesorach mogą przechowywać dane operacyjne, co pozwala na szybsze wykonywanie złożonych obliczeń. W kontekście dobrych praktyk, projektując systemy cyfrowe, istotne jest uwzględnienie odpowiednich typów rejestrów, a także ich wpływu na wydajność oraz optymalizację całego układu. Dobrze zaprojektowany rejestr powinien uwzględniać takie aspekty jak czas propagacji sygnałów czy rozkład sygnałów zegarowych, co ma kluczowe znaczenie dla stabilności i niezawodności systemów cyfrowych.

Pytanie 20

Który procesor będzie działał z płytą główną o zaprezentowanej specyfikacji?

A. Procesor Podstawka Taktowanie Athlon 64 FX AM2 160 MHz
B. Procesor Podstawka Taktowanie Intel Celeron  1150 3000 MHz
C. Procesor Podstawka Taktowanie Intel Core i7 1151 1150 MHz
D. Procesor Podstawka Taktowanie AMD FX1150n AM3+ 3900 MHz
Wybór procesora Intel Celeron z podstawką 1150 i taktowaniem 3000 MHz jest poprawny, ponieważ płyta główna, której specyfikacja została podana, obsługuje procesory dedykowane dla gniazda LGA 1150. Standard gniazda 1150 zapewnia zgodność z różnymi modelami procesorów Intel, które są zaprojektowane z myślą o architekturze Haswell i Haswell Refresh. W praktyce oznacza to, że użytkownicy mogą czerpać korzyści z lepszej wydajności i efektywności energetycznej, co jest szczególnie istotne w przypadku zastosowań biurowych i domowych. Dodatkowo, pamięć RAM DDR3 o częstotliwości 1333 i 1600 MHz jest zgodna z tą płytą główną, co oznacza, że użytkownik może zbudować stabilny system, który będzie odpowiednio wykorzystywał dostępne zasoby. Warto zauważyć, że podczas wyboru procesora istotne jest również uwzględnienie takich parametrów jak liczba rdzeni, wątki oraz architektura, co wpływa na ogólną wydajność systemu.

Pytanie 21

Czym jest prefetching?

A. cecha systemu operacyjnego, która pozwala na równoczesne wykonywanie wielu procesów
B. metoda działania procesora, która polega na przejściu do trybu pracy procesora Intel 8086
C. wykonanie przez procesor etapu pobierania kolejnego rozkazu w trakcie realizacji etapu wykonania wcześniejszego rozkazu
D. właściwość procesorów, która umożliwia rdzeniom korzystanie ze wspólnych danych bez pomocy pamięci zewnętrznej
Prefetching to technika, która polega na pobieraniu danych lub instrukcji z pamięci, zanim będą one potrzebne do realizacji obliczeń przez procesor. Jest to ważny krok w optymalizacji wydajności procesora, ponieważ umożliwia skrócenie czasu oczekiwania na dane. W praktyce procesor może wykonać fazę pobrania następnego rozkazu podczas, gdy aktualnie wykonuje poprzedni, co przyspiesza działanie aplikacji oraz zmniejsza opóźnienia. Na przykład, w architekturze superskalarnych procesorów, w których realizowane są równocześnie różne instrukcje, prefetching pozwala na zwiększenie efektywności wykorzystania jednostek wykonawczych. Technika ta jest również stosowana w nowoczesnych systemach operacyjnych, które wykorzystują różne algorytmy prefetchingowe w pamięciach podręcznych. Dodatkowo, standardy takie jak Intel Architecture Optimization pozwalają na lepsze zrozumienie i implementację prefetchingu, co przyczynia się do korzystniejszego zarządzania pamięcią i zwiększenia wydajności aplikacji.

Pytanie 22

W systemie Linux komenda chmod pozwala na

A. zmianę właściciela pliku
B. naprawę systemu plików
C. wyświetlenie informacji o ostatniej aktualizacji pliku
D. ustawienie praw dostępu do pliku
Polecenie chmod w systemie Linux jest kluczowym narzędziem do zarządzania uprawnieniami dostępu do plików i katalogów. Umożliwia ono określenie, kto może czytać, pisać lub wykonywać dany plik. W systemach Unix/Linux uprawnienia są przypisywane w trzech kategoriach: właściciel pliku, grupa oraz pozostali użytkownicy. Przykładowo, użycie polecenia 'chmod 755 plik.txt' ustawia prawa dostępu na: pełne uprawnienia dla właściciela, prawo do odczytu i wykonywania dla grupy oraz prawo do odczytu i wykonywania dla wszystkich innych użytkowników. Zrozumienie działania chmod jest nie tylko istotne dla ochrony danych, ale także dla zapewnienia bezpieczeństwa systemu. Stosowanie najniższych wymaganych uprawnień jest dobrą praktyką, co pomaga zminimalizować ryzyko nieautoryzowanego dostępu do wrażliwych informacji. W kontekście administracji systemami, umiejętność efektywnego zarządzania uprawnieniami jest kluczowa do zapewnienia integralności i bezpieczeństwa danych."

Pytanie 23

Schemat ilustruje fizyczną strukturę

Ilustracja do pytania
A. magistrali
B. szyny
C. drzewa
D. gwiazdy
Topologia gwiazdy jest jedną z najczęściej stosowanych topologii sieci komputerowych ze względu na swoją efektywność i łatwość zarządzania. W tej topologii wszystkie urządzenia sieciowe są podłączone do centralnego punktu, którym zazwyczaj jest switch lub hub. Dzięki temu w przypadku awarii jednego z kabli lub urządzeń tylko ten jeden komponent zostaje odcięty od sieci, co znacząco zwiększa niezawodność całego systemu. Topologia gwiazdy jest łatwa w rozbudowie ponieważ wystarczy dodać nowy kabel do huba lub switcha aby podłączyć dodatkowe urządzenie. Jest to popularne rozwiązanie w lokalnych sieciach komputerowych (LAN) zwłaszcza w biurach i instytucjach ze względu na prostotę instalacji i administrowania. W praktyce stosowanie topologii gwiazdy pozwala na centralne zarządzanie ruchem sieciowym co może być realizowane za pomocą odpowiedniego oprogramowania na switchu. Dzięki temu administratorzy mogą monitorować i optymalizować przepustowość sieci oraz zarządzać bezpieczeństwem danymi przesyłanymi między urządzeniami. Topologia gwiazdy odpowiada także obecnym standardom sieciowym jak Ethernet co dodatkowo ułatwia jej wdrażanie w nowoczesnych infrastrukturach sieciowych.

Pytanie 24

Która z usług musi być aktywna na ruterze, aby mógł on modyfikować adresy IP źródłowe oraz docelowe podczas przekazywania pakietów pomiędzy różnymi sieciami?

A. TCP
B. FTP
C. NAT
D. UDP
TCP, FTP i UDP to różne protokoły komunikacyjne, które działają na różnych warstwach modelu OSI, ale żaden z nich nie jest odpowiedzialny za zmianę adresów IP pakietów w trakcie ich przekazywania. TCP (Transmission Control Protocol) jest protokołem połączeniowym, który zapewnia niezawodną komunikację poprzez kontrolę błędów i retransmisję danych. Jego głównym zadaniem jest zarządzanie połączeniami i zapewnienie integralności przesyłanych danych, ale nie zajmuje się translacją adresów IP. FTP (File Transfer Protocol) to protokół aplikacyjny służący do przesyłania plików, który również nie ma związku z translacją adresów, a jego funkcje są ograniczone do zarządzania transferem plików pomiędzy klientem a serwerem. Z kolei UDP (User Datagram Protocol) to protokół, który działa na zasadzie „bezpołączeniowej”, co oznacza, że nie zapewnia mechanizmów kontroli błędów ani potwierdzeń dostarczenia, przez co jest szybki, ale nie niezawodny. Błędne przekonanie, że te protokoły mogą zarządzać adresacją IP wynika często z nieporozumień dotyczących ich funkcji i roli w komunikacji sieciowej. NAT jest zatem jedynym odpowiednim rozwiązaniem do translacji adresów, a zrozumienie jego działania jest kluczowe dla efektywnego zarządzania sieciami komputerowymi.

Pytanie 25

Aktywacja opcji OCR podczas ustawiania skanera umożliwia

A. wykorzystanie szerszej palety kolorów
B. przekształcenie zeskanowanego obrazu w edytowalny dokument tekstowy
C. zmianę głębi ostrości
D. podwyższenie jego rozdzielczości optycznej
Włączenie opcji OCR, czyli rozpoznawania tekstu na obrazach, podczas ustawiania skanera to świetna rzecz. Dzięki tej technologii zeskanowane dokumenty można łatwo edytować w programach, takich jak Word czy Google Docs. Wyobraź sobie, że skanujesz książkę i później możesz edytować tekst, a nie tylko go przeglądać. To się przydaje, szczególnie w biurach, gdzie często trzeba szybko przetwarzać dokumenty. Oczywiście, są też standardy jak ISO 19005, które mówią, jak najlepiej przechowywać i przetwarzać takie dokumenty. To pokazuje, jak bardzo ta technologia jest ważna w dzisiejszym zarządzaniu informacją.

Pytanie 26

Który z portów na zaprezentowanej płycie głównej umożliwia podłączenie zewnętrznego dysku przez interfejs e-SATA?

Ilustracja do pytania
A. 4
B. 3
C. 2
D. 1
Port numer 2 to e-SATA, czyli ten typ złącza, który pozwala na szybkie przesyłanie danych. W praktyce działa to tak, że podłączasz do niego zewnętrzne dyski twarde i masz możliwość przenoszenia dużych ilości info z naprawdę niezłą prędkością, sięgającą nawet 6 Gb/s. To czyni go całkiem konkurencyjnym wobec USB 3.0 i Thunderbolt. Z mojego doświadczenia wynika, że e-SATA jest świetny, gdy potrzebujesz szybko przesłać dane bez zbędnych opóźnień. Fajnie, że nie ma problemów z zakłóceniami elektromagnetycznymi, bo złącze jest dość solidnie zrobione. Jednak trzeba pamiętać, że e-SATA nie zapewnia zasilania przez kabel, dlatego zewnętrzne urządzenia często potrzebują swojego osobnego źródła zasilania. Generalnie, jest to technologia, która sprawdza się w pracy z dużymi zbiorem danych, takimi jak edycja wideo czy duże bazy danych.

Pytanie 27

W systemie Windows do przeprowadzania aktualizacji oraz przywracania sterowników sprzętowych należy wykorzystać narzędzie

A. wmimgmt.msc
B. devmgmt.msc
C. certmgr.msc
D. fsmgmt.msc
Devmgmt.msc to narzędzie, które otwiera Menedżera urządzeń w systemie Windows. Jest to kluczowa przystawka do zarządzania sprzętem zainstalowanym w komputerze, umożliwiająca użytkownikom instalację, aktualizację, a także przywracanie sterowników urządzeń. W praktyce, Menedżer urządzeń pozwala na identyfikację problemów ze sprzętem, takich jak nieprawidłowo działające urządzenia czy brakujące sterowniki. Na przykład, jeśli zainstalujesz nową drukarkę, ale nie działa ona poprawnie, możesz użyć devmgmt.msc do zaktualizowania sterownika lub przywrócenia go do wcześniejszej wersji. Dobrą praktyką jest regularne sprawdzanie stanu urządzeń oraz aktualizowanie sterowników, aby zapewnić optymalną wydajność sprzętu. W kontekście standardów branżowych, zarządzanie sterownikami z wykorzystaniem Menedżera urządzeń jest zgodne z zaleceniami dotyczącymi utrzymania systemu operacyjnego, co wpływa na stabilność i bezpieczeństwo całego środowiska komputerowego.

Pytanie 28

W systemie Windows, po wydaniu komendy systeminfo, nie da się uzyskać danych o

A. zainstalowanych aktualizacjach
B. ilości procesorów
C. podłączonych kartach sieciowych
D. liczbie partycji podstawowych
Wszystkie wymienione odpowiedzi, z wyjątkiem liczby partycji podstawowych, są informacjami, które można uzyskać za pomocą polecenia systeminfo. Zainstalowane poprawki są kluczowe dla utrzymania bezpieczeństwa i stabilności systemu. Systeminfo wyświetla szczegóły dotyczące każdej zainstalowanej poprawki, co pozwala administratorom na monitorowanie i zarządzanie aktualizacjami. Ponadto informacja o liczbie procesorów jest istotna dla analizy wydajności systemu. Systeminfo pokazuje liczbę rdzeni oraz wątków, co jest niezbędne przy ocenie możliwości sprzętowych. Zamontowane karty sieciowe są także kluczowym elementem konfiguracji systemu. Biorąc pod uwagę, że sieciowy dostęp do zasobów oraz ich efektywne zarządzanie jest fundamentem pracy w nowoczesnym środowisku komputerowym, administratorzy muszą mieć świadomość, które karty sieciowe są aktywne i jak są skonfigurowane. Często można się spotkać z mylnym przekonaniem, że wszystkie dostępne dane powinny być dostępne w pojedynczym narzędziu. W rzeczywistości jednak, polecenie systeminfo ma swoje ograniczenia i nie dostarcza informacji na temat partycji, co jest ważnym aspektem, który można zbadać przy użyciu innych narzędzi administracyjnych. Ignorowanie tego faktu może prowadzić do błędnych wniosków na temat stanu dysków i ich struktury.

Pytanie 29

Na zdjęciu widać

Ilustracja do pytania
A. wtyk kabla koncentrycznego
B. przedłużacz kabla UTP
C. wtyk audio
D. wtyk światłowodu
Przedłużacz kabla UTP to element stosowany w sieciach lokalnych (LAN) wykonanych z kabli kategorii UTP (Unshielded Twisted Pair). Tego typu kable służą do przesyłania sygnałów elektrycznych w sieciach komputerowych i telekomunikacyjnych. W odróżnieniu od światłowodów kable UTP są bardziej podatne na zakłócenia elektromagnetyczne i mają mniejszą przepustowość. Wtyk audio służy do przesyłania analogowych sygnałów dźwiękowych. Jest to komponent powszechnie używany w sprzęcie audio i nie ma zastosowania w dziedzinie transmisji danych na duże odległości. Wtyki tego typu nie spełniają wymagań technicznych w zakresie szybkości i stabilności transmisji danych jakie są konieczne we współczesnych systemach informatycznych. Wtyk kabla koncentrycznego to kolejny typ złącza używany głównie w telewizji kablowej i systemach antenowych. Kable koncentryczne przesyłają sygnały elektryczne z zastosowaniem wideo i transmisji radiowej ale nie są przystosowane do nowoczesnych wymagań sieciowych w zakresie przepustowości i odległości. Typowe błędy przy wyborze pomiędzy tymi komponentami wynikają z niedopasowania ich właściwości technicznych do zastosowania oraz z nieznajomości specyfikacji takich jak impedancja czy tłumienność. Wybór odpowiednich elementów sieciowych wymaga zrozumienia specyfiki transmisji danych i dopasowania do specyficznych potrzeb projektu zgodnie z obowiązującymi standardami technicznymi i dobrymi praktykami branżowymi co zapewnia optymalizację wydajności i stabilności systemu.

Pytanie 30

Zamieszczone atrybuty opisują rodzaj pamięci

Maksymalne taktowanie1600 MHz
PrzepustowośćPC12800 1600MHz
OpóźnienieCycle Latency CL 9,0
KorekcjaNie
Dual/QuadDual Channel
RadiatorTak

A. flash
B. SWAP
C. SD
D. RAM
Pomimo że różne typy pamięci mogą pełnić ważne funkcje w systemie komputerowym, charakterystyki wymienione w pytaniu zdecydowanie wskazują na pamięć RAM. Swap nie jest fizycznym typem pamięci, lecz założeniem, które polega na wykorzystaniu przestrzeni dyskowej jako rozszerzenia pamięci operacyjnej, co wpływa na wydajność systemu przy braku wystarczającej ilości RAM. Nie posiada on takich parametrów jak taktowanie czy przepustowość, ponieważ jest bardziej związany z organizacją systemu operacyjnego niż z fizycznymi komponentami sprzętowymi. SD (Secure Digital) to format kart pamięci używanych głównie w urządzeniach przenośnych, takich jak aparaty fotograficzne i telefony komórkowe. Chociaż ma swoje własne parametry wydajności, takie jak prędkość odczytu i zapisu, różni się od RAM pod względem zastosowania i technicznych specyfikacji. Pamięć flash, używana w USB i SSD, jest rodzajem trwałej pamięci, która przechowuje dane nawet po odłączeniu zasilania. Parametry takie jak opóźnienie CL czy tryb Dual Channel są specyficzne dla pamięci RAM, ponieważ dotyczą ich zastosowania w kontekście szybkiego, tymczasowego dostępu do danych, co nie jest związane z pamięciami typu flash. Błędne przypisanie tych parametrów do innych typów pamięci wynika z niezrozumienia ich specyficznych zastosowań i charakterystyk technicznych, które są unikalne dla RAM w kontekście wydajności operacyjnej komputerów

Pytanie 31

Co oznacza oznaczenie kabla skrętkowego U/FTP?

A. skrętka bez ekranu
B. każda para zabezpieczona folią i 4 pary razem w osłonie z siatki
C. ekran wykonany z folii oraz siatki dla 4 par
D. każda para posiada ekranowanie folią
Wybór odpowiedzi zakładającej, że ekran z folii i siatki na 4 parach lub ekranowanie całych czterech par jest kluczowym błędem w zrozumieniu klasyfikacji kabli skrętkowych. Typowe oznaczenie U/FTP odnosi się wyłącznie do ekranowania poszczególnych par, a nie do całego kabla. Zgubienie tej różnicy prowadzi do fałszywego przekonania, że kabel U/FTP ma większy stopień ochrony, niż rzeczywiście ma. W praktyce, ekranowanie całego kabla (oznaczenie S/FTP) zapewnia wyższy poziom zabezpieczenia, ponieważ każda z par przewodów jest dodatkowo chroniona przed zakłóceniami z zewnątrz, co nie jest przywilejem kabli U/FTP. Wybór nieekranowanego kabla (UTP) w sytuacjach, gdzie zakłócenia są obecne, może prowadzić do znacznych strat w jakości sygnału, co w przypadku zastosowań profesjonalnych, takich jak transmisje danych w sieciach LAN, może skutkować błędami i przerwami w komunikacji. Kluczowe znaczenie ma zrozumienie, że odpowiednie ekranowanie, jak w U/FTP, jest stosowane w celu minimalizacji wpływu zakłóceń, co bezpośrednio wpływa na wydajność i stabilność systemów komunikacyjnych. Błąd logiczny polega na myleniu różnych typów ekranowania i ich zastosowań, co prowadzi do niewłaściwych decyzji przy wyborze odpowiedniego kabla do danego środowiska.

Pytanie 32

Tester strukturalnego okablowania umożliwia weryfikację

A. mapy połączeń
B. ilości przełączników w sieci
C. obciążenia ruchu w sieci
D. liczby komputerów w sieci
Tester okablowania strukturalnego to coś w rodzaju detektywa w sieci. Sprawdza, jak różne elementy, jak kable, gniazda czy przełączniki, są połączone. Dzięki temu można znaleźć błędy, takie jak przerwy czy zbyt duże tłumienie sygnału. Wyobraź sobie, że zakładasz nową sieć. Po zrobieniu wszystkiego, dobrze jest użyć testera, żeby upewnić się, że wszystko działa jak należy i nic się nie rozłącza. W końcu, jeśli coś jest źle podłączone, sieć może kuleć. Sprawdzanie mapy połączeń to podstawa, bo błędy mogą prowadzić do kłopotów z prędkością i dostępnością internetu. Regularne testowanie to też dobry sposób, żeby mieć pewność, że wszystko działa jak trzeba i że gdzieś tam nie ma jakichś żmudnych problemów, które mogłyby namieszać w infrastrukturze informatycznej.

Pytanie 33

Jak wiele domen kolizyjnych oraz rozgłoszeniowych można dostrzec na schemacie?

Ilustracja do pytania
A. 4 domeny kolizyjne oraz 9 domen rozgłoszeniowych
B. 9 domen kolizyjnych oraz 4 domeny rozgłoszeniowe
C. 9 domen kolizyjnych oraz 1 domena rozgłoszeniowa
D. 1 domena kolizyjna i 9 domen rozgłoszeniowych
W schemacie sieciowym mamy różne urządzenia, jak przełączniki, routery i koncentratory, które razem tworzą naszą strukturę. Każdy przełącznik działa jak taki mały strażnik, który tworzy swoją własną domenę kolizyjną. Dzięki temu, kolizje są ograniczone tylko do jego segmentu. Widzimy, że mamy dziewięć przełączników, więc można powiedzieć, że mamy dziewięć różnych obszarów, gdzie te kolizje mogą się wydarzyć. Co do routerów, to one oddzielają domeny rozgłoszeniowe, ponieważ nie przepuszczają pakietów rozgłoszeniowych. W naszym schemacie mamy cztery routery, więc i cztery domeny rozgłoszeniowe. Myślę, że zrozumienie różnicy między tymi domenami jest mega ważne, szczególnie gdy projektujemy sieci, które mają być wydajne i łatwe do rozbudowy. Oddzielanie kolizji przez przełączniki i zarządzanie rozgłoszeniami przez routery to dobre praktyki. Pozwala to na lepsze wykorzystanie sieci i zmniejsza ryzyko kolizji oraz nadmiernego rozgłaszania pakietów.

Pytanie 34

Napięcie dostarczane przez płytę główną dla pamięci typu SDRAM DDR3 może wynosić

A. 1,5 V
B. 2,5 V
C. 3,3 V
D. 1,2 V
Zasilanie pamięci SDRAM DDR3 nie może wynosić 3,3 V, 1,2 V ani 2,5 V z uwagi na szereg podstawowych różnic w konstrukcji i działaniu tych technologii. Pamięci DDR3 zostały zaprojektowane z myślą o efektywności energetycznej, stąd napięcie zasilania zostało obniżone do 1,5 V, co jest istotnym krokiem w kierunku zmniejszenia zużycia energii przez komponenty komputerowe. Napięcie 3,3 V jest typowe dla starszych standardów, takich jak SDR SDRAM lub DDR SDRAM, które nie są już powszechnie stosowane w nowoczesnych systemach. Pamięci z wyższym napięciem mogą prowadzić do większego wydzielania ciepła i mniejszej efektywności energetycznej, co jest niepożądane w dzisiejszych aplikacjach. Z drugiej strony, wartość 1,2 V odnosi się do pamięci DDR4, która jest nowszym standardem i zapewnia jeszcze większą efektywność energetyczną oraz wyższe prędkości transferu danych. Podobnie, napięcie 2,5 V jest związane z technologią DDR2, która również jest już przestarzała. W związku z tym, błędne podejście do napięcia zasilania pamięci DDR3 może prowadzić do nieodpowiedniej konfiguracji systemów, co w konsekwencji może skutkować niestabilnością lub uszkodzeniem podzespołów. Ważne jest, aby dostosować wybór pamięci do specyfikacji producenta płyty głównej oraz systemu, co jest kluczowym elementem w zapewnieniu optymalnej wydajności i niezawodności całego systemu komputerowego.

Pytanie 35

W programie Explorator systemu Windows, naciśnięcie klawisza F5 zazwyczaj powoduje wykonanie następującej operacji:

A. kopiowania
B. uruchamiania drukowania zrzutu ekranowego
C. odświeżania zawartości bieżącego okna
D. otwierania okna wyszukiwania
Klawisz F5 w programie Explorator systemu Windows jest standardowo przypisany do czynności odświeżania zawartości bieżącego okna. Oznacza to, że naciśnięcie tego klawisza spowoduje ponowne załadowanie aktualnych danych wyświetlanych w folderze lub na stronie internetowej. Ta funkcjonalność jest szczególnie przydatna w sytuacjach, gdy chcemy upewnić się, że widzimy najnowsze informacje, na przykład po dodaniu lub usunięciu plików. W praktyce, odświeżanie okna pozwala na szybkie sprawdzenie zmian w zawartości, co jest nieocenione w codziennej pracy z plikami i folderami. Warto zaznaczyć, że jest to zgodne z ogólnym standardem interakcji użytkownika w systemach operacyjnych, gdzie klawisz F5 jest powszechnie używany do odświeżania. W kontekście dobrych praktyk, znajomość skrótów klawiaturowych, takich jak F5, przyczynia się do zwiększenia efektywności pracy i oszczędności czasu, stanowiąc istotny element przeszkolenia użytkowników w zakresie obsługi systemu Windows.

Pytanie 36

W ustawieniach karty graficznej w sekcji Zasoby znajduje się jeden z zakresów pamięci tej karty, który wynosi od A0000h do BFFFFh. Ta wartość odnosi się do obszaru pamięci wskazanego adresem fizycznym

A. 1001 1111 1111 1111 1111 – 1010 0000 0000 0000 0000
B. 1011 0000 0000 0000 0000 – 1100 1111 1111 1111 1111
C. 1010 0000 0000 0000 0000 – 1011 1111 1111 1111 1111
D. 1100 1111 1111 1111 1111 – 1110 1111 1111 1111 1111
Wszystkie niepoprawne odpowiedzi bazują na błędnych założeniach dotyczących zakresów adresów pamięci, co prowadzi do mylnych wniosków o lokalizacji pamięci dla kart graficznych. W przedstawionych odpowiedziach pojawiają się różne przedziały, które nie odpowiadają rzeczywistym adresom dla pamięci wideo. Kluczowym błędem jest nieuznanie, że zakres pamięci od A0000h do BFFFFh jest dedykowany dla kart graficznych, co wprowadza w błąd w kontekście obliczeń i programowania. Na przykład, zakresy takie jak 1000 0000 0000 0000 0000 do 1010 0000 0000 0000 0000 nie odpowiadają rzeczywistemu adresowi pamięci wideo, ponieważ są zbyt niskie w porównaniu do adresu A0000h. Ponadto, zakresy wykraczające poza A0000h i BFFFFh, takie jak 1100 1111 1111 1111 1111, również są niepoprawne, ponieważ przekraczają maksymalny adres dla tego obszaru. Pojmowanie architektury pamięci oraz poprawnych zakresów adresowania jest kluczowe w projektowaniu i programowaniu systemów komputerowych. W kontekście dobrych praktyk, istotne jest, aby programiści i inżynierowie znali standardy dotyczące adresowania pamięci, co zapobiega błędom w kodzie oraz zapewnia efektywność działania aplikacji wykorzystujących zasoby sprzętowe.

Pytanie 37

Jaką komendę należy wykorzystać, aby uzyskać informację o rekordzie MX dla podanej domeny?

A. Karta sieciowa jest aktywna
B. Sieć nie ogłasza identyfikatora SSID
C. Sieć jest zabezpieczona hasłem
D. Karta sieciowa korzysta z DHCP
Pytanie dotyczy sposobu sprawdzenia wartości rekordu MX dla domeny, a odpowiedzi sugerują różne aspekty konfiguracji sieci, które nie są powiązane z tą konkretną funkcjonalnością. Sieć nie rozgłaszająca identyfikatora SSID dotyczy przede wszystkim kwestii widoczności sieci bezprzewodowej, co nie ma wpływu na konfigurację rekordów MX. Rekordy te są częścią systemu DNS (Domain Name System) i są zdefiniowane w strefach DNS, co oznacza, że muszą być odpowiednio skonfigurowane na serwerach DNS, a nie mają związku z identyfikatorem SSID. Z kolei włączenie DHCP na karcie sieciowej dotyczy przypisywania adresów IP w lokalnej sieci, co także nie ma wpływu na konfigurację DNS i rekordy MX. Podobnie, hasło zabezpieczające sieć bezprzewodową odnosi się do autoryzacji dostępu do sieci, ale nie wpływa na to, jak rekordy MX są przechowywane i udostępniane. Właściwe podejście do analizy wartości rekordu MX wymaga umiejętności korzystania z narzędzi takich jak 'nslookup' czy 'dig', które są zaprojektowane specjalnie w celu interakcji z systemem DNS, a nie zajmowania się aspektami bezpieczeństwa czy dostępu do sieci. Typowe błędy myślowe prowadzące do takich niepoprawnych odpowiedzi obejmują mylenie różnych warstw infrastruktury sieciowej oraz brak zrozumienia funkcji, jakie pełnią poszczególne elementy w kontekście zarządzania domenami i pocztą elektroniczną.

Pytanie 38

Jaką kwotę łącznie pochłonie robocizna związana z montażem 20 modułów RJ45 z krawędziowym złączem narzędziowym na przewodach 4-parowych, jeśli stawka godzinowa montera wynosi 15 zł/h, a według tabeli KNR czas montażu pojedynczego modułu to 0,10 r-g?

A. 50,00 zł
B. 7,50 zł
C. 15,00 zł
D. 30,00 zł
Aby obliczyć całkowity koszt robocizny montażu 20 modułów RJ45, należy najpierw ustalić czas potrzebny na montaż jednego modułu. Według tabeli KNR czas montażu jednego modułu wynosi 0,10 roboczogodziny (r-g). Dla 20 modułów, całkowity czas montażu wyniesie 20 modułów x 0,10 r-g = 2 r-g. Następnie, znając stawkę godzinową montera, która wynosi 15 zł/h, możemy obliczyć całkowity koszt robocizny: 2 r-g x 15 zł/h = 30 zł. Koszt robocizny jest istotnym elementem w planowaniu budżetu projektów elektrotechnicznych i telekomunikacyjnych, ponieważ wpływa na ogólną rentowność przedsięwzięcia. Warto również zwrócić uwagę na efektywność procesu montażu i ewentualne możliwości jego optymalizacji, co może przyczynić się do dalszego obniżenia kosztów w przyszłych projektach. Dobre praktyki w branży sugerują, aby zawsze uwzględniać czas montażu oraz koszt robocizny w planowaniu i wycenie projektów.

Pytanie 39

Jaki jest pełny adres do logowania na serwer FTP o nazwie ftp.nazwa.pl?

A. http://ftp.nazwa.pl/
B. ftp://ftp.nazwa.pl/
C. http:\ftp.nazwa.pl/
D. ftp:\ftp.nazwa.pl/
Odpowiedzi, które zaczynają się od "http://" lub "http:\", są błędne, ponieważ wskazują na protokół HTTP (Hypertext Transfer Protocol), który służy głównie do przesyłania dokumentów HTML i nie jest przeznaczony do transferu plików. Protokół HTTP nie obsługuje bezpośrednich operacji na plikach, takich jak przesyłanie lub pobieranie plików w sposób, który oferuje FTP. Użycie "ftp:\" zamiast "ftp://" jest również niepoprawne, ponieważ "//" jest integralną częścią składni adresu URL, która wymaga tego separatora, aby poprawnie zidentyfikować zasoby. Typowym błędem w myśleniu jest mylenie tych protokołów i nie zrozumienie ich zastosowania. W praktyce, korzystając z niepoprawnego adresu, użytkownik może napotkać problemy z połączeniem, co prowadzi do frustracji i utraty czasu. Warto zatem zrozumieć różnice pomiędzy tymi protokołami, aby móc skutecznie korzystać z narzędzi do transferu danych. Praktyczne zastosowanie FTP w zakresie importu i eksportu plików w środowisku serwerowym wymaga znajomości tych podstawowych różnić, aby zminimalizować błędy i zwiększyć wydajność pracy.

Pytanie 40

Urządzeniem, które przekształca otrzymane ramki w sygnały przesyłane później w sieci komputerowej, jest

A. regenerator sygnału
B. konwerter mediów
C. punkt dostępowy
D. karta sieciowa
Punkt dostępu to urządzenie, które umożliwia bezprzewodowe połączenie z siecią lokalną, ale nie przekształca ono ramek na sygnały. Jego głównym zadaniem jest umożliwienie urządzeniom mobilnym czy laptopom dostępu do sieci, działając jako pośrednik pomiędzy tymi urządzeniami a routerem. Regenerator, z kolei, służy do wzmocnienia i retransmisji sygnałów w sieciach, ale nie przekształca on danych z ramek na sygnały – jego rola jest ograniczona do poprawy jakości transmisji na długich dystansach. Konwerter mediów umożliwia zmianę formatu sygnału, na przykład przekształcanie sygnału elektrycznego na optyczny, ale nie zajmuje się samą interakcją z danymi w postaci ramek. Typowe błędy myślowe prowadzące do takich wniosków to pomieszanie ról różnych urządzeń w sieci oraz ich funkcji. Ważne jest, aby zrozumieć, że karta sieciowa jest dedykowana do bezpośredniej interakcji z danymi i ich przetwarzania, co wyróżnia ją spośród innych urządzeń. W kontekście standardów, nie wszystkie wymienione urządzenia są zgodne z protokołem Ethernet, co dodatkowo podkreśla ich różne funkcje w ekosystemie sieciowym.