Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik technologii chemicznej
  • Kwalifikacja: CHM.02 - Eksploatacja maszyn i urządzeń przemysłu chemicznego
  • Data rozpoczęcia: 4 maja 2025 20:09
  • Data zakończenia: 4 maja 2025 20:14

Egzamin niezdany

Wynik: 4/40 punktów (10,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Grafit stosuje się jako materiał konstrukcyjny w przemyśle chemicznym z powodu

A. niskiej reaktywności i odporności na większość substancji chemicznych, hydrofilowości oraz małego przewodnictwa elektrycznego
B. niskiej reaktywności i odporności na większość substancji chemicznych, wysokiej odporności termicznej oraz dobrego przewodnictwa cieplnego
C. odporności na wysokie temperatury, małego przewodnictwa elektrycznego oraz dobrego przewodnictwa cieplnego i właściwości barierowych dla gazów utleniających
D. odporności na wysokie temperatury oraz dużej reaktywności, znacznej wytrzymałości mechanicznej i podatności na odkształcenia plastyczne
W analizowanych odpowiedziach wiele z nich opiera się na nieprawidłowych założeniach dotyczących właściwości grafitu. Na przykład, istnienie wysokiej reaktywności, jak sugeruje jedna z odpowiedzi, jest sprzeczne z fundamentalnymi właściwościami grafitu, które charakteryzują się niską reaktywnością chemiczną. Taka mylna koncepcja może wynikać z niepełnego zrozumienia zachowań chemicznych tego materiału, który w rzeczywistości jest odporny na wiele chemikaliów, co czyni go idealnym do zastosowań w agresywnych środowiskach. Ponadto, stwierdzenie dotyczące dużej reaktywności i odporności na wysoką temperaturę w innej odpowiedzi jest również błędne, ponieważ nie uwzględnia ono niskiej reaktywności grafitu przy wysokich temperaturach, co czyni go materiałem o wysokiej stabilności termicznej. W odniesieniu do wytrzymałości mechanicznej, grafit nie wykazuje dużej odporności na siły mechaniczne, co jest często mylnie interpretowane. Ta nieprecyzyjność może prowadzić do błędnych decyzji w zakresie projektowania oraz wyboru materiałów w inżynierii, gdzie niska wytrzymałość grafitu może być niewłaściwie oceniana jako jego wada, podczas gdy w rzeczywistości jego zastosowania wymagają innych właściwości, takich jak odporność chemiczna i przewodnictwo cieplne. Warto zatem zwrócić uwagę na te kluczowe różnice, aby unikać błędnych wniosków przy wyborze materiałów do zastosowań przemysłowych.

Pytanie 2

Która z pozycji zamieszczonych w tabeli wskazuje nazwę przyrządu pomiarowego wraz z właściwymi odczytami parametrów?

PozycjaNazwa przyrząduOdczytana temperatura [°C]Odczytane ciśnienie [bar]
A.Termomanometr263,4
B.Manometr glicerynowy283,2
C.Czujnik ciśnienia i temperatury283,2
D.Termopara263,4

Ilustracja do pytania
A. D.
B. C.
C. A.
D. B.
Odpowiedzi B, C i D nie są poprawne, gdyż nie dostarczają kompletnych i prawidłowych informacji dotyczących przyrządu pomiarowego. W przypadku odpowiedzi B, brak jest szczegółowych odczytów i wskazania, jakie parametry są mierzone, co czyni tę odpowiedź niekompletną. Odpowiedź C może wprowadzać w błąd, wskazując na inny przyrząd, który nie ma związku z pomiarami temperatury czy ciśnienia, a tym samym nie spełnia postawionego pytania. Odpowiedź D również nie koresponduje z wymaganymi parametrami, a jej brak konkretów sprawia, że staje się nieadekwatna. Problemy związane z interpretacją danych pomiarowych mogą wynikać z niewłaściwego zrozumienia funkcji poszczególnych przyrządów, co jest typowym błędem w nauce pomiarów. Kluczowe jest, aby w każdej sytuacji dokładnie analizować, jakie parametry są istotne dla danego zastosowania oraz znać specyfikę przyrządów, które są wykorzystywane. Właściwe zrozumienie różnicy między różnymi urządzeniami pomiarowymi oraz ich zastosowaniem w praktyce jest niezbędne do efektywnego działania w przemyśle oraz zgodności z normami bezpieczeństwa.

Pytanie 3

W systemie hydraulicznym substancją roboczą jest

A. ciało stałe
B. rozprężony gaz
C. sprężony gaz
D. ciecz
Ciecz jest kluczowym czynnikiem roboczym w napędach hydraulicznych, co wynika z jej właściwości fizycznych, takich jak nieściśliwość i zdolność do przenoszenia dużych sił przy minimalnych stratach energii. Dzięki tym cechom, napędy hydrauliczne są niezwykle efektywne w zastosowaniach przemysłowych oraz w maszynach budowlanych. W praktyce, zastosowanie cieczy jako medium roboczego pozwala na precyzyjne sterowanie ruchem, co jest szczególnie ważne w aplikacjach wymagających dużej siły, jak np. w prasach hydraulicznych, maszynach do formowania, czy w pojazdach takich jak dźwigi. Właściwe dobieranie cieczy hydraulicznych, które muszą spełniać normy branżowe, takie jak ISO 6743, zapewnia długą żywotność systemów oraz ich efektywność operacyjną. W ten sposób, ciecz nie tylko gwarantuje bezpieczeństwo operacyjne, ale również wpływa na ekonomiczność użytkowania systemów hydraulicznych, co czyni je fundamentalnym elementem nowoczesnych technologii inżynieryjnych.

Pytanie 4

Rodzajem materiału ceramicznego, który wykazuje cechy umożliwiające jego wykorzystanie jako wykładziny wewnętrznej szybowego pieca wapiennego, gdzie temperatura osiąga do 1000°C, jest cegła

A. szamotowa
B. biała wapienna
C. dziurawka
D. klinkierowa porowata
Cegła klinkierowa porowata jest materiałem, który charakteryzuje się wysoką gęstością i trwałością, ale jej właściwości termiczne nie są odpowiednie dla ekstremalnych warunków, takich jak te występujące wewnątrz pieca wapiennego. Chociaż klinkier może wytrzymywać stosunkowo wysokie temperatury, jego struktura porowata sprawia, że nie jest w stanie efektywnie izolować ciepła, co prowadzi do strat energetycznych. Dodatkowo, w warunkach wystawienia na działanie wysokich temperatur, klinkier może pękać, co zagraża integralności pieca. Inna z wymienionych odpowiedzi, dziurawka, jest ceramiką, która również nie spełnia wymogów do zastosowania w piecach wapiennych. Materiał ten jest często używany w budownictwie, ale jego zastosowanie w warunkach wysokotemperaturowych jest niewłaściwe, ponieważ nie zapewnia odpowiedniej odporności na wysokie temperatury oraz nie jest wystarczająco stabilny. Z kolei cegła biała wapienna, będąca materiałem o niskiej gęstości, jest także nieodpowiednia do tego zastosowania. Wysoka zawartość węglanu wapnia w tym materiale sprawia, że jest on podatny na rozkład w wysokich temperaturach, co może prowadzić do uszkodzenia pieca. Wybierając materiały do wykładzin pieców wapiennych, kluczowe jest zapewnienie odpowiednich właściwości termicznych oraz mechanicznych, co czyni cegłę szamotową najlepszym wyborem. Błędy w ocenie właściwości tych materiałów wynikają często z braku zrozumienia ich charakterystyki oraz specyfiki zastosowania w przemyśle ceramicznym i metalurgicznym.

Pytanie 5

Proces koksowania węgla, który odbywa się w koksowniach i trwa nieprzerwanie od momentu załadunku przez trzy dni, zalicza się do procesów

A. okresowych
B. ciągłych
C. niskotemperaturowych
D. podciśnieniowych
Wybór odpowiedzi ciągłych jest nieprawidłowy, ponieważ proces koksowania węgla nie jest realizowany w sposób ciągły. Procesy ciągłe charakteryzują się nieprzerwanym działaniem, gdzie surowce są wprowadzane do systemu i przetwarzane bez przerwy, co nie ma miejsca w przypadku koksowania. W tym procesie mamy do czynienia z cyklicznością, gdzie po zakończeniu jednego cyklu następuje przerwa na załadunek nowego surowca. W odniesieniu do odpowiedzi niskotemperaturowych, koksowanie odbywa się w wysokotemperaturowych warunkach, przekraczających 1000 stopni Celsjusza, co prowadzi do odparowania lotnych składników węgla, a zatem jest to proces wysokotemperaturowy, a nie niskotemperaturowy. Odpowiedź dotycząca procesów podciśnieniowych również jest myląca, gdyż koksowanie to proces, który odbywa się w warunkach atmosferycznych, a nie w podciśnieniu. W rzeczywistych aplikacjach przemysłowych koksowanie odbywa się w komorach koksowniczych, które są dostosowane do określonych warunków ciśnienia atmosferycznego, co jest zgodne z normami i dobrymi praktykami branżowymi w tej dziedzinie. Dlatego zrozumienie zasadności cyklicznych procesów, jakim jest koksowanie, jest kluczowe dla prawidłowego zarządzania produkcją koksu oraz zapewnienia wysokiej jakości tego surowca na rynku.

Pytanie 6

Który z parametrów powinien być przede wszystkim monitorowany oraz w razie konieczności dostosowywany przez personel obsługujący krystalizator zbiornikowy z mieszadłem?

A. Obrotowa prędkość mieszadła
B. Temperatura
C. pH roztworu
D. Ciśnienie
W kontekście krystalizacji, prędkość obrotowa mieszadła, ciśnienie i odczyn roztworu są również ważnymi parametrami, jednak nie mają one tak kluczowego znaczenia jak temperatura. Prędkość obrotowa mieszadła wpływa na mieszanie roztworu, jednak jej zmiana niekoniecznie prowadzi do poprawy jakości kryształów. W praktyce, zbyt duża prędkość może powodować rozdrobnienie kryształów, co negatywnie wpływa na ich rozmiar i jednorodność. Ciśnienie również ma swoje znaczenie, ale w kontekście krystalizacji w zbiorniku z mieszadłem, jest to parametr, który rzadko jest kluczowy w porównaniu z temperaturą. Wiele procesów krystalizacji odbywa się w warunkach atmosferycznych, gdzie ciśnienie pozostaje stabilne, a jego regulacja jest bardziej istotna w innych systemach, takich jak reaktory pod ciśnieniem. Odczyn roztworu, chociaż istotny dla chemii procesu, nie jest bezpośrednio związany z procesem krystalizacji, która w głównej mierze zależy od temperatury. Właściwe zrozumienie, które parametry mają kluczowe znaczenie w konkretnych procesach, jest niezbędne dla efektywności produkcji oraz jakości końcowego produktu.

Pytanie 7

W procesie DRW w rafineriach dochodzi do fizycznego oddzielenia komponentów ropy naftowej. Jaką zasadę technologiczną należy uwzględnić przy projektowaniu instalacji, aby węglowodory uległy reakcji chemicznej w jak najmniejszym zakresie?

A. Zasadę regeneracji materiałów
B. Zasadę umiaru technologicznego
C. Zasadę odzyskiwania ciepła
D. Zasadę przeciwprądu materiałowego
W kontekście procesu DRW w rafineriach, analiza innych zasad technologicznych, takich jak zasada odzyskiwania ciepła, zasada regeneracji materiałów oraz zasada przeciwprądu materiałowego, ujawnia kluczowe błędy myślowe. Zasada odzyskiwania ciepła koncentruje się na efektywnym wykorzystaniu energii cieplnej, co jest istotne w kontekście ogólnej oszczędności energetycznej w procesach przemysłowych. Jednakże, w kontekście minimalizacji reakcji chemicznych, nadmierne podgrzewanie może prowadzić do niepożądanych przemian, co jest sprzeczne z celem DRW. Z kolei zasada regeneracji materiałów, choć istotna dla efektywności materiałowej i redukcji odpadów, nie ma bezpośredniego wpływu na kontrolowanie reakcji chemicznych w węglowodorach. Można tu zauważyć, że koncentrowanie się na regeneracji może prowadzić do zaniedbania aspektu jakości surowców, co w dłuższej perspektywie obniży jakość końcowych produktów. Podobnie, zasada przeciwprądu materiałowego, choć cenna w kontekście efektywności wymiany ciepła, nie odnosi się bezpośrednio do problematyki utrzymania węglowodorów w jak najczystszej formie, co jest kluczowe w DRW. W efekcie, te zasady, choć mają swoje zastosowania, nie są wystarczające, aby zrealizować cel ograniczenia reakcji chemicznych w procesie rafinacji, co jest fundamentalne dla uzyskania produktów o wysokiej jakości.

Pytanie 8

W skład niezbędnego wyposażenia reaktora do kontaktowej syntezy amoniaku, która zachodzi w temperaturze 700 K i pod ciśnieniem 10 MPa, powinny wchodzić

A. zawór zwrotny, manometr i termometr oporowy
B. rotametr, barometr i termometr szklany
C. zawór bezpieczeństwa, manometr i termometr kontaktowy
D. wakuometr, manometr i termometr oporowy
Zawór bezpieczeństwa, manometr i termometr kontaktowy to kluczowe elementy oprzyrządowania reaktora chemicznego, szczególnie w procesie syntezy amoniaku. Zawór bezpieczeństwa jest niezbędny, aby zapobiec niebezpiecznym wzrostom ciśnienia wewnątrz reaktora, co może prowadzić do awarii lub eksplozji. Zgodnie z normami bezpieczeństwa, każdy system pod ciśnieniem musi być wyposażony w odpowiednie mechanizmy ochronne. Manometr pozwala na bieżąco monitorować ciśnienie w reaktorze, co jest kluczowe dla utrzymania optymalnych warunków reakcji, zwłaszcza w przypadku syntezy amoniaku, gdzie działanie pod wysokim ciśnieniem zwiększa efektywność procesu. Termometr kontaktowy umożliwia precyzyjne pomiary temperatury we wnętrzu reaktora, co jest istotne dla kontroli parametrów reakcji oraz zapobiegania niepożądanym efektom, takim jak przegrzanie. Użycie tych komponentów jest zgodne z najlepszymi praktykami inżynieryjnymi, które skupiają się na bezpieczeństwie i efektywności procesów chemicznych.

Pytanie 9

W procesie rafinacji ropy naftowej, która frakcja jest oddzielana jako pierwsza?

A. Asfalt
B. Olej opałowy
C. Olej napędowy
D. Gazy lekkie
W procesie rafinacji ropy naftowej, pierwszą frakcją oddzielaną podczas destylacji jest frakcja gazów lekkich. Proces ten odbywa się w kolumnach destylacyjnych, gdzie ropa naftowa jest podgrzewana i wprowadzana do kolumny. Ze względu na różnice w temperaturze wrzenia składników ropy, poszczególne frakcje są oddzielane na różnych wysokościach kolumny. Gazy lekkie, takie jak metan, etan, propan i butan, charakteryzują się najniższymi temperaturami wrzenia, dlatego są one oddzielane jako pierwsze w górnej części kolumny destylacyjnej. Proces ten jest kluczowy dla przemysłu petrochemicznego, ponieważ umożliwia uzyskanie podstawowych składników do dalszej produkcji chemicznej i energetycznej. Gazy lekkie znajdują szerokie zastosowanie jako paliwa, surowce do produkcji chemicznej oraz w procesach syntezy. Właściwe zarządzanie tym procesem jest kluczowe dla efektywności i rentowności rafinerii. Dlatego też zrozumienie tego etapu jest fundamentalne dla każdego, kto pracuje w branży chemicznej, szczególnie w dziedzinie eksploatacji maszyn i urządzeń rafineryjnych.

Pytanie 10

Który rodzaj urządzenia spośród przedstawionych w tabeli należy zastosować do chłodzenia gazu poreakcyjnego w procesie syntezy amoniaku prowadzonym w temperaturze 400÷500°C?

Rodzaj urządzeniaRodzaj układu
(czynnik chłodzący – czynnik chłodzony)
Zakres pracy
[°C]
Wymiennik płaszczowo-rurowyciecz – gaz10÷150
ciecz – ciecz10÷100
para grzejna – ciecz100÷200
Wymiennik typu „rura w rurze"gaz – ciecz70÷500
ciecz – ciecz0÷500
Chłodnica ociekowawoda – gaz100÷700
ciecz – ciecz10÷100
para grzejna – ciecz100÷200
Wymiennik płytowygaz – woda10÷90
ciecz – ciecz0÷500

A. Wymiennik typu "rura w rurze".
B. Chłodnicę ociekową.
C. Wymiennik płaszczowo-rurowy.
D. Wymiennik płytowy.
Chłodnica ociekowa to idealne urządzenie do chłodzenia gazu poreakcyjnego w procesie syntezy amoniaku, zwłaszcza w temperaturach 400÷500°C. Jej zdolność do pracy w zakresie temperatury od 100 do 700°C, w układzie woda-gaz, czyni ją wyjątkowo elastyczną i wydajną. W praktyce, chłodnice ociekowe są powszechnie stosowane w przemyśle chemicznym, gdzie kontrola temperatury jest kluczowa dla efektywności procesów reakcyjnych. Przy zastosowaniu tej chłodnicy, możliwe jest osiągnięcie wysokiej efektywności wymiany ciepła, co przyczynia się do poprawy wydajności procesu syntezy amoniaku. Ponadto, standardy branżowe, takie jak ASME oraz API, zalecają stosowanie chłodnic ociekowych w procesach wymagających intensywnego chłodzenia, co potwierdza ich wysoką jakość i niezawodność. Warto dodać, że odpowiednia technologia chłodzenia ma kluczowe znaczenie dla zachowania bezpieczeństwa operacyjnego oraz minimalizacji ryzyka awarii.

Pytanie 11

Aby precyzyjnie określić temperatury topnienia i krzepnięcia roztworów, powinno się użyć

A. bomby kalorymetrycznej
B. ebuliometru
C. pirometru optycznego
D. kriometru
Użycie bomb kalorymetrycznej, ebuliometru czy pirometru optycznego w kontekście oznaczania temperatury topnienia i krzepnięcia roztworów jest nieadekwatne z kilku powodów. Bomba kalorymetryczna jest narzędziem służącym do pomiaru ciepła reakcji chemicznych i procesów spalania, a nie do określania punktów topnienia lub krzepnięcia. Jej funkcja polega na obliczaniu ilości ciepła wydzielającego się lub pochłanianego, co w kontekście topnienia i krzepnięcia nie przynosi użytecznych informacji o temperaturze tych procesów. Ebuliometr, z kolei, jest skonstruowany do pomiaru temperatury wrzenia cieczy, co również nie jest właściwą metodą do analizy procesów związanych z topnieniem czy krzepnięciem. Pirometr optyczny, który mierzy temperatury na podstawie promieniowania cieplnego emitowanego przez obiekty, jest bardziej odpowiedni do pomiarów w wysokotemperaturowych procesach przemysłowych, a nie do analizy materiałów w ich stanie stałym lub ciekłym w warunkach laboratoryjnych. Użycie tych narzędzi do oceny temperatur topnienia i krzepnięcia prowadzi do błędnych danych i nieefektywnych analiz, co może skutkować poważnymi konsekwencjami w badaniach chemicznych oraz przemysłowych. W rzeczywistości, wybór właściwego narzędzia, takiego jak kriometr, jest kluczowy w uzyskiwaniu rzetelnych wyników w chemii analitycznej.

Pytanie 12

Na podstawie danych w zamieszczonej tabeli podaj rodzaje badań, które należy zlecić w 21. roku użytkowania zbiornika niskociśnieniowego metalowego przeznaczonego do magazynowania chloru o pojemności 500 m3.

Częstotliwość badań okresowych zbiorników bezciśnieniowych i niskociśnieniowych przeznaczonych do magazynowania materiałów trujących lub żrących
Rodzaj badaniaCzęstotliwość badania nie rzadziej niż
Dla zbiorników naziemnych metalowych
Wiek do 30 latWiek powyżej 30 lat
Pojemność >1000 m³Pojemność <1000 m³Pojemność >1000 m³Pojemność <1000 m³
Rewizja wewnętrzna5 lat3 lata3 lata3 lata
Próba szczelności10 lat6 lat6 lat4 lata
Rewizja zewnętrzna2 lata1 rok1 rok1 rok

A. Tylko rewizja wewnętrzna.
B. Rewizja zewnętrzna i próba szczelności.
C. Rewizja wewnętrzna i zewnętrzna.
D. Tylko rewizja zewnętrzna.
Odpowiedzi, które wskazują jedynie na rewizję wewnętrzną lub zewnętrzną, są niewłaściwe z kilku kluczowych powodów. Przede wszystkim, rewizja zewnętrzna sama w sobie nie wystarcza, aby zapewnić pełną kontrolę nad bezpieczeństwem zbiornika. Osoby wybierające tylko tę formę inspekcji mogą pomijać istotne problemy, które mogą być obecne wewnątrz zbiornika, takie jak korozja, osady chemiczne czy inne uszkodzenia strukturalne. Ponadto, wybór jedynie rewizji wewnętrznej ignoruje fakt, że zewnętrzne czynniki, takie jak zmiany temperatury, działanie substancji chemicznych lub mechaniczne uszkodzenia, mogą wpływać na stan zbiornika. Zgodnie z wytycznymi branżowymi, szczególnie w przypadku urządzeń przechowujących niebezpieczne substancje, konieczne jest przeprowadzanie obu inspekcji, aby zapewnić kompleksową ocenę. Ignorowanie tej zasady może prowadzić do poważnych konsekwencji, w tym do wycieków substancji chemicznych, które stają się zagrożeniem zarówno dla zdrowia ludzi, jak i dla środowiska. W związku z tym, podejście ograniczające się do jednego rodzaju inspekcji jest nie tylko nieefektywne, ale także potencjalnie niebezpieczne.

Pytanie 13

Jaką czynność należy wykonać przed rozpoczęciem przeglądu oraz konserwacji bełkotki?

A. Wydobyć bełkotkę z aparatu
B. Obniżyć temperaturę cieczy w zbiorniku
C. Zwiększyć natężenie przepływu powietrza
D. Odłączyć przepływ powietrza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odłączenie przepływu powietrza przed przystąpieniem do przeglądu i konserwacji bełkotki jest kluczowym krokiem w zapewnieniu bezpieczeństwa i prawidłowego funkcjonowania urządzenia. Bełkotka, będąca elementem mającym na celu mieszanie i transport cieczy, może generować wysokie ciśnienie, które w przypadku nieodłączenia przepływu powietrza może prowadzić do niebezpiecznych sytuacji, takich jak wycieki lub niekontrolowane rozpryski cieczy. W praktyce, przed rozpoczęciem jakichkolwiek działań konserwacyjnych, zaleca się zawsze stosowanie procedur bezpieczeństwa, które powinny obejmować odłączenie źródła zasilania powietrzem. Zgodnie z wymogami branżowymi, takie praktyki są szczególnie istotne w środowiskach przemysłowych, gdzie bezpieczeństwo pracowników oraz integralność sprzętu są priorytetowe. Ponadto, odłączenie przepływu powietrza pozwala na dokładniejszą ocenę stanu technicznego bełkotki, co może być kluczowe w zapobieganiu awariom oraz w planowaniu przyszłych działań konserwacyjnych. Rekomenduje się także dokonywanie regularnych przeglądów, co zwiększa wydajność systemu i zmniejsza ryzyko wystąpienia usterek.

Pytanie 14

Urządzenia, które funkcjonują na zasadzie przesuwania materiału przy pomocy obracającego się wału o śrubowej powierzchni w otwartym lub zamkniętym korycie, to przenośniki

A. ślimakowe
B. kubełkowe
C. zgarniakowe
D. członowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przenośniki ślimakowe są urządzeniami, które wykorzystują zasadę działania obrotowego wału o powierzchni śrubowej do przesuwania materiałów w korytach otwartych lub zamkniętych. Ich konstrukcja pozwala na efektywne transportowanie materiałów sypkich, takich jak zboża, piasek czy węgiel. Wał ślimakowy, który jest umieszczony w obudowie, obraca się, co powoduje przesuwanie materiału w kierunku wyjścia. Przenośniki te są szeroko stosowane w różnych branżach, w tym w rolnictwie, budownictwie i przemyśle chemicznym. Standardy branżowe, takie jak normy ISO dotyczące transportu materiałów, podkreślają znaczenie przenośników ślimakowych w procesach logistycznych, ze względu na ich wysoką wydajność oraz możliwość dostosowania do różnych zastosowań. Przykładowe zastosowania obejmują systemy transportowe w młynach, gdzie przenośniki te transportują mąkę, lub w zakładach produkcyjnych, gdzie przesuwają różne surowce w procesach produkcyjnych. Dodatkowo, przenośniki ślimakowe mogą być projektowane w różnych rozmiarach i konfiguracjach, co pozwala na ich dopasowanie do specyficznych wymagań operacyjnych.

Pytanie 15

Transport lekkich, sypkich materiałów, które nie tworzą brył, odbywa się poprzez ich unoszenie i przesuwanie za pomocą strumienia powietrza do miejsca, w którym następuje wyładunek, wykorzystując przenośniki

A. cięgnowych
B. pneumatycznych
C. bezcięgnowych
D. hydraulicznych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'pneumatycznych' jest prawidłowa, ponieważ transport materiałów sypkich za pomocą przenośników pneumatycznych wykorzystuje strumień powietrza do transportu materiałów w stanie zawieszenia. W praktyce oznacza to, że niewielkie cząstki materiałów, które są lekkie i nie mają tendencji do zbrylania się, mogą być efektywnie przenoszone na znaczną odległość. Systemy te są szeroko stosowane w branży spożywczej, chemicznej oraz w przemyśle budowlanym, gdzie transportuje się takie materiały jak mąka, cement czy granulaty plastikowe. Przenośniki pneumatyczne oferują szereg zalet, takich jak minimalizacja mechanicznych uszkodzeń transportowanych materiałów, a także możliwość transportu w ciasnych przestrzeniach, co jest niemożliwe w przypadku przenośników cięgnowych. Ponadto, zgodnie z normami branżowymi, systemy pneumatyczne są projektowane z uwzględnieniem efektywności energetycznej i bezpieczeństwa, co czyni je optymalnym wyborem w nowoczesnych instalacjach transportowych.

Pytanie 16

Podczas przeprowadzania konserwacji okresowej wirówki filtracyjnej konieczne jest między innymi

A. dostosować ustawienie talerzy separacyjnych
B. zweryfikować położenie noża zgarniającego osad
C. wymienić siatkę lub materiał filtracyjny
D. wyczyścić przewody odprowadzające ciecze rozdzielone

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana siatki lub tkaniny filtracyjnej jest kluczowym elementem konserwacji okresowej wirówki filtracyjnej, ponieważ te komponenty mają fundamentalne znaczenie dla efektywności procesu filtracji. Siatki i tkaniny filtracyjne są narażone na zatykanie się cząstkami stałymi oraz ich degradację z upływem czasu, co może prowadzić do obniżenia wydajności i jakości procesu separacji. Regularna wymiana tych materiałów nie tylko zapewnia optymalne działanie wirówki, ale również jest zgodna z najlepszymi praktykami w branży, które zalecają monitorowanie stanu filtrów w regularnych odstępach czasowych. Przykładowo, w przypadku zastosowania wirówek w przemyśle chemicznym, zaniedbanie wymiany tkaniny filtracyjnej może prowadzić do poważnych problemów, takich jak kontaminacja produktów końcowych czy zwiększone zużycie energii. Dlatego też, w celu zapewnienia ciągłości procesów produkcyjnych oraz zgodności z normami jakości, zaleca się stosowanie harmonogramu konserwacji, który uwzględnia regularne kontrole oraz wymiany materiałów filtracyjnych.

Pytanie 17

Do przygotowania mieszaniny oziębiającej o temperaturze -5,1 °C z 500 g wody należy użyć

Mieszaniny oziębiające sól-woda
SólLiczba gramów soli przypadająca na 100 g wodyTemperatura minimalna uzyskana w wyniku zmieszania; °C
CH₃COONa85-4,7
NH₄Cl30-5,1
CaCl₂·H₂O250-12,0

A. 30 g NH4Cl.
B. 425 g CH3COONa.
C. 250 g CaCl2·H2O.
D. 150 g NH4Cl.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby uzyskać mieszaninę oziębiającą o temperaturze -5,1 °C z 500 g wody, kluczowe jest zrozumienie, jak różne sole wpływają na obniżenie temperatury mieszania. NH4Cl, czyli chlorek amonowy, jest jedną z soli, która ma zdolność do generowania niskich temperatur podczas rozpuszczania w wodzie. W praktyce, na 100 g wody potrzeba 30 g NH4Cl, co oznacza, że dla 500 g wody konieczne jest zastosowanie pięciokrotnej ilości soli, czyli 150 g. To podejście znajduje zastosowanie w wielu dziedzinach, takich jak chłodnictwo czy chemia analityczna, gdzie kontrola temperatury jest niezbędna. Przykładem może być przygotowywanie roztworów do eksperymentów wymagających obniżonej temperatury. Dobrą praktyką jest korzystanie z tabel zależności pomiędzy ilością soli a osiąganymi temperaturami, co pozwala na dokładniejsze przygotowanie mieszanin o wymaganych właściwościach termicznych. Warto również dodać, że stosowanie NH4Cl jest popularne ze względu na jego dostępność oraz skuteczność w aplikacjach laboratoryjnych.

Pytanie 18

Jakie ciśnienie gazu występuje na wylocie wypełnionej kolumny absorpcyjnej, jeśli do absorbera dostarczany jest surowy gaz ziemny (zawierający składniki, które mają być absorbowane — CO2 i H2S) oraz ciekły absorbent?

A. Ciśnienie gazu jest wyższe niż na wlocie. Temperatura gazu w trakcie procesu rośnie
B. Ciśnienie gazu jest niższe niż na wlocie. Wypełnienie kolumny oraz usuwanie składników gazu powodują obniżenie ciśnienia gazu
C. Ciśnienie gazu jest mniejsze niż na wlocie. Temperatura gazu w trakcie procesu maleje
D. Ciśnienie gazu pozostaje na tym samym poziomie. Wypełnienie kolumny powoduje obniżenie ciśnienia gazu, jednak opary absorbentu sprawiają, że ciśnienie nie zmienia się

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dobra robota! Odpowiedź, że ciśnienie gazu jest niższe niż na wlocie, jest jak najbardziej trafna. Wiesz, podczas absorpcji z gazu usuwane są różne składniki, a jego objętość się zmniejsza. Kiedy gaz przepływa przez wypełnioną kolumnę, to zjawisko powoduje spadek ciśnienia. Jeśli się dobrze zastanowisz, to zasady termodynamiki oraz równanie Bernoulliego dobrze to wyjaśniają – tam, gdzie jest więcej oporu, czyli w wypełnionej kolumnie, ciśnienie faktycznie maleje. W praktyce inżynieryjnej takie coś jest istotne, zwłaszcza przy odsiarczaniu gazu ziemnego, gdzie usunięcie H2S i CO2 ma ogromne znaczenie, by spełnić normy jakości. Pamiętaj też, że projektując takie kolumny, trzeba myśleć o tych zmianach ciśnienia, żeby wszystko działało jak należy i było zgodne z normami, takimi jak API czy ASME – to naprawdę ważne w przemyśle!

Pytanie 19

Przed przetworzeniem rudy siarki, w oparciu o zasadę jak najlepszego wykorzystania urządzeń, należy ją

A. poddać wzbogaceniu
B. wyprażyć w piecu szamotowym
C. rozpuścić w selektywnym rozpuszczalniku
D. oczyścić w procesie elektrolizy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ruda siarki przed dalszym przetwarzaniem powinna być poddana wzbogaceniu. Wzbogacenie polega na usunięciu zbędnych zanieczyszczeń, co zwiększa zawartość siarki w produkcie końcowym. W praktyce oznacza to wykorzystanie różnych metod separacji, takich jak flotacja czy grawitacja, które pozwalają na uzyskanie bardziej czystego surowca. Przykładowo, w przypadku rudy siarki, flotacja może być stosowana do oddzielenia siarki od innych minerałów, co jest zgodne z najlepszymi praktykami w przemyśle mineralnym. Wzbogacenie jest kluczowe, ponieważ pozwala na optymalizację procesu wydobycia i przetwarzania, co skutkuje mniejszym zużyciem energii i materiałów w dalszych etapach. Dobre praktyki w branży zalecają, aby każda partia rudy była analizowana pod kątem zawartości surowca przed poddaniem dalszym procesom, co pozwala na lepsze zaplanowanie działań oraz maksymalizację efektywności ekonomicznej.

Pytanie 20

Pompa niskociśnieniowa wymaga założenia uszczelki płynnej. Na podstawie zamieszonego fragmentu etykiety wskaż sposób postępowania przy jej zakładaniu.

Uszczelka płynna (fragment etykiety)
Płynne uszczelki stanowią odrębną grupę materiałów, o najlepszych wśród materiałów uszczelniających zdolnościach do dopasowywania się do uszczelnianych powierzchni. Idealnie niwelują wszelkie niedokładności powierzchni, wżery oraz wypełniają nierówności wynikające z chropowatości powierzchni. Są skutecznym rozwiązaniem we wszystkich układach o dużej sztywności elementów np. pomp, zaworów, połączeń gwintowych. Uszczelki mogą pracować w szerokim zakresie temperatur przez długi czas, zapewniają szczelność połączenia przy niskich ciśnieniach natychmiast po zmontowaniu części, oraz eliminują konieczność posiadania pełnego kompletu uszczelek stałych o różnych kształtach.

A. Wyszlifować powierzchnię, nałożyć uszczelkę, gdy temperatura pompy spadnie do temperatury pokojowej, odczekać do uzyskania pełnej szczelności układu.
B. Oczyścić powierzchnię z pyłu i kurzu, nałożyć uszczelkę, która od razu zapewnia pełną szczelność układu.
C. Wyciąć odpowiednią uszczelkę z arkusza i umieścić na wyszlifowanej powierzchni, pokryć warstwą uszczelki płynnej.
D. Wyciąć odpowiednią uszczelkę z arkusza i umieścić na oczyszczonej powierzchni, pokryć warstwą uszczelki płynnej, odczekać do uzyskania pełnej szczelności układu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na oczyszczenie powierzchni z pyłu i kurzu oraz nałożenie uszczelki, która zapewnia natychmiastową szczelność, jest zgodna z zaleceniami producentów uszczelki płynnej. Uszczelki tego typu są projektowane w taki sposób, aby ich aplikacja była szybka i efektywna. Oczyszczenie powierzchni jest kluczowym krokiem, ponieważ zanieczyszczenia mogą negatywnie wpływać na adhezję uszczelki do powierzchni, prowadząc do wycieków. W praktyce, przed nałożeniem uszczelki płynnej, warto używać odpowiednich środków czyszczących oraz narzędzi, aby upewnić się, że powierzchnia jest gładka i wolna od resztek starych uszczelek. Nałożenie uszczelki płynnej zgodnie z instrukcjami producenta zapewnia optymalne parametry techniczne, co jest szczególnie istotne w zastosowaniach przemysłowych, gdzie szczelność układu jest kluczowa dla zachowania bezpieczeństwa i efektywności operacyjnej. Warto również zaznaczyć, że uszczelki płynne mogą być stosowane w różnych warunkach temperaturowych i ciśnieniowych, co czyni je uniwersalnym rozwiązaniem w wielu aplikacjach inżynieryjnych.

Pytanie 21

Jak należy zebrać próbkę pierwotną materiału sypkiego? 1 część i proces ten powtarza się, aż próbka osiągnie wymaganą masę.

A. Próbkę formuje się w stożek, który spłaszcza się i dzieli na 6 części. Losowo wybiera się 1 część i proces ten powtarza się, aż próbka osiągnie wymaganą masę
B. Próbkę formuje się w stożek, który spłaszcza się i dzieli na 10 części. Losowo wybiera się 2 części i proces ten powtarza się, aż próbka osiągnie wymaganą masę
C. Próbkę formuje się w stożek, który spłaszcza się i dzieli na 2 części. Losowo wybiera się
D. Próbkę formuje się w stożek, który spłaszcza się i dzieli na 4 części. Losowo wybiera się 2 części i proces ten powtarza się, aż próbka osiągnie wymaganą masę

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podana odpowiedź jest prawidłowa, ponieważ opisuje właściwy proces pobierania próbki pierwotnej materiału sypkiego. Proces ten zaczyna się od usypania próbki w formie stożka, co jest kluczowe, ponieważ taka forma sprzyja równomiernemu rozkładaniu się materiału. Spłaszczenie stożka i podział na cztery części pozwala na uzyskanie reprezentatywnej próbki, z której następnie losowo wybierane są dwie części. Powtarzanie tego procesu do osiągnięcia wymaganej masy próbki jest zgodne z dobrą praktyką w analizach laboratoryjnych. Taki sposób zapewnia, że próbka będzie miała odpowiednią charakterystykę i reprezentatywność w stosunku do całej partii materiału. Przykładem standardu, który wspiera tę metodologię, jest ISO 18134, który reguluje zasady pobierania próbek materiałów sypkich. W kontekście przemysłowym, takie podejście jest kluczowe, aby zapewnić dokładność analiz oraz wiarygodność wyników, co jest fundamentalne w kontroli jakości i zapewnieniu zgodności z normami. Właściwe pobieranie próbki jest nie tylko kwestią techniczną, ale również wyrazem dbałości o precyzję i rzetelność w procesach badawczych.

Pytanie 22

Jaką obróbkę powinien przejść gaz syntezowy przed wprowadzeniem go do reaktora, aby ochronić katalizator, który w procesie syntezy amoniaku jest narażony na toksyczne działanie związków siarki, arsenu i fosforu?

A. Utlenieniu
B. Osuszeniu
C. Oziębieniu
D. Oczyszczeniu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Oczyszczeniu" jest prawidłowa, ponieważ proces syntezy amoniaku wykorzystuje katalizatory, które są wrażliwe na zanieczyszczenia chemiczne. Związki siarki, arsenu i fosforu mogą znacznie obniżyć aktywność katalizatora, dlatego kluczowe jest, aby gaz syntezowy był odpowiednio oczyszczony przed jego wprowadzeniem do reaktora. Oczyszczanie gazu może obejmować różne techniki, takie jak adsorpcja na węglu aktywnym lub zastosowanie filtrów, które usuwają toksyczne zanieczyszczenia. Stosowanie takich metod jest zgodne z dobrymi praktykami w przemyśle chemicznym, które nakładają obowiązek minimalizowania wpływu zanieczyszczeń na procesy katalityczne. W praktyce, wynikiem skutecznego oczyszczania jest zwiększona efektywność reakcji, co przekłada się na lepszą wydajność produkcji amoniaku oraz dłuższą żywotność katalizatora, co jest korzystne zarówno ekonomicznie, jak i ekologicznie.

Pytanie 23

Wodę stosowaną w przemyśle chemicznym do celów energetycznych, po jej uzdatnieniu, należy poddać badaniom na obecność

A. jonów chlorkowych, azotanowych, wapniowych oraz substancji koloidalnych
B. jonów siarczkowych, siarczanowych, rozpuszczonych gazów i krzemionki
C. jonów wapnia i magnezu, rozpuszczonych gazów oraz substancji koloidalnych
D. jonów wapnia, magnezu, sodu i glinu oraz zanieczyszczeń organicznych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Woda wykorzystywana w przemyśle chemicznym, po uzdatnieniu, wymaga analizy pod kątem zawartości jonów wapnia i magnezu, gazów rozpuszczonych oraz substancji koloidalnych. Jony wapnia i magnezu są istotne, ponieważ ich obecność wpływa na twardość wody, co z kolei ma znaczenie dla procesów technologicznych, takich jak wymiana ciepła czy reakcje chemiczne. Twarda woda może prowadzić do osadzania się kamienia kotłowego, co obniża efektywność systemów grzewczych i może prowadzić do ich uszkodzenia. Praktyczne zastosowanie obejmuje kontrolowanie twardości wody w systemach chłodzenia i grzewczych, co jest kluczowe w zgodności z normami, takimi jak ISO 9001, które podkreślają znaczenie jakości wody w procesach przemysłowych. Analiza gazów rozpuszczonych, takich jak tlen lub dwutlenek węgla, jest również ważna, ponieważ nadmiar tych gazów może wpływać na korozję instalacji oraz na jakość surowców chemicznych. Substancje koloidalne mogą natomiast wpływać na klarowność wody i jej zdolność do przewodzenia energii, co jest kluczowe w aplikacjach energetycznych. Dlatego regularne monitorowanie tych parametrów jest zgodne z najlepszymi praktykami w przemyśle chemicznym i energetycznym.

Pytanie 24

Jakiego typu zawór powinno się zastosować, aby natychmiastowo zatrzymać przepływ cieczy?

A. Membranowego
B. Zwrotnego
C. Redukcyjnego
D. Grzybkowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór grzybkowy jest idealnym rozwiązaniem do nagłego przerwania przepływu cieczy. Jego konstrukcja opiera się na ruchomym grzybku, który podczas działania zaworu zamyka przepływ cieczy w momencie, gdy ciśnienie w systemie wzrasta ponad ustalony poziom. Zawory te są powszechnie stosowane w systemach hydraulicznych oraz pneumatycznych, gdzie nagłe zatrzymanie przepływu jest kluczowe dla bezpieczeństwa urządzeń oraz ochrony instalacji. Przykładem zastosowania mogą być systemy zabezpieczeń w instalacjach przemysłowych, gdzie niekontrolowany wzrost ciśnienia może prowadzić do awarii. Zawory grzybkowe charakteryzują się również dużą responsywnością i niezawodnością, co sprawia, że są preferowane w wielu aplikacjach inżynieryjnych, zgodnie z normami bezpieczeństwa branżowego. Warto również dodać, że ich stosowanie przyczynia się do zwiększenia efektywności systemów, a także do minimalizacji ryzyka poważnych awarii lub wypadków.

Pytanie 25

Węgiel rozdrobniony i zmieszany w odpowiednich ilościach, pochodzący z określonych gatunków, przeznaczony na wsad do pieców koksowniczych powinien być poddany analizie

A. na zawartość popiołu
B. sitowej
C. na zawartość siarki
D. organoleptycznej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Analiza sitowa jest kluczowym procesem w ocenie jakości wsadu do komór koksowniczych. Polega na określeniu rozkładu ziarnowego węgla, co ma bezpośredni wpływ na wydajność procesu koksowania. Odpowiednie proporcje frakcji węglowych są istotne, ponieważ zbyt duża ilość zbyt drobnych cząstek może prowadzić do zmniejszenia efektywności procesu, a także wpływać na jakość otrzymanego koksu. Zastosowanie analizy sitowej pozwala na optymalizację procesu produkcji koksu, co jest zgodne z dobrymi praktykami stosowanymi w przemyśle węglowym. W praktyce oznacza to, że nieprawidłowa frakcja ziarnowa może prowadzić do problemów technologicznych, takich jak zatykanie komór koksowniczych czy nieefektywne spalanie. W związku z tym, regularne wykonywanie analizy sitowej węgla stanowi element zapewnienia wysokiej jakości produktu końcowego oraz efektywności operacyjnej zakładów koksowniczych. Ponadto, zgodnie z normami ISO, analiza ziarnowości jest jednym z podstawowych wymogów w kontroli jakości surowców w przemyśle metalurgicznym i energetycznym.

Pytanie 26

W jakim momencie, z powodu ograniczeń sprzętowych, powinno się zakończyć proces zagęszczania roztworu, który jest realizowany w wyparce Roberta – z pionowymi rurkami, przy naturalnej cyrkulacji roztworu?

A. Gdy poziom cieczy zagęszczanej osiągnie górny poziom rurek grzewczych
B. Po osiągnięciu temperatury wrzenia zagęszczanej cieczy
C. Gdy poziom cieczy zagęszczanej zbliży się do dolnego poziomu rurek grzewczych
D. Po osiągnięciu maksymalnej lepkości dla zagęszczanego roztworu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że należy zakończyć proces zatężania roztworu, gdy poziom cieczy osiągnie górny poziom rurek grzewczych, jest prawidłowa z powodów aparaturowych i operacyjnych. W wyparce Roberta, która wykorzystuje naturalną cyrkulację, kluczowe jest, aby unikać sytuacji, w której ciecz się przegrzewa lub zaczyna wrzeć w niewłaściwym momencie. Osiągnięcie górnego poziomu rurek grzewczych oznacza, że dalsze prowadzenie procesu mogłoby prowadzić do niekontrolowanego parowania, co stwarza ryzyko uszkodzenia sprzętu. Obserwacja poziomu cieczy jest standardową praktyką w technologii zatężania, pozwalającą na utrzymanie stabilnych warunków procesowych. Przykładem zastosowania tej zasady jest przemysł chemiczny, gdzie precyzyjne kontrolowanie poziomu cieczy oraz odpowiednich parametrów procesu, takich jak temperatura i ciśnienie, jest niezbędne do zapewnienia bezpieczeństwa oraz efektywności operacyjnej. Zastosowanie systemów alarmowych lub automatycznych zaworów może dodatkowo pomóc w monitorowaniu poziomu cieczy oraz zapobiegać przekroczeniu krytycznych wartości.

Pytanie 27

W tabeli przedstawiono dane techniczne anemometru wiatraczkowego, który można zastosować do pomiaru

Testo 417 – anemometr wiatraczkowy ze zintegrowaną sondą przepływu (średnica 100 mm) z pomiarem temperatury, wraz z baterią i protokołem kalibracyjnym
Sondy NTC
Zakres pomiarowy0 ... +50 °C
Dokładność±0,5 °C
Rozdzielczość0,1 °C
Sondy wiatraczkowe
Zakres pomiarowy+0,3 ... +20 m/s
Dokładność±(0,1 m/s +1,5% wartości pomiaru)
Rozdzielczość0,01 m/s

A. prędkości przepływu powietrza o temperaturze 55 °C.
B. temperatury powietrza, które przepływa w rurociągu z prędkością 25 m/s.
C. temperatury powietrza, które przepływa w rurociągu z prędkością 0,25 m/s.
D. prędkości przepływu powietrza o temperaturze 35 °C.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Anemometr wiatraczkowy zintegrowany z sondą temperatury NTC to urządzenie, które jest niezwykle przydatne w pomiarach związanych z aerodynamiką oraz klimatyzacją. Odpowiedź dotycząca prędkości przepływu powietrza o temperaturze 35 °C jest poprawna, ponieważ zarówno prędkość, jak i temperatura mieszczą się w zakresach pomiarowych anemometru. Anemometry tego typu wykorzystywane są w badaniach dotyczących wentylacji, monitorowania jakości powietrza oraz w zastosowaniach przemysłowych, gdzie dokładność pomiaru jest kluczowa. Przykładowo, w systemach HVAC (ogrzewanie, wentylacja i klimatyzacja) pomiar prędkości powietrza oraz jego temperatury pozwala na optymalizację procesów oraz zapewnienie komfortu użytkowników. Standardy branżowe, takie jak ASHRAE, zalecają stosowanie anemometrów do monitorowania wydajności systemów wentylacyjnych, co jest niezbędne dla efektywności energetycznej budynków. Zrozumienie, jak działa anemometr i jakie parametry może mierzyć, jest podstawą do właściwego użytkowania tych narzędzi w praktyce.

Pytanie 28

Które urządzenie jest używane do oddzielania cieczy od ciał stałych w procesie filtracji?

A. wirówka filtracyjna
B. komora susząca
C. zbiornik ciśnieniowy
D. reaktor chemiczny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Proces filtracji jest jednym z kluczowych etapów w przemyśle chemicznym, mającym na celu oddzielenie substancji stałych od cieczy. Wirówka filtracyjna to urządzenie, które wykonuje to zadanie poprzez wykorzystanie siły odśrodkowej. Dzięki szybkiemu obrotowi, ciecz przepływa przez materiał filtracyjny, pozostawiając na nim ciała stałe. Tego typu urządzenia są szczególnie skuteczne przy dużych ilościach zawiesin i gdy wymagana jest wysoka wydajność. W praktyce często stosowane są w zakładach chemicznych, farmaceutycznych czy spożywczych, gdzie jakość filtracji ma kluczowe znaczenie dla końcowej postaci produktu. Wirówki filtracyjne mogą być projektowane w różnych wariantach, dopasowanych do specyficznych wymagań procesowych. Standardy w tym zakresie obejmują takie aspekty jak materiał wykonania, dostosowanie do warunków ciśnieniowych oraz zgodność z normami bezpieczeństwa i higieny. Stosowanie wirówek filtracyjnych zgodnie z zaleceniami producenta i branżowymi wytycznymi zapewnia optymalne rezultaty filtracji oraz minimalizuje ryzyko awarii.

Pytanie 29

Typowym problemem w użytkowaniu kolumny destylacyjnej jest:

A. Przegrzewanie dolnej tacy
B. Nadmierne chłodzenie dolnej tacy
C. Zanieczyszczenie górnych tacek
D. Zablokowanie górnych tacek

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przegrzewanie dolnej tacy w kolumnie destylacyjnej jest istotnym problemem eksploatacyjnym. Kolumny te działają na zasadzie rozdzielania mieszanin cieczy na podstawie różnic w temperaturach wrzenia ich składników. Przegrzewanie dolnej tacy oznacza, że temperatura na tej tacy jest zbyt wysoka, co może prowadzić do szeregu niekorzystnych efektów. Jednym z nich jest pogorszenie jakości rozdziału składników, ponieważ nadmiernie wysoka temperatura może powodować niekontrolowane parowanie wszystkich frakcji jednocześnie. To zakłóca proces separacji, prowadząc do mieszania się składników, które powinny być oddzielone. Dodatkowo, zbyt wysoka temperatura może uszkodzić materiał kolumny i wpływać na efektywność procesu, a także zwiększać ryzyko awarii sprzętu. Z praktycznego punktu widzenia, ważne jest więc monitorowanie temperatury i utrzymywanie jej w optymalnym zakresie, aby zapewnić efektywność procesu destylacji i przedłużenie żywotności kolumny.

Pytanie 30

Na czym głównie polega obsługa cyklonu?

A. Na utrzymywaniu stałej odległości pomiędzy płytami osadczymi
B. Na kontrolowaniu temperatury gazu wchodzącego do systemu
C. Na zachowywaniu stałej różnicy potencjałów pomiędzy elektrodami
D. Na regulacji prędkości wlotowej zapylonego gazu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obsługa cyklonu polega przede wszystkim na regulacji prędkości wlotowej zapylonego gazu, co ma kluczowe znaczenie dla efektywności procesu separacji cząstek stałych. Cyklony są wykorzystywane w różnych branżach, takich jak przemysł chemiczny, metalurgiczny czy energetyka, gdzie zachodzi potrzeba oddzielania cząstek z gazów. Utrzymanie odpowiedniej prędkości wlotowej zapewnia optymalne warunki do wytworzenia siły odśrodkowej, która działa na cząstki stałe, powodując ich oddzielenie od gazu. Praktyczne zastosowanie tej regulacji może obejmować kontrolę wydajności cyklonów w instalacjach odpylających, gdzie zarządzanie parametrami gazu wlotowego jest podstawą do osiągnięcia wysokiej efektywności oczyszczania. Zgodnie z dobrą praktyką, zaleca się regularne monitorowanie i dostosowywanie prędkości wlotowej, co pozwala na zoptymalizowanie procesu oraz zmniejszenie zużycia energii. Dzięki temu, cyklony mogą pracować na maksymalnej wydajności, co przekłada się na oszczędności oraz lepszą jakość procesu technologicznego.

Pytanie 31

Jakie zbiorniki powinny być użyte do przechowywania cieczy łatwopalnych oraz wybuchowych?

A. Podziemne
B. Kriogeniczne
C. Membranowe
D. Naziemne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zbiorniki podziemne są najczęściej wybierane do magazynowania cieczy łatwopalnych i wybuchowych z kilku powodów. Przede wszystkim, ich lokalizacja poniżej poziomu terenu minimalizuje ryzyko przypadkowego zapłonu, co jest kluczowe w przypadku substancji niebezpiecznych. Dodatkowo, zbiorniki te często są projektowane z wykorzystaniem materiałów odpornych na korozję i deformacje, co zwiększa ich bezpieczeństwo i trwałość. Przykłady zastosowania podziemnych zbiorników obejmują magazynowanie paliw w stacjach benzynowych, gdzie zbiorniki są umieszczone pod ziemią, aby zminimalizować ryzyko wybuchu i zanieczyszczenia środowiska. Standardy takie jak NFPA 30 (National Fire Protection Association) jasno określają zasady dotyczące przechowywania cieczy łatwopalnych, podkreślając znaczenie odpowiedniej lokalizacji zbiorników. Ponadto, zastosowanie technologii monitorowania i systemów zabezpieczeń w zbiornikach podziemnych znacznie zwiększa bezpieczeństwo operacji oraz chroni przed nieautoryzowanym dostępem i wyciekami.

Pytanie 32

Jakie urządzenie powinno być wykorzystane do mieszania substancji o konsystencji ciastowatej lub płynnej, mających bardzo dużą lepkość?

A. Barboter zbiornikowy
B. Mieszarkę bębnową
C. Mieszalnik przesypowy
D. Zagniatarkę ślimakową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zagniatarka ślimakowa jest urządzeniem idealnym do mieszania materiałów o bardzo dużej lepkości, takich jak gęste ciasta czy pasty. Jej konstrukcja, wyposażona w spiralny mechanizm, pozwala na skuteczne mieszanie składników poprzez intensywne zagniatanie i wprowadzanie powietrza, co jest kluczowe w procesie produkcji pieczywa czy ciast. W przemyśle spożywczym, zagniatarki ślimakowe są powszechnie stosowane w produkcji ciast na pizzę, makaronów oraz innych produktów wymagających jednorodnej konsystencji. Użycie tego urządzenia zapewnia nie tylko efektywne połączenie składników, lecz także poprawia właściwości organoleptyczne gotowego produktu. Dobrą praktyką w branży jest również monitorowanie parametrów procesu mieszania, takich jak czas i temperatura, co pozwala na uzyskanie optymalnych rezultatów. Ponadto, zagniatarki są często projektowane z myślą o łatwym czyszczeniu i konserwacji, co jest zgodne z normami HACCP, zapewniającymi bezpieczeństwo żywności.

Pytanie 33

Ile kilogramów 98% kwasu siarkowego(VI) musi być wykorzystane, aby uzyskać 1 tonę roztworu kwasu siarkowego(VI) o stężeniu 49%, zakładając, że różnice w gęstości obu roztworów są zaniedbywalne?

A. 1000 kg
B. 490 kg
C. 500 kg
D. 510 kg

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby uzyskać 1 tonę roztworu kwasu siarkowego(VI) o stężeniu 49%, musimy najpierw obliczyć, ile czystego kwasu siarkowego jest potrzebne w tym roztworze. 1 tona roztworu to 1000 kg, a stężenie 49% oznacza, że 49% tej masy musi być czystym kwasem siarkowym. Obliczamy to, mnożąc masę roztworu przez stężenie: 1000 kg * 0,49 = 490 kg. Teraz, aby przygotować roztwór o stężeniu 49% z 98% kwasu siarkowego(VI), musimy zrozumieć, ile kwasu 98% będzie potrzebne do uzyskania 490 kg czystego kwasu. Ponieważ 98% kwas siarkowy zawiera 98 g czystego kwasu w 100 g roztworu, możemy obliczyć wymaganą masę kwasu 98% za pomocą proporcji: 490 kg / 0,98 = 500 kg. W praktyce, takie obliczenia są kluczowe przy przygotowywaniu różnych roztworów chemicznych w laboratoriach, gdzie precyzyjne stężenia są niezbędne do uzyskania oczekiwanych wyników w reakcjach chemicznych.

Pytanie 34

Które urządzenie jest używane do precyzyjnego pomiaru przepływu cieczy?

A. Ciśnieniomierz
B. Manometr
C. Przepływomierz masowy
D. Termometr rtęciowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przepływomierz masowy jest urządzeniem, które umożliwia precyzyjny pomiar przepływu cieczy, co jest kluczowe w wielu procesach przemysłowych, zwłaszcza w przemyśle chemicznym. Działa na zasadzie pomiaru masy cieczy przepływającej przez rurę w jednostce czasu. Dzięki temu można uzyskać bardzo dokładne dane dotyczące ilości przetwarzanej cieczy. Takie urządzenia są niezbędne w przemyśle, gdzie dokładność jest kluczowa, np. przy dozowaniu składników chemicznych. Przepływomierze masowe są szeroko stosowane w aplikacjach, gdzie konieczne jest zapewnienie stabilności procesu oraz spełnienie surowych wymogów dotyczących jakości produktu końcowego. Nowoczesne przepływomierze masowe mogą być wyposażone w dodatkowe funkcje, takie jak pomiar temperatury czy gęstości, co dodatkowo zwiększa ich użyteczność i precyzję. W praktyce, znajdziemy je w systemach kontroli procesów, gdzie kluczowe jest zachowanie odpowiednich proporcji składników chemicznych, co wpływa na efektywność i bezpieczeństwo produkcji. Dlatego przepływomierze masowe są standardem w przemyśle chemicznym, gdzie kontrola przepływu jest jednym z fundamentów zarządzania procesem.

Pytanie 35

W jakim celu stosuje się filtrację wsteczną w systemach uzdatniania wody?

A. Dodawanie środków chemicznych do wody
B. Zmniejszenie twardości wody
C. Zwiększenie przewodności wody
D. Usuwanie nagromadzonych zanieczyszczeń z filtra

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Filtracja wsteczna, znana również jako backwash, to kluczowy proces stosowany w systemach uzdatniania wody, mający na celu usunięcie nagromadzonych zanieczyszczeń z filtra. Jest to proces, w którym przepływ wody jest odwracany, co pozwala na wypłukanie zanieczyszczeń zgromadzonych w medium filtracyjnym. Dzięki temu filtry mogą być ponownie efektywne i zapewniać wysoką jakość filtrowanej wody. Filtracja wsteczna jest niezbędna do utrzymania optymalnej wydajności systemów filtracyjnych, zapobiegając ich zapychaniu i zwiększając trwałość medium filtracyjnego. W praktyce, regularne przeprowadzanie backwash jest standardową procedurą w instalacjach uzdatniania wody, zarówno w przemyśle, jak i w domowych systemach filtracyjnych. Proces ten pozwala na utrzymanie niskiego ciśnienia roboczego, co jest kluczowe dla efektywnego działania całego systemu. Dzięki filtracji wstecznej zyskujemy pewność, że system działa optymalnie, a jakość wody spełnia wymagane normy.

Pytanie 36

Jak powinno się składować opakowania z saletrą amonową?

A. W ogrzewanych pomieszczeniach magazynowych obok gazów technicznych
B. Umieszczając je w jasnych, nieprzewiewnych miejscach, ściśle upakowane
C. Umieszczając je w bezpiecznej odległości od materiałów palnych i źródeł ciepła
D. W magazynach charakteryzujących się wysoką wilgotnością

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Saletra amonowa jest substancją chemiczną, która w trakcie przechowywania wymaga szczególnej uwagi w odniesieniu do warunków otoczenia. Utrzymywanie opakowań z saletrą amonową z dala od materiałów łatwopalnych i źródeł ciepła jest kluczowe, aby zminimalizować ryzyko pożaru oraz zachować stabilność chemiczną substancji. W wysokich temperaturach i w obecności substancji łatwopalnych, saletra amonowa może stać się niebezpieczna, a nawet prowadzić do wybuchów. Dlatego zgodnie z zaleceniami norm takich jak NFPA (National Fire Protection Association) oraz OSHA (Occupational Safety and Health Administration), należy zapewnić odpowiednie odległości i warunki składowania. Przykładowo, w przemyśle chemicznym, opakowania z saletrą amonową powinny być przechowywane w specjalnie przystosowanych pomieszczeniach magazynowych, które posiadają odpowiednią wentylację oraz systemy przeciwpożarowe. Dodatkowo, ważne jest, aby opakowania były w odpowiednich, trwałych pojemnikach, które uniemożliwią ich uszkodzenie, co mogłoby prowadzić do uwolnienia substancji i zwiększenia ryzyka wystąpienia niebezpiecznych sytuacji.

Pytanie 37

W 20-tonowej mieszaninie trójskładnikowej znajduje się 5 ton składnika A, 12 ton składnika B oraz reszta to składnik C. Jaka jest procentowa zawartość (m/m) składnika C w tej mieszaninie?

A. 30%
B. 3%
C. 15%
D. 6%

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć zawartość procentową składnika C w mieszance, musimy najpierw ustalić, ile ton tego składnika znajduje się w 20-tonowej mieszance. Mamy 5 ton składnika A i 12 ton składnika B, co razem daje 17 ton. Składnik C zatem ma masę 20 ton - 17 ton = 3 tony. Zawartość procentowa obliczana jest według wzoru: (masa składnika / masa całej mieszaniny) x 100%. W tym przypadku: (3 tony / 20 ton) x 100% = 15%. Zrozumienie tej metody jest kluczowe w wielu dziedzinach przemysłu, takich jak chemia, farmacja czy produkcja, gdzie precyzyjne obliczenia składników mają kluczowe znaczenie dla jakości i bezpieczeństwa produktów. W praktyce, obliczenie procentowego udziału składników pozwala na optymalizację procesów produkcyjnych oraz kontrolę jakości, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 38

Jakie są zasady bieżącej kontroli pracy płaszczowo-rurowego wymiennika ciepła?

A. Na weryfikacji szczelności połączeń rur w dnie sitowym
B. Na regulacji temperatury czynnika grzewczego/chłodzącego
C. Na analizowaniu twardości wody w wymienniku
D. Na regulacji ilości par odprowadzanych do skraplacza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Bieżąca kontrola pracy płaszczowo-rurowego wymiennika ciepła polega głównie na regulacji temperatury czynnika grzewczego lub chłodzącego, co jest kluczowe dla efektywności wymiany ciepła. Utrzymanie właściwej temperatury czynnika pozwala na zoptymalizowanie transferu ciepła pomiędzy obiegiem a wymiennikiem, co przekłada się na oszczędności energetyczne oraz minimalizację zużycia mediów. Dobrą praktyką jest monitorowanie parametrów operacyjnych, takich jak temperatura i ciśnienie, co pozwala na szybką reakcję w przypadku jakichkolwiek odchyleń od norm. Przykładem zastosowania tej wiedzy może być przemysł chemiczny, w którym stała kontrola temperatury czynnika chłodzącego jest krytyczna dla stabilności procesu produkcyjnego. Warto również wspomnieć, że zgodnie z normą ASME, regularne przeglądy i kalibracje czujników temperatury są niezbędne dla zapewnienia bezpiecznego i efektywnego działania wymienników ciepła. Takie podejście przyczynia się do dłuższej żywotności urządzeń oraz zwiększenia efektywności energetycznej instalacji.

Pytanie 39

Jakie środki ochrony osobistej powinien nosić pracownik podczas zbierania próbki roztworu z lasownika?

A. Butów, okularów i ubrania ochronnego
B. Rękawic bawełnianych, okularów i maski ochronnej
C. Rękawic gumowych, okularów i ubrania ochronnego
D. Rękawic gumowych, okularów i maski ochronnej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kiedy pobierasz próbki roztworu z lasownika, naprawdę ważne jest, żebyś miał na sobie gumowe rękawice, okulary ochronne i odpowiednie ubranie. Rękawice gumowe są super, bo chronią przed chemikaliami, które mogą być szkodliwe dla skóry. A okulary? Też ważne, bo mogą uratować twoje oczy przed jakimiś nieprzyjemnymi rozpryskami. Ubranie ochronne to dodatkowa warstwa bezpieczeństwa, która chroni cię przed oparzeniami czy skaleczeniami. Generalnie, używanie tych wszystkich środków ochrony to coś, czego powinno się przestrzegać w laboratoriach. Tak po prostu, to norma w każdym miejscu, gdzie się pracuje z chemią. Bezpieczeństwo przede wszystkim!

Pytanie 40

Wstępne rozdrabnianie dużych brył realizowane jest w

A. łamaczu szczękowym
B. dezintegratorze
C. rozdrabniarce młotkowej
D. młynie tarczowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Łamacze szczękowe są specjalistycznymi urządzeniami stosowanymi w procesie rozdrabniania wstępnego dużych brył materiałów, takich jak skały, węgiel czy rudy. Ich konstrukcja opiera się na dwóch szczękach, które poruszają się względem siebie, co pozwala na efektywne łamanie materiałów o dużej twardości i masie. W porównaniu do innych urządzeń, łamacze szczękowe charakteryzują się wysoką wydajnością i niskim zużyciem energii, co czyni je idealnym rozwiązaniem w przemyśle wydobywczym i recyklingowym. W praktyce, łamacze szczękowe znajdują zastosowanie w zakładach górniczych, gdzie służą do rozdrabniania surowców przed dalszym przetwórstwem. Warto zauważyć, że ich zastosowanie jest zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie efektywności procesów produkcyjnych. Właściwy dobór metody rozdrabniania ma kluczowe znaczenie dla całego procesu technologicznego.