Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 17 maja 2025 16:01
  • Data zakończenia: 17 maja 2025 16:14

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Ile gramów chlorku baru powinno się rozpuścić w wodzie, aby uzyskać 200 cm3 roztworu o stężeniu 10% i gęstości 1,203 g/cm3?

A. 24,06 g
B. 18,40 g
C. 20,00 g
D. 26,04 g
Przy obliczaniu masy chlorku baru do przygotowania roztworu o stężeniu 10% i objętości 200 cm3, kluczowe jest zrozumienie podstawowych zasad dotyczących stężenia, gęstości oraz masy roztworu. Jednym z typowych błędów myślowych jest pomijanie wpływu gęstości roztworu na obliczenia. Wiele osób może skupić się jedynie na stężeniu masowym i wyliczyć masę substancji, ignorując fakt, że masa roztworu, wynikająca z jego gęstości, jest większa niż masa samej substancji. Na przykład obliczenie tylko masy chlorku baru jako 20 g, bazując na prostym wzorze stężenia, prowadzi do niepoprawnych wniosków. Wspomniane podejście nie uwzględnia całkowitej masy roztworu, co jest kluczowe dla prawidłowego przygotowania roztworu. Kolejnym błędem jest zakładanie, że jeśli woda stanowi większą część roztworu, to można zignorować jej wpływ na całkowitą masę. W praktyce, aby uzyskać dokładny roztwór, należy uwzględnić zarówno masę substancji rozpuszczonej, jak i masę rozpuszczalnika. Dlatego majac na uwadze wszystkie te aspekty, prawidłowa masa chlorku baru do osiągnięcia pożądanej koncentracji w 200 cm3 roztworu o gęstości 1,203 g/cm3 wynosi 24,06 g, co jest zgodne z praktykami laboratoryjnymi, które wymagają dokładnych obliczeń i rozważenia wszystkich zmiennych w procesie przygotowywania roztworów.

Pytanie 2

Które z poniższych działań należy wykonać przed rozpoczęciem pracy z nowym szkłem laboratoryjnym?

A. Przetrzeć szkło suchą szmatką
B. Włożyć szkło do zamrażarki na 30 minut
C. Ogrzać szkło w suszarce do 200°C bez mycia
D. Dokładnie umyć, wypłukać wodą destylowaną i wysuszyć
Przed przystąpieniem do pracy w laboratorium, odpowiednie przygotowanie szkła laboratoryjnego jest kluczowe dla uzyskania wiarygodnych wyników analitycznych. Zaleca się, aby każdy nowy element szkła został dokładnie umyty, wypłukany wodą destylowaną i następnie wysuszony. To nie jest tylko formalność – na powierzchni nowego szkła mogą pozostawać resztki środków produkcyjnych, pyłów, opiłków lub nawet tłuszczów używanych w procesie produkcji i transportu. Takie zanieczyszczenia potrafią znacząco wpłynąć na przebieg reakcji chemicznych, fałszować wyniki pomiarów czy powodować wytrącanie się niepożądanych osadów. W praktyce laboratoryjnej normą jest wieloetapowe mycie szkła: najpierw wodą z detergentem, następnie dokładne płukanie wodą z kranu, a na końcu kilkukrotne płukanie wodą destylowaną. Suszenie zapewnia, że do wnętrza próbki nie dostanie się woda o nieznanym składzie. Moim zdaniem, sumienne podejście do czystości szkła jest jedną z najważniejszych zasad pracy laboranta. Każdy zawodowiec wie, że nawet drobny brud czy mgiełka tłuszczu mogą przekreślić godziny żmudnej pracy. W wielu laboratoriach, szczególnie tych akredytowanych, są nawet specjalne protokoły przygotowania sprzętu – warto je poznać i stosować, bo to naprawdę się opłaca.

Pytanie 3

Wskaż sprzęt, którego należy użyć, aby przygotować 100 cm3 roztworu NaOH o stężeniu 0,1 mol/dm3.

12345
naczynko wagowewaga analitycznakolba stożkowakolba miarowa
pojemności 50 cm3
kolba miarowa
pojemności 100 cm3

A. 1,2,3
B. 1,2,5
C. 2,3,4
D. 1,2,4
Aby przygotować 100 cm3 roztworu NaOH o stężeniu 0,1 mol/dm3, konieczne jest zastosowanie odpowiedniego sprzętu laboratoryjnego. W pierwszej kolejności, do odważenia 0,4 g NaOH, wykorzystujemy naczynko wagowe oraz wagę analityczną, które zapewniają wysoką precyzję ważenia. Zgodnie z dobrymi praktykami laboratoryjnymi, waga analityczna powinna być kalibrowana przed każdym użyciem, co gwarantuje dokładność pomiarów. Następnie, do przygotowania roztworu używamy kolby miarowej o pojemności 100 cm3. Kolba miarowa umożliwia precyzyjne odmierzanie objętości roztworu, co jest kluczowe dla uzyskania żądanego stężenia. Przygotowanie roztworu w kolbie miarowej jest standardową procedurą w chemii analitycznej i przemysłowej, pozwalającą na powtarzalność wyników. Użycie niewłaściwego naczynia, takiego jak kolby o innych pojemnościach, może prowadzić do błędnych stężeń, co ma istotne znaczenie w kontekście reakcji chemicznych, w których stosunki molowe są kluczowe.

Pytanie 4

Na etykietach substancji chemicznych można znaleźć oznaczenia literowe R i S (zgodnie z regulacjami CLP: H i P), które wskazują

A. na ryzyko wystąpienia zagrożeń i zasady postępowania z nimi
B. na obecność zanieczyszczeń oraz metody ich usuwania
C. na pojemność oraz skład opakowania
D. na ilość domieszek w składzie oraz datę przydatności
Odpowiedzi, które sugerują, że oznaczenia R i S dotyczą zanieczyszczeń, pojemności opakowania lub ilości domieszek, nie uwzględniają kluczowego celu tych symboli, którym jest informowanie o zagrożeniach związanych z danymi substancjami chemicznymi oraz metodach postępowania w przypadku ich użycia. Oznaczenia te są częścią systemu klasyfikacji i oznakowania substancji chemicznych, którego celem jest zapewnienie bezpieczeństwa zarówno dla użytkowników substancji, jak i dla środowiska. Oznaczenia dotyczące zanieczyszczeń, takie jak poziomy czystości czy procesy ich usuwania, są całkowicie inną kwestią, która nie znajduje związku z systemem R i S. Z kolei informacje o pojemności i składzie opakowania mają znaczenie jedynie w kontekście transportu i przechowywania substancji, ale nie odnoszą się do ryzyka, które te substancje mogą stwarzać. Oznaczenia R i S dostarczają informacji o tym, jakie są potencjalne skutki zdrowotne i ekologiczne związane z substancją oraz jakie działania można podjąć w przypadku awarii czy kontaktu z substancją. Ignorowanie tych istotnych informacji może prowadzić do niebezpiecznych sytuacji w laboratoriach oraz podczas prac przemysłowych. Przykłady błędnych założeń mogą obejmować myślenie, że wystarczająca jest jedynie analiza składu chemicznego substancji, bez uwzględnienia ryzyk, co może prowadzić do tragicznych skutków. Dlatego tak ważne jest, aby osoby pracujące z substancjami chemicznymi były odpowiednio przeszkolone i znały obowiązujące przepisy oraz oznaczenia, co przekłada się na bezpieczeństwo w miejscu pracy.

Pytanie 5

Zgodnie z instrukcją dotyczącą pobierania próbek nawozów (na podstawie normy PN-EN 12579:2001), liczbę punktów pobierania próbek pierwotnych ustala się według wzoru nsp = 0,5·√V, gdzie V oznacza objętość jednostki badanej w m3. Wartość nsp zaokrągla się do liczby całkowitej, a dodatkowo nie może być mniejsza niż 12 ani większa niż 30.
Dlatego dla objętości V = 4900 m3, nsp wynosi

A. 30
B. 12
C. 35
D. 70
Odpowiedź 30 jest poprawna, ponieważ zgodnie z normą PN-EN 12579:2001, liczba miejsc pobierania próbek pierwotnych oblicza się według wzoru nsp = 0,5·√V, gdzie V to objętość jednostki badanej wyrażona w m3. Dla objętości V = 4900 m3, obliczamy: nsp = 0,5·√4900 = 0,5·70 = 35. Jednakże wartość nsp musi być zaokrąglona do liczby całkowitej oraz mieścić się w granicach 12 i 30. W związku z tym, mimo że obliczona wartość to 35, ze względu na górny limit, ostateczna wartość nsp wynosi 30. Takie podejście zapewnia odpowiednią reprezentatywność próbek, co jest kluczowe w analizach laboratoryjnych. W praktyce, stosowanie właściwej liczby próbek pozwala na dokładniejszą ocenę jakości nawozów oraz ich wpływu na glebę. Utrzymanie standardów w procesie pobierania próbek jest niezbędne do uzyskania wiarygodnych wyników, co jest szczególnie istotne w kontekście zrównoważonego rolnictwa i ochrony środowiska.

Pytanie 6

Które z wymienionych reakcji chemicznych stanowi reakcję redoks?

A. 3 Ca(OH)2 + 2 H3PO4 → Ca3(PO4)2 + 6 H2O
B. 2 KMnO4 → K2MnO4 + MnO2 + O2
C. 2 NaOH + CuSO4 → Cu(OH)2 + Na2SO4
D. CaCO3 → CaO + CO2
Reakcja 2 KMnO4 → K2MnO4 + MnO2 + O2 jest reakcją redox, ponieważ zachodzi w niej zarówno utlenianie, jak i redukcja. W tej reakcji mangan w najniższym stopniu utlenienia (+7) w KMnO4 ulega redukcji do MnO2, gdzie jego stopień utlenienia wynosi +4. Jednocześnie tlen w cząsteczce KMnO4 jest utleniany do O2, co świadczy o zachodzącym procesie utlenienia. Reakcje redox są kluczowe w chemii, ponieważ dotyczą transferu elektronów między reagentami, co jest fundamentalne dla wielu procesów, takich jak spalanie, korozja, czy nawet procesy biologiczne, jak oddychanie komórkowe. Dobrą praktyką w laboratoriach chemicznych jest korzystanie z reakcji redox w syntezach chemicznych, oczyszczaniu substancji oraz w analizie chemicznej, co podkreśla ich znaczenie w przemyśle chemicznym oraz w nauce.

Pytanie 7

Aby przeprowadzić analizę jakościową, próbkę mosiądzu należy roztworzyć w stężonym kwasie

A. chlorowodorowym
B. azotowym(V)
C. siarkowym(VI)
D. bromowodorowym
Stosowanie kwasu siarkowego(VI) do roztwarzania mosiądzu nie jest optymalnym rozwiązaniem, ponieważ mimo że kwas siarkowy jest silnym kwasem, nie jest efektywny w przypadku stopów miedzi, takich jak mosiądz. Kwas siarkowy reaguje z miedzią, ale proces ten jest wolniejszy i mniej skuteczny w porównaniu do kwasu azotowego. Użycie kwasu chlorowodorowego może również prowadzić do niepełnych reakcji, ponieważ nie jest on wystarczająco silnym utleniaczem, a jego stosowanie w kontekście metali nieżelaznych, takich jak miedź, może prowadzić do ich nierozpuszczenia. Kwas bromowodorowy, mimo że jest kwasem, również nie wykazuje właściwości utleniających, które są kluczowe w procesie analizy jakościowej. W przypadku błędnego wyboru kwasu, można napotkać problemy związane z niepełnym rozpuszczeniem próbki, co prowadzi do błędnych wyników analizy. Typowym błędem jest założenie, że każdy silny kwas może zastąpić inny w reakcjach chemicznych, co jest mylne. Efektywność rozpuszczania stopów metalowych wymaga zastosowania odpowiednich reakcji chemicznych, które nie tylko rozpuszczają próbki, ale również prowadzą do ich pełnej analizy składu chemicznego. W rezultacie, niewłaściwy wybór kwasu może skutkować nieprawidłowymi wynikami, co w praktyce laboratoryjnej jest nieakceptowalne i może prowadzić do dalszych problemów związanych z jakością i bezpieczeństwem produktów końcowych.

Pytanie 8

Czego brakuje w zestawie pokazanym na ilustracji?

A. stojak, termometr oraz siatka
B. stojak, łącznik i łapa
C. stojak, łącznik oraz termometr
D. bagietka, termometr oraz siatka
Wybór innych odpowiedzi często wiąże się z niepełnym zrozumieniem roli, jaką poszczególne elementy odgrywają w laboratoriach. Bagietka, będąca elementem używanym w kuchni, nie ma zastosowania w kontekście laboratoryjnym. Jej obecność w zestawie nie tylko nie pasuje do środowiska laboratorium, ale także wskazuje na brak wiedzy o standardowych narzędziach wykorzystywanych w procesach eksperymentalnych. Termometr, choć ważny w wielu pomiarach, nie jest elementem strukturalnym, który wspierałby stabilność zestawów montażowych. Odpowiedzi zawierające termometr pomijają kluczowe komponenty, takie jak statyw i łącznik, które są nieodzowne w każdym eksperymencie wymagającym precyzyjnego pomiaru. Z kolei łącznik i łapa, będące istotnymi elementami w laboratoriach, są fundamentalne dla łączenia i stabilizacji, co jest kluczowe dla uniknięcia wypadków w trakcie doświadczeń. Często popełnianym błędem jest skupianie się na pojedynczych narzędziach, zamiast na całościowej konfiguracji sprzętu, co prowadzi do nieporozumień. Właściwe zrozumienie komplementarności elementów sprzętu laboratoryjnego jest kluczowe dla ich efektywnego wykorzystania w praktyce.

Pytanie 9

Aby oddzielić galaretowaty osad typu Fe(OH)3 od roztworu, jaki sączek należy zastosować?

A. twardy
B. średni
C. miękki
D. częściowy
Odpowiedź "miękki" jest chociażby słuszna, bo przy filtracji osadu galaretowatego Fe(OH)3 musimy mieć dobry sączek, który nie tylko zatrzyma cząsteczki, ale i pozwoli je łatwo oddzielić od roztworu. Miękkie sączki, jak te z papieru filtracyjnego, mają drobne pory, więc świetnie zatrzymują małe cząsteczki osadu. W laboratoriach używa się takich miękkich sączków, zwłaszcza przy gęstych substancjach. Na przykład, w oczyszczaniu wody czy w chemicznych analizach, gdzie oddzielamy osady od cieczy, miękki sączek daje nam dobrą selektywność i zmniejsza ryzyko zatykania porów. Dlatego wybór sączka jest mega ważny i trzeba go dopasować do właściwości substancji, co jak się domyślam, jest zgodne z zasadami dobrych praktyk w labie.

Pytanie 10

Jakie jest stężenie procentowe roztworu HCl (M=36,46 g/mol) o gęstości 1,19 g/cm3 oraz stężeniu molowym 12 mol/dm3?

A. 39,2%
B. 78,3%
C. 36,8%
D. 19,6%
Obliczenie stężenia procentowego roztworu HCl zaczynamy od określenia masy substancji rozpuszczonej w danym objętości roztworu. Mając stężenie molowe wynoszące 12 mol/dm³, możemy obliczyć masę HCl w 1 dm³ roztworu, korzystając z masy molowej HCl (36,46 g/mol). Zatem masa HCl w 1 dm³ wynosi: 12 mol/dm³ * 36,46 g/mol = 437,52 g. Gęstość roztworu wynosi 1,19 g/cm³, co oznacza, że masa 1 dm³ roztworu wynosi 1190 g. Stężenie procentowe obliczamy według wzoru: (masa substancji rozpuszczonej / masa roztworu) * 100%. Podstawiając wartości: (437,52 g / 1190 g) * 100% = 36,77%, co zaokrąglamy do 36,8%. Takie obliczenia są istotne w praktyce chemicznej, na przykład w laboratoriach, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania wiarygodnych wyników doświadczeń. Zrozumienie stężenia procentowego i jego zastosowania jest istotne w kontekście przemysłu chemicznego oraz analizy jakościowej i ilościowej substancji chemicznych.

Pytanie 11

Próbkę laboratoryjną dzieli się na dwie części, ponieważ

A. przeprowadza się dwie analizy badanego produktu i przyjmuje wartość średnią z wyników
B. analizę produktu zawsze realizuje się dwiema różnymi metodami
C. jedna część jest przeznaczona do potencjalnego przeprowadzenia analizy rozjemczej
D. jedna część jest skierowana do dostawcy, a druga do odbiorcy produktu
Podział średniej próbki na dwie części to coś, na co trzeba zwrócić uwagę w analizie laboratoryjnej. Odpowiedzi, które mówią, że jedna próbka idzie dla dostawcy, a druga dla odbiorcy, mogą wprowadzać w błąd, bo nie bierze się pod uwagę celu analizy rozjemczej, która jest do rozstrzygania sporów. Dwie różne metody analizy mogą być fajne, ale to nie tłumaczy podziału próbki. Taki sposób robienia rzeczy może zamieszać i prowadzić do kiepskich wniosków o wynikach. Co więcej, robienie dwóch analiz i branie z tego średniej to nie jest standard w takich sprawach jak jakość, bo nie wyklucza błędów systematycznych. Trzeba też pamiętać, że analiza rozjemcza to nie to samo co kontrola jakości; jedno ma na celu rozwiązywanie sporów, a drugie to rutynowe sprawdzanie produkcji. Dobrze jest zrozumieć znaczenie właściwego podejścia do podziału próbki, bo to kluczowe dla obiektywności i przejrzystości w analizach.

Pytanie 12

Sączenie osadów kłaczkowatych odbywa się przy użyciu sączków

A. średnio gęste
B. rzadkie
C. bardzo gęste
D. twarde
Odpowiedź 'rzadkie' jest poprawna, ponieważ do sączenia osadów kłaczkowatych, takich jak osady z procesu oczyszczania ścieków czy osady w laboratoriach chemicznych, najczęściej stosuje się sączki rzadkie, które charakteryzują się większymi porami. Rzadkie sączki pozwalają na skuteczne oddzielanie cząstek stałych od cieczy, minimalizując przy tym ryzyko zatykania się materiału filtracyjnego. Stosowane są w różnych aplikacjach, w tym w analizach chemicznych oraz w przemyśle, gdzie kluczowe jest szybkie i efektywne usuwanie osadów. Zgodnie z normami ISO 4788, które dotyczą sprzętu laboratoryjnego, dobór odpowiedniego sączka jest istotny dla uzyskania precyzyjnych wyników analitycznych. Przykładem zastosowania mogą być laboratoria zajmujące się badaniem wody, gdzie osady kłaczkowate mogą wpływać na jakość wyników analizy i dlatego ważne jest, aby używać sączków o odpowiedniej gęstości, aby uniknąć błędów w pomiarach.

Pytanie 13

Aby uzyskać drobnokrystaliczny osad BaSO4, należy wykonać poniższe kroki:
Do zlewki wlać 20 cm3 roztworu BaCl2, następnie dodać 100 cm3 wody destylowanej oraz kilka kropli roztworu HCl. Zawartość zlewki podgrzać na łaźni wodnej, a potem, ciągle mieszając, dodać 35 cm3 roztworu H2SO4.
Mieszaninę ogrzewać na łaźni wodnej przez 1 godzinę. Osad odsączyć i przepłukać kilkakrotnie gorącą wodą zakwaszoną kilkoma kroplami roztworu H2SO4.
Według przedstawionej procedury, do uzyskania osadu BaSO4 potrzebne są:

A. zlewka, pipeta wielomiarowa o pojemności 25 cm3, cylindry miarowe o pojemności 50 i 100 cm3, łaźnia wodna, bagietka, zestaw do sączenia, sączek "miękki"
B. zlewka, cylindry miarowe o pojemności 50 i 100 cm3, pipeta jednomiarowa o pojemności 20 cm3, łaźnia wodna, bagietka, zestaw do sączenia, sączek "twardy"
C. zlewka, cylindry miarowe o pojemności 25, 50 i 100 cm3, palnik, trójnóg, zestaw do sączenia, sączek "miękki"
D. zlewka, cylindry miarowe o pojemności 25, 50 i 100 cm3, łaźnia wodna, zestaw do sączenia, sączek "twardy"
Wybrana odpowiedź jest prawidłowa, ponieważ zawiera wszystkie niezbędne elementy do przeprowadzenia opisanego eksperymentu. Zlewka jest podstawowym naczyniem, w którym odbywa się reakcja chemiczna, a cylindry miarowe o pojemności 50 i 100 cm3 są kluczowe do dokładnego odmierzenia reagentów, takich jak BaCl2 i H2SO4. Użycie pipety jednomiarowej o pojemności 20 cm3 zapewnia precyzyjne dawkowanie roztworu BaCl2. Łaźnia wodna jest niezbędna do kontrolowania temperatury podczas ogrzewania mieszaniny, co zapobiega degradacji reagentów i zapewnia optymalne warunki dla reakcji tworzenia osadu BaSO4. Bagietka umożliwia dokładne mieszanie roztworu, co jest kluczowe dla uzyskania jednorodności reakcji. Zestaw do sączenia i sączek 'twardy' są niezbędne do separacji osadu BaSO4 od cieczy, co jest istotnym krokiem w procesie izolacji tego związku. Wszystkie te elementy są zgodne z dobrymi praktykami laboratoryjnymi, które nakładają nacisk na dokładność, precyzję oraz bezpieczeństwo w pracy z substancjami chemicznymi.

Pytanie 14

W jakim celu używa się kamyczków wrzenne w trakcie długotrwałego podgrzewania cieczy?

A. Zwiększenia temperatury wrzenia cieczy
B. Uniknięcia miejscowego przegrzewania się cieczy
C. Obniżenia temperatury wrzenia cieczy
D. Zwiększenia powierzchni kontaktu faz w celu przyspieszenia reakcji
Kamyczki wrzenne, znane też jako rdzenie wrzenia, są naprawdę ważne, gdy chodzi o zapobieganie przegrzewaniu się cieczy. Działają na zasadzie zwiększania powierzchni, na której zachodzi wrzenie, co w efekcie pozwala na równomierne rozprowadzenie temperatury. Gdyby nie one, mogłyby powstawać pęcherzyki pary, które czasem wybuchają i mogą prowadzić do niebezpiecznych sytuacji, takich jak gwałtowny wzrost ciśnienia. Dlatego użycie kamyczków wrzennych jest w laboratoriach czy w chemii naprawdę istotne, ponieważ pozwala na lepszą kontrolę temperatury i uzyskanie wiarygodnych wyników. Na przykład w destylacji, stabilne wrzenie jest kluczem do efektywnego oddzielania różnych składników. Można powiedzieć, że to standardy jak ISO 17025 to potwierdzają – mówią, jak ważne jest to dla jakości i bezpieczeństwa badań.

Pytanie 15

Nie należy podgrzewać cieczy w szczelnie zamkniętych pojemnikach, ponieważ

A. wzrost ciśnienia może spowodować wybuch
B. może to zwiększyć jej toksyczność
C. istnieje ryzyko zalania palnika
D. może wystąpić niebezpieczeństwo zgaszenia płomienia
Ogrzewanie cieczy w szczelnie zamkniętych naczyniach stwarza ryzyko wzrostu ciśnienia wewnątrz naczynia, co może prowadzić do niebezpiecznych sytuacji, w tym wybuchu. W momencie, gdy ciecz jest podgrzewana, jej temperatura wzrasta, co powoduje zwiększenie energii kinetycznej cząsteczek. W zamkniętym naczyniu, które nie ma możliwości swobodnego wydostania się pary, ciśnienie będzie rosło. Przykładem z życia codziennego mogą być sytuacje, gdy gotujemy wodę w zamkniętej butelce lub słoiku. W takich przypadkach para wodna nie ma drogi ujścia, a przy osiągnięciu krytycznego poziomu ciśnienia, naczynie może pęknąć lub eksplodować, co stanowi poważne zagrożenie dla bezpieczeństwa. Zgodnie z normami BHP oraz zaleceniami producentów sprzętu laboratoryjnego i przemysłowego, zawsze należy stosować naczynia przystosowane do ogrzewania cieczy oraz zapewniać odpowiedni nadmiar ciśnienia, aby zminimalizować ryzyko takich incydentów, na przykład poprzez użycie zaworów bezpieczeństwa.

Pytanie 16

Aby uniknąć trwałego połączenia szlifowanych części sprzętu laboratoryjnego, co należy zrobić?

A. przed połączeniem nałożyć na szlify glicerynę
B. przed połączeniem nałożyć na szlify wazelinę
C. przed połączeniem wypłukać szlify acetonem
D. dokładnie oczyścić i osuszyć sprzęt
Stosowanie gliceryny do smarowania szlifów przed ich połączeniem może prowadzić do niepożądanych skutków. Gliceryna, będąca substancją higroskopijną, może powodować, że na połączeniach gromadzi się wilgoć, co prowadzi do korozji i zniszczenia materiałów, z których wykonana jest aparatura. Przepłukiwanie szlifów acetonem przed ich połączeniem również nie jest zalecane, ponieważ aceton jest substancją, która może rozpuszczać niektóre materiały i uszkadzać powierzchnię szlifów. Choć czyszczenie elementów aparatury jest dobrą praktyką, sama czynność umycia i wysuszenia nie eliminuje ryzyka trwałego połączenia, które może wystąpić z powodu braku odpowiedniego smaru. W rezultacie, mylenie tych procedur z właściwym stosowaniem wazeliny jako smaru prowadzi do błędnych wniosków i potencjalnych problemów z integracją aparatury. W laboratoriach, gdzie precyzja jest kluczowa, ważne jest, aby stosować sprawdzone metody, które zapobiegają uszkodzeniom i zapewniają długotrwałe, bezpieczne połączenia.

Pytanie 17

Jakie zestawienie sprzętu laboratoryjnego wykorzystuje się do filtracji osadów?

A. Zlewka, lejek, statyw, bagietka
B. Zlewka, lejek, waga, bagietka
C. Zlewka, waga, tryskawka, bagietka
D. Zlewka, lejek, trójnóg, tygiel
Wybór zestawu sprzętu laboratoryjnego do sączenia osadów jest kluczowy dla efektywności procesu filtracji. W przypadku poprawnej odpowiedzi, czyli zestawu składającego się ze zlewki, lejka, statywu i bagietki, każdy z tych elementów odgrywa istotną rolę. Zlewka służy do przechowywania cieczy, która ma być filtrowana, natomiast lejek ułatwia skierowanie tej cieczy do naczynia filtracyjnego, co zwiększa wydajność procesu. Statyw zapewnia stabilność i bezpieczeństwo podczas pracy z lejkiem, co jest niezwykle ważne, aby uniknąć rozlania cieczy. Bagietka natomiast umożliwia precyzyjne dozowanie cieczy, co jest istotne w przypadku pracy z substancjami chemicznymi. Przykładem zastosowania tego zestawu może być filtracja roztworów w chemii analitycznej, gdzie osady muszą być oddzielone od cieczy w celu dalszej analizy. W kontekście standardów laboratoryjnych, korzystanie z tego zestawu jest zgodne z dobrymi praktykami, które podkreślają znaczenie precyzyjnych i bezpiecznych metod pracy.

Pytanie 18

Jakim przyrządem nie jest możliwe określenie gęstości cieczy?

A. areometr
B. manometr
C. waga hydrostatyczna
D. piknometr
Piknometr, areometr i waga hydrostatyczna to przyrządy, które mają na celu pomiar gęstości cieczy, każdy z nich w nieco inny sposób. Piknometr jest naczyniem o znanej objętości, które umożliwia dokładny pomiar masy cieczy, co pozwala na obliczenie gęstości przez zastosowanie prostego wzoru. Areometr, z kolei, działa na zasadzie pływania w cieczy, gdzie głębokość zanurzenia jest proporcjonalna do gęstości cieczy, co ułatwia pomiar w praktycznych sytuacjach, takich jak kontrola stężenia roztworów. Waga hydrostatyczna stosuje zasadę Archimedesa do pomiaru masy cieczy w powietrzu i w wodzie, dostarczając precyzyjnych informacji o gęstości. Wybór niewłaściwego przyrządu, jak manometr, do pomiaru gęstości może prowadzić do błędnych wniosków oraz problemów operacyjnych w laboratoriach i zakładach przemysłowych. Manometr, skonstruowany do pomiaru ciśnienia, nie dostarcza informacji o masie ani objętości cieczy, co jest kluczowe do wyznaczenia gęstości. Dlatego ważne jest, aby dobrze znać funkcje poszczególnych przyrządów i ich zastosowanie w określonych kontekstach pomiarowych, aby uniknąć nieporozumień i błędów w analizach chemicznych oraz fizycznych.

Pytanie 19

Który sposób przechowywania próbek żywności jest niezgodny z Rozporządzeniem Ministra Zdrowia?

Fragment Rozporządzenia Ministra Zdrowia w sprawie pobierania i przechowywania próbek żywności przez zakłady żywienia zbiorowego typu zamkniętego
(...)
Zakład przechowuje próbki, przez co najmniej 3 dni, licząc od chwili, kiedy cała partia została spożyta w miejscu wyłącznym właściwym do tego celu oraz w warunkach zapewniających utrzymanie temperatury +4°C lub niższej, w zależności od przechowywanego produktu.
Miejsce przechowywania próbek musi być tak zabezpieczone, aby dostęp do niego posiadał tylko kierujący zakładem lub osoba przez niego upoważniona.

A. Przechowywanie przez maksymalnie 3 dni od czasu pobrania próbek.
B. Przechowywanie w specjalnie do tego celu wyznaczonym miejscu, do którego dostęp posiada kierownik zakładu lub osoba przez niego upoważniona.
C. Przechowywanie w temperaturze maksymalnej +4°C.
D. Przechowywanie przez co najmniej 3 dni od czasu spożycia całej partii żywności.
Odpowiedź wskazująca na przechowywanie próbek przez maksymalnie 3 dni od czasu ich pobrania jest poprawna, ponieważ jest sprzeczna z przepisami zawartymi w Rozporządzeniu Ministra Zdrowia. Zgodnie z tymi regulacjami, zakład ma obowiązek przechowywać próbki przez co najmniej 3 dni, liczonych od momentu spożycia całej partii żywności. Ta zasada jest istotna, aby zapewnić odpowiednią kontrolę jakości i bezpieczeństwa żywności. W praktyce oznacza to, że próbki żywności muszą być dostępne do analizy przez określony czas, co jest kluczowe w przypadku wykrycia problemów zdrowotnych związanych z danym produktem. Zastosowanie tej regulacji wspiera przejrzystość procesu zarządzania jakością oraz umożliwia przeprowadzenie niezbędnych badań, co jest zgodne z dobrymi praktykami w branży spożywczej, takimi jak HACCP (Analiza Zagrożeń i Krytyczne Punkty Kontroli). Przechowywanie w odpowiednich warunkach i przez określony czas jest niezbędne dla zachowania integralności próbek i ich przydatności do analizy.

Pytanie 20

Urządzeniem pomiarowym nie jest

A. pehametr
B. konduktometr
C. eksykator
D. termometr
Eksykator jest urządzeniem, które nie służy do pomiarów, lecz do przechowywania substancji w warunkach obniżonego ciśnienia atmosferycznego lub w atmosferze kontrolowanej. Używany jest w laboratoriach chemicznych do zabezpieczania materiałów wrażliwych na wilgoć, powietrze lub inne czynniki atmosferyczne. Na przykład, eksykator może być stosowany do przechowywania substancji higroskopijnych, takich jak sól kuchenną, aby zapobiec ich nawilżeniu i degradacji. W praktyce, eksykatory często zawierają substancje osuszające, które pomagają utrzymać odpowiednie warunki w ich wnętrzu. W odróżnieniu od konduktometru, pH-metra i termometru, które są zaprojektowane do wykonywania precyzyjnych pomiarów fizykochemicznych, eksykator pełni jedynie funkcję przechowalniczą, co czyni go przyrządem niepomiarowym według standardów metrologicznych.

Pytanie 21

Jakie jest stężenie molowe roztworu, jeśli w 100 cm3 roztworu znajduje się 5,6 g KOH?
MK = 39 g/mol, MO = 16 g/mol, MH = 1 g/mol

A. 1 mol/dm3
B. 0,1 mol/dm3
C. 10 mol/dm3
D. 100 mol/dm3
Aby obliczyć stężenie molowe roztworu, należy najpierw obliczyć liczbę moli KOH zawartych w 5,6 g. Masa molowa KOH wynosi 56 g/mol (39 g/mol dla K + 16 g/mol dla O + 1 g/mol dla H). Możemy więc obliczyć liczbę moli jako: n = m / M = 5,6 g / 56 g/mol = 0,1 mol. Następnie przekształcamy objętość roztworu z centymetrów sześciennych na decymetry sześcienne: 100 cm³ = 0,1 dm³. Stężenie molowe (C) obliczamy korzystając ze wzoru C = n / V, co daje C = 0,1 mol / 0,1 dm³ = 1 mol/dm³. Tego typu obliczenia są niezwykle istotne w chemii analitycznej, gdzie precyzyjne stężenia roztworów są kluczowe dla uzyskania poprawnych wyników eksperymentalnych oraz w syntezie substancji chemicznych. Zrozumienie tych obliczeń pomaga w zachowaniu właściwych proporcji w reakcjach chemicznych, co jest podstawą wielu procesów przemysłowych oraz laboratoriów badawczych.

Pytanie 22

Przedstawiony schemat ideowy ilustruje proces syntezy z propanu C3H8 → C3H7Cl → C3H6 → C3H6(OH)2 → C3H5(OH)2Cl → C3H5(OH)3

A. glikolu etylowego
B. glikolu propylowego
C. glicerolu
D. glicyny
Wybór glicyny, glikolu propylowego lub glikolu etylowego wskazuje na pewne nieporozumienia w zakresie chemii organicznej oraz procesów syntezy chemicznej. Glicyna jest aminokwasem, a nie alkoholem, co oznacza, że jej struktura chemiczna i właściwości nie są zgodne z wymaganiami procesu syntezy glicerolu. Glicyna jest podstawowym składnikiem białek oraz pełni rolę w metabolizmie jako prekursor wielu ważnych związków, jednak nie bierze udziału w opisanym procesie chemicznym, który dotyczy syntezy alkoholu trójwodorotlenowego. Glikol propylowy i glikol etylowy są związkami chemicznymi, które również nie odpowiadają strukturze glicerolu. Mimo że są to alkohole, ich powiązania z procesem syntezy glicerolu są znikome, a ich zastosowania są różne – glikol propylowy jest powszechnie stosowany jako rozpuszczalnik oraz substancja nawilżająca, a glikol etylowy głównie w chłodnictwie i jako składnik płynów hamulcowych. Zrozumienie różnic pomiędzy tymi substancjami oraz ich właściwościami chemicznymi jest niezwykle istotne dla skutecznego podejścia do syntez chemicznych. Zastosowanie właściwych terminów i zrozumienie ich funkcji w procesie produkcji substancji chemicznych jest kluczowe w pracy chemika i inżyniera chemicznego.

Pytanie 23

Proces chemiczny, który polega na przejściu substancji w stanie stałym do roztworu, związany z reakcją tej substancji z rozpuszczalnikiem, to

A. rozpuszczanie
B. ekstrakcja
C. krystalizacja
D. roztwarzanie
Rozpuszczanie, krystalizacja i ekstrakcja to zjawiska, które mogą być mylone z roztwarzaniem, jednak każde z nich ma swoje unikalne cechy oraz przeznaczenie. Rozpuszczanie odnosi się ogólnie do procesu, w którym substancja stała przechodzi w stan roztworu, ale nie zawsze wiąże się z aktywną reakcją chemiczną z rozpuszczalnikiem. Krystalizacja to proces odwrotny do roztwarzania, w wyniku którego substancja przechodzi ze stanu rozpuszczonego do stałego, co jest kluczowe w otrzymywaniu czystych kryształów substancji chemicznych. Ekstrakcja natomiast odnosi się do procesu, w którym substancje są wyodrębniane z mieszanki, na przykład poprzez użycie rozpuszczalnika, ale nie oznacza to, że te substancje muszą ulegać reakcjom chemicznym. Typowym błędem myślowym jest mylenie tych pojęć, gdyż można sądzić, że wszelkie procesy związane z przemieszczaniem się substancji w roztworze są tożsame. Zrozumienie różnic pomiędzy tymi terminami jest kluczowe dla właściwego zarządzania procesami chemicznymi, szczególnie w kontekście przemysłu chemicznego, gdzie precyzyjne operacje są niezbędne do uzyskania pożądanych produktów o wysokiej jakości.

Pytanie 24

Aby przygotować zestaw do filtracji, należy zebrać

A. lejek szklany, statyw metalowy, kółko metalowe, zlewkę
B. biuretę, statyw metalowy, zlewkę
C. szkiełko zegarkowe, tryskawkę, kolbę stożkową
D. bagietkę, zlewkę, łapę metalową, statyw metalowy
Nieprawidłowe zestawy narzędzi do sączenia mogą prowadzić do wielu problemów w laboratorium, które mogą wpłynąć na jakość wyników eksperymentu. Odpowiedzi sugerujące użycie szkiełka zegarkowego, tryskawki oraz kolby stożkowej wskazują na fundamentalne nieporozumienie dotyczące zasad działania procesu sączenia. Szkiełko zegarkowe jest narzędziem stosowanym do przykrywania naczyń lub jako powierzchnia do ważenia, co nie ma zastosowania w kontekście sączenia. Tryskawka, chociaż przydatna do precyzyjnego dozowania cieczy, nie jest elementem niezbędnym do samego procesu sączenia, ponieważ nie służy do kierowania cieczy do innego naczynia. Kolba stożkowa jest natomiast przeznaczona do mieszania substancji, a nie do filtracji. Warto zauważyć, że biureta, będąca urządzeniem do dokładnego odmierzania cieczy, również nie znajduje zastosowania w procesie sączenia. Typowe błędy myślowe, prowadzące do takich wniosków, obejmują pomieszanie ról różnych instrumentów laboratoryjnych oraz brak zrozumienia całego procesu filtracji, który wymaga specyficznych narzędzi w celu osiągnięcia zamierzonego celu. Bez odpowiedniego zestawu narzędzi, eksperymenty mogą być nieefektywne lub wręcz niebezpieczne, co podkreśla znaczenie stosowania właściwych elementów w laboratoriach.

Pytanie 25

Temperatura topnienia mocznika wynosi 133 °C. W celu określenia czystości preparatów tej substancji, przeprowadzono badania temperatury ich topnienia, uzyskując wyniki przedstawione w tabeli. Wskaż preparat o najmniejszym stopniu czystości.

PreparatABCD
Zakres temperatury topnienia [°C]132-133130-133125-133128-133

A. C.
B. B.
C. A.
D. D.
Odpowiedź C jest prawidłowa, ponieważ temperatura topnienia czystego mocznika wynosi 133 °C. W przypadku analizy czystości substancji, kluczowym czynnikiem jest ocena temperatury topnienia - im niższa temperatura początkowa oraz szerszy zakres topnienia, tym większa obecność zanieczyszczeń w próbce. Preparat C osiąga temperaturę początkową topnienia na poziomie 125 °C, co wskazuje na obecność zanieczyszczeń obniżających jego punkt topnienia. Dodatkowo, zakres topnienia 125-133 °C również sugeruje, że substancja nie jest w pełni czysta, co jest zgodne z zasadami analizy chemicznej i standardami jakości. W praktyce, takie badania są istotne w przemyśle chemicznym, farmaceutycznym czy spożywczym, gdzie czystość substancji ma kluczowe znaczenie dla jakości końcowego produktu. Ważne jest, aby zapewnić odpowiednią kontrolę jakości, a metody takie jak pomiary temperatury topnienia są standardem w laboratoriach analitycznych, co umożliwia zapewnienie wysokich standardów jakości preparatów.

Pytanie 26

Aby podnieść temperaturę roztworu do 330 K, jakie wyposażenie jest potrzebne?

A. trójnogu, siatki ceramicznej, zlewki, termometru z zakresem temperatur 0--0°C
B. trójnogu, siatki ceramicznej, zlewki, termometru z zakresem temperatur 0-+100°C
C. statywu, siatki, zlewki, termometru z zakresem temperatur 0--50°C
D. statywu, siatki, zlewki, termometru z zakresem temperatur 0+100°C
Poprawna odpowiedź to wykorzystanie trójnogu, siatki ceramicznej, zlewki oraz termometru z zakresem temperatur 0-+100°C. Ta konfiguracja jest właściwa, ponieważ umożliwia bezpieczne i efektywne ogrzewanie roztworu do wymaganej temperatury 330 K (około 57°C). Trójnóg zapewnia stabilność podczas ogrzewania, co jest kluczowe w laboratoriach, gdzie bezpieczeństwo jest priorytetem. Siatka ceramiczna rozkłada ciepło równomiernie, co minimalizuje ryzyko lokalnych przegrzań, które mogą prowadzić do niepożądanych reakcji chemicznych. Użycie zlewki do podgrzewania roztworu jest standardową praktyką, ponieważ zlewki wykonane z odpowiednich materiałów (np. szkło borokrzemowe) są odporne na zmiany temperatury. Termometr z zakresem 0-+100°C jest odpowiedni do monitorowania temperatury, ponieważ pozwala na bezpieczne kontrolowanie wzrostu temperatury roztworu w bezpiecznym zakresie, nie przekraczającym maksymalnej temperatury mierzonej przez termometr. W laboratoriach chemicznych kluczowe jest przestrzeganie standardów bezpieczeństwa oraz stosowanie odpowiednich narzędzi, co zapewnia nie tylko dokładność eksperymentów, ale również ochronę przed zagrożeniami związanymi z wysoką temperaturą.

Pytanie 27

Wszystkie pojemniki z odpadami, zarówno stałymi, jak i ciekłymi, które są przekazywane do służby zajmującej się utylizacją, powinny być opatrzone informacjami

A. o jak najbardziej dokładnym składzie tych odpadów
B. o nazwie wytwórcy oraz dacie zakupu
C. o rodzaju analizy, do której były używane
D. o dacie i godzinie przekazania
Odpowiedź dotycząca możliwie szczegółowego składu odpadów jest prawidłowa, ponieważ zgodnie z obowiązującymi przepisami dotyczącymi gospodarowania odpadami, szczegółowe informacje o składzie odpadów są kluczowe dla ich prawidłowej utylizacji. Umożliwia to odpowiednim służbom ustalenie, jakie procesy recyklingu lub unieszkodliwiania są najbardziej odpowiednie. Na przykład, jeśli odpady zawierają substancje niebezpieczne, konieczne jest zastosowanie specjalnych procedur ich przetwarzania, aby zminimalizować ryzyko dla środowiska i zdrowia publicznego. Dodatkowo, zgodnie z normami ISO 14001, organizacje powinny prowadzić ewidencję oraz monitorować rodzaje i ilości odpadów, co sprzyja efektywnemu zarządzaniu nimi i zgodności z przepisami. W praktyce, dokumentacja zawierająca szczegółowy skład odpadów może również ułatwić audyty oraz kontrole środowiskowe, a także przyczynić się do optymalizacji procesów gospodarki odpadami w przedsiębiorstwie.

Pytanie 28

W nieopisanej butelce prawdopodobnie znajduje się roztwór zasadowy. Wskaż odczynnik, który pozwoli to zweryfikować?

A. Roztwór chlorku potasu o stężeniu 1 mol/dm3
B. Roztwór kwasu siarkowego(VI) o stężeniu 2%
C. Alkoholowy roztwór fenoloftaleiny o stężeniu 2%
D. Roztwór wodorotlenku potasu o stężeniu 0,5 mol/dm3
Alkoholowy roztwór fenoloftaleiny o stężeniu 2% jest skutecznym odczynnikiem do wykrywania odczynu zasadowego. Fenoloftaleina, będąca wskaźnikiem pH, zmienia swój kolor z bezbarwnego na różowy w obecności roztworów o odczynie zasadowym, co czyni ją idealnym narzędziem w laboratoriach chemicznych. Jej zastosowanie w praktyce obejmuje nie tylko kontrolę odczynu pH w różnorodnych procesach chemicznych, ale również w edukacji, gdzie uczniowie uczą się o reakcjach kwasowo-zasadowych. Warto zauważyć, że fenoloftaleina działa w zakresie pH od około 8,2 do 10,0, co oznacza, że będzie wyraźnie widoczna w roztworach zasadowych. W kontekście standardów laboratoryjnych, korzystanie z fenoloftaleiny dla analizy pH jest zgodne z dobrymi praktykami, ponieważ pozwala na szybkie i efektywne określenie odczynu, co jest kluczowe w wielu zastosowaniach, takich jak analiza wody, synteza chemiczna, czy też kontrola jakości produktów chemicznych.

Pytanie 29

Aby otrzymać czystą substancję, próbka z nitroaniliną została poddana procesowi krystalizacji. Jaką masę nitroaniliny użyto do krystalizacji, jeśli uzyskano 1,5 g czystego związku, a wydajność krystalizacji wyniosła 75%?

A. 0,5 g
B. 2 g
C. 50 g
D. 0,02 g
Aby obliczyć masę odważki nitroaniliny użytej do krystalizacji, należy zastosować wzór na wydajność krystalizacji, który jest wyrażony jako stosunek masy uzyskanego produktu do masy początkowej próbki, pomnożony przez 100%. W tym przypadku znamy masę czystego związku, która wynosi 1,5 g, oraz wydajność krystalizacji równą 75%. Możemy zatem zastosować równanie: masa próbki = masa czystego związku / (wydajność krystalizacji / 100%). Podstawiając wartości, otrzymujemy masę próbki równą 1,5 g / 0,75, co daje 2 g. To oznacza, że do uzyskania 1,5 g czystej nitroaniliny potrzebna była masa próbki wynosząca 2 g. Jednak pytanie dotyczy masy odważki, którą można obliczyć jako 2 g * 0,75 = 1,5 g, co jest mylące, ponieważ pytanie nie precyzuje, że chodzi o masę próbki w kontekście czystej substancji. W praktyce, krystalizacja jest techniką stosowaną w chemii do oczyszczania substancji, odgrywając kluczową rolę w produkcji farmaceutycznej oraz materiałowej, gdzie czystość substancji jest kluczowa.

Pytanie 30

Aby zregenerować rozpuszczalnik organiczny, należy wykonać proces

A. demineralizacji
B. filtrowania
C. destylacji
D. odparowywania
Sączenie, odparowanie i demineralizacja to metody, które mają swoje zastosowania, jednak nie są odpowiednie do regeneracji rozpuszczalników organicznych. Sączenie to fizyczny proces separacji ciał stałych od cieczy, wykorzystywany głównie w filtracji, a nie w przypadku substancji rozpuszczalnych. Użycie sączenia do regeneracji rozpuszczalników byłoby nieefektywne, ponieważ nie pozwala na odzyskiwanie cieczy w formie czystej. Odparowanie, z kolei, polega na usuwaniu cieczy poprzez podgrzewanie, co może prowadzić do utraty części rozpuszczalnika i jego nieodwracalnego zniszczenia, co jest sprzeczne z ideą regeneracji. Wreszcie, demineralizacja dotyczy usuwania soli i innych minerałów z wody i nie ma zastosowania w kontekście rozpuszczalników organicznych. Często popełnianym błędem jest mylenie różnych metod separacji i regeneracji, co prowadzi do wniosków, które nie są zgodne z charakterystyką danego procesu chemicznego. Kluczowe w regeneracji rozpuszczalników organicznych jest zrozumienie, iż efektywne odzyskiwanie zależy od właściwego doboru metod, a destylacja pozostaje najskuteczniejszą z nich.

Pytanie 31

Jak definiuje się próbkę wzorcową?

A. próbkę utworzoną z próbki laboratoryjnej, z której następnie pobiera się próbkę analityczną
B. fragment materiału pobrany z próbki laboratoryjnej, przeznaczony wyłącznie do jednego badania
C. próbkę uzyskaną w wyniku zbierania próbek jednostkowych do jednego zbiornika zgodnie z ustalonym schematem
D. próbkę o ściśle określonym składzie
Wybór odpowiedzi wskazujących na próbki przygotowane z próbki laboratoryjnej lub części materiału nie oddaje istoty definicji próbki wzorcowej. Próbka przygotowana z próbki laboratoryjnej, z której pobiera się próbkę analityczną, odnosi się do procesu pobierania i może wprowadzać niepewność w wyniki analizy, gdyż nie gwarantuje, że skład próbki analitycznej jest znany. Podobnie, definicja części materiału pobranego do jednego oznaczenia nie uwzględnia kluczowego aspektu, jakim jest dokładność i znany skład. Na przykład, jeśli pobieramy próbki do jednego oznaczenia, niekoniecznie mamy pewność co do ich właściwego składu, co mogłoby prowadzić do błędnych wniosków. Z kolei odpowiedź dotycząca próbki powstałej na skutek pobierania próbek jednostkowych do jednego pojemnika odnosi się bardziej do metodologii kolekcji niż do definicji próbki wzorcowej. Ta koncepcja może mylić, gdyż nie uwzględnia, że próbka wzorcowa musi mieć niezmienny skład, aby móc być uznana za wiarygodny standard. W procesach analitycznych kluczowe jest, aby próbka wzorcowa była precyzyjnie zdefiniowana, co jest istotnym wymaganiem w praktykach laboratoryjnych, takich jak akredytacja ISO, gdzie oczekuje się stosowania prób wzorcowych o znanym składzie w celu zapewnienia jakości wyników. Wybór niepoprawnych odpowiedzi może więc prowadzić do poważnych nieporozumień w zakresie analizy i interpretacji wyników laboratoryjnych.

Pytanie 32

Substancje pomocnicze wykorzystywane do realizacji podstawowych analiz jakościowych i ilościowych, które nie wymagają wysokiej czystości, są oznaczane na opakowaniach symbolem

A. cz.
B. techn.
C. cz.d.a.
D. cz.ch.
Odpowiedź "cz." jest właściwa, ponieważ oznacza substancje pomocnicze, które są stosowane w analizach jakościowych i ilościowych, gdzie nie jest wymagana wysoka czystość chemiczna. Termin ten jest często używany w laboratoriach analitycznych oraz w procesach produkcyjnych, gdzie substancje te mogą służyć jako rozpuszczalniki, czy też reagenty w reakcjach chemicznych, ale nie muszą spełniać rygorystycznych norm czystości. Przykładem może być użycie substancji pomocniczych w analizach spektroskopowych, gdzie ich obecność nie wpływa negatywnie na wyniki analizy. W praktyce, korzystanie z takich substancji pozwala na oszczędności kosztów oraz uproszczenie procedur laboratoryjnych, co jest szczególnie ważne w laboratoriach zajmujących się rutynowymi analizami. Warto również zauważyć, że w kontekście dobrych praktyk laboratoryjnych, stosowanie substancji oznaczonych jako "cz." jest zgodne z wytycznymi dotyczącymi jakości w laboratoriach, które sugerują, aby dobierać materiały w zależności od wymagań jakościowych danej analizy.

Pytanie 33

Przebieg: Po zważeniu dwóch suchych zlewek, odważ kolejno: do jednej 3,63 g Co(NO3)2·6H2O, a do drugiej 3,75 g Na2CO3·10H2O. Następnie do obu zlewek wlej 25 cm3 gorącej wody i mieszając za pomocą bagietki doprowadź do całkowitego rozpuszczenia soli. Do roztworu Co(NO3)2 dodaj gorący roztwór Na2CO3 podczas mieszania. Otrzymany roztwór schłodź w łaźni wodnej z 3 kostkami lodu do temperatury pokojowej. Schłodzony roztwór przefiltruj przy użyciu zestawu do sączenia pod próżnią. Osad na lejku przepłucz wodą destylowaną, aż osiągnie obojętny odczyn przesączu. Przesączony osad osusz z sączkiem międzyposiadającym złożone arkusze bibuły w temperaturze pokojowej. Po wyschnięciu osad zważ i oblicz wydajność. Określ, jaki czynnik wpływa na skład jakościowy uzyskanego węglanu kobaltu(II)?

A. Wpływ przemycia osadu
B. Kolejność ważenia reagentów
C. Tempo sączenia
D. Precyzja obliczeń wydajności
Efekt przemycia osadu ma istotny wpływ na skład jakościowy otrzymanego węglanu kobaltu(II), ponieważ skuteczne przemywanie osadu pozwala usunąć zanieczyszczenia, które mogą wpływać na właściwości fizyczne i chemiczne finalnego produktu. W praktyce laboratorium chemicznego, przemywanie osadu wodą destylowaną jest kluczowym krokiem, który pozwala na eliminację rozpuszczalnych w wodzie związków, takich jak pozostałości reagentów czy inne sole, które mogą skompromitować czystość końcowego produktu. Przykładem mogą być zanieczyszczenia anionowe, które mogą wchodzić w reakcje z produktem końcowym, co wpływa na jego właściwości reaktancyjne czy rozpuszczalność. Dobre praktyki laboratoryjne sugerują, że przemywanie powinno być kontynuowane do momentu uzyskania obojętnego odczynu przesączu, co zapewnia, że resztki reagenta zostały skutecznie usunięte. Zastosowanie tego standardu w procesie syntezy chemicznej jest niezbędne dla uzyskania materiałów o wysokiej czystości, co jest kluczowe w wielu zastosowaniach przemysłowych i badawczych.

Pytanie 34

W parownicy porcelanowej, w której znajduje się 2,5 g naftalenu, umieść krążek bibuły z niewielkimi otworami oraz odwrócony lejek szklany. Zatyczkę lejka zrób z korka z waty. Parownicę umieść w płaszczu grzejnym. Po delikatnym ogrzaniu parownicy, pary substancji przechodzą przez otwory w bibule i kondensują na wewnętrznych ściankach lejka... Powyższy opis dotyczy metody oczyszczania naftalenu przez

A. sublimację
B. resublimację
C. krystalizację
D. ługowanie
Zrozumienie różnicy pomiędzy procesami sublimacji, krystalizacji, ługowania i resublimacji jest kluczowe dla prawidłowej interpretacji opisanego zadania. Krystalizacja polega na przejściu substancji z roztworu do postaci stałej w wyniku obniżenia temperatury lub odparowania rozpuszczalnika. W przypadku naftalenu, metoda ta nie jest adekwatna, gdyż zachodziłoby to przez zamianę cieczy w kryształy, czego nie obserwujemy w opisanym procesie. Ługowanie natomiast odnosi się do rozpuszczania substancji w roztworze, najczęściej w kontekście usuwania zanieczyszczeń z ciał stałych, co także nie jest przyczyną oczyszczania naftalenu w tej procedurze. Resublimacja, choć może wydawać się związana z tym procesem, oznacza powtórne skraplanie gazu w ciele stałym, co również nie ma miejsca w tym kontekście. Typowym błędem jest mylenie procesów fizycznych, co prowadzi do nieprawidłowych wniosków. Zrozumienie mechanizmu każdego z tych procesów oraz ich zastosowań przyczyni się do efektywniejszego stosowania metod oczyszczania w praktyce laboratoryjnej.

Pytanie 35

W probówce połączono roztwory CuSO4 oraz NaOH. Powstał niebieski osad, który po podgrzaniu zmienił kolor na czarny. Czarnym osadem jest

A. wodorotlenek miedzi(I)
B. tlenek miedzi(II)
C. tlenek miedzi(I)
D. wodorotlenek miedzi(II)
Widzę, że wybrałeś jedną z opcji, która nie jest poprawna. Może to wynika z tego, że nie do końca zrozumiałeś, co się dzieje w tych reakcjach chemicznych. Wodorotlenek miedzi(II) (Cu(OH)2) jest rzeczywiście niebieskim osadem z reakcje CuSO4 z NaOH, ale kiedy go podgrzewasz, on się zmienia w tlenek miedzi(II) (CuO), który z kolei jest czarny. Wybór tlenku miedzi(I) (Cu2O) to błąd, bo on powstaje w zupełnie innej reakcji. Z kolei wodorotlenek miedzi(I) (CuOH) też nie jest odpowiedzią, bo nie jest stabilny w normalnych warunkach i nie powstaje w tych reakcjach, co może prowadzić do nieporozumień. Tlenek miedzi(II) jest zdecydowanie bardziej stabilny i powszechnie występuje w chemii. Dobrze byłoby zrozumieć te różnice, bo to pomaga w lepszym interpretowaniu wyników reakcji chemicznych i w ich wykorzystaniu w laboratorium.

Pytanie 36

Rozpuszczalniki organiczne powinny być składowane

A. w przestrzeni ogólnodostępnej
B. w drewnianych szafkach
C. w metalowych szafach
D. w miejscu o dużym nasłonecznieniu
Jak się okazuje, trzymanie rozpuszczalników organicznych w metalowych szafach to naprawdę ważna sprawa. Dzięki temu możemy zminimalizować ryzyko pożaru i wybuchu. Metal jest znacznie bardziej odporny na chemikalia niż drewno, co jest istotne, bo dzięki temu ogień się nie rozprzestrzeni. Wiele szaf ma też specjalne systemy wentylacyjne oraz uszczelnienia, co pomaga ograniczać niebezpieczne opary. Takie szafy są również klasyfikowane według norm NFPA, co daje pewność, że są bezpieczniejsze. No i warto pamiętać, żeby przy przechowywaniu rozpuszczalników zwracać uwagę na ich oznakowanie oraz lokalne przepisy BHP, bo to wszystko ma ogromne znaczenie. Przechowywanie ich w dobrze oznakowanych pojemnikach w wyznaczonej strefie to dobry pomysł, bo zmniejsza ryzyko wycieku czy przypadkowego kontaktu z innymi substancjami.

Pytanie 37

Proces przesiewania próbki prowadzi się za pomocą urządzenia przedstawionego na rysunku

Tabela. Sposoby utrwalania próbek wody i ścieków, miejsce analizy, dopuszczalny czas przechowywania próbek
Oznaczany parametrRodzaj naczynia do przechowywania próbkiSposób utrwalania próbkiMiejsce wykonania analizyDopuszczalny czas przechowywania próbki
Chlorkiszklane
lub polietylenowe
-laboratorium96 godzin
Chlor pozostałyszklane-w miejscu
pobrania próbki
-
ChZTszklanezakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium24 godziny
Kwasowośćszklane
lub polietylenowe
schłodzenie
do temperatury 2-5°C
laboratorium4 godziny
Manganszklane
lub polietylenowe
zakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium48 godzin

A. A.
B. D.
C. C.
D. B.
Proces przesiewania próbki za pomocą sita laboratoryjnego, które zostało przedstawione na rysunku, jest kluczowym etapem w analityce materiałów sypkich. Sita laboratoryjne umożliwiają rozdzielanie cząstek na podstawie ich rozmiaru, co jest istotne w wielu dziedzinach, w tym w chemii, biologii i inżynierii materiałowej. Standardowe sita są zgodne z normami, takimi jak ISO 3310, co zapewnia dokładność i powtarzalność wyników. Na przykład, w badaniach ziemi i minerałów, przesiewanie jest często pierwszym krokiem w analizach granulometrycznych, pozwalając na ocenę struktury i składu próbki. W przemyśle farmaceutycznym, proces ten jest niezbędny do zapewnienia jednorodności składników w lekach. Zastosowanie sita laboratoryjnego przyczynia się do uzyskania wiarygodnych danych badawczych, co jest fundamentem dla podejmowania właściwych decyzji technologicznych i jakościowych w procesach produkcyjnych.

Pytanie 38

Który zestaw zawiera niezbędne urządzenia laboratoryjne do przygotowania 10% (m/m) roztworu NaCl?

A. Waga laboratoryjna, kolba miarowa, naczynko wagowe, palnik
B. Waga laboratoryjna, zlewka, cylinder miarowy, naczynko wagowe
C. Waga laboratoryjna, cylinder miarowy, kolba miarowa, szkiełko zegarkowe
D. Waga laboratoryjna, zlewka, cylinder miarowy, palnik
Poprawna odpowiedź wskazuje na zestaw sprzętów laboratoryjnych, które są niezbędne do sporządzenia 10% (m/m) roztworu chlorku sodu. Waga laboratoryjna umożliwia dokładne odważenie odpowiedniej ilości chlorku sodu, co jest kluczowe dla uzyskania właściwego stężenia roztworu. Zlewka służy do mieszania składników i przygotowania roztworu, a cylinder miarowy pozwala na precyzyjne odmierzenie objętości wody. Naczynko wagowe jest używane do ważenia substancji stałych, co dodatkowo zwiększa dokładność pomiarów. Takie podejście jest zgodne z najlepszymi praktykami w laboratoriach chemicznych, gdzie precyzja i dokładność są kluczowe dla uzyskania wiarygodnych wyników. Sporządzając roztwory, należy również pamiętać o zasadach BHP, aby zapewnić bezpieczeństwo podczas pracy z substancjami chemicznymi.

Pytanie 39

Jakim rozpuszczalnikiem o niskiej temperaturze wrzenia wykorzystuje się do suszenia szkła laboratoryjnego?

A. roztwór węglanu wapnia
B. alkohol etylowy
C. woda amoniakalna
D. kwas siarkowy(VI)
Alkohol etylowy, znany również jako etanol, jest powszechnie stosowanym rozpuszczalnikiem w laboratoriach chemicznych ze względu na swoje właściwości lotne oraz zdolność do efektywnego rozpuszczania różnych substancji. W procesie suszenia szkła laboratoryjnego, alkohol etylowy jest wykorzystywany do usuwania wody oraz innych zanieczyszczeń, co jest kluczowe dla uzyskania wysokiej czystości sprzętu. Alkohol etylowy odparowuje w stosunkowo niskich temperaturach, co umożliwia szybkie i skuteczne suszenie bez ryzyka uszkodzenia szkła. Ponadto, etanol jest zgodny z zasadami dobrych praktyk laboratoryjnych, które podkreślają znaczenie stosowania substancji nie tylko skutecznych, ale także bezpiecznych dla użytkowników oraz środowiska. Warto również zwrócić uwagę, że alkohol etylowy jest substancją łatwopalną, dlatego podczas jego stosowania należy przestrzegać odpowiednich procedur bezpieczeństwa, takich jak praca w dobrze wentylowanych pomieszczeniach oraz unikanie otwartego ognia. Zastosowanie alkoholu etylowego w laboratoriach chemicznych jest również zgodne z normami EPA, które regulują użycie rozpuszczalników w kontekście ochrony środowiska.

Pytanie 40

Którą substancję można bezpośrednio wyrzucić do odpadów komunalnych?

A. Tlenek rtęci(II)
B. Glukozę
C. Azotan(V) srebra
D. Azbest
Glukoza to taki prosty cukier, który znajdziesz w wielu jedzeniu. Jest zupełnie naturalna i nasze ciała potrafią ją rozłożyć. Dlatego można ją bez obaw wrzucać do odpadów komunalnych, co oznacza, że trafia do oczyszczalni i tam można ją przerobić. Z tego, co wiem, glukoza nie szkodzi ani naturze, ani zdrowiu ludzi. Jeśli chodzi o odpady, to takie organiczne rzeczy jak glukoza są ok i można je spokojnie kompostować. W przemyśle używa się jej do produkcji żywności i jako źródło energii w fermentacji, co pokazuje, że można ją bezpiecznie utylizować. W dodatku normy takie jak ISO 14001 pomagają zarządzać środowiskiem, więc glukoza jest w tym kontekście super bezpieczna.