Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 16 maja 2025 23:28
  • Data zakończenia: 16 maja 2025 23:39

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Przy pracy z urządzeniami, które są zasilane, należy używać narzędzi izolowanych oznaczonych

A. symbolem kwadratu z określoną wartością napięcia
B. symbolem podwójnego trójkąta z określoną wartością napięcia
C. napisem "narzędzie bezpieczne"
D. zielonym kolorem z żółtą obręczą
Narzędzia izolowane oznaczone znakiem podwójnego trójkąta z podaniem wartości napięcia są kluczowe dla zapewnienia bezpieczeństwa podczas pracy przy urządzeniach pod napięciem. Taki oznaczenie informuje użytkownika, że narzędzie zostało zaprojektowane z myślą o użyciu w określonym zakresie napięcia, co minimalizuje ryzyko porażenia prądem. Na przykład, jeśli narzędzie jest oznaczone dla napięcia 1000V, użytkownik ma pewność, że może je stosować w warunkach, gdzie występują napięcia do 1000V, bez obawy o uszkodzenie narzędzia czy jego izolacji. Stosowanie narzędzi z odpowiednim oznaczeniem jest zgodne z normami bezpieczeństwa, takimi jak EN 60900, które określają standardy dla narzędzi używanych w instalacjach elektrycznych. Dobre praktyki wskazują, że przed rozpoczęciem pracy należy zawsze sprawdzić oznaczenie narzędzi oraz ich stan techniczny, aby zapewnić, że nie doszło do uszkodzenia izolacji, co mogłoby prowadzić do niebezpiecznych sytuacji. Dodatkowo, w środowiskach przemysłowych, gdzie ryzyko kontaktu z napięciem jest wysokie, korzystanie z odpowiednio oznakowanych narzędzi powinno być rutynową procedurą każdej osoby pracującej w branży elektrycznej.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jakie czynności są niezbędne do utrzymania sprawności urządzeń hydraulicznych?

A. Miesięczny demontaż oraz montaż pomp
B. Codzienna wymiana oleju
C. Regularna wymiana rozdzielacza
D. Regularna wymiana filtrów
Okresowa wymiana filtrów w urządzeniach hydraulicznych jest kluczowa dla zapewnienia ich sprawności oraz wydajności. Filtry hydrauliczne mają za zadanie zatrzymywać zanieczyszczenia, które mogą uszkodzić pompy, zawory oraz inne elementy układu hydraulicznego. Zanieczyszczenia te mogą pochodzić z różnych źródeł, takich jak procesy tarcia wewnętrznych komponentów, a także z zewnątrz, na przykład w wyniku nieprawidłowego napełniania systemu olejem. Regularna wymiana filtrów zgodnie z zaleceniami producentów oraz standardami branżowymi, takimi jak ISO 4406, pozwala na minimalizację ryzyka awarii oraz wydłużenie żywotności całego systemu hydraulicznego. Przykładem dobrych praktyk jest wprowadzenie harmonogramu konserwacji, który uwzględnia częstotliwość wymiany filtrów, co pozwala na monitorowanie stanu oleju oraz zanieczyszczeń w systemie. Taka praktyka jest szczególnie ważna w zastosowaniach przemysłowych, gdzie nieprzewidziane przestoje mogą generować znaczne straty finansowe.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Woltomierz, podłączony do prądniczki tachometrycznej o stałej 10 V/1000 obr/min, pokazuje napięcie 7,5 V. Jaką prędkość obrotową mierzymy?

A. 750 obr/min
B. 7 obr/min
C. 7500 obr/min
D. 75 obr/min
Odpowiedź 750 obr/min jest poprawna, ponieważ woltomierz wskazuje napięcie 7,5 V, a prądniczka tachometryczna ma stałą 10 V przypadającą na 1000 obr/min. Aby obliczyć prędkość obrotową, stosujemy proporcję: jeśli 10 V odpowiada 1000 obr/min, to 7,5 V odpowiada x obr/min. Wykonując obliczenia, otrzymujemy: x = (7,5 V * 1000 obr/min) / 10 V = 750 obr/min. Praktyczne zastosowanie takiej analizy można znaleźć w automatyce i inżynierii, gdzie prędkości obrotowe silników są kluczowe dla precyzyjnego sterowania procesami. W branży motoryzacyjnej, na przykład, prędkości obrotowe silników są monitorowane za pomocą tachometrów, które mogą być oparte na prądnicach tachometrycznych. Zrozumienie tych zasad jest istotne zarówno dla projektantów, jak i techników, aby zapewnić efektywność i bezpieczeństwo systemów napędowych.

Pytanie 9

Jaki przyrząd pomiarowy jest używany do wyznaczenia poziomu skrzynki montowanej jako osłona dla zamontowanego elektrozaworu?

A. Klepsydra
B. Kątomierz
C. Poziomnica
D. Mikrometr
Poziomnica jest narzędziem kontrolno-pomiarowym, które służy do określenia poziomu w różnych zastosowaniach budowlanych i montażowych. Jej działanie opiera się na małym pojemniku wypełnionym cieczą i zamontowanej w nim bąbelkowej poziomicy, która wskazuje, czy dany obiekt znajduje się w poziomie. Użycie poziomnicy jest kluczowe w przypadku montażu skrzynek na elektrozawory, ponieważ zapewnia, że elementy te będą stabilne i prawidłowo funkcjonujące, co ma bezpośredni wpływ na ich efektywność operacyjną. Przykładowo, w systemach hydraulicznych, niezrównoważone montaż skrzynki może prowadzić do awarii, a nawet uszkodzenia sprzętu. Dobre praktyki branżowe zazwyczaj zalecają korzystanie z poziomnicy przed finalnym zamocowaniem elementów, co pozwala na eliminację potencjalnych błędów i zapewnienie długotrwałej niezawodności systemu. Ponadto, poziomnice są często używane w budownictwie i instalacjach, gdzie precyzyjne ustawienie jest niezbędne, co czyni je narzędziem nieodzownym w każdej pracowni oraz na placu budowy.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Wzmacniacz charakteryzuje się pasmem przepustowym wynoszącym w = 12 750 Hz oraz częstotliwością górną fg= 13 500 Hz. Jaką minimalną wartość częstotliwości fd w zakresie przenoszenia sygnałów należy osiągnąć, aby były one wzmacniane?

A. Od 6 750 Hz
B. Od 750 Hz
C. Od 350 Hz
D. Od 6 375 Hz
Wybór wartości z zakresu 6 375 Hz, 6 750 Hz lub 350 Hz jako minimalnej częstotliwości dolnej może wynikać z nieporozumienia dotyczącego definicji szerokości pasma przepustowego oraz sposobu obliczania częstotliwości dolnej. Często w praktyce błędnie przyjmuje się, że częstotliwość dolna jest obliczana na podstawie jedynie jednostkowych wartości, co może prowadzić do rozbieżności w wynikach. Szerokość pasma dla wzmacniacza określa, jakie pasmo częstotliwości sygnałów będzie wzmacniane i jest obliczana jako różnica między częstotliwością górną a dolną. W tym przypadku, mając szerokość pasma 12 750 Hz i częstotliwość górną 13 500 Hz, poprawne obliczenie częstotliwości dolnej prowadzi do 750 Hz. Wybór wyższych wartości, jak 6 375 Hz czy 6 750 Hz, ignoruje fakt, że wzmacniacz nie będzie aktywowany w tym zakresie, co prowadzi do pominięcia istotnych sygnałów. Natomiast wybór 350 Hz także jest błędny, ponieważ nie uwzględnia, że częstotliwość dolna jest zawsze wyższa niż zero w kontekście wzmacniaczy, które operują na rzeczywistych sygnałach. Takie błędne podejście często prowadzi do nieprawidłowego doboru sprzętu audio lub telekomunikacyjnego, co w rezultacie może obniżyć jakość sygnału i wydajność systemu. Zrozumienie tych koncepcji jest kluczowe dla skutecznego projektowania systemów elektronicznych oraz ich odpowiednich zastosowań w praktyce.

Pytanie 15

Przy obróbce metalu z użyciem pilników, jakie środki ochrony osobistej są wymagane?

A. rękawicach skórzanych i fartuchu skórzanym
B. obuwiu z gumową podeszwą oraz fartuchu ochronnym
C. kasku ochronnym i rękawicach elektroizolacyjnych
D. rękawicach i okularach ochronnych
Obrabianie metalu wymaga stosowania odpowiednich środków ochrony osobistej, a rękawice i okulary ochronne są kluczowe dla zapewnienia bezpieczeństwa podczas tego procesu. Rękawice chronią dłonie przed ostrymi krawędziami oraz szkodliwymi substancjami, które mogą wystąpić w wyniku obróbki. Okulary ochronne są niezbędne, aby zabezpieczyć oczy przed odłamkami metalu oraz pyłem, który może być generowany podczas obróbki. W praktyce, np. podczas używania pilników, niewłaściwe zabezpieczenie może prowadzić do poważnych urazów, dlatego stosowanie rękawic i okularów jest zgodne z normami BHP oraz zasadami dobrych praktyk przemysłowych. Dodatkowo, warto zwrócić uwagę na jakość stosowanych środków ochrony; rękawice powinny być wykonane z materiałów odpornych na przekłucia i ścieranie, a okulary muszą spełniać normy EN 166, które określają ich właściwości ochronne. Przestrzeganie tych zasad nie tylko minimalizuje ryzyko urazów, ale także przyczynia się do poprawy komfortu pracy.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Analogowy czujnik ultradźwiękowy umożliwia bezdotykowy pomiar odległości przeszkody od samego czujnika. Zjawisko, które jest tu wykorzystywane, polega na tym, że fala o wysokiej częstotliwości, napotykając przeszkodę, ulega

A. rozproszeniu
B. pochłonięciu
C. wzmocnieniu
D. odbiciu
Ultradźwiękowy czujnik analogowy działa na fajnej zasadzie odbicia fal dźwiękowych, które są praktycznie niesłyszalne dla nas, ale doskonale sprawdzają się w pomiarze odległości. Kiedy czujnik wysyła impuls ultradźwiękowy w stronę jakiejś przeszkody, to ta fala odbija się od niej i wraca. Mierzymy czas, jaki upływa od momentu wysłania sygnału do powrotu i na tej podstawie obliczamy, jak daleko jest ta przeszkoda. Tego typu czujniki wykorzystujemy w różnych dziedzinach, na przykład w robotyce, automatyce czy w systemach parkowania. Dobrym przykładem może być monitorowanie poziomu cieczy w zbiornikach – czujnik świetnie określa poziom wody, mierząc czas, który falę zajmuje na pokonanie drogi tam i z powrotem. W motoryzacji też są popularne, bo pomagają kierowcom parkować, informując ich o odległości do przeszkód. Ogólnie, użycie ultradźwiękowych czujników jest zgodne z normami jakości i bezpieczeństwa, jak na przykład ISO 9001, co gwarantuje, że są one naprawdę niezawodne.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jakie jest medium robocze w systemie hydraulicznym?

A. energia elektryczna
B. woda pod ciśnieniem
C. powietrze sprężone
D. olej pod ciśnieniem
Olej pod ciśnieniem jest najczęściej stosowanym medium roboczym w układach hydraulicznych ze względu na swoje doskonałe właściwości smarne oraz zdolność do przenoszenia dużych obciążeń. W układach hydraulicznych olej działa jako nośnik energii, co pozwala na efektywne przekazywanie siły i momentu obrotowego. Dzięki dużej gęstości oraz niskiej kompresyjności, olej hydrauliczny zapewnia stabilność działania systemu hydraulicznego. Przykładem zastosowania oleju pod ciśnieniem może być hydraulika w maszynach budowlanych, takich jak koparki czy ładowarki, gdzie siły generowane przez siłowniki hydrauliczne są ogromne. W branży motoryzacyjnej olej hydrauliczny jest wykorzystywany w układach wspomagania kierownicy oraz w systemach hamulcowych. Praktyki dobrej konserwacji i regularnej wymiany oleju są kluczowe, aby zapewnić długowieczność i niezawodność systemów hydraulicznych, a także aby uniknąć awarii spowodowanych zanieczyszczeniami czy degradacją oleju.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Jaką funkcję pełnią diody Zenera w elektronice?

A. Prostują napięcie
B. Modulują częstotliwość
C. Ograniczają prąd
D. Stabilizują napięcie
Diody Zenera pełnią kluczową rolę w stabilizacji napięcia w układach elektronicznych. Działają w trybie odwrotnym, co oznacza, że kiedy napięcie na diodzie przekracza jej wartość Zenera, zaczyna ona przewodzić prąd w kierunku przeciwnym. Dzięki temu, dioda Zenera pozwala na utrzymanie stabilnego napięcia, nawet przy dużych zmianach w obciążeniu lub napięciu zasilającym. Jest to szczególnie istotne w aplikacjach, gdzie precyzyjne napięcie zasilania jest kluczowe, na przykład w układach z mikroprocesorami, które wymagają stabilnego zasilania dla poprawnego działania. W praktyce, diody Zenera często stosuje się w zasilaczach liniowych oraz jako komponenty w filtrach, gdzie stabilizacja napięcia jest niezbędna. W branżowych standardach, takich jak IEC 60747, diody Zenera są klasyfikowane jako elementy ochronne, co podkreśla ich znaczenie w zapewnieniu niezawodności układów elektronicznych. Dobra praktyka inżynieryjna zaleca zastosowanie diod Zenera o odpowiednich parametrach, aby zapewnić ich skuteczność w stabilizacji napięcia w określonym przedziale temperatury i obciążenia.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Siłowniki do bramy powinny być zamontowane w poziomej orientacji. Jakie narzędzie należy użyć do właściwego zamocowania siłowników?

A. kątomierz
B. czujnik zegarowy
C. przymiar liniowy
D. poziomnicę
Poziomnica jest narzędziem niezbędnym do precyzyjnego ustawienia siłowników w pozycji poziomej, co jest kluczowe dla prawidłowego działania bramy. Użycie poziomnicy pozwala na dokładne pomiary, które zapewniają, że siłowniki będą pracować w optymalnych warunkach, co z kolei wpływa na ich żywotność i efektywność. Na przykład, podczas montażu bramy przesuwnej, brak precyzyjnego ustawienia siłowników może prowadzić do ich uszkodzenia w wyniku nadmiernego obciążenia lub niewłaściwego działania mechanizmu. Dodatkowo, stosowanie poziomnicy jest zgodne z najlepszymi praktykami montażowymi, które zalecają regularne sprawdzanie poziomu oraz wyrównania elementów konstrukcji. Ważne jest również, aby pamiętać, że ustawienie siłowników w pozycji poziomej wpływa na równomierność działania bramy, co jest istotne z perspektywy bezpieczeństwa użytkowania. Dlatego poziomnica jest kluczowym narzędziem w procesie instalacji siłowników, a jej kompetentne użycie ma fundamentalne znaczenie dla sukcesu całego projektu.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Aby zmierzyć napięcie na cewce elektrozaworu o nominalnym Un = 24 V, zastosowano analogowy woltomierz z 75 podziałami na skali, ustawiony na zakres 30 V. Ile podziałów wskaże ten woltomierz, jeśli napięcie na cewce elektrozaworu jest poprawne?

A. 60
B. 24
C. 30
D. 75
Odpowiedź 60 działek jest prawidłowa, ponieważ w celu obliczenia, ile działek wskaże woltomierz przy napięciu 24 V, należy najpierw ustalić, na ile jednostek odpowiada zakres 30 V woltomierza o 75 działkach. Każda działka na skali woltomierza odpowiada napięciu równemu 30 V / 75 działek = 0,4 V na działkę. Następnie, aby obliczyć, ile działek odpowiada napięciu 24 V, dzielimy 24 V przez wartość jednej działki: 24 V / 0,4 V/działkę = 60 działek. Takie podejście jest zgodne z praktykami stosowanymi w pomiarach elektrotechnicznych, gdzie dokładność i znajomość charakterystyki używanego sprzętu są kluczowe. Woltomierz analogowy jest przydatnym narzędziem w diagnostyce układów elektronicznych, a jego prawidłowe odczytywanie skali pozwala na szybką ocenę stanu urządzeń oraz systemów. Przykładem zastosowania jest kontrola elementów w instalacjach automatyki przemysłowej, gdzie precyzyjne pomiary napięcia mogą zapobiegać uszkodzeniom sprzętu oraz zapewniać ich efektywność operacyjną.

Pytanie 32

Podczas funkcjonowania urządzenia mechatronicznego zaobserwowano wyższy poziom hałasu (głośne, rytmiczne dźwięki) spowodowany przez łożysko toczne. Jakie działanie będzie odpowiednie w celu naprawy urządzenia?

A. zredukowanie luzów łożyska
B. usunięcie nadmiaru smaru w łożysku
C. wymiana osłony łożyska
D. wymiana całego łożyska
Jak na to patrzę, wymiana całego łożyska to naprawdę najlepsze wyjście, gdy słychać jakieś dziwne odgłosy z urządzenia mechatronicznego. Zwykle hałas bierze się ze zużycia łożyska, co zwiększa luzy i obniża jakość materiałów. Wymieniając łożysko, nie tylko pozbywasz się hałasu, ale też przywracasz sprzęt do pełnej sprawności. Ważne, żeby dobrze dobrać łożysko, myślę, że trzeba zwrócić uwagę na jego typ, wymiary i materiał, z którego jest zrobione. No i wymiana musi być zgodna z tym, co mówi producent – wtedy urządzenie będzie dłużej działać bezproblemowo. Przykładowo, w obrabiarkach to kluczowe, bo jakość pracy łożysk ma duży wpływ na jakość obrabianych elementów. Regularne przeglądy łożysk i odpowiednie smarowanie też są ważne, bo wydłużają ich żywotność.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Który instrument pomoże w monitorowaniu jakości sprężonego powietrza pod kątem wilgotności oraz obecności kondensatu?

A. Miernik przepływu powietrza
B. Miernik punktu rosy
C. Termomanometr bimetaliczny
D. Detektor wycieków
Miernik punktu rosy to naprawdę ważne urządzenie, jeżeli chodzi o jakość sprężonego powietrza. Głównie pozwala zmierzyć, w jakiej temperaturze para wodna zaczyna się skraplać, co jest mega istotne w kontekście wilgotności. W różnych branżach, gdzie sprężone powietrze jest na porządku dziennym, kontrolowanie wilgotności to podstawa. Za dużo wody w powietrzu może uszkodzić sprzęt, prowadzić do korozji, a czasem nawet zmniejszyć efektywność działania. Na przykład w systemach pneumatycznych, gdzie wszystko musi działać precyzyjnie, nadmiar wilgoci może spowodować tzw. „hydrauliczne uderzenie”, co w efekcie może doprowadzić do awarii. A skoro mówimy o branży spożywczej czy farmaceutycznej, to według norm ISO 8573, które regulują jakość sprężonego powietrza, pomiar punktu rosy to kluczowa sprawa, bo wpływa na bezpieczeństwo i jakość produktów. Używając miernika punktu rosy, szczególnie w połączeniu z systemami osuszania powietrza, można naprawdę zadbać o odpowiednie standardy jakości, co jest niezbędne, żeby procesy przemysłowe działały jak należy.

Pytanie 36

Po wykonaniu otworów w płaskowniku, które są potrzebne do zrealizowania połączenia śrubowego, należy pozbyć się metalowych zadziorów. Jak się nazywa ta czynność?

A. Powiercanie
B. Wygładzanie
C. Szlifowanie
D. Gratowanie
Gratowanie to proces, który ma na celu usunięcie ostrych krawędzi oraz resztek metalu powstałych podczas wiercenia otworów. Jest to kluczowy etap obróbki, który zapewnia dalsze bezpieczeństwo oraz precyzję w wykonaniu połączeń śrubowych. Proces ten polega na mechanicznej obróbce krawędzi otworów, co pozwala na wygładzenie powierzchni oraz eliminację wszelkich zadziorów, które mogą negatywnie wpływać na jakość połączenia. Gratowanie jest nie tylko zalecane, ale w wielu przypadkach wymagane przez normy branżowe, takie jak ISO 2768, które określają tolerancje i wymagania dotyczące obróbki mechanicznej. Przykładem zastosowania gratowania jest przemysł motoryzacyjny, gdzie połączenia śrubowe muszą być nie tylko mocne, ale także estetyczne i bezpieczne dla użytkowników. Poprawne gratowanie zmniejsza ryzyko uszkodzeń śrub oraz podzespołów, co przekłada się na dłuższą żywotność całej konstrukcji. Warto zatem stosować odpowiednie narzędzia, takie jak gratowniki ręczne lub automatyczne, które zapewniają efektywność i powtarzalność procesu.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Charakterystykę I = f(U) diody półprzewodnikowej można uzyskać za pomocą oscyloskopu dwukanałowego w trybie

A. X/Y
B. X/T
C. AC
D. DC
Użycie trybu AC do analizy charakterystyki prądowo-napięciowej diody półprzewodnikowej jest niewłaściwe, ponieważ ten tryb oscyloskopu służy przede wszystkim do analizy sygnałów zmiennych. W trybie AC oscyloskop nie wyświetla sygnałów stałych, co ogranicza możliwość monitorowania prądów i napięć w nieliniowych elementach, takich jak diody, które wymagają analizy w pełnym zakresie napięć. Z kolei tryb DC pozwala na obserwację sygnałów stałych, ale nie umożliwia jednoczesnego przedstawienia prądu i napięcia na jednym wykresie, co jest kluczowe do zrozumienia charakterystyki diody. Opcja X/T również nie jest odpowiednia, gdyż ten tryb jest używany do analizy sygnałów czasowych, a nie do porównania dwóch zmiennych, jak w przypadku prądu i napięcia. Typowym błędem przy wyborze trybu oscyloskopu jest założenie, że wystarczy wybrać jakikolwiek tryb do analizy, nie biorąc pod uwagę specyfiki badanego elementu. Aby skutecznie analizować nieliniowe charakterystyki, konieczne jest zrozumienie, że odpowiedni tryb X/Y dostarcza najbardziej wartościowych informacji, które są niezbędne dla właściwej interpretacji wyników oraz projektowania układów elektronicznych.

Pytanie 39

Jaki rodzaj czujnika nadaje się do pomiaru poziomu bez kontaktu?

A. Czujnik pływakowy
B. Czujnik hydrostatyczny
C. Czujnik ultradźwiękowy
D. Czujnik pojemnościowy
Czujniki ultradźwiękowe są szeroko stosowane do bezkontaktowego pomiaru poziomu cieczy i innych substancji w zbiornikach. Działają na zasadzie emisji fal ultradźwiękowych, które odbijają się od powierzchni cieczy i wracają do czujnika. Przykładem zastosowania czujników ultradźwiękowych może być monitorowanie poziomu wody w zbiornikach wodnych, systemach nawadniających czy w procesach przemysłowych, gdzie kontakt z medium mógłby prowadzić do zanieczyszczenia lub uszkodzenia sprzętu. W odróżnieniu od czujników pływakowych, które wymagają fizycznego kontaktu z cieczą, czujniki ultradźwiękowe eliminują ryzyko zanieczyszczenia i są mniej podatne na awarie mechaniczne. Standardy takie jak ISO 9001 podkreślają znaczenie stosowania technologii zapewniających bezpieczeństwo i efektywność procesów, co czyni czujniki ultradźwiękowe idealnym rozwiązaniem w wielu aplikacjach.

Pytanie 40

Jaki czujnik powinno się wykorzystać do pomiaru wartości natężenia pola magnetycznego?

A. Ultradźwiękowy
B. Pojemnościowy
C. Tensometryczny
D. Hallotronowy
Czujnik hallotronowy jest specjalistycznym urządzeniem, które wykrywa obecność i natężenie pola magnetycznego. Zasada jego działania opiera się na efekcie Hall'a, który polega na wytwarzaniu napięcia poprzecznego na przewodniku, gdy przepływa przez niego prąd i jest jednocześnie poddany działaniu pola magnetycznego. Dzięki temu czujniki hallotronowe znajdują szerokie zastosowanie w różnych dziedzinach, takich jak motoryzacja (np. w systemach ABS), automatyka przemysłowa oraz urządzenia elektroniczne. Charakteryzują się wysoką czułością i precyzją, co czyni je najlepszym wyborem do pomiarów natężenia pola magnetycznego. Ich instalacja i użytkowanie są zgodne z powszechnie uznawanymi standardami branżowymi, co dodatkowo podnosi ich wartość w zastosowaniach przemysłowych. Warto również zwrócić uwagę na rozwój technologii, gdzie czujniki hallotronowe są integralną częścią nowoczesnych systemów pomiarowych i automatyzacyjnych.