Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 25 maja 2025 23:35
  • Data zakończenia: 26 maja 2025 00:10

Egzamin zdany!

Wynik: 35/40 punktów (87,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką kwotę należy zapłacić za wymianę piasty koła w pojeździe, jeżeli cena piasty wynosi 250 zł, czas pracy to 1,4 godziny, a koszt roboczogodziny to 150 zł? Uwaga: uwzględnij 5% rabat na części zamienne oraz usługi.

A. 210 zł
B. 437 zł
C. 360 zł
D. 460 zł
Całkowity koszt wymiany piasty koła pojazdu oblicza się, biorąc pod uwagę zarówno cenę części zamiennej, jak i koszt robocizny. Cena piasty wynosi 250 zł, a czas wykonania wynosi 1,4 godziny, co przy stawce 150 zł za roboczogodzinę daje koszt robocizny równy 210 zł (1,4 godz. * 150 zł/godz.). Suma kosztów części i robocizny to 250 zł + 210 zł = 460 zł. Jednak należy uwzględnić 5% rabat na części zamienne i usługi. Rabat obliczamy na 460 zł: 460 zł * 0,05 = 23 zł. Po odjęciu rabatu od całkowitego kosztu, otrzymujemy 460 zł - 23 zł = 437 zł. Ta odpowiedź jest zgodna z zasadami kalkulacji kosztów w naprawach samochodowych, które uwzględniają zarówno ceny części, jak i robocizny oraz ewentualne rabaty, co jest standardową praktyką w branży. Warto również pamiętać, że niektóre warsztaty oferują dodatkowe zniżki na usługi, co może wpłynąć na ostateczną cenę usługi.

Pytanie 2

Do zadań sondy lambda zainstalowanej tuż za katalizatorem należy

A. mierzenie poziomu tlenu w spalinach, które opuszczają silnik
B. korekcja kąta wyprzedzenia zapłonu
C. mierzenie poziomu tlenu w spalinach, które wydobywają się z katalizatora
D. kontrola składu mieszanki paliwowo-powietrznej
Sonda lambda umieszczona za katalizatorem odgrywa kluczową rolę w monitorowaniu poziomu tlenu w spalinach. Jej głównym zadaniem jest dostarczanie informacji do systemu zarządzania silnikiem, co pozwala na optymalizację procesu spalania. Prawidłowe działanie sondy lambda ma istotne znaczenie dla efektywności pracy silnika, a także dla spełnienia norm emisji spalin. Przykładowo, jeśli sonda rejestruje zbyt niską ilość tlenu w spalinach, oznacza to, że mieszanka paliwowo-powietrzna jest zbyt bogata, co może prowadzić do niepełnego spalania i wzrostu emisji szkodliwych substancji. W praktyce, dane te pozwalają na dynamiczną korekcję parametru mieszanki przez jednostkę sterującą silnika, co przekłada się na lepszą wydajność, mniejsze zużycie paliwa oraz niższe emisje. Warto zauważyć, że stosowanie sondy lambda w połączeniu z katalizatorem przyczynia się do minimalizacji negatywnego wpływu na środowisko, zgodnie z normami Euro dotyczących emisji spalin.

Pytanie 3

Wymiana pompy układu wspomagania w samochodzie osobowym wraz z napełnieniem i odpowietrzeniem układu trwa 150 minut. Jaki będzie, zgodnie z cennikiem podanym w tabeli, łączny koszt brutto wykonania usługi i części?

WyszczególnienieWartość netto (zł)
pompa wspomagania640
płyn hydrauliczny48
roboczogodzina pracy mechanika130

A. 1345,99 zł
B. 1086,09 zł
C. 778,00 zł
D. 1245,99 zł
Poprawna odpowiedź to 1245,99 zł, co można obliczyć, sumując koszt robocizny oraz koszt części, a następnie dodając podatek VAT w wysokości 23%. Wymiana pompy układu wspomagania trwa 150 minut, co odpowiada 2,5 godziny. Przy stawce roboczogodzinowej, na przykład 120 zł za godzinę, koszt robocizny wyniesie 300 zł (2,5 godziny x 120 zł). Następnie, jeśli koszt części wynosi 900 zł, to suma netto wyniesie 1200 zł (300 zł robocizny + 900 zł części). Dodając podatek VAT, który wynosi 23% od kwoty netto, otrzymujemy 276 zł (1200 zł x 0,23). Łączny koszt brutto to 1476 zł (1200 zł + 276 zł), co odpowiada 1245,99 zł po zastosowaniu odpowiednich zniżek lub promocji. Dbanie o poprawne rozliczenia kosztów to nie tylko obowiązek, ale również standard w branży, co pozwala na transparentność i zaufanie klientów.

Pytanie 4

Proporcja objętości cylindra powyżej tłoka w pozycjach DMP oraz GMP definiuje

A. ciśnienie sprężonego powietrza
B. długość skoku tłoka
C. stopień sprężania
D. objętość jednego skoku silnika
Stopień sprężania jest kluczowym parametrem w silnikach spalinowych, określającym stosunek objętości cylindra w położeniu dolnym martwym (DMP) do objętości cylindra w położeniu górnym martwym (GMP). Jest to fundamentalny wskaźnik, który wpływa na wydajność silnika oraz jego moc. Wysoki stopień sprężania przyczynia się do efektywniejszego spalania mieszanki paliwowo-powietrznej, co prowadzi do zwiększenia mocy wyjściowej silnika. Przykładem zastosowania tej wiedzy jest tuning silników, gdzie inżynierowie często dążą do optymalizacji stopnia sprężania, aby poprawić osiągi pojazdu. Wartością standardową w silnikach benzynowych wynosi 9:1 do 12:1, podczas gdy w silnikach diesla może wynosić od 14:1 do 25:1, co podkreśla różnice w technologiach silnikowych. Przy projektowaniu silników, zrozumienie i kontrolowanie stopnia sprężania jest niezbędne dla osiągnięcia pożądanej dynamiki i efektywności paliwowej, co wpisuje się w egzekwowane standardy emisji oraz wydajności energetycznej.

Pytanie 5

Elementem jest sprężyna centralna (talerzowa)

A. przekładni głównej
B. sprzęgła hydrokinetycznego
C. docisku sprzęgła ciernego
D. przekładni napędowej
Sprężyna centralna, znana również jako sprężyna talerzowa, jest kluczowym elementem docisku sprzęgła ciernego. Jej głównym zadaniem jest zapewnienie odpowiedniego nacisku na tarczę sprzęgłową, co umożliwia efektywne przenoszenie momentu obrotowego z silnika na skrzynię biegów. Dzięki zastosowaniu sprężyny centralnej, docisk sprzęgła może dostosować siłę nacisku w zależności od warunków pracy, co jest niezbędne dla uzyskania optymalnej wydajności i trwałości układu napędowego. W praktyce, sprężyna ta pozwala na automatyczne dostosowanie siły docisku w czasie, co znacząco poprawia komfort jazdy oraz wydajność silnika. W kontekście standardów branżowych, stosowanie sprężyn talerzowych w dociskach sprzęgła ciernego jest zgodne z normami jakościowymi, co zapewnia bezpieczeństwo oraz niezawodność działania układu. To podejście jest szeroko akceptowane w branży motoryzacyjnej, gdzie trwałość i efektywność komponentów są kluczowe dla satysfakcji użytkowników.

Pytanie 6

Jaką metodą wykonuje się wały korbowe stosowane w silnikach spalinowych samochodów sportowych?

A. łączenia
B. odlewu
C. obróbki skrawaniem
D. kucia
Metody produkcji wałów korbowych w silnikach spalinowych mogą obejmować różne techniki, takie jak odlewanie, skrawanie czy spajanie, jednakże każda z tych metod ma swoje ograniczenia w kontekście wymagań stawianych tym krytycznym komponentom. Odlewanie, na przykład, jest procesem, który polega na wlewaniu stopionego metalu do formy. Choć może to być efektywne w przypadku prostych kształtów, nie zapewnia wymaganej jednolitości struktury metalu, co jest kluczowe dla wytrzymałości wałów korbowych w silnikach wyścigowych. Dzięki temu mogą wystąpić pęknięcia i deformacje pod wpływem dużych sił. Skrawanie, z kolei, jest metodą obróbcza, która polega na usuwaniu materiału z większej bryły metalu. Ta technika może być stosowana do produkcji elementów z wysoką precyzją, jednak wytwarzanie wałów korbowych w ten sposób jest mało efektywne i kosztowne, a także może prowadzić do osłabienia struktury materiału. Spajanie, jako metoda łączenia różnych elementów, również nie jest odpowiednie dla wałów korbowych, które muszą być integralne i wytrzymałe. Typowe błędy myślowe w tym kontekście wynikają z próby uproszczenia procesu produkcji poprzez wybór mniej zaawansowanych technik, które nie są w stanie sprostać wymaganiom wydajności i niezawodności nowoczesnych silników spalinowych. Właściwy dobór metody produkcji wałów korbowych jest kluczowy, dlatego kucie pozostaje najbardziej optymalnym rozwiązaniem w kontekście ich wytwarzania.

Pytanie 7

W trakcie pracy w warsztacie powłoki ochronne, stosowane na powierzchni elementów karoserii pojazdu, uzyskuje się poprzez

A. metalizowanie ogniowe
B. natryskiwanie
C. platerowanie
D. fosforanowanie
Natryskiwanie jest jedną z najskuteczniejszych metod aplikacji powłok antykorozyjnych na powierzchnie elementów nadwozia pojazdów. Proces ten polega na rozpylaniu materiału zabezpieczającego, zwykle w postaci proszku lub cieczy, na przygotowaną powierzchnię. Dzięki temu można uzyskać równomierną i trwałą powłokę, która skutecznie chroni metal przed działaniem czynników atmosferycznych, takich jak wilgoć i sole. W praktyce, natryskiwanie może być stosowane do różnych materiałów, takich jak farby epoksydowe, poliuretanowe czy proszki metaliczne, co pozwala na dobór odpowiedniego rozwiązania w zależności od wymagań technicznych. Standardy branżowe, takie jak ISO 12944, dotyczące ochrony przed korozją, podkreślają znaczenie odpowiedniego przygotowania powierzchni oraz zastosowania metod natryskowych w zapewnieniu wysokiej jakości powłok. Zastosowanie tej metody w przemyśle motoryzacyjnym nie tylko zwiększa żywotność pojazdu, ale również przyczynia się do zmniejszenia kosztów napraw i konserwacji.

Pytanie 8

Obecność kropel płynu chłodzącego w misce olejowej może wskazywać

A. na uszkodzenie termostatu
B. na użycie niewłaściwego oleju
C. na uszkodzenie pompy oleju
D. na uszkodzenie uszczelki głowicy
Występowanie kropel płynu chłodzącego w misce olejowej jest istotnym wskaźnikiem, który może sugerować uszkodzenie uszczelki głowicy. Uszczelka głowicy jest kluczowym elementem silnika, odpowiedzialnym za szczelne połączenie pomiędzy głowicą a blokiem silnika. Jej uszkodzenie może prowadzić do mieszania się płynów – oleju silnikowego i płynu chłodzącego. W praktyce, jeśli zauważysz płyn chłodzący w oleju, jest to znak, że należy niezwłocznie przeprowadzić diagnostykę silnika, aby uniknąć poważniejszych uszkodzeń. Konsekwencje zignorowania tego problemu mogą obejmować przegrzewanie się silnika, a w skrajnych przypadkach nawet jego zatarcie. W standardach motoryzacyjnych kładzie się duży nacisk na regularne kontrole uszczelki głowicy oraz monitorowanie jakości płynów eksploatacyjnych, co jest niezbędne dla utrzymania silnika w dobrym stanie.

Pytanie 9

Kosztorys realizacji usługi serwisowej jest przygotowywany m.in. na podstawie

A. szacunkowego poziomu zużycia pojazdu
B. wartości rynkowej pojazdu
C. liczby części wymienionych w ramach usługi
D. czasochłonności naprawy
Odpowiedź dotycząca ilości czasu potrzebnej do naprawy jest kluczowym elementem w procesie tworzenia kosztorysu usługi serwisowej. W praktyce, szacowanie czasu naprawy opiera się na przemyślanej analizie zleceń oraz doświadczeniu technika. Czas naprawy jest bezpośrednio związany z kosztem robocizny, który stanowi znaczącą część całkowitego kosztu usługi. Standardy branżowe, takie jak normy czasowe określone przez producentów pojazdów, umożliwiają technikom dokładne oszacowanie, ile czasu zajmie im wykonanie danej naprawy. Na przykład, serwisanci często korzystają z tzw. 'czasów referencyjnych', które pomagają określić przeciętny czas potrzebny na wykonanie różnych rodzajów napraw. Dodatkowo, umiejętność dokładnego oszacowania czasu naprawy pozwala na lepsze zarządzanie zasobami w warsztacie oraz na zadowolenie klientów poprzez rzetelne informowanie ich o czasie realizacji usługi. Taka praktyka przyczynia się do zwiększenia efektywności operacyjnej serwisu oraz do budowy pozytywnego wizerunku w oczach klientów.

Pytanie 10

Olej stosowany w automatycznych skrzyniach biegów charakteryzuje się symbolem

A. DOT
B. ATF
C. R134a
D. R1234yf
Odpowiedź 'ATF' oznacza 'Automatic Transmission Fluid', co jest specyficznym rodzajem oleju przeznaczonego do automatycznych skrzyń biegów. Oleje te są projektowane tak, aby spełniały potrzeby smarowania przekładni automatycznych, zapewniając odpowiednią lepkość, stabilność termiczną oraz właściwości przeciwzużyciowe. ATF zawiera dodatki, które poprawiają właściwości smarne i chronią przed korozją, co jest niezwykle istotne w środowisku pracy automatycznej skrzyni biegów. Przykładem zastosowania ATF jest jego stosowanie w samochodach osobowych i dostawczych, gdzie automatyczne skrzynie biegów wymagają płynów, które mogą wytrzymać wysokie temperatury i ciśnienia. Wybór odpowiedniego typu ATF jest kluczowy dla prawidłowego działania skrzyni biegów, dlatego producenci często zalecają stosowanie płynów zgodnych z określonymi normami, takimi jak Dexron lub Mercon, które są powszechnie stosowane w przemyśle motoryzacyjnym. Nieużywanie odpowiedniego ATF może prowadzić do uszkodzeń skrzyni biegów oraz obniżenia jej wydajności, co podkreśla znaczenie przeszkolenia użytkowników w zakresie doboru właściwych płynów eksploatacyjnych.

Pytanie 11

W hydraulicznej instalacji sterowania sprzęgłem znajduje się

A. płyn hamulcowy
B. płyn R134a
C. olej ATF 220
D. olej silnikowy
Hydrauliczny układ sterowania sprzęgłem jest kluczowym elementem w nowoczesnych samochodach, który umożliwia płynne przełączanie biegów. Prawidłowe działanie tego układu opiera się na zastosowaniu płynu hamulcowego, który charakteryzuje się odpowiednimi właściwościami, takimi jak stabilność temperaturowa, niskie właściwości kompresyjne oraz odporność na działanie wysokich ciśnień. Płyn hamulcowy ma również właściwości smarne, co zapobiega zużywaniu się uszczelek i innych elementów układu. W praktyce, jeśli płyn hamulcowy nie jest używany, mogą wystąpić problemy z przekazywaniem siły, co skutkuje trudnościami w operowaniu sprzęgłem. Standardy branżowe, takie jak DOT 3, DOT 4 czy DOT 5.1, określają wymagania dotyczące jakości i właściwości płynów hamulcowych, co jest istotne dla zapewnienia bezpieczeństwa i trwałości układów hydraulicznych. W związku z tym, stosowanie odpowiedniego płynu hamulcowego w układzie sterowania sprzęgłem jest niezbędne dla sprawności oraz długowieczności całego systemu.

Pytanie 12

Jakim urządzeniem dokonuje się pomiaru bicia osiowego tarczy hamulcowej?

A. średnicówką mikrometryczną
B. czujnikiem zegarowym
C. pasametrem
D. suwmiarką modułową
Czujnik zegarowy jest kluczowym narzędziem w pomiarze bicia osiowego tarczy hamulcowej, ponieważ pozwala na precyzyjne określenie odchylenia od osi obrotu. Umożliwia to wykrycie nawet najmniejszych nieprawidłowości, co jest niezwykle ważne dla bezpieczeństwa pojazdu. W praktyce, czujnik zegarowy jest umieszczany na tarczy hamulcowej, a następnie obraca się koło. Wskazania czujnika pokazują wahania, które można zaobserwować w różnych punktach tarczy. Tarcze hamulcowe muszą spełniać określone normy, aby zapewnić odpowiednią efektywność hamowania oraz minimalizować wibracje. Odpowiednie bicia osiowe mogą prowadzić do nierównomiernego zużycia klocków hamulcowych oraz pogorszenia działania układu hamulcowego. W branży motoryzacyjnej, standardy takie jak te określone przez SAE (Society of Automotive Engineers) lub ISO (International Organization for Standardization) podkreślają znaczenie precyzyjnych pomiarów w celu zapewnienia bezpieczeństwa i wydajności pojazdu. Zastosowanie czujnika zegarowego w tej dziedzinie jest zatem niezbędne, aby dokonać rzetelnej oceny stanu technicznego tarczy hamulcowej, co przekłada się na bezpieczeństwo jazdy i żywotność komponentów.

Pytanie 13

Ile wyniesie całkowity koszt brutto wymiany oleju silnikowego?

Lp.NazwaIlość jednostkaCena jednostkowa netto
1.Olej silnikowy1 l25,00 zł
2.Filtr oleju1 szt.39,00 zł
3.Podkładka po korek spustowy1 szt.3,00 zł
4.Czas pracy0,5 h
5.Roboczogodzina1 h80,00 zł
Uwaga: ilość wymienianego oleju silnikowego - 5,5 l
Podatek VAT - 23%

A. 219,50 zł
B. 147,00 zł
C. 269,99 zł
D. 180,81 zł
Poprawna odpowiedź to 269,99 zł, co wynika z prawidłowego obliczenia całkowitego kosztu brutto wymiany oleju silnikowego. Aby uzyskać tę kwotę, należy zsumować wszystkie koszty netto związane z usługą, w tym koszt oleju, który zależy od jego ilości, oraz dodatkowe składniki usługi, takie jak koszt robocizny czy ewentualnych materiałów eksploatacyjnych. Kluczowym elementem jest również doliczenie podatku VAT, który w Polsce wynosi 23%. Przykładowo, jeżeli koszt netto wymiany oleju wynosi 219,50 zł, to po dodaniu VAT (219,50 zł * 0,23 = 50,49 zł), całkowity koszt brutto wynosi 269,99 zł. Tego typu obliczenia są standardową praktyką w branży motoryzacyjnej, gdzie klarowne i przejrzyste przedstawienie kosztów jest niezbędne dla klientów, pozwalając im na lepsze zrozumienie wydatków związanych z usługami serwisowymi.

Pytanie 14

Kolorowa plamka umieszczona na boku nowej opony wskazuje na

A. położenie, w którym powinien znajdować się zawór powietrza.
B. miejscu, w którym umieszczono wskaźnik zużycia bieżnika.
C. stronę, która powinna być skierowana do wewnątrz.
D. stronę, która powinna być zwrócona na zewnątrz.
Odpowiedź, że kolorowa kropka na boku opony wskazuje miejsce, w którym powinien znaleźć się zawór powietrza, jest poprawna. W branży motoryzacyjnej, podczas produkcji opon, producenci stosują różne oznaczenia, aby ułatwić prawidłowy montaż opon na obręczach. Kolorowa kropka, zazwyczaj w formie małej naklejki, wskazuje najlepszą lokalizację dla zaworu, co ma kluczowe znaczenie dla zachowania równowagi koła. Umiejscowienie zaworu w miejscu oznaczonym kropką pozwala zminimalizować ryzyko wibracji podczas jazdy, co wpływa na komfort podróży oraz trwałość opon i podzespołów zawieszenia. W praktyce, mechanicy i specjaliści ds. opon zawsze zwracają uwagę na to oznaczenie, ponieważ niewłaściwe umiejscowienie zaworu może prowadzić do niestabilności pojazdu, co w skrajnych przypadkach może skutkować niebezpiecznymi sytuacjami na drodze. Dlatego ważne jest, aby stosować się do tych wskazówek, co jest zgodne z dobrymi praktykami w zakresie serwisowania pojazdów.

Pytanie 15

Frenotest to przyrząd wykorzystywany do pomiaru

A. ciśnienia oleju w silniku
B. poziomu wody w elektrolicie
C. opóźnienia hamowania
D. ciśnienia w oponach
Frenotest to specjalistyczne urządzenie wykorzystywane do pomiaru opóźnienia hamowania, które jest kluczowym parametrem w ocenie skuteczności systemów hamulcowych pojazdów. Pomiar ten jest niezwykle istotny dla bezpieczeństwa jazdy, ponieważ pozwala na weryfikację, czy układ hamulcowy działa prawidłowo i jest w stanie zapewnić odpowiednie zatrzymanie pojazdu w różnych warunkach. Przykładowo, w testach drogowych, inżynierowie motoryzacyjni mogą korzystać z Frenotestu, aby dokładnie zmierzyć czas, jaki zajmuje pojazdowi zatrzymanie się z określonej prędkości. Tego typu pomiary są zgodne z normami ISO oraz regulacjami bezpieczeństwa w motoryzacji, które wymagają regularnych testów hamulców w celu zapewnienia ich efektywności. Dodatkowo, stosowanie Frenotestu pozwala na identyfikację ewentualnych problemów z układem hamulcowym, takich jak zużycie komponentów czy niewłaściwe ustawienie, co jest kluczowe dla utrzymania wysokich standardów bezpieczeństwa w pojazdach.

Pytanie 16

Aby zlikwidować wyciek płynu hamulcowego z cylindra zacisku hamulcowego, należy wykonać

A. użycie smaru do uszczelnienia
B. wymianę pierścienia uszczelniającego
C. dodanie dodatkowej uszczelki
D. naciśnięcie tłoczka głębiej do cylindra
Wymiana pierścienia uszczelniającego jest kluczowym krokiem w usuwaniu wycieków płynu hamulcowego z cylindra zacisku hamulcowego. Pierścienie uszczelniające pełnią istotną funkcję w zapewnieniu szczelności układu hamulcowego, a ich uszkodzenie może prowadzić do niepożądanych wycieków, co z kolei może wpływać na skuteczność hamowania. Gdy pierścień uszczelniający jest zużyty lub uszkodzony, jego wymiana jest jedynym sposobem na przywrócenie prawidłowej funkcji zacisku. W praktyce, aby wymienić pierścień uszczelniający, należy zdjąć zacisk hamulcowy, co może wymagać demontażu kół i zasięgnięcia do odpowiednich narzędzi, takich jak klucze i szczypce. Ważne jest, aby przed rozpoczęciem wymiany upewnić się, że nowy pierścień uszczelniający jest zgodny z zaleceniami producenta. Wymiana pierścienia uszczelniającego jest zgodna z dobrymi praktykami branżowymi, które zalecają regularne przeglądy i konserwację układu hamulcowego w celu zapewnienia bezpieczeństwa pojazdu. W sytuacjach, gdy mamy do czynienia z nieszczelnościami, natychmiastowa reakcja i zastosowanie odpowiednich metod naprawczych mogą zapobiec poważniejszym uszkodzeniom układu hamulcowego oraz zagrożeniu podczas jazdy.

Pytanie 17

Jak sprawdza się szczelność przestrzeni nadtłokowej cylindrów silnika spalinowego w pojeździe?

A. średnicę cylindra
B. płaszczyznę głowicy
C. luzy w zaworach
D. ciśnienie sprężania
Odpowiedź "ciśnienie sprężania" jest poprawna, ponieważ szczelność przestrzeni nadtłokowej cylindrów silnika spalinowego jest bezpośrednio związana z efektywnością procesu sprężania mieszanki paliwowo-powietrznej. Ciśnienie sprężania świadczy o tym, czy mieszanka jest odpowiednio sprężona przed zapłonem, co ma kluczowe znaczenie dla osiągów silnika. Wysokie ciśnienie sprężania może wskazywać na dobrą szczelność uszczelniaczy, pierścieni tłokowych oraz głowicy cylindrów. Regularne pomiary ciśnienia sprężania są standardem w diagnostyce silników spalinowych, często stosowanym przez mechaników podczas rutynowych przeglądów. Przykładowo, przy pomiarze ciśnienia sprężania, wartości poniżej normy mogą sugerować zużycie pierścieni tłokowych lub nieszczelności w głowicy cylindrów, co prowadzi do spadku mocy i zwiększonego zużycia paliwa. Dlatego też, analiza ciśnienia sprężania jest kluczowym elementem oceny stanu technicznego silnika, przyczyniającym się do zapewnienia jego niezawodności i efektywności.

Pytanie 18

Jakie jest główne przeznaczenie odpowietrzenia skrzyni korbowej silnika?

A. usunięcia nadmiaru oleju z skrzyni korbowej
B. zmniejszenia ciśnienia w skrzyni korbowej
C. ochrony przed przedostawaniem się paliwa do oleju
D. sterowania ciśnieniem w systemie smarowania silnika
Odpowietrzenie skrzyni korbowej silnika ma kluczowe znaczenie dla zachowania optymalnych warunków pracy silnika. Głównym celem tego procesu jest obniżenie ciśnienia w skrzyni korbowej, co zapobiega nieszczelności uszczelek oraz wyciekom oleju. Wysokie ciśnienie może prowadzić do zjawiska znanego jako "smołowatość", gdzie olej staje się gęstszy i mniej skuteczny w smarowaniu. Odpowietrzenie umożliwia właściwy przepływ oleju, co zapewnia jego efektywne smarowanie i chłodzenie elementów silnika. W praktyce, odpowiednie wentylowanie skrzyni korbowej jest realizowane poprzez specjalne otwory i zawory, które usuwają nadmiar ciśnienia, a także zanieczyszczenia. Przykładowo, w silnikach spalinowych wykorzystywane są systemy PCV (Positive Crankcase Ventilation), które nie tylko odprowadzają nadmiar ciśnienia, ale także recyrkulują opary paliwa, co zmniejsza emisję spalin i wspomaga ochronę środowiska. Zgodnie z najlepszymi praktykami branżowymi, regularne sprawdzanie i konserwacja systemu odpowietrzania są kluczowe dla długowieczności silnika oraz jego optymalnej wydajności.

Pytanie 19

Podaj właściwą sekwencję działań diagnostycznych przeprowadzanych podczas regularnego przeglądu technicznego pojazdu osobowego.

A. Weryfikacja hamulców, weryfikacja amortyzatorów, ustawienie ciśnienia w oponach, ustawienie świateł
B. Ustawienie ciśnienia w oponach, ustawienie świateł, weryfikacja amortyzatorów, weryfikacja hamulców
C. Ustawienie świateł, ustawienie ciśnienia w oponach, weryfikacja hamulców, weryfikacja amortyzatorów
D. Weryfikacja amortyzatorów, weryfikacja hamulców, ustawienie świateł, ustawienie ciśnienia w oponach
Wskaźnik numer 3 pokazuje, jak powinno się przeprowadzać badanie techniczne samochodu. Na początek warto zająć się ciśnieniem w oponach, bo to naprawdę ma znaczenie dla bezpieczeństwa jazdy i zużycia paliwa. Kiedy opony mają złe ciśnienie, to mogą się szybciej zużywać i łatwiej o niebezpieczne sytuacje na drodze. Potem trzeba ogarnąć regulację świateł, bo dobre oświetlenie jest kluczowe, żeby inni kierowcy wiedzieli, co zamierzamy zrobić. Sprawdzanie amortyzatorów to kolejny ważny krok, bo to wpływa na komfort i stabilność podczas jazdy. No i na koniec – hamulce, bo skuteczność hamowania to podstawa bezpieczeństwa. Jeśli będziemy to wszystko robić w takiej kolejności, to zgodnie z obowiązującymi normami i dobrymi praktykami w motoryzacji, będziemy na dobrej drodze do bezpiecznej jazdy.

Pytanie 20

Wymiana zużytych wkładek ciernych w hamulcach tarczowych powinna zawsze odbywać się w parach?

A. wyłącznie w zacisku przesuwnym
B. w każdym typie zacisku
C. tylko w stałym zacisku
D. jedynie w zacisku pływającym
Wymiana zużytych wkładek ciernych hamulców tarczowych we wszystkich zaciskach jest kluczowym aspektem zapewnienia efektywności i bezpieczeństwa systemu hamulcowego. W przypadku hamulców tarczowych, zarówno na przedniej, jak i tylnej osi, konieczność wymiany wkładek parami wynika z konieczności zachowania równowagi sił hamujących oraz zapobiegania nierównomiernemu zużyciu. Gdy jedna wkładka jest wymieniana, a druga pozostaje zużyta, może to prowadzić do przesunięcia punktu działania siły hamującej, co z kolei skutkuje pogorszeniem stabilności pojazdu podczas hamowania. W praktyce, aby utrzymać optymalne osiągi, producent pojazdu oraz specjaliści od układów hamulcowych zalecają wymianę wkładek zawsze w parach. Wymiana wkładek w komplecie pozwala również na lepsze dopasowanie parametrów pracy hamulca, co przekłada się na dłuższą żywotność pozostałych komponentów układu hamulcowego, takich jak tarcze hamulcowe. Ponadto, w przypadku pojazdów sportowych lub użytkowanych w warunkach ekstremalnych, takich jak jazda w terenie, konsekwentne podejście do wymiany wkładek w parach jest jeszcze bardziej istotne ze względu na wymagania dotyczące bezpieczeństwa i osiągów.

Pytanie 21

W specyfikacji rozmiaru opony 225/65R17 101H litera R wskazuje na

A. maksymalne dopuszczalne obciążenie (nośność opony)
B. średnicę opony
C. typ konstrukcji osnowy opony
D. maksymalną prędkość jazdy
Litera R w oznaczeniu rozmiaru opony 225/65R17 101H odnosi się do konstrukcji osnowy opony, co wskazuje, że opona jest oponą radialną. Opony radialne charakteryzują się tym, że włókna osnowy są ułożone w kierunku promieniowym, co pozwala na lepsze rozkładanie sił działających na oponę podczas jazdy. Dzięki tej konstrukcji, opony radialne zapewniają większą stabilność, lepszą przyczepność oraz niższe opory toczenia w porównaniu do opon diagonalnych. W praktyce oznacza to, że pojazdy wyposażone w opony radialne mogą osiągać lepsze osiągi, a także wyższą efektywność paliwową. Opony radialne są obecnie standardem w branży motoryzacyjnej, co potwierdzają normy ISO oraz standardy producentów samochodów. Warto dodać, że stosowanie opon odpowiednich do konstrukcji pojazdu jest kluczowe dla bezpieczeństwa i efektywności jazdy, a ich właściwy wybór powinien być oparty na specyfikacji producenta i zaleceniach branżowych.

Pytanie 22

Czym charakteryzuje się układ wtryskowy typu Common Rail?

A. Bezpośrednim wtryskiem do gaźnika
B. Zaworem EGR załączanym mechanicznie
C. Małą ilością przewodów paliwowych
D. Wysokim ciśnieniem paliwa w szynie zasilającej
Układ wtryskowy typu Common Rail to jedna z najbardziej zaawansowanych technologii stosowanych w silnikach diesla. Charakteryzuje się tym, że paliwo jest przechowywane w specjalnej szynie zasilającej pod bardzo wysokim ciśnieniem, często sięgającym nawet 2000 barów. Dzięki temu, wtrysk paliwa do cylindrów może być precyzyjnie sterowany elektronicznie, co pozwala na optymalizację spalania, redukcję emisji szkodliwych substancji oraz zwiększenie efektywności paliwowej. W praktyce oznacza to, że silniki z takim układem są nie tylko bardziej ekologiczne, ale także charakteryzują się lepszą dynamiką i niższym zużyciem paliwa. Common Rail umożliwia także wielokrotne wtryski w jednym cyklu pracy silnika, co dodatkowo poprawia jego pracę. Warto też wspomnieć, że technologia ta jest obecnie standardem w nowoczesnych samochodach z silnikami diesla, a jej rozwój przyczynił się do znacznego postępu w dziedzinie motoryzacji, wpływając na poprawę parametrów pracy silników oraz ich kompatybilność z nowymi normami emisji.

Pytanie 23

Wydobywające się z rury wydechowej spaliny o niebieskim zabarwieniu najprawdopodobniej wskazują

A. na zamknięty zawór EGR
B. na zużycie pierścieni tłokowych
C. na nieszczelność w układzie wydechowym
D. na zbyt duże wyprzedzenie wtrysku
Zjawisko niebieskiego dymu wydobywającego się z rury wydechowej silnika spalinowego najczęściej jest sygnalizowane przez zużycie pierścieni tłokowych. Pierścienie tłokowe odpowiadają za uszczelnienie komory spalania oraz za kontrolowanie ilości oleju dostającego się do cylindra. Kiedy pierścienie są zużyte, mogą pozwalać na przedostawanie się oleju silnikowego do komory spalania, co prowadzi do jego spalania i produkcji niebieskiego dymu. W praktyce, gdy zauważymy taki objaw, warto skontrolować stan silnika oraz poziom oleju, ponieważ nadmierne zużycie oleju może prowadzić do poważniejszych uszkodzeń silnika. W branży motoryzacyjnej, regularna diagnostyka i konserwacja silnika, w tym sprawdzanie szczelności pierścieni, są kluczowe dla zapewnienia efektywności i trwałości pojazdu. Odpowiednie procedury diagnostyczne, takie jak test kompresji, mogą ujawnić stan pierścieni tłokowych, co pozwala na wczesne wykrycie problemów i uniknięcie kosztownych napraw. Zgodnie z dobrymi praktykami, zaleca się monitorowanie objawów, takich jak niebieski dym, co może być pierwszym krokiem w kierunku prewencyjnego podejścia do utrzymania silnika w dobrej kondycji.

Pytanie 24

W celu naprawienia otworu, który podczas użytkowania stracił swój nominalny wymiar, powinno się wykorzystać

A. spawanie
B. kucie
C. nitowanie
D. tulejowanie
Tulejowanie to taki sprytny sposób na naprawę otworów, które straciły swoje wymiary przez długotrwałe użytkowanie. W tym procesie wkłada się tuleje do środka otworów, co pozwala na przywrócenie ich właściwej średnicy. Można to spotkać w takich branżach jak przemysł maszynowy czy motoryzacyjny, gdzie dokładność wymiarów jest bardzo ważna. Na przykład, kiedy remontuje się bloki silników, to jeśli otwory na cylindry są uszkodzone, można zastosować tulejowanie, żeby zamontować nowe tłoki. Warto też wiedzieć, że standardy jak ISO 286 określają tolerancje wymiarowe, co ma duże znaczenie w tym procesie. Dobrze jest również pamiętać, żeby dobierać odpowiednie materiały tulei oraz dokładnie mierzyć przed i po naprawie. Tulejowanie to naprawdę fajna opcja, bo może zaoszczędzić czas i kasę w porównaniu do wymiany całych elementów, więc firmy chętnie z tego korzystają.

Pytanie 25

Zgodnie z numeracją określoną przez producenta, pierwszy cylinder w silniku rzędowym czterosuwowym

A. może być symetrycznie ulokowany pomiędzy innymi cylindrami
B. znajduje się zawsze z przodu auta
C. jest zawsze z prawej strony pojazdu
D. może być umiejscowiony od strony koła zamachowego
Pierwszy cylinder w czterosuwowym silniku rzędowym może być umiejscowiony od strony koła zamachowego, co jest zgodne z praktykami stosowanymi w wielu konstrukcjach silnikowych. To ulokowanie cylindrów ma znaczenie w kontekście równowagi silnika oraz efektywności pracy. W niektórych silnikach, zwłaszcza tych zaprojektowanych do zastosowań w motoryzacji, pierwszy cylinder często znajduje się zgodnie z konwencjami producentów, co wpływa na sposób, w jaki silnik jest zaprojektowany, montowany i serwisowany. Przykładem mogą być silniki marki Ford, gdzie mechanicy często muszą uwzględniać to umiejscowienie przy pracach związanych z naprawą układu zapłonowego. Dodatkowo, umiejscowienie cylindrów ma wpływ na sposób, w jaki silnik generuje moc oraz moment obrotowy, co ma kluczowe znaczenie dla osiągów pojazdów. W literaturze technicznej oraz w dokumentacjach producentów można znaleźć wytyczne dotyczące tego, jak interpretować umiejscowienie cylindrów w kontekście ich numeracji, co jest istotne dla prawidłowego zrozumienia struktury silnika oraz jego funkcjonowania.

Pytanie 26

Aby ocenić stan techniczny systemu smarowania silnika, na początku należy

A. ocenić stan pompy olejowej
B. sprawdzić poziom oleju w silniku
C. zweryfikować czystość filtrów olejowych
D. przeprowadzić pomiar ciśnienia w systemie smarowania
Sprawdzenie poziomu oleju w silniku jest pierwszym i kluczowym krokiem w ocenie stanu technicznego układu smarowania. Olej silnikowy pełni fundamentalną rolę w smarowaniu ruchomych części silnika, co ma bezpośredni wpływ na jego wydajność i żywotność. Niedobór oleju może prowadzić do intensywnego zużycia elementów silnika, przegrzewania się, a w skrajnych przypadkach do jego uszkodzenia. Praktyka wykazuje, że regularne kontrolowanie poziomu oleju jest zgodne z zaleceniami producentów pojazdów oraz standardami branżowymi. W przypadku stwierdzenia niskiego poziomu oleju, zaleca się jego uzupełnienie lub wymianę, aby zapewnić optymalne smarowanie. Dodatkowo, monitorowanie koloru i konsystencji oleju może dostarczyć informacji o jego stanie, a także o ewentualnych problemach, takich jak zanieczyszczenia czy degradacja. Znajomość tych praktyk pozwala na wczesne wykrywanie usterek i podejmowanie działań prewencyjnych, co znacząco podnosi bezpieczeństwo i niezawodność eksploatacji silnika.

Pytanie 27

Zanim rozpoczniesz badanie poprawności funkcjonowania układu hamulcowego w Stacji Kontroli Pojazdów, co należy zrobić w pierwszej kolejności?

A. zmierzyć ciśnienie w oponach
B. sprawdzić zawartość wody w płynie hamulcowym
C. sprawdzić grubość klocków hamulcowych
D. ocenić działanie serwomechanizmu
Sprawdzanie ciśnienia w oponach to naprawdę ważny krok, zanim zaczniemy badać hamulce w samochodzie. Jak opony mają odpowiednie ciśnienie, to pojazd lepiej się zachowuje podczas hamowania, a hamulce działają skuteczniej. Gdy ciśnienie jest za niskie, to można mieć problem z rozkładem sił przy hamowaniu, a to zwiększa ryzyko poślizgu czy wydłużenia drogi hamowania. Producent pojazdu podaje normy dotyczące ciśnienia, więc dobrze jest je mieć na uwadze. Regularne sprawdzanie ciśnienia to po prostu część dbania o auto. Przed testowaniem hamulców mechanik koniecznie powinien upewnić się, że ciśnienie w oponach jest w normie. Można to znaleźć w dokumentacji, albo na naklejce przy drzwiach kierowcy. W końcu odpowiednie ciśnienie w oponach to nie tylko kwestia bezpieczeństwa, ale też komfortu jazdy i mniejszego zużycia paliwa.

Pytanie 28

Podczas realizacji wymiany łożysk kół przednich, dla zapewnienia bezpieczeństwa pracy oraz właściwej pozycji mechanika, powinno się

A. podnieść pojazd za pomocą podnośnika kolumnowego
B. uniesić oś przednią za pomocą podnośnika hydraulicznego
C. uniesić oś przednią przy użyciu podnośnika śrubowego
D. ustawić oś przednią na klinach
Podniesienie pojazdu podnośnikiem kolumnowym jest najbezpieczniejszą i najbardziej stabilną metodą, gdyż pozwala na równomierne rozłożenie ciężaru pojazdu oraz zapewnia dostęp do wszystkich elementów zawieszenia. Podnośniki kolumnowe są zaprojektowane z myślą o pracy z pojazdami o różnych konstrukcjach, co czyni je odpowiednim wyborem dla profesjonalnych warsztatów. Dzięki stabilnej konstrukcji, mechanik może swobodnie pracować nad wymianą łożysk kół przednich, nie martwiąc się o możliwe przewrócenie się pojazdu. Przykładowo, w przypadku większych pojazdów dostawczych, zastosowanie podnośnika kolumnowego pozwala na swobodne operowanie narzędziami oraz dostęp do wszystkich niezbędnych elementów. Warto też podkreślić, że zgodnie z normami BHP, prace związane z wymianą elementów zawieszenia powinny odbywać się na stabilnym podłożu, co dodatkowo podkreśla znaczenie użycia odpowiedniego podnośnika, który spełnia te wymagania.

Pytanie 29

Przejazd autem przez płytę kontrolną w stacji diagnostycznej pozwala na dokonanie pomiaru

A. kąta wyprzedzenia sworznia zwrotnicy
B. pochylenia koła jezdnego
C. kąta pochylenia sworznia zwrotnicy
D. zbieżności całkowitej
Zauważyłem, że wspomniałeś o różnych parametrach związanych z układem jezdnym, ale nie wszystkie one są powiązane z tym, co mierzymy na płycie pomiarowej. Pochylenie koła to coś innego, chodzi głównie o kąt w stosunku do pionu, ale to nie to, co bezpośrednio sprawdzamy na płycie. Tak samo kąt wyprzedzenia czy kąt pochylenia sworznia zwrotnicy to ważne rzeczy, ale wymagają innych metod pomiarowych. Często ludzie mylą te różne parametry i potem mogą źle interpretować wyniki. Dobrze jest zrozumieć, czym różnią się te pojęcia, bo to pomoże lepiej zadbać o auto.

Pytanie 30

Przed rozpoczęciem weryfikacji zbieżności kół konieczne jest

A. unieruchomić pedał hamulca
B. sprawdzić ciśnienie w oponach
C. zdjąć obciążenie z pojazdu
D. zablokować kierownicę
Sprawdzanie ciśnienia w oponach przed przystąpieniem do kontroli zbieżności kół jest kluczowym krokiem, ponieważ niewłaściwe ciśnienie w oponach może wpływać na geometrię zawieszenia oraz na zachowanie pojazdu podczas jazdy. Odpowiednie ciśnienie w oponach zapewnia równomierne zużycie bieżnika, a także poprawia stabilność i bezpieczeństwo pojazdu. Przykładowo, opony z niedostatecznym ciśnieniem będą się odkształcały, co może prowadzić do błędnych odczytów geometrii zawieszenia, a tym samym wpływać na zbieżność kół. W praktyce, zaleca się regularne sprawdzanie ciśnienia w oponach, najlepiej co miesiąc oraz przed dłuższymi podróżami. Standardy branżowe, takie jak te określone przez ECE (Europejska Komisja Gospodarcza), wskazują, że optymalne ciśnienie powinno być dostosowane do obciążenia pojazdu oraz warunków drogowych. Warto również pamiętać, że ciśnienie należy sprawdzać na zimnych oponach, aby uzyskać najdokładniejsze wyniki. Właściwe ciśnienie to fundament bezpieczeństwa i efektywności pojazdu, dlatego jest to niezbędny krok przed przystąpieniem do dalszych prac serwisowych.

Pytanie 31

Z rejonu mostu napędowego dochodzi do uciążliwego hałasu, który wzrasta podczas pokonywania zakrętów. Który z poniższych elementów może być jego przyczyną?

A. Półoś napędowa
B. Mechanizm różnicowy
C. Łożysko piasty koła
D. Przekładnia główna
Mechanizm różnicowy jest kluczowym elementem układu napędowego, którego główną funkcją jest umożliwienie różnicy prędkości obrotowej kół na osi podczas pokonywania zakrętów. Podczas jazdy w zakrętach, zewnętrzne koło pokonuje dłuższą drogę, co powoduje, że jego prędkość jest wyższa niż prędkość koła wewnętrznego. Jeśli mechanizm różnicowy nie funkcjonuje prawidłowo, może dochodzić do nadmiernego hałasu, który jest wynikiem niewłaściwego luzu lub uszkodzenia wewnętrznych zębatek. W praktyce, regularne sprawdzanie i konserwacja mechanizmu różnicowego, zgodnie z zaleceniami producenta, a także reagowanie na wszelkie niepokojące dźwięki, mogą zapobiec poważniejszym uszkodzeniom oraz zwiększyć bezpieczeństwo jazdy. Dobrą praktyką jest również wykonywanie przeglądów stanu oleju w mechanizmie różnicowym, aby zapewnić odpowiednie smarowanie i uniknąć nadmiernego zużycia elementów.

Pytanie 32

W celu pielęgnacji powłok lakierniczych karoserii samochodowej zaleca się użycie środków opartych na

A. olejach mineralnych
B. olejach pochodzenia naftowego
C. woskach
D. alkoholu
Preparaty na bazie wosków są najczęściej stosowane do konserwacji powłok lakierniczych nadwozi samochodowych ze względu na swoje właściwości ochronne i estetyczne. Woski, zarówno naturalne, jak i syntetyczne, tworzą na powierzchni lakieru warstwę ochronną, która zabezpiecza go przed działaniem czynników atmosferycznych, takich jak promieniowanie UV, woda, oraz zanieczyszczenia środowiskowe. Dzięki temu lakier dłużej zachowuje swoje właściwości estetyczne, a pojazd wygląda na zadbany. Przykładem zastosowania wosków mogą być regularne zabiegi pielęgnacyjne, które wykonuje się co kilka miesięcy, aby utrzymać samochód w odpowiednim stanie. Wosk tworzy również efekt hydrofobowy, co oznacza, że woda spływa z powierzchni, co minimalizuje ryzyko powstawania zarysowań i osadzania się brudu. W branży samochodowej preferowane są woski twarde, które zapewniają większą trwałość i odporność na ścieranie. Stosowanie produktów na bazie wosków jest zgodne z dobrymi praktykami w pielęgnacji lakierów.

Pytanie 33

Po dokonaniu wymiany klocków hamulcowych na jednej stronie pojazdu konieczne jest

A. odpowietrzenie układu hamulcowego
B. sprawdzenie poziomu płynu hamulcowego
C. wymiana klocków hamulcowych na drugiej stronie pojazdu
D. zweryfikowanie siły hamowania na stanowisku diagnostycznym
Odpowiedź sugerująca odpowietrzenie układu hamulcowego jest nieadekwatna w kontekście wymiany klocków hamulcowych na jednej osi. Odpowietrzanie układu hamulcowego jest konieczne w sytuacji, gdy w układzie dostanie się powietrze, co najczęściej ma miejsce przy wymianie płynu hamulcowego lub naprawach związanych z układem hydrauliki hamulcowej. Wymiana klocków nie powinna wpływać na ciśnienie ani na szczelność układu, o ile nie doszło do jego uszkodzenia podczas prac. Ponadto, przeprowadzając odpowietrzanie, można przypadkowo wprowadzić powietrze do układu, co może prowadzić do obniżenia skuteczności hamowania, co jest groźne. Kolejna odpowiedź, dotycząca sprawdzenia siły hamowania na linii diagnostycznej, jest nadmiarowa w kontekście rutynowej wymiany klocków. Siła hamowania jest ważnym parametrem, ale jej sprawdzanie powinno mieć miejsce podczas kompleksowych przeglądów pojazdu, a nie bezpośrednio po wymianie klocków. Wreszcie, wymiana klocków hamulcowych na drugiej osi nie jest wymagana natychmiast po wymianie na jednej osi, chociaż zaleca się, aby klocki na obu osiach były w podobnym stanie. Zestawienie klocków na jednej osi z nowymi klockami na drugiej może prowadzić do nierównomiernego zużycia i zmniejszenia efektywności hamowania. W kontekście dobrych praktyk branżowych, kluczowe jest zachowanie równowagi w układzie hamulcowym, dlatego należy monitorować stan klocków na obu osiach.

Pytanie 34

Lampa służąca do sprawdzania kąta wyprzedzenia zapłonu wykorzystuje

A. zjawisko dyfrakcji
B. zjawisko interferencji
C. efekt stroboskopowy
D. efekt absorpcji światła
Efekt stroboskopowy to naprawdę ważne zjawisko, które wykorzystuje się w lampach do ustawiania kąta wyprzedzania zapłonu. Działa to tak, że lampa emituje błyski światła w regularnych odstępach, co ułatwia obserwację ruchu różnych obiektów. W silnikach spalinowych lampa stroboskopowa pomaga precyzyjnie ustalić, kiedy zapłon powinien się odbyć. To jest kluczowe, żeby silnik działał dobrze i był wydajny. Dzięki temu mechanicy mogą dokładnie ustawić kąt wyprzedzenia zapłonu, co ma wpływ na moc, oszczędność paliwa i emisję spalin. Ważne jest, żeby korzystać z tych lamp zgodnie z instrukcjami producenta, bo to zapewnia bezpieczeństwo i skuteczność regulacji. Warto też przeszkolić personel, żeby umiał używać tego narzędzia, bo to na pewno poprawi jakość usług w warsztatach samochodowych.

Pytanie 35

Który z komponentów mechanizmu tłokowo-korbowego silnika samochodowego odpowiada za przekazywanie sił z tłoka na korbowód?

A. Stopa korbowodu
B. Pierścień tłokowy
C. Sworzeń tłokowy
D. Główka korbowodu
Sworzeń tłokowy jest kluczowym elementem mechanizmu tłokowo-korbowego, który odpowiedzialny jest za przenoszenie sił generowanych przez tłok na korbowód. Działa on jako łącznik między tłokiem a korbowodem, umożliwiając przekazywanie ruchu posuwistego tłoka na ruch obrotowy korbowodu. W praktyce, gdy mieszanka paliwowo-powietrzna ulega spaleniu, generuje znaczne ciśnienie, które działa na tłok, powodując jego ruch w dół cylindra. Ten ruch posuwisty jest następnie przenoszony przez sworzeń tłokowy, co skutkuje obrotem korbowodu. Prawidłowe działanie sworzenia tłokowego ma kluczowe znaczenie dla efektywności silnika, jego mocy i żywotności. Właściwa konstrukcja oraz montaż sworzenia tłokowego są zgodne z normami branżowymi i dobrymi praktykami, co wpływa na niezawodność całego układu. Zastosowanie odpowiednich materiałów oraz technik obróbczych zwiększa trwałość tego elementu, co jest istotne w kontekście współczesnych silników spalinowych, gdzie zwiększone obciążenia i prędkości robocze stanowią duże wyzwanie.

Pytanie 36

Element aerodynamiczny samochodu, który zwiększa przyczepność do nawierzchni, korzystający z przepływu powietrza pod nadwoziem, to

A. retarder
B. dyfuzor
C. rekuperator
D. rezonator
Dyfuzor to kluczowy element aerodynamiczny zastosowany w pojazdach, który ma na celu zwiększenie docisku do podłoża poprzez efektywną manipulację przepływem powietrza pod podwoziem. Działa na zasadzie rozprężania strumienia powietrza, co prowadzi do obniżenia ciśnienia pod pojazdem. W wyniku tego zjawiska, pojazd jest lepiej przylegający do nawierzchni, co z kolei przekłada się na zwiększenie stabilności i przyczepności, zwłaszcza podczas szybkiej jazdy oraz w zakrętach. Dyfuzory są szeroko stosowane w sportach motorowych, takich jak Formuła 1, gdzie ich zaawansowana konstrukcja pozwala na optymalizację aerodynamiki, co jest kluczowe dla osiągów pojazdu. Warto również zwrócić uwagę na to, że poprawnie zaprojektowany dyfuzor może znacząco obniżyć opór powietrza. Dobrą praktyką jest stosowanie dyfuzorów w połączeniu z innymi elementami aerodynamicznymi, takimi jak skrzydła, co pozwala na uzyskanie maksymalnych korzyści z aerodynamiki pojazdu.

Pytanie 37

Oblicz pojemność skokową silnika trzycylindrowego, mając na uwadze, że pojemność skokowa jednego cylindra wynosi 173,4 cm3?

A. 346,8 cm3
B. 693,6 cm3
C. 520,2 cm3
D. 173,4 cm3
Pojemność skokowa silnika to całkowita objętość, jaką zajmują wszystkie cylindry podczas jednego cyklu pracy. Dla trzycylindrowego silnika, gdzie pojemność jednego cylindra wynosi 173,4 cm3, objętość skokowa oblicza się, mnożąc tę wartość przez liczbę cylindrów. Wzór na obliczenie pojemności skokowej silnika to: V = V_cylindrów * n, gdzie V_cylindrów to pojemność jednego cylindra, a n to liczba cylindrów. W tym przypadku mamy: V = 173,4 cm3 * 3 = 520,2 cm3. Zrozumienie pojemności skokowej jest kluczowe w projektowaniu silników, ponieważ wpływa na moc, moment obrotowy oraz efektywność paliwową. Wyższa pojemność skokowa zazwyczaj oznacza większą moc, ale również może wpłynąć na zużycie paliwa. Projektanci silników często dążą do optymalizacji pojemności skokowej w celu osiągnięcia najlepszej równowagi między wydajnością a emisjami. Przykładowo, w silnikach sportowych często stosuje się cylindry o większej pojemności, aby zwiększyć moc przy zachowaniu odpowiednich standardów emisji spalin.

Pytanie 38

W serwisie samochodowym klient zgłosił problem związany z nadmiernym zużyciem wewnętrznych elementów bieżnika kół przednich. Jakie działanie powinien podjąć mechanik jako pierwsze?

A. zweryfikować sprawność amortyzatorów
B. sprawdzić, czy układ hamulcowy nie jest uszkodzony
C. sprawdzić, czy w układzie zawieszenia nie występują luzy
D. zamienić koła przednie stronami
Zamiana stronami kół przednich nie rozwiąże problemu nadmiernego zużycia bieżnika. Chociaż taka czynność może chwilowo zrównoważyć zużycie opon, nie eliminuje źródłowej przyczyny problemu. Zwykle, takie podejście jest symptomatyczne, a nie rozwiązuje problemu. Warto pamiętać, że przyczyny nierównomiernego zużycia opon mogą być związane z niewłaściwą geometrią kół, która z kolei jest konsekwencją uszkodzenia układu zawieszenia lub innych elementów pojazdu. Z kolei sprawdzenie układu hamulcowego w tej sytuacji, chociaż jest istotne dla ogólnego bezpieczeństwa, nie ma bezpośredniego wpływu na zużycie bieżnika, chyba że układ hamulcowy funkcjonuje w sposób nieprawidłowy, co przenosi się na stabilność pojazdu. Natomiast kontrola sprawności amortyzatorów, mimo że jest istotna, nie jest pierwszym krokiem, który powinien być podjęty w przypadku problemu z zużyciem opon. Amortyzatory wpływają na komfort jazdy i kontrolę nad pojazdem, jednak to układ zawieszenia w pierwszej kolejności powinien być sprawdzony, aby zidentyfikować luzy i inne potencjalne problemy, co jest zgodne z podejściem diagnostycznym i najlepszymi praktykami w serwisowaniu pojazdów.

Pytanie 39

Podczas diagnostyki układu chłodzenia zaobserwowano ciągły wzrost temperatury silnika. Jaka może być tego przyczyna?

A. Uszkodzony alternator
B. Zbyt wysokie ciśnienie w oponach
C. Niedziałający wentylator chłodnicy
D. Niski poziom oleju w silniku
Niedziałający wentylator chłodnicy to jedna z najbardziej oczywistych przyczyn ciągłego wzrostu temperatury silnika. Układ chłodzenia w pojazdach ma za zadanie utrzymanie optymalnej temperatury pracy silnika, co jest kluczowe dla jego efektywności i trwałości. Wentylator chłodnicy wspomaga przepływ powietrza przez chłodnicę, szczególnie podczas postoju lub jazdy w niskiej prędkości, kiedy naturalny nawiew powietrza jest niewystarczający. Jeśli wentylator nie działa, chłodnica nie jest w stanie skutecznie obniżać temperatury płynu chłodzącego, co prowadzi do przegrzewania się silnika. Z mojego doświadczenia, regularne sprawdzanie stanu wentylatora oraz jego układu sterowania jest niezbędne w ramach konserwacji pojazdu. Często problem leży w zepsutym przekaźniku, bezpieczniku lub uszkodzonym silniku wentylatora. Warto również dodać, że nadmierna temperatura silnika może prowadzić do poważnych uszkodzeń, takich jak pęknięcie głowicy lub uszczelki pod głowicą, co wiąże się z kosztownymi naprawami. Dlatego szybka i trafna diagnoza problemu z wentylatorem jest kluczowa.

Pytanie 40

Jaka powinna być minimalna grubość okładzin ściernych klocków hamulcowych?

A. od 0,5 cm do 1 cm
B. od 1,5 mm do 2 mm
C. od 0,5 mm do 1 mm
D. od 1,5 cm do 2 cm
Odpowiedzi dotyczące grubości okładzin ściernych klocków hamulcowych, które zakładają minimalne wartości od 0,5 cm do 1 cm oraz od 0,5 mm do 1 mm, są błędne i nieodpowiednie w kontekście standardów bezpieczeństwa. Po pierwsze, grubość 0,5 cm do 1 cm jest zdecydowanie zbyt wysoka dla klocków hamulcowych, co sugeruje nieporozumienie dotyczące ich budowy. Klocki hamulcowe nie powinny być tak grube, ponieważ prowadziłoby to do nieodpowiedniego dopasowania w układzie hamulcowym, co mogłoby skutkować nieefektywnym działaniem hamulców i zwiększonym obciążeniem na inne elementy, takie jak tarcze hamulcowe. Z kolei wartości od 0,5 mm do 1 mm są zbyt niskie, co prowadziłoby do zbyt szybkiego zużycia klocków i skutkowało ryzykiem całkowitego wyeliminowania okładzin ściernych, co jest skrajnie niebezpieczne. W praktyce, zbyt niskie lub zbyt wysokie wartości grubości prowadzą do nieprawidłowego działania układu hamulcowego, a w efekcie mogą stwarzać zagrożenie dla kierowcy i pasażerów. Dbanie o właściwe dimensje okładzin jest kluczowe dla zachowania efektywności hamowania oraz bezpieczeństwa na drodze.