Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 18 kwietnia 2025 22:07
  • Data zakończenia: 18 kwietnia 2025 22:17

Egzamin niezdany

Wynik: 16/40 punktów (40,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaką maksymalną długość może mieć kabel miedziany UTP kategorii 5e łączący bezpośrednio dwa urządzenia w sieci, według standardu Fast Ethernet 100Base-TX?

A. 100 m
B. 300 m
C. 150 m
D. 1000 m
Wybierając odpowiedzi takie jak 150 m, 1000 m czy 300 m, można się odnosić do mylnych przekonań dotyczących długości kabli UTP w kontekście technologii Ethernet. Wiele osób mylnie interpretuje maksymalne długości kabli, zakładając, że im dłuższy kabel, tym lepsza komunikacja, co jest absolutnie nieprawdziwe. Rzeczywista wydajność kabla Ethernet nie tylko zależy od jego długości, ale także od jakości sygnału, który może zostać zakłócony przez zjawiska takie jak tłumienie czy interferencje elektromagnetyczne. Użytkownicy mogą sądzić, że 150 m lub 300 m to akceptowalne długości, jednak takie podejście może prowadzić do poważnych problemów z wydajnością sieci. Na przykład, przy długości kabla 150 m, sygnał może ulegać znacznemu osłabieniu, co w praktyce skutkuje niską prędkością transferu danych oraz problemami z opóźnieniami. Podobnie, długość 1000 m znacznie przekracza maksymalne specyfikacje dla standardów Ethernet i może skutkować brakiem połączenia. Ponadto, różne standardy kabli, takie jak 10Base-T czy 1000Base-T, również mają swoje ograniczenia, które powinny być znane każdemu, kto projektuje lub zarządza siecią. Właściwe zrozumienie specyfikacji długości kabli jest kluczowe dla utrzymania stabilności i efektywności każdej sieci komputerowej.

Pytanie 2

Na rysunku przedstawiono schemat ethernetowego połączenia niekrosowanych, ośmiopinowych złączy 8P8C. Jaką nazwę nosi ten schemat?

Ilustracja do pytania
A. T568C
B. T568B
C. T568D
D. T568A
Schemat T568B to jeden z dwóch głównych standardów okablowania ethernetowego, obok T568A. W T568B kolejność przewodów w złączu 8P8C zaczyna się od pomarańczowej pary, przez co różni się od T568A, który zaczyna się od zielonej. Wybór T568B lub T568A zależy często od lokalnych zwyczajów lub istniejącej infrastruktury sieciowej, choć w Stanach Zjednoczonych T568B jest częściej stosowany. T568B jest szeroko używany w połączeniach niekrosowanych, często wykorzystywanych do podłączania urządzeń sieciowych jak komputery, routery czy switche w sieciach LAN. Dobrze rozpoznawalne kolory przewodów i ich kolejność ułatwiają prawidłowe zaciskanie końcówek, co jest kluczowe dla utrzymania integralności sygnału sygnałowego. Właściwe zaciskanie przy użyciu standardu T568B minimalizuje zakłócenia przesyłu danych, co jest szczególnie ważne w przypadku rosnących wymagań na szybkość przesyłu w nowoczesnych sieciach. Zrozumienie i stosowanie tego standardu jest fundamentalne dla techników sieciowych i wpływa na jakość połączeń oraz ich niezawodność.

Pytanie 3

System Windows 8, w którym wcześniej został utworzony punkt przywracania, doświadczył awarii. Jakie polecenie należy wydać, aby przywrócić ustawienia i pliki systemowe?

A. rootkey
B. reload
C. rstrui
D. replace
Wybór odpowiedzi innych niż 'rstrui' świadczy o niepełnym zrozumieniu funkcji przywracania systemu w Windows. Polecenie 'reload' nie jest znane w kontekście systemu Windows i nie odnosi się do żadnej czynności związanej z przywracaniem systemu. W systemach operacyjnych termin 'reload' często używany jest w kontekście przeładowania aplikacji lub modułów, ale nie ma zastosowania przy zarządzaniu punktami przywracania. Kolejną nieprawidłową odpowiedzią jest 'replace', co sugeruje, że użytkownik myli proces przywracania z procesem zastępowania plików, co nie ma miejsca w standardowej procedurze przywracania systemu. Przywracanie nie polega na zastępowaniu pojedynczych plików, lecz na przywracaniu całego stanu systemu, co jest znacznie bardziej złożonym procesem. Z kolei 'rootkey' to termin, który odnosi się do rejestru systemu Windows, a nie do przywracania systemu. Użytkownicy mogą mieć tendencję do mylenia pojęć związanych z rejestrem i punktami przywracania, co prowadzi do nieporozumień w kontekście zarządzania systemem. Ważne jest, aby zrozumieć odmienność tych terminów i ich zastosowanie w praktyce, aby skutecznie zarządzać systemem operacyjnym i unikać problemów w przyszłości.

Pytanie 4

Atak DDoS (ang. Disributed Denial of Service) na serwer doprowadzi do

A. zbierania danych o atakowanej sieci
B. przechwytywania pakietów sieciowych
C. zmiany pakietów przesyłanych przez sieć
D. przeciążenia aplikacji serwującej określone dane
Zrozumienie ataków typu DDoS wymaga znajomości ich charakterystyki oraz celów. Atak DDoS nie polega na podmianie pakietów przesyłanych przez sieć, co sugeruje pierwsza niepoprawna odpowiedź. Podmiana pakietów, znana jako atak typu Man-in-the-Middle, wymaga dostępu do transmisji danych i jest zupełnie innym rodzajem zagrożenia, które nie ma nic wspólnego z DDoS. Podobnie, przechwytywanie pakietów, co sugeruje kolejna odpowiedź, również nie jest związane z DDoS. Ataki te koncentrują się na przytłoczeniu zasobów serwera, a nie na manipulacji danymi w transmisji. Stosowanie technik przechwytywania danych w kontekście DDoS jest mylne, ponieważ kluczowym celem DDoS jest spowodowanie niedostępności usługi, a nie analizowanie jej ruchu. Zbieranie informacji na temat atakowanej sieci, co sugeruje jeszcze jedna odpowiedź, jest bardziej związane z atakami typu reconnaissance, które mają na celu zrozumienie struktury sieci i potencjalnych słabości, aby później przeprowadzić skuteczniejszy atak. W rzeczywistości, ataki DDoS skupiają się na zasypywaniu serwera żądaniami, a nie na analizie czy manipulacji danymi. Te błędne koncepcje mogą prowadzić do niewłaściwego planowania obrony przed zagrożeniami, co podkreśla znaczenie edukacji w zakresie bezpieczeństwa IT.

Pytanie 5

Który protokół jest wykorzystywany do konwersji między adresami IP publicznymi a prywatnymi?

A. NAT
B. RARP
C. ARP
D. SNMP
Protokół NAT (Network Address Translation) jest kluczowym elementem w zarządzaniu adresami IP w sieciach komputerowych. Jego główną funkcją jest translacja pomiędzy publicznymi a prywatnymi adresami IP, co pozwala na efektywne wykorzystanie ograniczonej puli adresów IPv4. W przypadku, gdy urządzenie w sieci lokalnej (z prywatnym adresem IP) chce nawiązać połączenie z Internetem, protokół NAT dokonuje zamiany jego adresu na publiczny adres IP routera. To sprawia, że wiele urządzeń w sieci lokalnej może współdzielić jeden adres publiczny, co znacząco zmniejsza potrzebę posiadania dużej liczby publicznych adresów IP. Przykład zastosowania NAT można zobaczyć w domowych routerach, które umożliwiają wielu urządzeniom, takim jak smartfony, laptopy, czy telewizory, dostęp do Internetu poprzez jeden publiczny adres IP. NAT jest także zgodny z najlepszymi praktykami zabezpieczeń, gdyż ukrywa wewnętrzne adresy IP, co zwiększa poziom bezpieczeństwa sieci. Warto dodać, że NAT współpracuje z różnymi protokołami, w tym TCP i UDP, a jego implementacja stanowi kluczowy element strategii zarządzania adresami IP w dobie wyczerpywania się adresów IPv4.

Pytanie 6

Użytkownicy z grupy Pracownicy nie mają możliwości drukowania dokumentów za pomocą serwera wydruku w systemie Windows Server. Posiadają oni jedynie uprawnienia do „Zarządzania dokumentami”. Jakie kroki należy podjąć, aby naprawić ten problem?

A. Grupie Administratorzy należy anulować uprawnienia „Zarządzanie drukarkami”
B. Grupie Pracownicy należy przydzielić uprawnienia „Drukuj”
C. Grupie Pracownicy powinno się usunąć uprawnienia „Zarządzanie dokumentami”
D. Grupie Administratorzy trzeba odebrać uprawnienia „Drukuj”
Aby użytkownicy z grupy Pracownicy mogli drukować dokumenty przy użyciu serwera wydruku w systemie Windows Server, konieczne jest nadanie im odpowiednich uprawnień. Uprawnienia "Drukuj" są kluczowe, ponieważ pozwalają na realizację zadań związanych z drukowaniem, podczas gdy uprawnienia "Zarządzanie dokumentami" pozwalają jedynie na podstawowe operacje takie jak zatrzymywanie, wznawianie i usuwanie zadań drukowania, ale nie umożliwiają samego drukowania. Standardy branżowe wskazują, że zarządzanie uprawnieniami powinno być precyzyjnie dostosowane do ról i obowiązków użytkowników, aby zapewnić zarówno bezpieczeństwo, jak i funkcjonalność. W tym przypadku, po przypisaniu uprawnień "Drukuj", użytkownicy będą mogli korzystać z drukarki w pełni, co jest zgodne z najlepszymi praktykami zarządzania zasobami w sieci. Na przykład w środowisku korporacyjnym, gdzie różne zespoły mają różne potrzeby, precyzyjne zarządzanie uprawnieniami jest kluczowe dla wydajności i bezpieczeństwa operacji.

Pytanie 7

Jakie napięcie zasilające mają moduły pamięci DDR3 SDRAM?

Ilustracja do pytania
A. 2,5 V
B. 1,5 V
C. 3 V
D. 1,8 V
Zastosowanie niewłaściwego napięcia zasilania dla modułów pamięci RAM może prowadzić do poważnych problemów w działaniu systemu. DDR3 SDRAM działa poprawnie przy napięciu 1,5 V co odróżnia je od wcześniejszych generacji pamięci. Błędne zakładanie że DDR3 wymaga 2,5 V czy 3 V wynika z mylenia z napięciami stosowanymi w starszych technologiach takich jak DDR czy nawet niektórych specyficznych zastosowaniach układów pamięci. DDR2 na przykład używało napięcia 1,8 V a podniesienie napięcia dla DDR3 do 2,5 V lub 3 V mogłoby prowadzić do nadmiernego wydzielania ciepła i możliwego uszkodzenia modułów. Napięcie 2,5 V jest charakterystyczne dla starszej technologii SDRAM i w przypadku DDR3 jest zdecydowanie za wysokie. Z kolei 1,8 V choć bliższe rzeczywistego zapotrzebowania DDR3 jest nadal zbyt wysokie i mogłoby prowadzić do nadmiernego zużywania się komponentów. Dlatego tak ważne jest aby znać specyfikacje i stosować się do standardów ustanowionych przez organizacje takie jak JEDEC które określają dokładne wartości napięć w celu zapewnienia bezpieczeństwa i wydajności komponentów elektronicznych. Niewłaściwe użycie napięcia nie tylko skraca żywotność modułów RAM ale także generuje niepotrzebne koszty związane z wymianą uszkodzonych części lub nawet całych systemów.

Pytanie 8

Ile symboli switchy i routerów znajduje się na schemacie?

Ilustracja do pytania
A. 4 switche i 8 routerów
B. 3 switche i 4 routery
C. 4 switche i 3 routery
D. 8 switchy i 3 routery
Odpowiedź zawierająca 4 przełączniki i 3 rutery jest poprawna ze względu na sposób, w jaki te urządzenia są reprezentowane na schematach sieciowych. Przełączniki często są przedstawiane jako prostokąty lub sześciany z symbolami przypominającymi przekrzyżowane ścieżki, podczas gdy rutery mają bardziej cylindryczny kształt z ikonami przypominającymi rotacje. Identyfikacja tych symboli jest kluczowa w projektowaniu i analizowaniu infrastruktury sieciowej. Przełączniki działają na poziomie drugiej warstwy modelu OSI i służą do przesyłania danych między urządzeniami w tej samej sieci lokalnej LAN zarządzając tablicą adresów MAC. Rutery natomiast operują na warstwie trzeciej, umożliwiając komunikację między różnymi sieciami IP poprzez trasowanie pakietów do ich docelowych adresów. W praktyce, prawidłowe rozumienie i identyfikacja tych elementów jest nieodzowne przy konfigurowaniu sieci korporacyjnych, gdzie często wymagane jest łączenie wielu różnych segmentów sieciowych. Optymalizacja użycia przełączników i ruterów zgodnie z najlepszymi praktykami sieciowymi (np. stosowanie VLAN, routingu dynamicznego i redundancji) jest elementem kluczowym w tworzeniu stabilnych i wydajnych rozwiązań IT.

Pytanie 9

Który standard z rodziny IEEE 802 odnosi się do sieci bezprzewodowych, zwanych Wireless LAN?

A. IEEE 802.11
B. IEEE 802.15
C. IEEE 802.5
D. IEEE 802.3
Pozostałe standardy z grupy IEEE 802, takie jak 802.5, 802.15 i 802.3, dotyczą różnych typów sieci i technologii komunikacyjnych, które nie są związane z bezprzewodowymi sieciami lokalnymi. IEEE 802.5 definiuje standard dla sieci Token Ring, technologii, która jest całkowicie inna od popularnych rozwiązań bezprzewodowych. Token Ring opiera się na architekturze, w której dane są przesyłane w zorganizowany sposób, co różni się od elastyczności, jaką oferują sieci bezprzewodowe. IEEE 802.15 z kolei odnosi się do sieci osobistych (WPAN), koncentrując się na komunikacji na krótkich odległościach, co w praktyce ogranicza jego zastosowanie do scenariuszy takich jak Bluetooth, a nie szerokopasmowe połączenia w ramach sieci lokalnych. Natomiast IEEE 802.3, znany jako standard Ethernet, definiuje zasady dla przewodowych sieci lokalnych, które z kolei różnią się fundamentalnie od bezprzewodowych systemów komunikacyjnych. Wyciąganie błędnych wniosków z tych standardów może prowadzić do nieporozumień w projektowaniu i wdrażaniu sieci, co przejawia się w trudności w uzyskaniu odpowiedniej wydajności oraz w problemach z niezawodnością. Kluczowe jest zrozumienie, że wybór odpowiedniego standardu sieciowego ma ogromne znaczenie dla efektywności oraz bezpieczeństwa komunikacji, dlatego istotne jest stosowanie właściwych rozwiązań w określonych kontekstach.

Pytanie 10

Wynikiem przeprowadzenia polecenia arp -a 192.168.1.1 w systemie MS Windows jest pokazanie

A. sprawdzenia połączenia z komputerem o wskazanym IP
B. adresu MAC urządzenia o określonym IP
C. listy bieżących połączeń sieciowych
D. ustawień protokołu TCP/IP interfejsu sieciowego
Wybór odpowiedzi, które nie odnoszą się do adresu fizycznego urządzenia, wskazuje na nieporozumienie dotyczące funkcji i działania protokołu ARP. Ustawienia TCP/IP interfejsu sieciowego to zestaw konfiguracyjnych parametrów, takich jak adres IP, maska podsieci i brama domyślna, które definiują, jak urządzenie łączy się z siecią. To nie jest to, co zwraca polecenie arp -a, ponieważ to polecenie nie modyfikuje ani nie wyświetla tych ustawień. Z drugiej strony, lista aktywnych połączeń sieciowych zazwyczaj pochodzi z innych poleceń, takich jak netstat, które pokazują aktualnie otwarte połączenia i porty. Natomiast kontrola połączenia z komputerem o podanym IP to bardziej funkcjonalność polecenia ping, które sprawdza dostępność danego hosta w sieci. ARP działa na poziomie łącza danych w modelu OSI, co oznacza, że jego głównym celem jest rozwiązywanie adresów, a nie monitorowanie połączeń czy wyświetlanie ustawień. Typowym błędem jest mylenie różnych instrukcji sieciowych i ich funkcji, co może prowadzić do błędnych wniosków o tym, co dana komenda rzeczywiście wykonuje. Zrozumienie różnic między tymi narzędziami jest kluczowe dla efektywnego zarządzania siecią.

Pytanie 11

W systemie Linux, aby przejść do głównego katalogu w strukturze drzewiastej, używa się komendy

A. cd\
B. cd ..
C. cd /
D. cd/
Odpowiedzi, które nie prowadzą do przejścia do korzenia drzewa katalogów, mogą wydawać się logiczne, ale nie odpowiadają rzeczywistości działania systemu Linux. 'cd/' bez spacji może wydawać się poprawne, jednak pomija standardy dotyczące formatowania poleceń, co może prowadzić do nieporozumień. W systemie Linux ważne jest, aby polecenia były poprawnie sformatowane, aby mogły być zrozumiane przez powłokę. Jest to przykład typowego błędu, gdzie użytkownicy zapominają o konieczności użycia spacji po 'cd' przed znakiem '/', co obniża czytelność i może prowadzić do niezamierzonych błędów. Z kolei 'cd\' jest poleceniem, które nie jest rozpoznawane w systemach Linux, ponieważ backslash (\) jest używany jako separator ścieżek w systemach Windows, a nie w Unix-like. Stąd, jego użycie w Linuxie prowadzi do niepoprawnego działania, co jest częstym błędem w myśleniu, gdy użytkownicy przenoszą nawyki z jednego systemu na drugi. Wreszcie, 'cd ..' przenosi nas do katalogu nadrzędnego, a nie do korzenia, co może prowadzić do frustracji, gdy użytkownicy próbują uzyskać dostęp do najwyższego poziomu hierarchii plików. Kluczowym aspektem nawigacji w systemie Linux jest zrozumienie, jak działa hierarchia plików i jakie polecenia są odpowiednie do wykonania określonych zadań, co jest podstawą efektywnego zarządzania systemem.

Pytanie 12

W systemie Windows mechanizm ostrzegający przed uruchamianiem nieznanych aplikacji oraz plików pobranych z Internetu funkcjonuje dzięki

A. zaporze systemu Windows
B. Windows Update
C. Windows Ink
D. Windows SmartScreen
Wybór odpowiedzi związanych z Windows Ink, Windows Update oraz zaporą systemu Windows wskazuje na pewne nieporozumienia dotyczące ich funkcji i roli w systemie Windows. Windows Ink jest narzędziem, które pozwala na korzystanie z rysików i piór, umożliwiając tworzenie notatek oraz szkiców, ale nie ma związku z ochroną przed niebezpiecznymi plikami. Z kolei Windows Update jest odpowiedzialny za aktualizację systemu operacyjnego i aplikacji, co jest istotne dla zapewnienia bezpieczeństwa poprzez poprawki, lecz sam w sobie nie ostrzega przed uruchamianiem nieznanych aplikacji. Ważne jest, aby zrozumieć, że aktualizacje mają na celu poprawę bezpieczeństwa, ale nie są dedykowane do oceny ryzyka związanego z poszczególnymi aplikacjami. Natomiast zapora systemu Windows (Windows Firewall) działa na zasadzie monitorowania i kontrolowania ruchu sieciowego, co może zapobiegać nieautoryzowanemu dostępowi z zewnątrz, ale nie jest zaprojektowana do analizy plików pobranych z Internetu i ich potencjalnego zagrożenia dla systemu. Te funkcjonalności są ważne w kontekście bezpieczeństwa systemu, ale nie spełniają roli, jaką pełni Windows SmartScreen. Dlatego kluczowe jest zrozumienie, że różne komponenty systemu pełnią różne funkcje, a ich niewłaściwa interpretacja może prowadzić do fałszywych wniosków dotyczących tego, jak zapewnić bezpieczeństwo użytkownika.

Pytanie 13

W sieciach komputerowych miarą prędkości przesyłu danych jest

A. dpi
B. bps
C. byte
D. ips
Odpowiedzi 'byte', 'dpi' oraz 'ips' są niepoprawne, ponieważ nie odnoszą się do jednostki używanej do pomiaru szybkości transmisji danych w sieciach komputerowych. Byte to jednostka miary danych, która odpowiada 8 bitom, lecz sama w sobie nie wskazuje na szybkość transmisji. Często używa się jej do określania wielkości plików, co może prowadzić do mylnej interpretacji w kontekście prędkości przesyłu, gdyż nie określa, jak szybko dane mogą być przesyłane. DPI (dots per inch) to jednostka miary stosowana głównie w kontekście rozdzielczości obrazów i wydruków, a nie w transmisji danych. Z kolei IPS (inches per second) jest miarą prędkości, której używa się w kontekście ruchu fizycznego, np. w skanerach optycznych. Takie pomyłki mogą wynikać z braku zrozumienia, że różne dziedziny technologii używają swoich specyficznych jednostek miar, które nie są zamienne. Kluczowe jest zrozumienie, że bps jako jednostka szybkiej transmisji danych jest fundamentalna w projektowaniu i ocenie wydajności sieci komputerowych, a nie wszystkie jednostki są ze sobą powiązane w tym kontekście. Zrozumienie różnic między tymi jednostkami jest niezbędne dla każdego, kto zajmuje się technologią sieciową lub informatyką.

Pytanie 14

Który z podanych adresów IP jest adresem publicznym?

A. 172.168.0.16
B. 10.99.15.16
C. 172.18.0.16
D. 192.168.168.16
Wszystkie pozostałe odpowiedzi wskazują na adresy IP, które są zarezerwowane dla prywatnych sieci lokalnych, co sprawia, że nie mogą być używane jako publiczne adresy IP. Adres 10.99.15.16 należy do zakresu 10.0.0.0/8, który jest całkowicie zarezerwowany dla prywatnych sieci. Oznacza to, że urządzenia z tym adresem mogą komunikować się tylko w obrębie tej samej sieci lokalnej, a nie w Internecie. Podobnie, adres 172.18.0.16 jest częścią zakresu 172.16.0.0 do 172.31.255.255, także przeznaczonego dla sieci prywatnych. Ostatni adres, 192.168.168.16, również należy do zarezerwowanego zakresu 192.168.0.0/16 dla prywatnych sieci, co ogranicza jego użycie do lokalnych rozwiązań. Typowe błędy myślowe, które prowadzą do takich niepoprawnych wniosków, często wynikają z braku zrozumienia różnicy między adresacją publiczną i prywatną. Użytkownicy mogą mylić te adresy z publicznymi z powodu podobieństw w ich formacie, jednak istotne jest, aby wiedzieć, że tylko adresy spoza zarezerwowanych zakresów mogą zostać użyte w sieci globalnej. Zrozumienie tych zasad jest kluczowe dla efektywnego zarządzania sieciami oraz zapewnienia ich bezpieczeństwa.

Pytanie 15

Jakiego protokołu sieciowego używa się do określenia mechanizmów zarządzania urządzeniami w sieci?

A. Internet Group Management Protocol (IGMP)
B. Internet Control Message Protocol (ICMP)
C. Simple Mail Transfer Protocol (SMTP)
D. Simple Network Management Protocol (SNMP)
Simple Network Management Protocol (SNMP) jest protokołem sieciowym, który definiuje mechanizmy do zarządzania urządzeniami w sieci IP. SNMP umożliwia administratorom monitorowanie i zarządzanie sieciowymi urządzeniami, takimi jak routery, przełączniki, serwery i systemy zdalne. Dzięki SNMP, urządzenia mogą wysyłać informacje o swoim stanie do centralnego systemu zarządzania, co pozwala na szybką identyfikację problemów, takie jak awarie sprzętowe, przeciążenia czy problemy z konfiguracją. Przykładowo, administrator sieci może skonfigurować system monitorujący, który regularnie zbiera dane o wydajności przełączników, co pozwala na wczesne wykrywanie potencjalnych problemów. SNMP jest standardem branżowym, zdefiniowanym przez organizacje IETF, co sprawia, że jest szeroko wspierany przez producentów sprzętu. Dobre praktyki zarządzania siecią sugerują wykorzystanie SNMP do implementacji rozwiązań proaktywnych, takich jak automatyczne wysyłanie alertów o problemach czy analiza trendów wydajnościowych w dłuższym okresie czasu.

Pytanie 16

W specyfikacji IEEE 802.3af opisano technologię dostarczania energii elektrycznej do różnych urządzeń sieciowych jako

A. Power under Control
B. Power over Ethernet
C. Power over Classifications
D. Power over Internet
Poprawna odpowiedź to 'Power over Ethernet' (PoE), która jest standardem zdefiniowanym w normie IEEE 802.3af. Technologia ta umożliwia przesyłanie energii elektrycznej przez standardowe kable Ethernet, co pozwala na zasilanie różnych urządzeń sieciowych, takich jak kamery IP, telefony VoIP czy punkty dostępu Wi-Fi, bez potrzeby stosowania oddzielnych zasilaczy. Zastosowanie PoE znacznie upraszcza instalację urządzeń, eliminując konieczność dostępu do gniazdek elektrycznych w pobliżu. Dzięki temu technologia ta jest szeroko stosowana w nowoczesnych biurach oraz systemach monitoringu. PoE przyczynia się również do zmniejszenia kosztów instalacji oraz zwiększa elastyczność w rozmieszczaniu urządzeń w przestrzeni roboczej. Dodatkowo, standard IEEE 802.3af pozwala na przesyłanie do 15.4 W mocy, co jest wystarczające dla wielu typowych urządzeń. Warto również zaznaczyć, że PoE jest częścią większej rodziny standardów, w tym IEEE 802.3at (PoE+) i IEEE 802.3bt (PoE++), które oferują jeszcze wyższe moce zasilania.

Pytanie 17

W systemie Windows zastosowanie przedstawionego polecenia spowoduje chwilową zmianę koloru

Ilustracja do pytania
A. tła okna wiersza poleceń
B. paska tytułowego okna Windows
C. czcionki wiersza poleceń
D. tła oraz czcionek okna Windows
Wiesz, polecenie color w Windows to naprawdę fajna sprawa, bo pozwala zmieniać kolory tekstu i tła w wierszu poleceń. Jak chcesz tego użyć, to wystarczy, że wpiszesz dwie cyfry szesnastkowe. Pierwsza to tło, a druga to kolor tekstu. Na przykład, jak wpiszesz color 1, to tekst będzie niebieski na czarnym tle, bo 1 to wartość szesnastkowa odpowiadająca tym kolorom. Pamiętaj, że to tylko tymczasowa zmiana – jak zamkniesz okno, to wróci do domyślnych ustawień. Z mojego doświadczenia, to polecenie jest mega przydatne w różnych skryptach, bo pozwala lepiej oznaczyć różne etapy czy poziomy logów. Dzięki kolorom łatwiej się ogarnąć, co skrypt teraz robi. Zresztą, jak użyjesz polecenia color bez żadnych argumentów, to wrócisz do domyślnych kolorów. Naprawdę warto to mieć na uwadze podczas pracy w wierszu poleceń!

Pytanie 18

Który z protokołów służy do weryfikacji poprawności połączenia pomiędzy dwoma hostami?

A. RIP (Routing Information Protocol)
B. RARP (ReverseA ddress Resolution Protocol)
C. ICMP (Internet Control Message Protocol)
D. UDP (User DatagramProtocol)
UDP (User Datagram Protocol) jest protokołem transportowym, który umożliwia przesyłanie danych w sposób niepołączeniowy. Chociaż pozwala na szybkie przesyłanie informacji, nie oferuje mechanizmów sprawdzania poprawności połączenia ani potwierdzania odbioru danych. Użytkownicy mogą zakładać, że UDP jest odpowiedni do diagnostyki sieci, jednak w rzeczywistości nie dostarcza on informacji o stanie połączenia ani o błędach w transmisji. Z drugiej strony, RIP (Routing Information Protocol) jest protokołem używanym do wymiany informacji o trasach w sieciach komputerowych, a jego głównym celem jest ustalenie najlepszej drogi do przesyłania danych. Nie jest on zaprojektowany do sprawdzania osiągalności hostów ani ich komunikacji. RARP (Reverse Address Resolution Protocol) z kolei służy do tłumaczenia adresów IP na adresy MAC, co jest całkowicie inną funkcją i nie ma związku z diagnozowaniem połączeń. Typowe błędy myślowe prowadzące do błędnych odpowiedzi często związane są z nieodróżnieniem funkcji protokołów transportowych i kontrolnych. Użytkownicy mogą mylić UDP z ICMP, nie dostrzegając, że ICMP jest odpowiedzialny za operacje kontrolne, a UDP za przesył danych. Właściwe zrozumienie ról poszczególnych protokołów jest kluczowe dla efektywnego zarządzania i diagnozowania problemów w sieciach komputerowych.

Pytanie 19

Na którym z przedstawionych rysunków ukazano topologię sieci typu magistrala?

Ilustracja do pytania
A. Rys. D
B. Rys. A
C. Rys. C
D. Rys. B
Topologia typu magistrala charakteryzuje się jedną linią komunikacyjną, do której podłączone są wszystkie urządzenia sieciowe. Rysunek B pokazuje właśnie taką konfigurację gdzie komputery są podłączone do wspólnej magistrali liniowej. Tego typu sieć jest prosta w implementacji i wymaga minimalnej ilości kabli co czyni ją ekonomiczną opcją dla małych sieci. Wadą może być jednak to że awaria pojedynczego fragmentu przewodu może prowadzić do przerwania działania całej sieci. W rzeczywistości topologia magistrali była popularna w czasach klasycznych sieci Ethernet jednak obecnie jest rzadziej stosowana na rzecz topologii bardziej odpornych na awarie takich jak gwiazda. Niemniej jednak zrozumienie tej topologii jest kluczowe ponieważ koncepcja wspólnej magistrali jest podstawą wielu nowoczesnych architektur sieciowych gdzie wspólne medium służy do przesyłania danych pomiędzy urządzeniami. Dlatego znajomość jej zasad działania może być przydatna w projektowaniu rozwiązań sieciowych szczególnie w kontekście prostych systemów telemetrii czy monitoringu które mogą korzystać z tego typu struktury. Praktyczne zastosowanie znajduje się również w sieciach rozgłoszeniowych gdzie skutecznie wspiera transmisję danych do wielu odbiorców jednocześnie.

Pytanie 20

Na przedstawionej grafice wskazano strzałkami funkcje przycisków umieszczonych na obudowie projektora multimedialnego. Dzięki tym przyciskom można

Ilustracja do pytania
A. regulować zniekształcony obraz
B. zmieniać intensywność jasności obrazu
C. dostosowywać odwzorowanie przestrzeni kolorów
D. przełączać źródła sygnału
Projektory multimedialne są wyposażone w przyciski do regulacji geometrii obrazu umożliwiające dostosowanie zniekształceń spowodowanych kątem projekcji. Często używaną funkcją w tym kontekście jest korekcja trapezowa która pozwala na eliminację efektów zniekształcenia trapezowego gdy projektor nie jest umieszczony idealnie prostopadle do ekranu. Przykładem może być sytuacja w której projektor musi być umieszczony nieco wyżej lub niżej względem środka ekranu a obraz nie jest właściwie wyświetlany. Użytkownik może użyć przycisków na obudowie aby dostosować kształt obrazu tak aby był zgodny z rzeczywistymi proporcjami. Regulacja zniekształceń jest kluczowym elementem poprawy jakości prezentacji zwłaszcza gdy zachodzi konieczność pracy w różnych lokalizacjach o odmiennych warunkach projekcji. Dobre praktyki polegają na ustawieniu projektora w możliwie najbardziej optymalnej pozycji już na etapie instalacji aby minimalizować potrzebę korekt. Jednak w sytuacjach gdy idealne ustawienie projektora jest niemożliwe funkcja regulacji zniekształceń pozwala na uzyskanie zadowalającego efektu wizualnego co jest zgodne z profesjonalnymi standardami branżowymi zapewniając wysoką jakość prezentacji wizualnych

Pytanie 21

Usterka zaprezentowana na ilustracji, widoczna na monitorze, nie może być spowodowana przez

Ilustracja do pytania
A. spalenie rdzenia lub pamięci karty graficznej w wyniku overclockingu
B. przegrzanie karty graficznej
C. nieprawidłowe napięcia zasilane przez zasilacz
D. uszkodzenie modułów pamięci operacyjnej
Przegrzewanie się karty graficznej jest jedną z najczęstszych przyczyn artefaktów graficznych na ekranie. Wysokie temperatury mogą powodować nieprawidłowe działanie chipów graficznych lub pamięci wideo, co prowadzi do niewłaściwego generowania obrazu. W przypadku przegrzewania, często stosuje się dodatkowe chłodzenie lub pastę termoprzewodzącą, aby poprawić odprowadzanie ciepła. Złe napięcia podawane przez zasilacz mogą wpływać na cały system, w tym na kartę graficzną i pamięć, co może prowadzić do niestabilności. Zasilacz powinien być regularnie sprawdzany pod kątem prawidłowego działania, a jego moc powinna być dostosowana do wymagań sprzętowych komputera. Spalenie rdzenia lub pamięci karty graficznej po overclockingu jest efektem stosowania zbyt wysokich ustawień poza specyfikację producenta. Choć overclocking może zwiększać wydajność, często prowadzi do przegrzania i trwałych uszkodzeń, dlatego zaleca się ostrożne podejście oraz monitorowanie parametrów pracy sprzętu. Dobrym rozwiązaniem jest użycie programów diagnostycznych do monitorowania parametrów pracy karty graficznej, co pozwala na szybkie reagowanie, gdy parametry przekraczają bezpieczne wartości. Obserwowanie artefaktów graficznych wymaga analizy wszystkich tych czynników, aby dokładnie zdiagnozować i rozwiązać problem z wyświetlaniem obrazu na ekranie komputera.

Pytanie 22

Jakie polecenie w systemie Windows dedykowane dla stacji roboczej, umożliwia skonfigurowanie wymagań dotyczących logowania dla wszystkich użytkowników tej stacji roboczej?

A. Net session
B. Net file
C. Net computer
D. Net accounts
Polecenie 'Net accounts' jest kluczowym narzędziem w systemie Windows, które umożliwia administratorom zarządzanie politykami związanymi z kontami użytkowników na poziomie stacji roboczej. Dzięki temu poleceniu można określić wymogi dotyczące logowania, takie jak minimalna długość hasła, maksymalny czas, przez jaki hasło może być używane, oraz ilość nieudanych prób logowania przed zablokowaniem konta. Na przykład, w organizacjach, gdzie bezpieczeństwo danych jest priorytetem, administracja może ustawić politykę, która wymaga, aby hasła miały co najmniej 12 znaków i zawierały zarówno cyfry, jak i znaki specjalne. Ponadto, zgodnie z dobrymi praktykami w zakresie bezpieczeństwa IT, regularna zmiana haseł oraz wprowadzenie ograniczeń dotyczących prób logowania pomagają zminimalizować ryzyko nieautoryzowanego dostępu. Warto również zauważyć, że polecenie to jest często używane w połączeniu z innymi narzędziami, takimi jak 'Local Security Policy', co pozwala na kompleksowe zarządzanie bezpieczeństwem kont użytkowników w systemie. W ten sposób polecenie 'Net accounts' pełni istotną rolę w zapewnieniu zgodności z wewnętrznymi politykami bezpieczeństwa oraz standardami branżowymi.

Pytanie 23

Proces, który uniemożliwia całkowicie odzyskanie danych z dysku twardego, to

A. zatarcie łożyska dysku
B. niespodziewane usunięcie plików
C. zerowanie dysku
D. zalanie dysku
Przypadkowe usunięcie plików nie jest procesem nieodwracalnym, ponieważ w wielu przypadkach istnieją narzędzia do odzyskiwania danych, które mogą przywrócić usunięte pliki. Po usunięciu pliku, system operacyjny oznacza przestrzeń, którą plik zajmował, jako dostępną do zapisania nowych danych, ale sam plik może być odzyskany, dopóki nowe dane go nie nadpiszą. Dlatego często użytkownicy mogą przywrócić przypadkowo usunięte pliki, co czyni ten proces mniej drastycznym. Z kolei zalanie dysku może prowadzić do fizycznego uszkodzenia komponentów, co w rzeczywistości nie oznacza utraty danych na poziomie logicznym. W takich przypadkach możliwe jest odzyskanie danych, choć może wymagać to profesjonalnej interwencji, a sama naprawa uszkodzonego dysku bywa kosztowna. Zatarcie łożyska dysku to kolejny przypadek, który prowadzi do awarii sprzętu, ale niekoniecznie wiąże się z nieodwracalnością danych. Zawiedzione łożyska mogą skutkować błędami odczytu i zapisu, co wpływa na dostępność danych, ale nie prowadzi do ich permanentnej utraty. W związku z tym, koncepcje te są mylne, ponieważ nie uwzględniają różnicy między usunięciem danych a ich fizyczną utratą, co prowadzi do nieprawidłowych wniosków dotyczących procesów skasowania informacji.

Pytanie 24

Magistrala PCI-Express stosuje do przesyłania danych metodę komunikacji

A. asynchroniczną Simplex
B. synchroniczną Full duplex
C. asynchroniczną Full duplex
D. synchroniczną Half duplex
Wybór asynchronicznej metody Simplex jest błędny, ponieważ Simplex pozwala na przesył danych tylko w jednym kierunku. W kontekście nowoczesnych technologii, takich jak PCIe, ta koncepcja nie jest wystarczająca, ponieważ wymaga się zdolności do równoczesnego przesyłania danych w obie strony, co jest niezbędne dla dużych prędkości komunikacji. Z kolei synchroniczna metoda Half duplex również nie sprawdza się w przypadku PCIe, gdyż pozwala na przesył danych w obu kierunkach, ale nie równocześnie, co ogranicza wydajność systemu, zwłaszcza w aplikacjach wymagających dużej przepustowości. Wreszcie, asynchroniczna metoda Full duplex, choć teoretycznie brzmi poprawnie, jest błędna, ponieważ PCIe korzysta z architektury, która łączy cechy asynchroniczności i równoczesnego przesyłu danych w obie strony, co czyni ją nieodpowiednią dla tego standardu. Te błędne podejścia mogą wynikać z nieprzemyślanej analizy charakterystyk komunikacji, gdzie brak znajomości podstawowych zasad transmisji danych prowadzi do nieprawidłowych wniosków. Każda z omawianych metod ma swoje zastosowania, ale w kontekście PCIe, kluczowe jest zrozumienie, dlaczego asynchroniczna komunikacja Full duplex jest najbardziej odpowiednia dla zapewnienia wysokiej wydajności i elastyczności w przesyle danych.

Pytanie 25

Podaj poprawną sekwencję czynności, które należy wykonać, aby przygotować nowy laptop do użycia.

A. Montaż baterii, podłączenie zewnętrznego zasilania sieciowego, włączenie laptopa, instalacja systemu operacyjnego, wyłączenie laptopa po instalacji systemu operacyjnego
B. Włączenie laptopa, montaż baterii, instalacja systemu operacyjnego, podłączenie zewnętrznego zasilania sieciowego, wyłączenie laptopa po instalacji systemu operacyjnego
C. Podłączenie zewnętrznego zasilania sieciowego, włączenie laptopa, montaż baterii, instalacja systemu operacyjnego, wyłączenie laptopa po instalacji systemu operacyjnego
D. Podłączenie zewnętrznego zasilania sieciowego, włączenie laptopa, instalacja systemu operacyjnego, montaż baterii, wyłączenie laptopa po instalacji systemu operacyjnego
Twoja odpowiedź jest na pewno dobra, bo założenie baterii oraz podłączenie laptopa do prądu to naprawdę ważne kroki, żeby wszystko działało jak trzeba. Najpierw wkładasz baterię, a potem dopiero podłączasz zasilacz. Dlaczego? Bo inaczej laptop może działać tylko na prąd, co może sprawić różne kłopoty z zasilaniem. Jak już masz zamontowaną baterię, to podłączenie do sieci da Ci pewność, że laptop ma wystarczającą moc, żeby się uruchomić i zainstalować system operacyjny. Potem, jak włączasz laptopa, zaczynasz proces konfiguracji, co jest kluczowe, żeby sprzęt działał. Na końcu, wyłączając laptopa, zamykasz wszystko w dobry sposób. Z mojego doświadczenia najlepiej trzymać się tej kolejności kroków, żeby uniknąć problemów z działaniem laptopa w przyszłości.

Pytanie 26

Karta rozszerzeń zaprezentowana na rysunku ma system chłodzenia

Ilustracja do pytania
A. symetryczne
B. aktywne
C. pasywne
D. wymuszone
Chłodzenie pasywne polega na wykorzystaniu radiatorów do rozpraszania ciepła bez użycia wentylatorów. Radiatory są wykonane z materiałów o wysokiej przewodności cieplnej takich jak aluminium czy miedź co pozwala na efektywne przekazywanie ciepła z podzespołów elektronicznych do otoczenia. Przykładem zastosowania chłodzenia pasywnego są karty graficzne w komputerach domowych które nie wymagają intensywnego chłodzenia ze względu na niższe obciążenie generowane przez aplikacje biurowe. Chłodzenie pasywne jest ciche co jest jego dużą zaletą w porównaniu do rozwiązań aktywnych. Jest to popularne w systemach które muszą być bezgłośne takich jak centra multimedialne lub komputery używane w środowiskach studyjnych. Ważne jest aby pamiętać że efektywność chłodzenia pasywnego zależy od prawidłowej cyrkulacji powietrza wokół radiatora dlatego obudowy komputerów muszą być odpowiednio zaprojektowane by zapewnić naturalny przepływ powietrza. Chociaż chłodzenie pasywne jest mniej efektywne niż aktywne w przypadku komponentów generujących duże ilości ciepła to jest w pełni wystarczające dla wielu zastosowań o niskim i średnim obciążeniu.

Pytanie 27

Aby przeprowadzić diagnozę systemu operacyjnego Windows oraz stworzyć plik z listą wszystkich ładujących się sterowników, konieczne jest uruchomienie systemu w trybie

A. rejestrowania rozruchu
B. przywracania usług katalogowych
C. awaryjnym
D. debugowania
Wybór trybu debugowania, przywracania usług katalogowych lub awaryjnego w kontekście diagnozy wczytywanych sterowników w systemie Windows może prowadzić do nieporozumień. Tryb debugowania jest przede wszystkim wykorzystywany do zaawansowanego rozwiązywania problemów programistycznych, gdzie umożliwia inżynierom monitorowanie i śledzenie działania aplikacji w czasie rzeczywistym. Choć może być użyteczny w określonych sytuacjach, nie dostarcza szczegółowych informacji o procesie uruchamiania systemu i wczytywanych komponentach w sposób, w jaki robi to rejestrowanie rozruchu. Z kolei tryb przywracania usług katalogowych skupia się na naprawie problemów związanych z aktywną strukturą usług katalogowych, co nie jest bezpośrednio związane z diagnostyką sterowników. Tryb awaryjny z kolei uruchamia system z minimalną liczbą wczytywanych sterowników i programów, co może być użyteczne do identyfikacji problemów, jednak nie generuje szczegółowego logu dotyczącego procesu rozruchu. Wybór tych opcji często wynika z braku zrozumienia ról poszczególnych trybów rozruchu, co może prowadzić do frustracji i utraty cennego czasu w procesie diagnostyki. Kluczowe jest, aby zrozumieć, że każdy z tych trybów ma swoje specyficzne zastosowania, a ich niewłaściwe użycie może jedynie pogłębić problemy rodzaju technicznego w systemie operacyjnym.

Pytanie 28

Zainstalowanie w komputerze przedstawionej karty pozwoli na

Ilustracja do pytania
A. zwiększenie wydajności magistrali komunikacyjnej komputera
B. rejestrację, przetwarzanie oraz odtwarzanie obrazu telewizyjnego
C. podłączenie dodatkowego urządzenia peryferyjnego, takiego jak skaner lub ploter
D. bezprzewodowe połączenie z siecią LAN z użyciem interfejsu BNC
Karta przedstawiona na obrazku to karta telewizyjna, która umożliwia rejestrację przetwarzanie oraz odtwarzanie sygnału telewizyjnego. Takie karty są używane do odbierania sygnału telewizyjnego na komputerze pozwalając na oglądanie telewizji bez potrzeby posiadania oddzielnego odbiornika. Karta tego typu zazwyczaj obsługuje różne standardy sygnału telewizyjnego takie jak NTSC PAL i SECAM co czyni ją uniwersalnym narzędziem do odbioru telewizji z różnych regionów świata. Ponadto karty te mogą mieć wbudowane funkcje nagrywania co pozwala na zapisywanie programów telewizyjnych na dysku twardym do późniejszego odtwarzania. Dzięki temu użytkownik może łatwo zarządzać nagranymi materiałami korzystając z oprogramowania do edycji i archiwizacji. Karty telewizyjne często współpracują z aplikacjami które umożliwiają zaawansowane funkcje takie jak zmiana kanałów planowanie nagrań czy dodawanie efektów specjalnych podczas odtwarzania. Montaż takiej karty w komputerze zwiększa jego funkcjonalność i pozwala na bardziej wszechstronne wykorzystanie urządzenia w kontekście multimediów.

Pytanie 29

Podczas testowania kabla sieciowego zakończonego wtykami RJ45 przy użyciu diodowego testera okablowania, diody LED zapalały się w odpowiedniej kolejności, z wyjątkiem diod oznaczonych numerami 2 i 3, które świeciły równocześnie na jednostce głównej testera, natomiast na jednostce zdalnej nie świeciły wcale. Jaka mogła być tego przyczyna?

A. Zwarcie
B. Nieciągłość kabla
C. Pary odwrócone
D. Pary skrzyżowane
Wybór innych opcji jako przyczyny problemu z połączeniem w kablu sieciowym nie uwzględnia kluczowych aspektów związanych z zasadami działania kabli oraz standardami okablowania. Pary skrzyżowane są sytuacją, w której żyły przewodów są zamienione miejscami, co może prowadzić do problemów z komunikacją. Jednak w przypadku testera diodowego nie zaobserwujemy, aby diody zapalały się równocześnie dla innych par, co wskazuje, że to nie jest przyczyna problemu. Nieciągłość kabla oznaczałaby, że jedna z żył nie jest połączona, co byłoby widoczne w teście jako brak sygnału, co również nie miało miejsca, gdyż diody zapalały się dla innych par. Pary odwrócone to sytuacja, w której żyły są nieprawidłowo podłączone, ale również nie prowadziłoby to do równoczesnego zapalania się diod na jednostce głównej testera. W przeciwnym razie test wykazałby niesprawność w przesyłaniu sygnału do jednostki zdalnej. Zachowanie diod na testerze jasno wskazuje, że przyczyną problemu jest zwarcie, co prowadzi do mylnych konkluzji w przypadku błędnego wyboru. W praktyce, zrozumienie tych różnic oraz umiejętność diagnozowania problemów jest kluczowe dla efektywnej pracy z sieciami komputerowymi, a także dla zapewnienia ich prawidłowego funkcjonowania zgodnie z powszechnie przyjętymi standardami branżowymi.

Pytanie 30

Protokół ARP (Address Resolution Protocol) służy do konwersji adresu IP na

A. adres sprzętowy
B. nazwę komputera
C. adres IPv6
D. nazwę domenową
Czasem możesz się pomylić w odpowiedziach, co może być związane z niejasnościami co do ról różnych protokołów i pojęć w sieciach. Zgłoszenie, że ARP zmienia adres IP na adres IPv6, to błąd, bo ARP działa tylko w przypadku adresów IPv4. Dla IPv6 mamy NDP, który ma bardziej zaawansowane funkcje, takie jak nie tylko mapowanie adresów, ale też zarządzanie komunikacją. Można też się pomylić, myląc adresy IP z witryną komputera. Adres IP to unikalny identyfikator urządzenia w sieci, podczas gdy nazwa komputera to taki bardziej przyjazny sposób identyfikacji, który można zamienić na IP przez DNS, ale nie przez ARP. Dlatego też, jeśli pomylisz adres sprzętowy z nazwą domenową, możesz się pogubić w tym, jak działają różne protokoły sieciowe. Nazwa domenowa jest używana do identyfikacji zasobów, ale nie jest bezpośrednio powiązana z adresowaniem sprzętowym. Takie błędy mogą prowadzić do mylnych wniosków o tym, jak działają różne protokoły w sieciach, co jest naprawdę istotne dla zrozumienia i kierowania nowoczesnymi systemami IT.

Pytanie 31

Wskaż standard protokołu wykorzystywanego do kablowego połączenia dwóch urządzeń

A. WiMAX
B. IEEE 1394
C. IEEE 802.15.1
D. IrDA
WiMAX, IEEE 802.15.1 i IrDA to standardy, które wcale nie nadają się do przewodowego łączenia dwóch urządzeń, w przeciwieństwie do IEEE 1394. WiMAX to technologia do bezprzewodowego dostępu do internetu, więc nie ma mowy o przewodowych połączeniach. Z kolei Bluetooth, czy tam IEEE 802.15.1, to standard do bezprzewodowej wymiany danych na krótkie dystanse, więc też odpada w tej kwestii. IrDA to komunikacja optyczna, która już prawie nie jest używana z powodu rozwoju Bluetooth i Wi-Fi. Ludzie często myślą, że te wszystkie standardy mogą być używane do przewodowych połączeń, a tak nie jest. Każdy z nich ma swoje specyfikacje i zastosowania, które trzeba zrozumieć. Wybierając standard, warto patrzeć na potrzeby aplikacji i jakie urządzenia mają być podłączone.

Pytanie 32

Aby zminimalizować wpływ zakłóceń elektromagnetycznych na przesyłany sygnał w tworzonej sieci komputerowej, jakie rozwiązanie należy zastosować?

A. ekranowaną skrętkę
B. gruby przewód koncentryczny
C. cienki przewód koncentryczny
D. światłowód
Jasne, że światłowód to naprawdę rewelacyjny wybór, jeśli chodzi o zminimalizowanie wpływu zakłóceń elektromagnetycznych. W porównaniu do zwykłych miedzianych kabli, światłowody przesyłają dane jako impulsy świetlne. I przez to nie są narażone na różne zakłócenia. To naprawdę ważne w miejscach, gdzie mamy do czynienia z dużą ilością urządzeń elektrycznych czy w przemyśle. Na przykład, telekomunikacja na tym bazuje, bo muszą mieć super stabilny sygnał i dużą przepustowość. Słyszałem o standardach jak IEEE 802.3 czy ITU-T G.652, które mówią, że światłowody są naprawdę niezawodne na dłuższych dystansach. No i są lżejsze i cieńsze, co jeszcze bardziej ułatwia ich wykorzystanie w nowoczesnych sieciach. Tak czy inaczej, światłowody to zdecydowanie strzał w dziesiątkę, jeśli chodzi o jakość usług telekomunikacyjnych.

Pytanie 33

Jaki protokół stosują komputery, aby informować router o zamiarze dołączenia lub opuszczenia konkretnej grupy rozgłoszeniowej?

A. Nslookup
B. Ipconfig /release
C. Ipconfig /registrdns
D. Tracert
W twojej odpowiedzi jest kilka pomyłek odnośnie działania narzędzi sieciowych. 'Ipconfig /registrdns' to polecenie, które dotyczy rejestracji DNS, czyli przypisywania nazw do adresów IP, ale nie ma nic wspólnego z protokołami grupowymi. Z kolei 'Ipconfig /release' zwalnia przydzielony adres IP, ale to też nie jest to, co nas interesuje przy grupach multicastowych. 'Tracert' pomoże ci śledzić trasy, jakie pokonują pakiety w sieci, ale nie zajmuje się zarządzaniem grupami. W pytaniu chodzi o IGMP, a nie o te narzędzia konfiguracyjne czy diagnostyczne, które wymieniłeś. Kluczowy błąd polega na myleniu funkcji związanych z komunikacją grupową z innymi działaniami w sieci. Musisz to zrozumieć, żeby uniknąć nieporozumień, gdy mowa o sieciach komputerowych i zarządzaniu ich zasobami w firmach.

Pytanie 34

Który poziom macierzy RAID zapisuje dane jednocześnie na wielu dyskach jako jedno urządzenie?

A. RAID 0
B. RAID 3
C. RAID 1
D. RAID 2
RAID 0 to poziom macierzy, który wykonuje stripe'owanie danych, co oznacza, że dzieli dane na mniejsze fragmenty i zapisuje je równolegle na dwóch lub więcej dyskach. Dzięki temu możliwe jest osiągnięcie znacznego przyspieszenia operacji odczytu i zapisu, ponieważ system działa jak jedno logiczne urządzenie. RAID 0 nie zapewnia jednak redundancji, co oznacza, że w przypadku awarii jednego z dysków, wszystkie dane są tracone. Jest to rozwiązanie często stosowane w sytuacjach, gdzie wydajność jest kluczowa, na przykład w serwerach plików, stacjach roboczych do obróbki wideo czy podczas gier komputerowych, gdzie szybki dostęp do danych ma zasadnicze znaczenie. W kontekście standardów branżowych, RAID 0 jest często wybierany w zastosowaniach, które nie wymagają wysokiej niezawodności, ale kładą duży nacisk na szybkość operacji. Warto również pamiętać, że przed zastosowaniem RAID 0 należy wdrożyć odpowiednie procedury backupowe, aby zminimalizować ryzyko utraty danych.

Pytanie 35

Serwer DNS pełni rolę

A. dynamicznego przydzielania adresów IP
B. który umożliwia przekształcenie nazw mnemonicznych (opisowych) na odpowiadające im adresy IP
C. zdalnego i szyfrowanego dostępu
D. usług terminalowych
Serwer DNS (Domain Name System) odgrywa kluczową rolę w internecie, umożliwiając konwersję nazw domenowych na odpowiadające im adresy IP, co jest niezbędne do komunikacji w sieci. Gdy użytkownik wpisuje adres strony internetowej w przeglądarkę, serwer DNS przetwarza tę nazwę na jej numeryczny odpowiednik, który jest zrozumiały dla maszyn. Przykładowo, podczas wpisywania www.example.com, serwer DNS przekształca tę nazwę na adres IP, np. 192.0.2.1, co pozwala na nawiązanie połączenia z odpowiednim serwerem. To przekształcenie jest realizowane poprzez hierarchiczny system serwerów DNS, które współpracują ze sobą, umożliwiając szybkie i efektywne odnajdywanie żądanych zasobów. Zgodnie z najlepszymi praktykami, konfiguracja serwera DNS powinna być przeprowadzana z uwzględnieniem bezpieczeństwa, aby zapobiegać atakom, takim jak spoofing DNS. W kontekście rozwoju technologicznym, znaczenie serwerów DNS rośnie, ponieważ coraz więcej usług internetowych opiera się na niezawodnym i szybkim dostępie do danych, co wymaga efektywnego zarządzania nazwami domenowymi i adresami IP.

Pytanie 36

Jakie protokoły są właściwe dla warstwy internetowej w modelu TCP/IP?

A. HTTP, FTP
B. TCP, UDP
C. DHCP, DNS
D. IP, ICMP
Wybrane odpowiedzi, takie jak TCP, UDP, HTTP, FTP, DHCP i DNS, należą do innych warstw modelu TCP/IP, co czyni je niepoprawnymi w kontekście pytania o warstwę internetową. Protokół TCP (Transmission Control Protocol) oraz UDP (User Datagram Protocol) funkcjonują na warstwie transportowej. TCP jest protokołem połączeniowym, który zapewnia niezawodność i kontrolę przepływu, co jest kluczowe dla aplikacji wymagających przesyłania danych z gwarancją dostarczenia w odpowiedniej kolejności. Z kolei UDP to protokół bezpołączeniowy, stosowany w aplikacjach, które preferują szybkość nad niezawodność, takich jak transmisje wideo czy gry online. HTTP (Hypertext Transfer Protocol) i FTP (File Transfer Protocol) to protokoły warstwy aplikacji, które obsługują przesyłanie danych w kontekście przeglądarki internetowej i transferu plików. DHCP (Dynamic Host Configuration Protocol) i DNS (Domain Name System) również funkcjonują na warstwie aplikacji, zajmując się dynamicznym przydzielaniem adresów IP i tłumaczeniem nazw domen na adresy IP. Często mylone jest, że wszystkie te protokoły operują na tej samej warstwie, co prowadzi do nieporozumień w zakresie architektury sieci. Kluczowe jest zrozumienie hierarchii warstw oraz przypisania protokołów do odpowiednich poziomów w modelu TCP/IP, co jest niezbędne do efektywnego projektowania i zarządzania sieciami komputerowymi.

Pytanie 37

Aby zablokować hasło dla użytkownika egzamin w systemie Linux, jakie polecenie należy zastosować?

A. useradd –d egzamin
B. usermod –L egzamin
C. userdel –r egzamin
D. passwd –p egzamin
Odpowiedzi wskazujące na inne polecenia są niepoprawne z różnych powodów. Użycie 'passwd –p egzamin' wprowadza w błąd, ponieważ opcja '–p' zmienia hasło użytkownika na podane w formacie zaszyfrowanym, co nie blokuje konta, a jedynie ustawia nowe hasło, co może prowadzić do niezamierzonych konsekwencji, jeśli nowe hasło jest puste lub niewłaściwe. 'userdel –r egzamin' z kolei usuwa konto użytkownika i jego domowy katalog, co jest nieodwracalne i w większości przypadków niepożądane w sytuacji, gdy chcemy tylko zablokować dostęp. Podejście to ignoruje fakt, że często zablokowanie konta jest lepszym rozwiązaniem niż jego usunięcie. Zastosowanie 'useradd –d egzamin' jest również błędne, ponieważ 'useradd' jest poleceniem do tworzenia nowych kont użytkowników, a opcja '-d' wskazuje na katalog domowy, co w kontekście blokowania konta użytkownika jest zupełnie nieadekwatne. Typowe błędy myślowe, które prowadzą do takich niepoprawnych odpowiedzi, to mylenie funkcji różnych poleceń w systemie Linux oraz brak zrozumienia, czego faktycznie potrzebujemy w danej sytuacji administracyjnej. Ostatecznie kluczowe jest, aby zrozumieć różnice między usuwaniem a blokowaniem konta oraz zasady bezpieczeństwa związane z zarządzaniem użytkownikami w systemach operacyjnych.

Pytanie 38

W standardzie Ethernet 100BaseTX do przesyłania danych używane są żyły kabla UTP podłączone do pinów

Ilustracja do pytania
A. 1, 2, 5, 6
B. 4, 5, 6, 7
C. 1, 2, 3, 6
D. 1, 2, 3, 4
W sieci Ethernet 100BaseTX wykorzystywane są cztery piny w złączu RJ-45 do przesyłania i odbierania danych. Wśród dostępnych odpowiedzi niektóre zawierają błędne kombinacje pinów. Na przykład piny 4, 5, 6 i 7 nie są używane w standardzie Ethernet 100BaseTX do transmisji danych, co może wynikać z mylnego zrozumienia, że wszystkie piny w kablu są aktywne lub że inne standardy mogą używać innych konfiguracji pinów. Piny 1, 2, 5 i 6 również nie są poprawną konfiguracją, ponieważ mimo iż zawierają dwa właściwe piny (1 i 2), to piny 5 i 6 są błędnie zgrupowane. Tego typu błędy są często wynikiem nieznajomości specyfikacji technicznych i standardów sieciowych, takich jak EIA/TIA-568A i 568B, które precyzyjnie określają, które pary przewodów mają być używane do transmisji danych. Ważne jest, aby zawsze odnosić się do oficjalnej dokumentacji, która wskazuje właściwe parowanie przewodów, aby zapewnić prawidłowe działanie sieci i uniknąć zakłóceń sygnału czy problemów z łącznością, które mogą wynikać z nieprawidłowego okablowania. Prawidłowa konfiguracja wpływa na jakość i stabilność połączeń, dlatego też każdy technik sieciowy powinien być świadomy tych standardów i ich praktycznego zastosowania w codziennej pracy z sieciami komputerowymi.

Pytanie 39

Na diagramie przedstawiającym zasadę funkcjonowania monitora plazmowego numer 6 zaznaczono

Ilustracja do pytania
A. powłokę fosforową
B. elektrody wyświetlacza
C. powłokę dielektryczną
D. elektrody adresujące
Warstwa fosforowa w monitorze plazmowym ma za zadanie emitować światło, jednak jej funkcja nie polega na adresowaniu pikseli. To warstwa, która dzięki pobudzeniu przez promieniowanie ultrafioletowe wytwarzane przez plazmę, świeci w określonym kolorze. Z kolei warstwa dielektryka jest izolacyjną warstwą, która nie bierze bezpośredniego udziału w procesie adresowania, lecz pełni funkcję ochronną i separującą inne elementy struktury ekranu. Dielektryk pomaga w utrzymaniu stałości napięcia i chroni przed zwarciami. Elektrody wyświetlacza, choć są kluczowe dla działania ekranu, pełnią inną rolę niż elektrody adresujące. Elektrody te są używane do inicjowania reakcji plazmowej, ale nie kontrolują indywidualnych pikseli w taki sposób, jak elektrody adresujące. Częstym błędem jest mylenie funkcji poszczególnych elektrod i warstw, co wynika z ich złożonej współpracy w celu generowania obrazu. Kluczowe jest zrozumienie, że każda z tych warstw i elektrod ma specyficzną funkcję, która łączy się w jeden harmonijny proces odpowiedzialny za wyświetlanie obrazu w technologii plazmowej. To precyzyjne sterowanie złożonymi procesami elektrycznymi i chemicznymi sprawia, że monitory plazmowe mogą oferować doskonałą jakość obrazu.

Pytanie 40

W przypadku wpisania adresu HTTP w przeglądarkę internetową pojawia się błąd "403 Forbidden", co oznacza, że

A. użytkownik nie ma uprawnień do dostępu do żądanego zasobu
B. wielkość przesyłanych danych przez klienta została ograniczona
C. nie istnieje plik docelowy na serwerze
D. karta sieciowa ma niepoprawnie przydzielony adres IP
W przypadku kodu błędu 403 Forbidden, mylenie go z innymi kodami odpowiedzi HTTP prowadzi do nieporozumień. Pierwszym błędnym założeniem jest to, że brak pliku docelowego na serwerze powoduje ten błąd, podczas gdy w rzeczywistości, jeśli plik nie istnieje, serwer zwróci kod 404 Not Found. Zatem, gdy użytkownik napotyka błąd 403, oznacza to, że żądany plik jest dostępny, ale dostęp do niego jest zablokowany. Kwestia nieprawidłowego adresu IP karty sieciowej również nie jest związana z kodem 403; ten błąd dotyczy uprawnień, a nie problemów z łącznością. Inna niepoprawna koncepcja dotyczy ograniczeń na wielkość wysyłanych danych przez klienta, które są związane z innymi kodami błędów, takimi jak 413 Payload Too Large, a nie 403. W rzeczywistości, przed podjęciem działań naprawczych, ważne jest zrozumienie, że kod 403 jest wynikiem polityki bezpieczeństwa lub konfiguracji serwera, a nie problemu technicznego z infrastrukturą sieciową. Ostatecznie, kluczowe jest, aby użytkownicy rozumieli, że błąd 403 wynika z braku autoryzacji, a nie z problemów z plikami czy łącznością sieciową.