Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 19 marca 2025 09:00
  • Data zakończenia: 19 marca 2025 09:10

Egzamin niezdany

Wynik: 15/40 punktów (37,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Na dołączonym obrazku pokazano działanie

Ilustracja do pytania
A. połączenia danych
B. usuwania danych
C. kompresji danych
D. kodu źródłowego
Kasowanie danych to proces usuwania informacji z nośników danych, który może być wykonywany na różne sposoby. W przypadku kasowania logicznego usuwane są odniesienia do danych, co sprawia, że nie są one widoczne dla systemu operacyjnego, ale mogą być odzyskane przy użyciu specjalistycznego oprogramowania. Kasowanie fizyczne polega na całkowitym usunięciu danych poprzez nadpisanie ich innymi informacjami, co utrudnia ich odzyskanie. Kompilacja danych odnosi się do procesu tłumaczenia kodu źródłowego napisanego w języku programowania na kod maszynowy zrozumiały dla procesora. Jest to istotny etap w tworzeniu oprogramowania, ale nie ma związku z operacjami na plikach takich jak kompresja. Fuzja danych natomiast oznacza proces łączenia danych z różnych źródeł w celu uzyskania bardziej spójnego i kompleksowego obrazu analizowanego obszaru, co jest często stosowane w analizie danych w biznesie i naukach przyrodniczych. Błędne skojarzenie tych pojęć z kompresją może wynikać z nieprecyzyjnego rozumienia ich zadań i celów. Procesy te, mimo że zachodzą w obszarze przetwarzania danych w IT, mają zupełnie różne zastosowania i wymagania technologiczne. Dlatego zrozumienie specyfiki każdego z tych procesów jest kluczowe dla właściwego ich implementowania i stosowania w praktyce zawodowej.

Pytanie 2

Na ilustracji pokazano interfejs w komputerze dedykowany do podłączenia

Ilustracja do pytania
A. monitora LCD
B. skanera lustrzanego
C. drukarki laserowej
D. plotera tnącego
Złącza w komputerach pełnią różne funkcje i są projektowane z myślą o konkretnych zastosowaniach. Ploter tnący, drukarka laserowa oraz skaner lustrzany wymagają specjalistycznych interfejsów do komunikacji z komputerem. Ploter tnący często korzysta z interfejsów takich jak USB lub Ethernet, które umożliwiają przesyłanie danych sterujących potrzebnych do precyzyjnego cięcia materiałów. Drukarki laserowe zazwyczaj wykorzystują złącza USB, Ethernet lub czasami Wi-Fi do przesyłania dokumentów do druku, co jest zgodne z protokołami drukowania sieciowego. Skanery lustrzane, które działają na zasadzie odbijania światła od dokumentu w celu digitalizacji obrazu, najczęściej łączą się z komputerami za pomocą USB, co umożliwia szybkie przesyłanie dużych plików graficznych. Błędne identyfikowanie złącza DVI jako odpowiedniego dla tych urządzeń wynika z nieporozumienia na temat ich funkcji i specyfikacji technicznych. Każde z tych urządzeń wymaga interfejsu spełniającego określone wymagania dotyczące transmisji danych i kompatybilności sprzętowej, co jest kluczowe dla ich prawidłowego działania. Dlatego zrozumienie specyfikacji i zastosowań różnych złącz jest istotne przy konfigurowaniu systemów komputerowych i ich peryferiów. Warto również pamiętać, że wybór odpowiedniego interfejsu wpływa na efektywność i jakość pracy tych urządzeń.

Pytanie 3

Proces, który uniemożliwia całkowicie odzyskanie danych z dysku twardego, to

A. zatarcie łożyska dysku
B. niespodziewane usunięcie plików
C. zerowanie dysku
D. zalanie dysku
Przypadkowe usunięcie plików nie jest procesem nieodwracalnym, ponieważ w wielu przypadkach istnieją narzędzia do odzyskiwania danych, które mogą przywrócić usunięte pliki. Po usunięciu pliku, system operacyjny oznacza przestrzeń, którą plik zajmował, jako dostępną do zapisania nowych danych, ale sam plik może być odzyskany, dopóki nowe dane go nie nadpiszą. Dlatego często użytkownicy mogą przywrócić przypadkowo usunięte pliki, co czyni ten proces mniej drastycznym. Z kolei zalanie dysku może prowadzić do fizycznego uszkodzenia komponentów, co w rzeczywistości nie oznacza utraty danych na poziomie logicznym. W takich przypadkach możliwe jest odzyskanie danych, choć może wymagać to profesjonalnej interwencji, a sama naprawa uszkodzonego dysku bywa kosztowna. Zatarcie łożyska dysku to kolejny przypadek, który prowadzi do awarii sprzętu, ale niekoniecznie wiąże się z nieodwracalnością danych. Zawiedzione łożyska mogą skutkować błędami odczytu i zapisu, co wpływa na dostępność danych, ale nie prowadzi do ich permanentnej utraty. W związku z tym, koncepcje te są mylne, ponieważ nie uwzględniają różnicy między usunięciem danych a ich fizyczną utratą, co prowadzi do nieprawidłowych wniosków dotyczących procesów skasowania informacji.

Pytanie 4

W biurowcu należy podłączyć komputer do routera ADSL za pomocą przewodu UTP Cat 5e. Jaka powinna być maksymalna odległość między komputerem a routerem?

A. 50 m
B. 100 m
C. 500 m
D. 185 m
W przypadku odpowiedzi wskazujących na większe odległości, takie jak 185 m, 50 m czy 500 m, warto zwrócić uwagę na techniczne ograniczenia związane z przesyłem sygnału przez przewody UTP. Odpowiedzi te opierają się na błędnych założeniach dotyczących maksymalnych długości kabli oraz pojemności sygnałowej. Na przykład, długość 185 m nie jest zgodna z normami IEEE 802.3, które jasno określają limit do 100 m dla kabli Ethernet w standardzie 1 Gbps. Przekroczenie tych wartości prowadzi do znacznego spadku jakości sygnału, co skutkuje opóźnieniami, utratą pakietów oraz wydłużonym czasem reakcji przy korzystaniu z aplikacji sieciowych. Z kolei 50 m również nie jest optymalne, ponieważ nie wykorzystuje w pełni możliwości, jakie daje kategoria 5e. Ostatecznie, 500 m jest znacznie poza granicami akceptowalnych wartości, co może sugerować brak zrozumienia zasad działania sieci komputerowych. Wiedza na temat limitów długości kabli UTP jest kluczowa dla projektowania wydajnych i niezawodnych systemów sieciowych, a stosowanie się do tych zasad pozwala uniknąć wielu problemów podczas eksploatacji sieci.

Pytanie 5

W systemie Linux komenda chmod pozwala na

A. ustawienie praw dostępu do pliku
B. wyświetlenie informacji o ostatniej aktualizacji pliku
C. zmianę właściciela pliku
D. naprawę systemu plików
Właściciel pliku oraz zarządzanie prawami dostępu są fundamentalnymi aspektami administracji systemów Unix/Linux, ale nie są one związane z innymi przedstawionymi odpowiedziami. Zmiana właściciela pliku odbywa się za pomocą polecenia chown, które pozwala administratorowi na przypisanie nowego właściciela do pliku lub katalogu. To istotna funkcjonalność, gdyż umożliwia odpowiednie zarządzanie zasobami w systemie, co jest szczególnie ważne w środowiskach współdzielonych. Naprawa systemu plików z kolei jest typowo realizowana za pomocą polecenia fsck, które sprawdza i naprawia błędy w systemie plików, co ma na celu przywrócenie jego integralności. Takie działania są niezbędne w sytuacjach awaryjnych, gdy system plików może ulegać uszkodzeniom z różnych przyczyn. Wyświetlanie informacji o ostatniej aktualizacji pliku można przeprowadzić za pomocą polecenia stat, które dostarcza szereg szczegółowych informacji o pliku, w tym daty jego modyfikacji. Pojęcie uprawnień dostępu jest złożone i kluczowe dla zapewnienia bezpieczeństwa, a polecenie chmod jest jedynie jednym z elementów większej układanki. Często mylenie tych narzędzi może prowadzić do nieautoryzowanego dostępu do plików, co w kontekście bezpieczeństwa danych stanowi poważne zagrożenie."

Pytanie 6

Jaki rodzaj kabla powinien być użyty do połączenia komputera w obszarze podlegającym wpływom zakłóceń elektromagnetycznych?

A. UTP Cat 5e
B. UTP Cat 5
C. UTP Cat 6
D. FTP Cat 5e
Stosowanie kabli UTP Cat 5, Cat 6 czy Cat 5e w miejscach z zakłóceniami elektromagnetycznymi to dość ryzykowna sprawa z kilku powodów. Kable UTP są nieekranowane, co sprawia, że są bardziej narażone na różne zakłócenia. Jak w pobliżu są jakieś urządzenia, które generują zakłócenia, to UTP może nie dawać zadowalającej jakości sygnału. Choć UTP Cat 5 i Cat 5e mają lepsze parametry niż stare standardy, to jednak brak im dodatkowej ochrony przed zakłóceniami, przez co nie nadają się najlepiej w trudnych warunkach. Z kolei UTP Cat 6, mimo że jest bardziej nowoczesny, też nie ma ekranowania, więc znowu – może być podatny na zakłócenia. Dlatego używanie tych kabli tam, gdzie zakłócenia są na porządku dziennym, może prowadzić do większej liczby błędów w przesyłaniu danych i słabej wydajności sieci. A czasami nawet mogą wystąpić całkowite przerwy w komunikacji. Wybierając kabel, warto pamiętać, że lepsza ochrona przed zakłóceniami przekłada się na wyższą jakość i niezawodność połączenia, co jest bardzo ważne w wielu sytuacjach, od biur po przemysł.

Pytanie 7

Jakie jest odpowiednik maski 255.255.252.0 w postaci prefiksu?

A. /24
B. /22
C. /23
D. /25
Odpowiednik maski 255.255.252.0 to prefiks /22, co oznacza, że pierwsze 22 bity adresów IP są używane do identyfikacji sieci, a pozostałe bity są przeznaczone dla hostów w tej sieci. Maskę sieciową można zrozumieć jako sposób na podział większej przestrzeni adresowej na mniejsze podsieci, co jest kluczowe w zarządzaniu adresowaniem IP i efektywnym wykorzystaniu dostępnych adresów. Maska 255.255.252.0 pozwala na utworzenie 4 096 adresów IP w danej podsieci (2^(32-22)), z czego 4 094 mogą być używane dla hostów, co czyni ją bardzo użyteczną w dużych sieciach. W praktyce, taka maska może być stosowana w organizacjach, które potrzebują większej liczby adresów w ramach jednej sieci, na przykład w firmach z dużymi działami IT. Standardy, takie jak RFC 4632, podkreślają znaczenie używania odpowiednich masek podsieci dla optymalizacji routingu oraz zarządzania adresami w sieci. Zrozumienie tego zagadnienia jest kluczowe dla każdego specjalisty zajmującego się sieciami komputerowymi.

Pytanie 8

Jaką maskę trzeba zastosować, aby podzielić sieć z adresem 192.168.1.0 na 4 podsieci?

A. 255.255.255.128
B. 255.255.255.224
C. 255.255.255.0
D. 255.255.255.192
Wybór maski 255.255.255.0, czyli /24, jest nieodpowiedni w kontekście podziału sieci 192.168.1.0 na 4 podsieci. Ta maska przypisuje 24 bity do identyfikacji sieci, co oznacza, że w ramach tej sieci jest 256 dostępnych adresów, jednak nie pozwala na wygodne podział na mniejsze jednostki. Oznacza to, że wszystkie urządzenia w takim przypadku będą znajdować się w jednej dużej podsieci, co utrudnia zarządzanie oraz zwiększa ryzyko kolizji adresów. Tego rodzaju konfiguracja może prowadzić do problemów z wydajnością, zwłaszcza w większych sieciach, gdzie duża liczba hostów może generować znaczny ruch. Z kolei maska 255.255.255.224, czyli /27, pozwala jedynie na stworzenie 8 podsieci, co jest niewłaściwe, gdyż wymagana jest dokładnie 4-podsieciowa struktura. Ostatecznie, maska 255.255.255.128, czyli /25, umożliwia utworzenie tylko 2 podsieci, co jest niewystarczające w tym przypadku. Te błędy pokazują, że nieprzemyślane podejście do podziału sieci może prowadzić do poważnych nieefektywności oraz problemów z bezpieczeństwem, jak również z zasięgiem i dostępnością adresów IP w dłuższej perspektywie czasowej.

Pytanie 9

Najwyższy stopień zabezpieczenia sieci bezprzewodowej zapewnia szyfrowanie

A. WEP
B. WPA2
C. ROT13
D. WPA
WPA2 (Wi-Fi Protected Access 2) to najnowszy i najbezpieczniejszy standard szyfrowania w sieciach bezprzewodowych, który zastępuje wcześniejsze protokoły, takie jak WEP i WPA. WPA2 wprowadza silniejsze algorytmy szyfrowania, korzystając z AES (Advanced Encryption Standard), co zapewnia znacznie wyższy poziom ochrony danych przesyłanych w sieciach Wi-Fi. Przykładem zastosowania WPA2 jest wiele nowoczesnych routerów oraz urządzeń mobilnych, które standardowo obsługują ten protokół, co pozwala użytkownikom na bezpieczne łączenie się z Internetem w domach oraz w miejscach publicznych. Warto zaznaczyć, że WPA2 jest również zgodne z wymogami bezpieczeństwa dla przedsiębiorstw, które często przechowują wrażliwe informacje, dzięki czemu immanentnie ogranicza ryzyko nieautoryzowanego dostępu. Dobre praktyki w zakresie bezpieczeństwa Wi-Fi zalecają używanie WPA2 z silnym hasłem oraz regularne aktualizowanie oprogramowania routera, co dodatkowo podnosi poziom ochrony sieci.

Pytanie 10

Metoda transmisji żetonu (ang. token) znajduje zastosowanie w topologii

A. kratowej
B. pierścieniowej
C. gwiaździstej
D. magistralowej
Wybierając inną topologię, np. kratę, gwiazdę czy magistralę, trochę odbiegasz od zasady działania token passing. W topologii kraty każdy węzeł jest bezpośrednio połączony z innymi, co zwiększa redundancję, ale może być też trudniejsze w zarządzaniu ruchem. Tutaj nie ma jednego mechanizmu, który przydziela kontrolę jednemu węzłowi, przez co może dochodzić do kolizji. Topologia gwiazdy z kolei skupia komunikację wokół jednego przełącznika, więc węzły muszą korzystać z tego centralnego punktu do wysyłania danych, co wyklucza potrzebę stosowania żetonu. Gdybyśmy chcieli używać token passing w gwieździe, to wymagałoby to naprawdę sporego zarządzania i dodatkowego obciążenia dla przełącznika. A w topologii magistrali, gdzie wszystkie urządzenia mają dostęp do jednego medium, nie ma miejsca na żeton, bo każdy węzeł może nadawać kiedy chce, co znów prowadzi do kolizji. Więc pamiętaj, mechanizmy oparte na żetonie są naprawdę specyficzne dla topologii pierścienia, a inne modele sieci po prostu nie nadają się do tego.

Pytanie 11

Jakie urządzenie pozwala na połączenie lokalnej sieci komputerowej z Internetem?

A. driver
B. hub
C. switch
D. router
Router jest urządzeniem, które pełni kluczową rolę w łączeniu lokalnej sieci komputerowej z Internetem. Jego podstawową funkcją jest kierowanie ruchu sieciowego pomiędzy różnymi sieciami, co oznacza, że potrafi wysyłać pakiety danych do odpowiednich adresów IP w Internecie. W praktyce, routery są wykorzystywane w domach i biurach do zapewnienia dostępu do Internetu dla wielu urządzeń jednocześnie, wykonując zadania takie jak NAT (Network Address Translation), które pozwala na ukrycie lokalnych adresów IP i zapewnienie większego bezpieczeństwa. Przykładowo, w domowej sieci router może łączyć smartfony, laptopy oraz urządzenia IoT, umożliwiając im wspólne korzystanie z jednego łącza internetowego. Z punktu widzenia dobrych praktyk, ważne jest, aby routery były odpowiednio konfigurowane, zabezpieczane silnymi hasłami i aktualizowane, aby zminimalizować ryzyko ataków z sieci zewnętrznych. Warto również zwrócić uwagę na różne typy routerów, jak routery przewodowe i bezprzewodowe, które dostosowują się do różnych potrzeb użytkowników.

Pytanie 12

Podstawowym celem użycia przełącznika /renew w poleceniu ipconfig w systemie Windows jest

A. pokazywanie informacji o adresie MAC karty sieciowej
B. wystąpienie o odpowiedź z określonego adresu IP w celu diagnozy połączenia sieciowego
C. odnowienie dynamicznego adresu IP poprzez interakcję z serwerem DHCP
D. pokazywanie danych dotyczących adresu IP
Komenda 'ipconfig /renew' w systemie Windows ma za zadanie odnowienie dynamicznego adresu IP przez komunikację z serwerem DHCP (Dynamic Host Configuration Protocol). Kiedy komputer łączy się z siecią, często korzysta z DHCP, aby automatycznie uzyskać adres IP oraz inne istotne informacje konfiguracyjne, takie jak maska podsieci czy brama domyślna. Kiedy wygasa dzierżawa adresu IP, system operacyjny może skorzystać z komendy /renew, aby nawiązać ponowną komunikację z serwerem DHCP w celu uzyskania nowego adresu. To szczególnie przydatne w dynamicznych sieciach, gdzie adresy IP mogą się zmieniać, co zapewnia elastyczność i efektywne zarządzanie zasobami sieciowymi. Dobre praktyki w zarządzaniu siecią zalecają regularne odnawianie adresów IP, aby uniknąć konfliktów adresowych oraz zapewnić stabilność i ciągłość usługi. Przykładowo, w przypadku mobilnych urządzeń lub laptopów, które często zmieniają sieci, korzystanie z tej komendy może pomóc w szybkim uzyskaniu dostępu do Internetu.

Pytanie 13

Jaki protokół warstwy aplikacji jest wykorzystywany do zarządzania urządzeniami sieciowymi poprzez sieć?

A. MIME
B. SNMP
C. FTP
D. NTP
Wybór innych protokołów, takich jak FTP, NTP i MIME, nie jest odpowiedni w kontekście zarządzania urządzeniami sieciowymi. Protokół FTP (File Transfer Protocol) służy przede wszystkim do transferu plików między komputerami w sieci, co oznacza, że jego główną funkcją jest wymiana danych, a nie zarządzanie urządzeniami. Z kolei NTP (Network Time Protocol) jest protokołem służącym do synchronizacji czasu w sieci komputerowej. Choć jest kluczowy dla utrzymania dokładności czasowej w systemach, nie ma on funkcji zarządzania samymi urządzeniami sieciowymi. Natomiast MIME (Multipurpose Internet Mail Extensions) to standard stosowany w przesyłaniu różnorodnych typów danych w wiadomościach e-mail, a jego zastosowanie również nie odnosi się do zarządzania infrastrukturą sieciową. Wybór tych protokołów może wynikać z błędnego zrozumienia ich funkcji i zastosowania. W praktyce ważne jest, aby znać różnice między różnymi protokołami i ich specyfiką, co pozwala na właściwe zarządzanie infrastrukturą sieciową oraz wykorzystanie odpowiednich narzędzi do monitorowania i zarządzania urządzeniami. Niezrozumienie ról poszczególnych protokołów może prowadzić do nieefektywnego zarządzania siecią oraz problemów z utrzymaniem jej sprawności.

Pytanie 14

W systemach Windows XP Pro/ Windows Vista Bizness/Windows 7 Pro/Windows 8 Pro, rozwiązaniem zapewniającym poufność danych dla użytkowników korzystających z jednego komputera, których informacje mogą być wykorzystywane wyłącznie przez nich, jest

A. korzystanie z prywatnych kont z ograniczeniami
B. korzystanie z prywatnych kont z uprawnieniami administratora
C. ręczne przypisywanie plikom atrybutu: zaszyfrowany
D. ręczne przypisywanie plikom atrybutu: ukryty
Wybór opcji związanej z korzystaniem z własnych kont z ograniczeniami, przypisywaniem plikom atrybutu "ukryty" czy "zaszyfrowany", czy też korzystanie z kont z uprawnieniami administratora, nie zapewnia odpowiedniego poziomu poufności danych w kontekście opisanym w pytaniu. Konta z ograniczeniami mogą ograniczać dostęp do niektórych funkcji systemowych, ale nie zabezpieczają danych przed innymi użytkownikami, którzy mogą mieć dostęp do systemu. Przypisanie plikom atrybutu "ukryty" jedynie sprawia, że pliki nie są widoczne w standardowych ustawieniach eksploratora, co nie chroni ich przed dostępem, a jedynie przed przypadkowym usunięciem czy modyfikacją. W kontekście bezpieczeństwa danych, to podejście jest niewystarczające, ponieważ każdy użytkownik z odpowiednią wiedzą może łatwo zmienić ustawienia, aby zobaczyć ukryte pliki. Natomiast przypisanie atrybutu "zaszyfrowany" jest kluczowe, ale może być mylone z innymi atrybutami, które nie oferują rzeczywistej ochrony. Użytkowanie kont z uprawnieniami administratora stwarza dodatkowe ryzyko, ponieważ administratorzy mają pełny dostęp do wszystkich plików, co może prowadzić do niezamierzonych naruszeń prywatności. W praktyce, najlepsze metody zarządzania poufnością danych obejmują stosowanie silnych mechanizmów szyfrowania oraz polityk dotyczących dostępu, co nie jest zapewnione przez te inne metody.

Pytanie 15

Zastosowanie programu Wireshark polega na

A. nadzorowaniu stanu urządzeń w sieci.
B. badaniu przesyłanych pakietów w sieci.
C. weryfikowaniu wydajności łączy.
D. projektowaniu struktur sieciowych.
Wireshark to jedno z najpopularniejszych narzędzi do analizy sieci komputerowych, które pozwala na przechwytywanie i szczegółowe badanie pakietów danych przesyłanych przez sieć. Dzięki swojej funkcji analizy, Wireshark umożliwia administratorom sieci oraz specjalistom ds. bezpieczeństwa identyfikację problemów z komunikacją, monitorowanie wydajności oraz wykrywanie potencjalnych zagrożeń w czasie rzeczywistym. Narzędzie to obsługuje wiele protokołów, co czyni go wszechstronnym do diagnozowania różnorodnych kwestii, od opóźnień w transmisji po nieautoryzowane dostęp. Przykładowo, można użyć Wireshark do analizy pakietów HTTP, co pozwala na zrozumienie, jakie dane są przesyłane między klientem a serwerem. Narzędzie to jest również zgodne z najlepszymi praktykami branżowymi, takimi jak monitorowanie jakości usług (QoS) czy wdrażanie polityki bezpieczeństwa, co czyni je nieocenionym w utrzymaniu zdrowia sieci komputerowych.

Pytanie 16

Aby zwiększyć lub zmniejszyć rozmiar ikony na pulpicie, trzeba obracać kółkiem myszy, jednocześnie trzymając klawisz

A. CTRL
B. ALT
C. TAB
D. SHIFT
Użycie klawisza CTRL w połączeniu z kręceniem kółkiem myszy to całkiem standardowy sposób w Windowsie na powiększanie lub zmniejszanie ikon na pulpicie. To fajna funkcjonalność, bo pozwala każdemu łatwo dostosować widok do swoich potrzeb. Na przykład, jeśli chcesz powiększyć ikonę, wystarczy przytrzymać CTRL i kręcić kółkiem myszy w górę. A jeśli kręcisz w dół, to ikona zrobi się mniejsza. To jest zgodne z zasadami użyteczności, czyli z tym, żeby wszystko było intuicyjne i łatwe do ogarnięcia. Co ciekawe, ta metoda nie tylko działa na pulpicie, ale też w wielu aplikacjach, jak edytory tekstu czy przeglądarki, gdzie możesz powiększać lub zmniejszać tekst. Dzięki temu masz większą kontrolę nad tym, co widzisz na ekranie, a to zdecydowanie poprawia komfort korzystania z komputera.

Pytanie 17

Liczba 10011001100 w systemie heksadecymalnym przedstawia się jako

A. EF4
B. 2E4
C. 998
D. 4CC
Kiedy przeliczasz liczby z systemu binarnego na heksadecymalny, często błędy biorą się z niewłaściwego grupowania bitów. W przypadku liczby 10011001100, musisz podzielić ją na grupy po cztery bity. W tej sytuacji, poprawne grupy to 0010 0110 0110, co daje nam wartości heksadecymalne 2, 6 oraz 6, więc wynik powinien być 2B6. Widzę, że odpowiedzi takie jak 4CC mogą wynikać z nieporozumienia co do długości grupy lub błędów przy przeliczaniu. Pamiętaj, każdy znak heksadecymalny to cztery bity i czasami to może wprowadzać w błąd. W praktyce, dobrze jest znać te konwersje, bo są one kluczowe w programowaniu oraz w różnych zastosowaniach inżynieryjnych, gdzie precyzja na danych jest mega ważna.

Pytanie 18

Informacje, które zostały pokazane na wydruku, uzyskano w wyniku wykonania

Ilustracja do pytania
A. ipconfig /all
B. traceroute -src
C. netstat -r
D. route change
Route change to polecenie używane do modyfikacji istniejących tras w tabeli routingu. Jest to narzędzie administracyjne, które pozwala na ręczne dodawanie, usuwanie lub zmienianie tras, ale nie służy do ich wyświetlania. W kontekście tego pytania, polecenie route change nie generuje wyjścia pokazującego pełną tabelę routingu, która została przedstawiona na wydruku. Użycie tego polecenia wymaga głębokiego zrozumienia struktury sieci oraz może prowadzić do błędów w konfiguracji, jeśli nie jest stosowane z należytą uwagą. Z kolei ipconfig /all to polecenie, które dostarcza szczegółowych informacji o konfiguracji interfejsów sieciowych w systemie, w tym adresów IP, masek podsieci, bram domyślnych i serwerów DNS. Choć ipconfig /all jest niezwykle użyteczne w diagnozowaniu problemów sieciowych poprzez dostarczanie rozbudowanego zestawu danych, nie wyświetla tabeli routingu, co jest wymagane w tym przypadku. Traceroute -src, podobnie jak klasyczne traceroute, służy do śledzenia ścieżki, jaką przechodzą pakiety do określonego adresu docelowego. Umożliwia analizę opóźnień i diagnostykę problemów z trasowaniem pakietów w sieci. Jednak traceroute -src nie służy do bezpośredniego wyświetlania tabeli routingu, dlatego jego zastosowanie w kontekście tego pytania jest nieodpowiednie. Każde z tych poleceń ma specyficzne zastosowanie i znajomość ich działania oraz kontekstu użycia jest kluczowa dla efektywnego zarządzania i diagnozowania sieci komputerowych.

Pytanie 19

Na przedstawionym schemacie blokowym fragmentu systemu mikroprocesorowego, co oznacza symbol X?

Ilustracja do pytania
A. pamięć Cache
B. kontroler przerwań
C. kontroler DMA
D. pamięć stałą ROM
Kontroler przerwań to kluczowy komponent systemów mikroprocesorowych odpowiedzialny za zarządzanie przerwaniami od różnych urządzeń peryferyjnych. Przerwania to sygnały wysyłane do procesora, które informują o konieczności przeprowadzenia natychmiastowej obsługi zdarzenia, co pozwala na efektywne zarządzanie zasobami systemowymi. Kontroler przerwań priorytetyzuje te sygnały, umożliwiając procesorowi obsługę najważniejszych zadań w odpowiednim momencie. W praktyce kontroler przerwań jest szeroko stosowany w systemach operacyjnych czasu rzeczywistego, gdzie szybka reakcja na zdarzenia zewnętrzne jest kluczowa dla zapewnienia bezpieczeństwa i wydajności systemu. Przykładem może być system sterowania przemysłowego, gdzie awarie sprzętu muszą być obsługiwane natychmiastowo. Kontrolery przerwań są także istotne w systemach wbudowanych, takich jak mikroprocesorowe układy sterujące w pojazdach. W standardach takich jak PCI (Peripheral Component Interconnect) kontrolery przerwań zapewniają efektywne przetwarzanie sygnałów od różnych kart rozszerzeń, co jest krytyczne dla skalowalności i funkcjonalności systemu komputerowego.

Pytanie 20

Jaką maskę domyślną posiada adres IP klasy B?

A. 255.255.255.0
B. 255.255.255.255
C. 255.0.0.0
D. 255.255.0.0
Wybór innej maski podsieci niż 255.255.0.0 dla adresu IP klasy B może prowadzić do wielu problemów związanych z zarządzaniem siecią i dostępnością hostów. Na przykład, maska 255.0.0.0 jest charakterystyczna dla klasy A, co skutkuje nieprawidłowym przypisaniem adresów oraz ograniczeniem możliwości podziału sieci. Przypisanie maski 255.255.255.255 prowadziłoby do sytuacji, w której każdy adres byłby traktowany jako odrębna sieć, co stwarzałoby ogromne trudności w zarządzaniu zasobami i komunikacji między hostami. Ponadto, maska 255.255.255.0 jest odpowiednia dla klasy C, która przeznaczona jest do mniejszych sieci, a jej zastosowanie w kontekście klasy B znacznie ogranicza liczbę dostępnych adresów. W praktyce, niepoprawne podejście do konfiguracji maski podsieci może prowadzić do problemów z routingiem oraz komunikacją, co jest szczególnie istotne w większych środowiskach sieciowych. Kluczowe jest przestrzeganie standardów dotyczących adresacji IP, aby zapewnić właściwe funkcjonowanie sieci oraz optymalizację dostępnych zasobów.

Pytanie 21

Ile domen kolizyjnych znajduje się w sieci przedstawionej na rysunku?

Ilustracja do pytania
A. 4
B. 6
C. 5
D. 1
Istnieje wiele błędnych przekonań dotyczących liczby domen kolizyjnych w sieciach złożonych z różnych urządzeń sieciowych. Jednym z nich jest założenie że każde urządzenie takie jak komputer czy port w urządzeniu automatycznie tworzy nową domenę kolizyjną co jest nieprawidłowe w kontekście działania huba. Huby działają na poziomie warstwy fizycznej i nie mają zdolności do zarządzania kolizjami w sieci. Wszystkie urządzenia podłączone do huba współdzielą tę samą domenę kolizyjną co oznacza że kolizje mogą występować w dowolnym momencie gdy dwa urządzenia próbują przesyłać dane jednocześnie. Z kolei switche rozdzielają domeny kolizyjne na poziomie warstwy drugiej co oznacza że każde urządzenie podłączone do switcha ma swoją własną domenę kolizyjną. Stąd myślenie że switch nie wpływa na liczbę domen kolizyjnych jest błędne. Nieprawidłowe jest również przypisywanie kolizji jedynie do problemów z przepustowością ponieważ wpływa to także na opóźnienia i niezawodność komunikacji. Właściwe zrozumienie topologii sieci i funkcji urządzeń takich jak huby i switche jest kluczowe dla projektowania efektywnych architektur sieciowych które minimalizują wpływ kolizji i optymalizują wydajność sieci.

Pytanie 22

Polecenie df w systemie Linux umożliwia

A. wyświetlenie procesów o największym obciążeniu procesora
B. zarządzanie paczkami instalacyjnymi
C. określenie dostępnej przestrzeni na dysku
D. sprawdzenie spójności systemu plików
Polecenie df (disk free) w systemie Linux jest kluczowym narzędziem używanym do monitorowania dostępnej i wykorzystanej przestrzeni na systemach plików. Dzięki niemu użytkownicy mogą łatwo uzyskać informacje na temat dostępnego miejsca na dyskach, co jest niezwykle istotne w kontekście zarządzania zasobami systemowymi. W praktyce, polecenie df może być używane do identyfikacji, które systemy plików są bliskie pełnego zapełnienia, co może prowadzić do spadku wydajności lub nawet awarii aplikacji. Użytkownicy mogą także wykorzystać opcję -h, aby uzyskać dane w bardziej przystępny sposób, wyrażone w jednostkach takich jak MB lub GB. Dobrym podejściem jest regularne monitorowanie przestrzeni dyskowej, co pozwala na prewencyjne działania, takie jak usuwanie niepotrzebnych plików lub przenoszenie danych na inne nośniki. Przestrzeganie dobrych praktyk w zarządzaniu przestrzenią dyskową, takich jak tworzenie kopii zapasowych, jest również kluczowe dla zapewnienia integralności danych oraz stabilności systemu.

Pytanie 23

Sprzętem, który umożliwia wycinanie wzorów oraz grawerowanie w różnych materiałach, takich jak drewno, szkło i metal, jest ploter

A. laserowy
B. tnący
C. bębnowy
D. solwentowy
Ploter laserowy to zaawansowane urządzenie, które wykorzystuje technologię laserową do precyzyjnego wycinania i grawerowania w różnych materiałach, takich jak drewno, szkło czy metal. Dzięki swojej wysokiej dokładności, ploter laserowy jest szeroko stosowany w przemyśle reklamowym, gdzie często wykorzystuje się go do tworzenia unikalnych elementów dekoracyjnych oraz znaków. W elektronice, plotery laserowe są używane do produkcji płytek PCB, gdzie precyzyjne wycinanie ścieżek jest kluczowe dla prawidłowego działania urządzeń. Dodatkowo, w rzemiośle artystycznym, artyści wykorzystują plotery laserowe do realizacji skomplikowanych projektów, które wymagają wysokiej precyzji i powtarzalności. Użycie laserów o różnej mocy pozwala na dostosowanie urządzenia do specyfiki materiału, co czyni je niezwykle wszechstronnym narzędziem. Warto również zauważyć, że standardy bezpieczeństwa, takie jak normy CE, powinny być przestrzegane podczas użytkowania tych maszyn, aby zminimalizować ryzyko związane z ich eksploatacją.

Pytanie 24

Jakie rozwiązanie należy wdrożyć i prawidłowo ustawić, aby chronić lokalną sieć komputerową przed atakami typu Smurf pochodzącymi z Internetu?

A. zapora ogniowa
B. bezpieczna przeglądarka stron WWW
C. skaner antywirusowy
D. oprogramowanie antyspamowe
Odpowiedzi sugerujące instalację oprogramowania antyspamowego, bezpiecznej przeglądarki lub skanera antywirusowego jako środków ochrony przed atakami typu Smurf są nieprawidłowe, ponieważ nie adresują one bezpośrednio charakterystyki tego typu ataku. Oprogramowanie antyspamowe jest przeznaczone głównie do filtrowania niechcianych wiadomości e-mail i nie ma wpływu na ataki skierowane na infrastrukturę sieciową. Bezpieczna przeglądarka stron WWW, mimo że może chronić przed złośliwym oprogramowaniem lub phishingiem, nie zabezpiecza sieci przed atakami DDoS, takimi jak Smurf, które polegają na nadużywaniu komunikacji sieciowej. Skanery antywirusowe również nie mają na celu obrony przed tego typu atakami, gdyż są wykorzystywane do wykrywania i usuwania wirusów oraz złośliwego oprogramowania na lokalnych maszynach, a nie do monitorowania i kontrolowania ruchu sieciowego. Wybór niewłaściwych narzędzi zabezpieczających prowadzi do mylnego przekonania, że system jest odpowiednio chroniony, podczas gdy rzeczywiste zagrożenia pozostają na wolności. W kontekście ataku Smurf, kluczową kwestią jest umiejętność rozpoznawania i zarządzania ruchem sieciowym, co można osiągnąć jedynie poprzez zastosowanie zapory ogniowej oraz implementację odpowiednich reguł filtrowania ruchu. Każda sieć powinna być wyposażona w odpowiednie rozwiązania zgodne z najlepszymi praktykami branżowymi, takimi jak regularne audyty bezpieczeństwa oraz dostosowane polityki zarządzania dostępem.

Pytanie 25

Na schemacie przedstawiono sieć o strukturze

Ilustracja do pytania
A. siatek
B. drzew
C. gwiazd
D. magistrali
Topologia magistrali to struktura sieciowa, w której wszystkie urządzenia są podłączone do jednego wspólnego medium transmisyjnego, najczęściej kabla, nazywanego magistralą. W tego typu sieci każde urządzenie może komunikować się bezpośrednio z innym poprzez to wspólne medium, co upraszcza proces instalacji i zmniejsza koszty materiałowe. Główna zaleta topologii magistrali to jej prostota i efektywność w małych sieciach, gdzie dane są przesyłane w jednym kierunku i nie ma potrzeby skomplikowanego zarządzania ruchem. Współczesne przykłady zastosowania to starsze sieci Ethernet, gdzie przesyłanie danych odbywa się w postaci ramek. Standardy takie jak IEEE 802.3 opisują specyfikacje dla sieci tego typu. Magistrala jest korzystna tam, gdzie wymagane są ekonomiczne rozwiązania w prostych konfiguracjach. Jednakże w miarę wzrostu liczby urządzeń mogą pojawić się problemy z przepustowością oraz kolizjami danych, dlatego w dużych sieciach często wybiera się inne topologie. Dodatkową korzyścią jest łatwość diagnozowania problemów przy użyciu narzędzi takich jak analizatory sygnałów, co przyspiesza proces rozwiązywania problemów technicznych.

Pytanie 26

Która z podanych właściwości kabla koncentrycznego RG-58 sprawia, że obecnie nie jest on używany do tworzenia lokalnych sieci komputerowych?

A. Brak opcji zakupu dodatkowych urządzeń sieciowych
B. Maksymalna odległość między punktami wynosząca 185 m
C. Koszt narzędzi do instalacji i łączenia kabli
D. Maksymalna prędkość przesyłania danych 10Mb/s
Maksymalna odległość pomiędzy stacjami wynosząca 185 m nie jest kluczowym czynnikiem decydującym o ograniczeniach kabla RG-58 w kontekście lokalnych sieci komputerowych. Choć rzeczywiście ta odległość może stanowić wyzwanie dla niektórych zastosowań, wiele nowoczesnych technologii, takich jak Ethernet, pozwala na większe dystanse. Na przykład, standardy przewodowe, takie jak Cat6, mogą obsługiwać odległości do 100 m przy pełnej prędkości. W rzeczywistości, w przypadku zastosowań, które wymagają dużych odległości, technologia światłowodowa jest preferowana ze względu na jej zdolność do przesyłania sygnałów na znacznie większe odległości bez strat jakości. Podobnie, cena narzędzi do montażu i łączenia przewodów nie jest czynnikiem decydującym o wyborze technologii, ponieważ koszty instalacji mogą być porównywalne w różnych systemach, a kluczowe są parametry techniczne, takie jak prędkość i jakość transmisji. Brak możliwości zakupu dodatkowych urządzeń sieciowych również nie jest istotnym problemem, ponieważ RG-58 był szeroko stosowany w przeszłości i istniały systemy wsparcia. Wnioskując, istotnym powodem, dla którego RG-58 nie jest obecnie preferowany, jest niska maksymalna prędkość transmisji danych, która jest nieodpowiednia dla współczesnych wymagań sieciowych.

Pytanie 27

W tabeli przedstawiono dane katalogowe procesora AMD Athlon 1333 Model 4 Thunderbird. Jaka jest częstotliwość przesyłania danych między rejestrami?

General information
TypeCPU / Microprocessor
Market segmentDesktop
FamilyAMD Athlon
CPU part numberA1333AMS3C
Stepping codesAYHJA AYHJAR
Frequency (MHz)1333
Bus speed (MHz)266
Clock multiplier10
GniazdoSocket A (Socket 462)
Notes on AMD A1333AMS3C
○ Actual bus frequency is 133 MHz. Because the processor uses Double Data Rate bus the effective bus speed is 266 MHz.

A. 133 MHz
B. 1333 MHz
C. 2666 MHz
D. 266 MHz
Procesor AMD Athlon 1333 Model 4 Thunderbird działa z częstotliwością 1333 MHz co oznacza że wewnętrzna częstotliwość zegara wynosi 1333 MHz. Częstotliwość ta determinuje szybkość z jaką procesor może wykonywać operacje i przetwarzać dane. W praktyce oznacza to że procesor może wykonywać 1333 milionów cykli na sekundę co przekłada się na wysoką wydajność obliczeniową szczególnie przy pracy z wymagającymi aplikacjami. Procesory z serii Athlon wykorzystywały architekturę K7 która była znana ze swojej efektywności i wydajności w porównaniu do konkurencji w tamtym czasie. Wybór procesora o wyższej częstotliwości zegara jest kluczowy dla użytkowników wymagających dużej mocy obliczeniowej np. dla grafików projektantów czy graczy komputerowych. Ważnym aspektem jest również stosowanie odpowiedniego chłodzenia i zasilania aby procesor mógł pracować z maksymalną wydajnością bez ryzyka przegrzania. Standardowe praktyki w branży obejmują również regularne aktualizacje BIOS aby zapewnić pełną kompatybilność i optymalną pracę z innymi komponentami komputera.

Pytanie 28

W przypadku planowania wykorzystania przestrzeni dyskowej komputera do przechowywania oraz udostępniania danych, takich jak pliki oraz aplikacje dostępne w internecie, a także ich zarządzania, komputer powinien być skonfigurowany jako

A. serwer terminali
B. serwer DHCP
C. serwer plików
D. serwer aplikacji
Kiedy rozważamy inne typy serwerów, warto zrozumieć, na czym polegają ich funkcje oraz dlaczego nie są one odpowiednie do przechowywania i udostępniania plików. Serwer DHCP (Dynamic Host Configuration Protocol) jest odpowiedzialny za przydzielanie adresów IP urządzeniom w sieci. Jego głównym celem jest automatyzacja procesu konfiguracji sieci, co nie ma związku z przechowywaniem plików. Niewłaściwym podejściem jest myślenie, że serwer DHCP mógłby pełnić rolę serwera plików, ponieważ jego funkcjonalność jest zupełnie inna. Serwer aplikacji to platforma, która umożliwia uruchamianie aplikacji na zdalnych serwerach i nie zajmuje się przechowywaniem plików jako takich. Przyjęcie, że serwer aplikacji może zaspokoić potrzeby dotyczące plików, jest błędne, ponieważ jego głównym celem jest zarządzanie aplikacjami i ich zasobami. Serwer terminali, z kolei, to system, który umożliwia wielu użytkownikom dostęp do zdalnych desktopów i aplikacji, ale nie jest przeznaczony do udostępniania plików. Rozumienie tych różnic jest kluczowe, aby właściwie skonfigurować infrastrukturę IT w zależności od potrzeb organizacji. Właściwy wybór serwera jest fundamentalny dla efektywności operacyjnej i bezpieczeństwa danych.

Pytanie 29

Który rodzaj pracy Access Pointa jest używany, aby umożliwić urządzeniom bezprzewodowym dostęp do przewodowej sieci LAN?

A. Punkt dostępowy
B. Repeater
C. Tryb klienta
D. Most bezprzewodowy
Wybór innych opcji, takich jak most bezprzewodowy, tryb klienta czy repeater, wskazuje na nieporozumienie dotyczące funkcji i zastosowania punktów dostępu. Most bezprzewodowy, choć może łączyć dwie sieci bezprzewodowe, nie zapewnia urządzeniom bezprzewodowym dostępu do przewodowej sieci LAN. Jego głównym celem jest połączenie dwóch segmentów sieci, a nie udostępnienie zasobów użytkownikom końcowym. Tryb klienta natomiast przekształca punkt dostępowy w urządzenie, które łączy się z innym punktem dostępowym lub routerem, co czyni go nieodpowiednim do funkcji, które pełni punkt dostępowy. Z kolei repeater zwiększa zasięg istniejącej sieci, ale nie pozwala na jednoczesne połączenie wielu urządzeń, co ogranicza jego zastosowanie w kontekście dostępu do sieci LAN. Myląc te różne tryby, można wpaść w pułapkę myślenia, że każdy z nich pełni tę samą funkcję, co prowadzi do nieefektywnego projektowania sieci i obniżenia jej wydajności. Przy projektowaniu sieci bezprzewodowej kluczowe jest zrozumienie ról poszczególnych urządzeń i wybranie odpowiedniego rozwiązania dostosowanego do specyficznych potrzeb sieciowych.

Pytanie 30

Moc zasilacza wynosi 450 W, co oznacza, że

A. 0,45 kW
B. 0,045 hW
C. 45 GW
D. 4,5 MW
Moc zasilacza wynosząca 450 W (watów) jest równoważna 0,45 kW (kilowatów), co można obliczyć dzieląc wartość w watach przez 1000. Kilowaty to jednostka mocy, która często jest używana w kontekście zasilania urządzeń elektrycznych i systemów energetycznych. Przykładowo, sprzęt komputerowy, zasilacze do gier czy urządzenia domowe często podawane są w watach, jednak dla większych instalacji, takich jak panele słoneczne czy systemy grzewcze, moc wyrażana jest w kilowatach. Znajomość przelicznika między tymi jednostkami jest kluczowa przy projektowaniu instalacji elektrycznych, aby odpowiednio dobrać zasilacz do potrzeb urządzenia oraz zapewnić efektywność energetyczną. Standardy branżowe, takie jak IEC 61000, zalecają dokładne określenie mocy zasilającej, aby uniknąć przeciążeń i uszkodzeń sprzętu. Zrozumienie tych pojęć jest niezbędne dla każdego profesjonalisty w dziedzinie elektrotechniki.

Pytanie 31

Określenie najlepszej trasy dla połączenia w sieci to

A. sniffing
B. tracking
C. routing
D. conntrack
Sniffing, tracking i conntrack to pojęcia, które, chociaż związane z sieciami komputerowymi, odnoszą się do zupełnie innych procesów niż routing. Sniffing polega na przechwytywaniu pakietów danych w sieci, co może być użyteczne w kontekście analizowania ruchu sieciowego, ale nie ma nic wspólnego z określaniem tras. Z kolei tracking odnosi się do śledzenia i monitorowania stanu połączeń, co jest użyteczne w kontekście zarządzania sesjami, ale nie wpływa na trasę, jaką wybierają dane. Conntrack to mechanizm, który umożliwia śledzenie stanów połączeń w firewallach, co również nie jest równoznaczne z routingiem. Błędne myślenie, które prowadzi do wyboru tych odpowiedzi, często wynika z zamieszania pomiędzy różnymi funkcjami sieciowymi. Zrozumienie, że routing jest procesem podejmowania decyzji o trasach dla przesyłanych danych, jest kluczowe. Wiele osób mylnie kojarzy te terminy, nie dostrzegając, że każdy z nich pełni odrębną rolę w ekosystemie sieciowym. Dlatego istotne jest, aby mieć na uwadze, że routing nie tylko kieruje ruchem, ale jest także fundamentem sprawnej komunikacji w każdej sieci.

Pytanie 32

Administrator powinien podzielić adres 10.0.0.0/16 na 4 jednorodne podsieci zawierające równą liczbę hostów. Jaką maskę będą miały te podsieci?

A. 255.255.0.0
B. 255.255.128.0
C. 255.255.224.0
D. 255.255.192.0
Odpowiedzi 255.255.0.0 oraz 255.255.128.0 nie są poprawne, ponieważ nie uwzględniają właściwego podziału adresu 10.0.0.0/16 na 4 równe podsieci. Maski 255.255.0.0 oraz 255.255.128.0 odpowiadają odpowiednio maskom /16 i /17, co oznacza, że nie dzielą one sieci na 4 części. W przypadku maski 255.255.0.0, cała sieć 10.0.0.0 pozostaje jako jedna duża sieć z 65,536 adresami, co nie odpowiada wymaganiu podziału. Z kolei maska 255.255.128.0 (czyli /17) dzieli tę sieć na dwa bloki po 32,768 adresów, co również nie spełnia wymogu podziału na cztery równe podsieci. Z kolei odpowiedź 255.255.224.0 również nie jest poprawna, mimo że zbliża się do podziału, gdyż odpowiada masce /19 i dzieliłaby sieć na 8 podsieci zamiast wymaganych 4. Kluczowym błędem jest nieprawidłowe obliczenie ilości wymaganych bitów do podziału. Każda zmiana w liczbie bitów w masce wpływa na liczbę dostępnych podsieci i hostów, dlatego istotne jest, aby zawsze dokładnie analizować zadane pytanie, zrozumieć koncepcję CIDR oraz zasady podziału sieci. Dobrą praktyką jest wizualizacja podziałów poprzez rysowanie diagramów podsieci, co ułatwia zrozumienie tematu.

Pytanie 33

Do zarządzania przydziałami przestrzeni dyskowej w systemach Windows 7 oraz Windows 8 wykorzystywane jest narzędzie

A. perfmon
B. dcpromo
C. fsutil
D. query
Query to narzędzie, które jest używane do uzyskiwania informacji na temat systemu, ale nie jest odpowiednie do zarządzania przydziałami dyskowymi. Zostało zaprojektowane głównie do monitorowania i analizowania wydajności, a jego funkcjonalność koncentruje się na raportowaniu stanu systemu oraz podzespołów. W związku z tym, korzystanie z query w kontekście zarządzania dyskami prowadzi do nieporozumień, ponieważ narzędzie to nie oferuje funkcji potrzebnych do tworzenia lub modyfikacji przydziałów dyskowych. Perfmon to z kolei narzędzie do monitorowania wydajności, które zbiera dane z różnych składników systemu, takich jak CPU, pamięć, czy dyski, jednak również nie jest przeznaczone do zarządzania przydziałami. Skupia się na analizie i raportowaniu, co czyni je nieodpowiednim narzędziem w kontekście modyfikacji przydziałów dyskowych. Dcpromo jest narzędziem używanym do promowania serwera do roli kontrolera domeny, co jest zupełnie inną funkcjonalnością niż zarządzanie dyskami. Nieprawidłowe wybory mogą wynikać z mylnego przekonania, że różne narzędzia monitorujące i raportujące mogą pełnić funkcję zarządzania dyskami, podczas gdy każde z nich ma swoje specyficzne zastosowania. Właściwe zrozumienie ról i funkcji tych narzędzi jest kluczowe dla efektywnego zarządzania systemem operacyjnym.

Pytanie 34

Jakie narzędzie w systemie Windows umożliwia kontrolę prób logowania do systemu?

A. instalacji
B. zabezpieczeń
C. systemu
D. programów
Dziennik zabezpieczeń w systemie Windows to kluczowe narzędzie odpowiedzialne za monitorowanie i rejestrowanie prób logowania oraz innych istotnych zdarzeń związanych z bezpieczeństwem. Odpowiedź "zabezpieczeń" (#3) jest prawidłowa, ponieważ dziennik ten zbiera informacje o wszystkich próbach logowania, zarówno udanych, jak i nieudanych, co jest niezbędne dla administratorów systemów w celu analizy potencjalnych incydentów bezpieczeństwa. Użycie dziennika zabezpieczeń pozwala na śledzenie aktywności użytkowników oraz identyfikację nieautoryzowanych prób dostępu. Przykładowo, administrator może wykorzystać informacje z dziennika zabezpieczeń do audytu działań użytkowników oraz do przeprowadzania analiz ryzyka, co jest zgodne z najlepszymi praktykami w zakresie zarządzania bezpieczeństwem informacji (np. ISO 27001). Dziennik ten jest również użyteczny w kontekście spełniania wymogów regulacyjnych, takich jak RODO, gdzie monitorowanie dostępu do danych osobowych jest kluczowym elementem zgodności. Regularna analiza dziennika zabezpieczeń jest istotna dla utrzymania wysokiego poziomu bezpieczeństwa w organizacji.

Pytanie 35

Przy zmianach w rejestrze Windows w celu zapewnienia bezpieczeństwa należy najpierw

A. zweryfikować, czy na komputerze nie ma wirusów
B. sprawdzić obecność błędów na dysku
C. utworzyć kopię zapasową ważnych plików
D. wyeksportować klucze rejestru do pliku
Podejmowanie działań związanych z bezpieczeństwem systemu Windows wymaga zrozumienia, jakie kroki są rzeczywiście kluczowe przed wprowadzeniem jakichkolwiek modyfikacji w rejestrze. Wykonanie kopii zapasowej ważnych dokumentów, choć istotne, nie odnosi się bezpośrednio do bezpieczeństwa operacji w rejestrze. Dokumenty mogą być utracone w wyniku awarii systemu, ale nie mają związku z samymi zmianami w rejestrze. Sprawdzanie błędów na dysku oraz skanowanie komputera w poszukiwaniu wirusów, choć może być częścią rutynowego utrzymania systemu, nie są bezpośrednio związane z modyfikacją rejestru. Problemy z dyskiem twardym mogą wprawdzie wpłynąć na działanie systemu, ale nie ma to związku z zapobieganiem konsekwencjom błędnych modyfikacji rejestru. Typowym błędem myślowym w tym kontekście jest zakładanie, że zabezpieczenie dokumentów czy zdrowia dysku wystarczy do ochrony przed potencjalnymi błędami w rejestrze. W praktyce, kompleksowa strategia zabezpieczeń powinna obejmować zarówno ochronę danych użytkowników, jak i zapewnienie integralności samego systemu operacyjnego, co czyni eksport kluczy rejestru niezbędnym krokiem w kontekście każdej poważnej modyfikacji systemu.

Pytanie 36

Na ilustracji przedstawiono część procesu komunikacji z serwerem, która została przechwycona przez aplikację Wireshark. Jaki to serwer?

Ilustracja do pytania
A. DHCP
B. WWW
C. FTP
D. DNS
FTP jest protokołem sieciowym stosowanym do przesyłania plików pomiędzy klientem a serwerem. W odróżnieniu do DHCP FTP nie zajmuje się przydziałem adresów IP lecz umożliwia transfer danych w sieci. Charakteryzuje się operacjami takimi jak przesyłanie pobieranie i zarządzanie plikami na serwerze co czyni go nieodpowiednim do roli przypisywania adresów IP. Protokół DNS zajmuje się tłumaczeniem nazw domenowych na adresy IP co jest istotne dla wczytywania stron internetowych i usług sieciowych. Pomimo że DNS jest kluczową częścią działania internetu nie ma udziału w bezpośrednim przypisywaniu adresów IP urządzeniom w sieci co jest głównym zadaniem DHCP. Protokoły WWW takie jak HTTP czy HTTPS są używane do przesyłania stron internetowych i danych pomiędzy serwerem a przeglądarką użytkownika. WWW koncentruje się na dostarczaniu zawartości internetowej zamiast na zarządzaniu adresacją IP w sieci. Błędne przypisanie protokołów takich jak FTP DNS czy WWW do funkcji DHCP wynika z niezrozumienia ich podstawowych funkcji i różnic między nimi. Każdy z tych protokołów odgrywa unikalną rolę w sieci ale tylko DHCP jest odpowiedzialny za dynamiczne przydzielanie adresów IP co czyni go kluczowym składnikiem infrastruktury sieciowej. Zrozumienie różnic w zastosowaniach tych protokołów pomaga w zapewnieniu prawidłowej konfiguracji i optymalnego działania sieci komputerowej.

Pytanie 37

Czym jest parametr, który określa, o ile moc sygnału w danej parze przewodów zmniejszy się po przejściu przez cały tor kablowy?

A. długość
B. przenik zbliżny
C. przenik zdalny
D. tłumienie
Tłumienie to parametr, który określa, jak bardzo sygnał zmniejsza swoją moc podczas przechodzenia przez medium, w tym przypadku przez parę przewodów. Jest to istotny aspekt w telekomunikacji i technologii przesyłania danych, ponieważ zbyt duże tłumienie może prowadzić do degradacji sygnału, co w konsekwencji wpływa na jakość transmisji. W praktyce, tłumienie może być wyrażane w decybelach na kilometr (dB/km) i jest istotne przy projektowaniu torów kablowych, aby zapewnić, że sygnał dotrze do odbiorcy w odpowiedniej jakości. W branży stosuje się różne standardy, takie jak ISO/IEC 11801, które definiują maksymalne wartości tłumienia dla różnych typów kabli. Dobrą praktyką jest regularne monitorowanie i testowanie linii transmisyjnych, aby upewnić się, że tłumienie mieści się w dopuszczalnych wartościach, co pomaga w utrzymaniu wysokiej jakości usług.

Pytanie 38

```echo off```\necho ola.txt >> ala.txt\npause\nJakie będzie skutki wykonania podanego skryptu?

A. zostanie dodany tekst ala.txt do pliku ola.txt
B. zawartość pliku ala.txt zostanie przeniesiona do pliku ola.txt
C. zostanie dopisany tekst ola.txt do pliku ala.txt
D. zawartość pliku ola.txt zostanie przeniesiona do pliku ala.txt
Niepoprawne odpowiedzi sugerują błędne zrozumienie działania polecenia "echo" oraz operatorów do zapisu w plikach. Przykładowo, pierwsza z niepoprawnych odpowiedzi twierdzi, że zawartość pliku "ola.txt" zostanie skopiowana do "ala.txt", co sugeruje, że program wykonuje operację kopiowania. W rzeczywistości, polecenie "echo" nie kopiuje zawartości pliku, lecz po prostu zapisuje wskazany tekst w pliku docelowym. Kolejna odpowiedź błędnie stwierdza, że zawartość "ala.txt" zostanie skopiowana do "ola.txt", co jest niemożliwe, ponieważ skrypt nie wykonuje żadnej operacji na "ola.txt", poza tym że wypisuje do innego pliku. Ostatnia fałszywa koncepcja, która mówi o wpisywaniu tekstu "ala.txt" do "ola.txt", całkowicie myli kierunki operacji zapisu, ponieważ żadne z wykonanych poleceń nie sugeruje, aby tekst z jednego pliku był przenoszony do drugiego. Istnieje wiele typowych błędów myślowych, które mogą prowadzić do takich niepoprawnych odpowiedzi, w tym brak zrozumienia różnicy między operacjami zapisu a kopiowania oraz nieprawidłowe wyobrażenie o funkcjonowaniu polecenia "echo". Aby zrozumieć ten temat, warto zgłębić dokumentację systemu operacyjnego oraz sposób, w jaki różne polecenia manipulują danymi w plikach.

Pytanie 39

Jaki element sieci SIP określamy jako telefon IP?

A. Serwerem Proxy SIP
B. Serwerem przekierowań
C. Serwerem rejestracji SIP
D. Terminalem końcowym
Telefon IP jest klasyfikowany jako terminal końcowy w architekturze SIP (Session Initiation Protocol). Terminal końcowy to urządzenie końcowe, które umożliwia użytkownikowi nawiązywanie, odbieranie oraz zarządzanie połączeniami głosowymi, wideo lub innymi formami komunikacji w sieci. W kontekście SIP, terminale końcowe, takie jak telefony IP, są odpowiedzialne za kończenie sesji komunikacyjnych. Przykładem zastosowania może być sytuacja w biurze, gdzie pracownicy używają telefonów IP do prowadzenia rozmów przez Internet, co pozwala na oszczędności kosztowe i lepszą jakość dźwięku w porównaniu do tradycyjnych linii telefonicznych. Współczesne telefony IP obsługują również dodatkowe funkcje, takie jak integracja z systemami CRM, co pozwala firmom na zwiększenie efektywności komunikacji. Zgodnie z najlepszymi praktykami, terminale końcowe powinny być zgodne z odpowiednimi standardami, takimi jak RFC 3261, aby zapewnić interoperacyjność oraz bezproblemową komunikację w różnych sieciach.

Pytanie 40

Jakie narzędzie jest używane do diagnozowania łączności między hostami w systemie Windows?

A. ipconfig
B. traceroute
C. route
D. ping
Odpowiedzi 'route', 'ipconfig' oraz 'traceroute' są narzędziami, które pełnią różne funkcje w zakresie zarządzania i diagnozowania sieci, ale nie służą bezpośrednio do testowania połączeń między hostami. Narzędzie 'route' jest używane do zarządzania tablicą routingu w systemie operacyjnym, co pozwala na definiowanie, jak dane są przesyłane w sieci. Jednak nie jest to narzędzie diagnostyczne do testowania dostępności hostów, lecz do analizy i modyfikacji tras, co jest przydatne w bardziej zaawansowanym zarządzaniu siecią. 'Ipconfig' jest narzędziem, które służy do wyświetlania i zarządzania konfiguracją protokołu IP na komputerze lokalnym, takim jak adres IP, maska podsieci czy brama domyślna, ale również nie służy do diagnozowania połączeń między różnymi hostami. Z kolei 'traceroute' (w systemach Windows znane jako 'tracert') pozwala na śledzenie trasy, jaką pokonują pakiety do docelowego hosta, dostarczając informacji o każdym hopsie, przez który przechodzą. Chociaż narzędzie to może pomóc w identyfikacji, gdzie może występować problem w trasie pakietów, nie jest bezpośrednim narzędziem do diagnozowania dostępności hostów, jak ma to miejsce w przypadku 'ping'. Typowym błędem myślowym jest mylenie funkcji tych narzędzi oraz ich zastosowania w różnych kontekstach diagnostycznych, co prowadzi do nieprawidłowych wniosków dotyczących ich funkcji w sieci.