Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 27 marca 2025 06:43
  • Data zakończenia: 27 marca 2025 07:09

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jakim skrótem literowym określa się oprogramowanie do tworzenia wizualizacji procesów industrialnych?

A. CAM
B. CAD
C. CAE
D. SCADA
Zrozumienie różnicy pomiędzy systemami CAM, CAE, CAD i SCADA jest kluczowe dla skutecznego wykorzystania technologii w przemyśle. CAM, czyli Computer-Aided Manufacturing, odnosi się do aplikacji wspierających procesy produkcyjne, takich jak programowanie maszyn CNC. Jego zastosowanie polega na automatyzacji produkcji, co zwiększa efektywność i precyzję wytwarzania. Z kolei CAE, czyli Computer-Aided Engineering, obejmuje narzędzia do analizy inżynieryjnej, które wspierają projektowanie i testowanie produktów poprzez symulacje komputerowe, co pozwala na optymalizację konstrukcji zanim przystąpi się do produkcji. CAD, czyli Computer-Aided Design, to systemy używane przede wszystkim do tworzenia dokumentacji technicznej oraz wizualizacji projektów inżynieryjnych. W kontekście wizualizacji procesów przemysłowych, to właśnie SCADA jest odpowiednim rozwiązaniem, które łączy w sobie elementy monitorowania i kontrolowania procesów. Pomimo że CAM, CAE i CAD są niezwykle ważnymi narzędziami w automatyzacji i inżynierii, to ich funkcjonalność i zastosowanie różnią się znacząco od SCADA, które koncentruje się na bieżącym zarządzaniu procesami. Typowym błędem myślowym jest mylenie tych systemów, co może prowadzić do nieefektywnego zarządzania procesami i niewłaściwego doboru narzędzi do konkretnych zastosowań w przemyśle.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Którego z przetworników temperatury należy użyć w układzie mechatronicznym, jeżeli:
- elementem sensorycznym w układzie jest czujnik Pt 100,
- przetwornik będzie zasilany z zasilacza wewnętrznego sterownika PLC (24 V DC),
- wyjście przetwornika podłączone będzie do wejścia analogowego 4 do 20 mA sterownika,
- układ pomiarowy będzie zamontowany na zewnątrz hali produkcyjnej?

Typ czujnika
parametr
7NG3211-PNC007NG3211-PT1007NG3211-PKL007NG3211-PN100
WejścieCzujniki
rezystancyjne
półprzewodnikowe
Czujniki
rezystancyjne
TermoparyCzujniki
rezystancyjne
Wyjście0 ÷ 20 mA0 ÷ 20 mA4 ÷ 20 mA4 ÷ 20 mA
Zasilanie8,5 ÷ 36 V DC8,5 ÷ 30 V DC8,5 ÷ 30 V DC8,5 ÷ 36 V DC
Stopień
ochrony
IP 40IP 40IP 40IP 40
Temperatura
otoczenia
0 ÷ 40°C0 ÷ 40°C-40 ÷ 80°C-40 ÷ 80°C

A. 7NG3211-PN100
B. 7NG3211-PNC00
C. 7NG3211-PKL00
D. 7NG3211-PT100
Odpowiedź 7NG3211-PN100 jest całkiem dobra. Ten przetwornik to naprawdę fajny wybór, bo obsługuje czujniki rezystancyjne Pt 100, co jest bardzo ważne, gdy mówimy o pomiarze temperatury. Pracuje na napięciu 24 V DC, więc spokojnie można go podłączyć do typowych zasilaczy, które znajdziesz w systemach PLC. No i to wyjście analogowe 4-20 mA to standard w przemyśle, co oznacza, że dane są przesyłane dokładnie i stabilnie. Dodatkowo, przetwornik został zaprojektowany do montażu na zewnątrz, co jest super, bo w przemysłowych instalacjach często trzeba mieć do czynienia z różnymi warunkami pogodowymi. Zakres temperatury od -40 do 80°C to duży plus, bo pozwala na jego wszechstronność. Ogólnie rzecz biorąc, to dobry wybór i na pewno spełni swoje zadanie w różnych sytuacjach.

Pytanie 7

Schemat połączeń układu hydraulicznego powinien być tworzony zgodnie z kierunkiem przepływu sygnału, czyli od dołu do góry. Z perspektywy elementów zasilających, wskaż właściwą sekwencję poszczególnych części układu hydraulicznego.

A. Zawory reagujące na sygnały obiektowe, zawory sterujące, elementy wykonawcze, zawory robocze
B. Zawory reagujące na sygnały obiektowe, zawory sterujące, zawory robocze, elementy wykonawcze
C. Zawory sterujące, zawory reagujące na sygnały obiektowe, zawory robocze, elementy wykonawcze
D. Zawory reagujące na sygnały obiektowe, zawory robocze, zawory sterujące, elementy wykonawcze
Błędne odpowiedzi często wynikają z niedostatecznego zrozumienia hierarchii działania elementów w układzie hydraulicznym. W wielu przypadkach mylone są funkcje zaworów sterujących i reagujących na sygnały obiektowe, co prowadzi do chaosu w logice działania systemu. Zawory reagujące na sygnały obiektowe są kluczowe, ponieważ to one odbierają informacje o stanie systemu, a ich umiejscowienie na początku procesu jest niezbędne do prawidłowego przetwarzania sygnałów. Jeśli ich kolejność zostanie zmieniona, może to prowadzić do niewłaściwego działania całego układu, co z kolei skutkuje zwiększonym ryzykiem awarii. Ponadto, zrozumienie kolejności pracy zaworów roboczych i wykonawczych jest istotne, ponieważ każdy element musi być aktywowany w odpowiednim momencie, aby zapewnić płynność pracy maszyny. W praktyce, błędna sekwencja może skutkować nieefektywnym wykorzystaniem energii hydraulicznej, co przekłada się na straty finansowe i czasowe w procesie produkcyjnym. Warto również zwrócić uwagę na standardy branżowe, które precyzują, jak powinny być projektowane i instalowane układy hydrauliczne, aby zapewnić ich optymalną wydajność i bezpieczeństwo. Niezrozumienie tych zasad może prowadzić do poważnych konsekwencji w późniejszym etapie eksploatacji systemu.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Na tabliczce znamionowej silnika indukcyjnego symbol "S1" wskazuje na

A. tryb pracy ciągłej
B. typ chłodzenia silnika
C. maksymalną temperaturę otoczenia
D. kategorię izolacji uzwojenia
Symbol "S1" na tabliczce znamionowej silnika indukcyjnego rzeczywiście oznacza pracę ciągłą. W kontekście silników elektrycznych, oznaczenie to sugeruje, że konstrukcja silnika pozwala na jego nieprzerwaną pracę przez dłuższy czas bez ryzyka przegrzania. Silniki oznaczone jako "S1" są projektowane z myślą o osiąganiu nominalnych parametrów, takich jak moc, prąd czy moment obrotowy, w sposób stabilny i efektywny. W praktyce oznacza to, że silniki te można stosować w aplikacjach, gdzie wymagana jest ciągła praca, jak na przykład w wentylatorach, pompach czy kompresorach. Zgodnie z normą IEC 60034-1 tryby pracy silników elektrycznych są precyzyjnie zdefiniowane, co pozwala inżynierom i projektantom na wybór odpowiednich urządzeń do konkretnych zastosowań, minimalizując ryzyko awarii oraz utrzymując wysoką efektywność energetyczną.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jak należy przeprowadzić pomiar ciągłości przewodów w instalacji elektrycznej?

A. przy odłączonych odbiornikach oraz włączonym napięciu zasilania
B. przy podłączonych odbiornikach oraz włączonym napięciu zasilania
C. przy odłączonych odbiornikach oraz wyłączonym napięciu zasilania
D. przy podłączonych odbiornikach oraz wyłączonym napięciu zasilania
Przeprowadzanie pomiarów ciągłości przewodów w instalacji elektrycznej w obecności napięcia zasilania oraz przy podłączonych odbiornikach jest niebezpieczne i niezgodne z obowiązującymi normami bezpieczeństwa. Użytkownicy często myślą, że można przeprowadzać pomiary pod napięciem, jednak takie podejście zwiększa ryzyko porażenia prądem oraz uszkodzenia przyrządów pomiarowych. Włączenie napięcia zasilania w trakcie badania ciągłości może prowadzić do zakłóceń w odczytach, ponieważ przyrządy pomiarowe mogą być wrażliwe na napięcie, co skutkuje fałszywymi wynikami. Dodatkowo, nieodłączone odbiorniki mogą wprowadzać dodatkowe obciążenie, przez co odczyt może być zafałszowany. Inną powszechną pomyłką jest przekonanie, że brak napięcia nie jest wystarczającym zabezpieczeniem. W rzeczywistości, wyłączenie napięcia oraz odłączenie odbiorników to kluczowe kroki, które powinny być zawsze stosowane przed przystąpieniem do jakichkolwiek prac serwisowych w instalacjach elektrycznych. To podejście nie tylko sprzyja bezpieczeństwu, ale również zapewnia dokładniejsze i bardziej wiarygodne wyniki pomiarów.

Pytanie 15

W jakiej postaci należy przedstawiać w schematach układów sterowania styki przekaźników i styczników?

A. Niewzbudzonym
B. Nieprzewodzenia
C. Wzbudzonym
D. Przewodzenia
Styki styczników i przekaźników należy przedstawiać w stanie niewzbudzonym, co jest zgodne z praktykami stosowanymi w projektowaniu schematów układów sterowania. Stan niewzbudzony odzwierciedla rzeczywistą sytuację, w której urządzenia te nie są aktywowane przez sygnał sterujący. Taki sposób reprezentacji ułatwia zrozumienie i analizę działania systemu, ponieważ jasno wskazuje na domyślne warunki pracy. W projektach zgodnych z normą IEC 61082, która dotyczy dokumentacji systemów automatyki, podkreśla się znaczenie reprezentacji stanów urządzeń w sposób, który odzwierciedla ich stan bez aktywacji. Niewzbudzone styki są także kluczowe w kontekście bezpieczeństwa, ponieważ nieprawidłowe przedstawienie ich w stanie przewodzenia mogłoby sugerować, że układ działa poprawnie, gdy w rzeczywistości może dochodzić do awarii. Przykładem zastosowania tej zasady może być układ sterujący silnikiem, gdzie styki muszą być przedstawione jako niewzbudzone, aby uniknąć ryzyka niekontrolowanego uruchomienia maszyny w wyniku błędnej interpretacji schematu.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jaki typ czujnika powinien być wykorzystany do nieprzerwanego pomiaru poziomu cieczy w zbiorniku?

A. Optyczny
B. Indukcyjny
C. Ultradźwiękowy
D. Kontaktronowy
Wybór czujników do pomiaru poziomu cieczy to dość istotna sprawa, bo źle dobrany czujnik może sprawić, że wyniki będą mijały się z prawdą. Na przykład kontaktronowy czujnik, chociaż może się sprawdzić w niektórych sytuacjach, to jednak nie nadaje się do ciągłej obserwacji poziomu. Działa na zasadzie zamykania obwodu, gdy ma kontakt z cieczą, a to nie jest to, co byśmy chcieli w przypadku stałego monitorowania. Indukcyjne czujniki też raczej nie dają rady, gdy ciecz ma różną przewodność elektryczną. Z tego co widzę, w takich sytuacjach ich wiarygodność może być dość ograniczona. Optyczne czujniki, choć mogą działać, są dość wrażliwe na zanieczyszczenia, co może prowadzić do pomyłek. Często wymagają sporo czyszczenia i konserwacji, co generuje dodatkowe koszty. Dlatego wybierając czujnik, warto stawiać na te bardziej niezawodne, jak ultradźwiękowe, bo one naprawdę potrafią zapewnić wysoką precyzję i wiarygodność pomiarów.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jaka prędkość wyjścia tłoka siłownika hydraulicznego o powierzchni czynnej A = 3·10-3 m2 będzie, jeśli natężenie przepływu wynosi Q = 1,5·10-3 m3/s?

A. 3 m/s
B. 5 m/s
C. 0,3 m/s
D. 0,5 m/s
W przypadku odpowiedzi, które nie są poprawne, kluczowe jest zrozumienie merytorycznych podstaw hydrauliki, które leżą u podstaw obliczeń prędkości w siłownikach. Odpowiedzi takie jak 0,3 m/s, 5 m/s czy 3 m/s mogą wydawać się logiczne na pierwszy rzut oka, ale wynikają z fundamentalnych błędów w interpretacji danych. Na przykład, odpowiedź 0,3 m/s nie uwzględnia prawidłowego stosunku natężenia przepływu do powierzchni tłoka, co prowadzi do niedoszacowania prędkości. Z kolei odpowiedzi 5 m/s i 3 m/s sugerują, że natężenie przepływu byłoby znacznie wyższe niż podane, co jest sprzeczne z definicją i właściwościami natężenia przepływu w układach hydraulicznych. Kluczowym błędem myślowym jest pominięcie faktu, że zmiana powierzchni przekroju poprzecznego wpływa bezpośrednio na prędkość przepływu. Aby obliczenie było poprawne, należy zawsze odnosić się do wzoru v = Q/A. W praktyce, błędne obliczenia mogą prowadzić do niewłaściwego doboru komponentów w układzie hydraulicznym, co w skrajnych przypadkach może skutkować awarią urządzenia lub nieefektywną pracą, a także zwiększonym zużyciem energii. Z tego powodu zrozumienie podstawowych zasad obliczeń hydraulicznych jest kluczowe dla inżynierów i techników pracujących w branży.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jaką metodę czyszczenia powinno się zastosować podczas montażu elementów hydraulicznych na końcowym etapie?

A. Przedmuchania sprężonym powietrzem
B. Przetarcia rozpuszczalnikiem
C. Osuszenia w wysokiej temperaturze
D. Przemycia wodą
Metoda przedmuchania sprężonym powietrzem jest kluczowym etapem w montażu elementów hydraulicznych, ponieważ pozwala na skuteczne usunięcie wszelkich drobnych zanieczyszczeń, które mogłyby wpłynąć na prawidłowe funkcjonowanie systemu. Zastosowanie sprężonego powietrza umożliwia dotarcie do trudno dostępnych miejsc, gdzie mogą gromadzić się pyły i cząstki stałe. Dobrą praktyką w branży hydraulicznej jest wykonywanie przedmuchania na zakończenie montażu, aby upewnić się, że wszystkie elementy są wolne od zanieczyszczeń przed ich uruchomieniem. W wielu przypadkach, zanieczyszczenia mogą prowadzić do awarii systemu, co z kolei może generować niepotrzebne koszty związane z naprawą i przestojem. Warto również pamiętać, że przedmuchanie sprężonym powietrzem powinno być przeprowadzane zgodnie z odpowiednimi normami BHP, aby zminimalizować ryzyko wystąpienia niebezpiecznych sytuacji. Ponadto, technika ta jest często stosowana w połączeniu z innymi metodami oczyszczania, co pozwala na uzyskanie jeszcze lepszych rezultatów, zapewniając długowieczność i niezawodność systemów hydraulicznych.

Pytanie 36

Który z parametrów wskazuje na efektywność sprężarki pneumatycznej?

A. Strumień objętości [m3/min]
B. Sprawność [%]
C. Ciśnienie [bar]
D. Prędkość obrotowa wału [obr./min]
Strumień objętości [m3/min] jest kluczowym parametrem określającym wydajność sprężarki pneumatycznej, ponieważ reprezentuje ilość powietrza, którą urządzenie jest w stanie dostarczyć w ciągu jednej minuty. Wydajność sprężarki ma bezpośredni wpływ na jej zastosowanie w różnych procesach przemysłowych, takich jak obróbka materiałów, zasilanie narzędzi pneumatycznych czy systemy transportu pneumatycznego. Wysoka wydajność sprężarki jest istotna w aplikacjach, gdzie wymagana jest ciągła i stabilna dostawa powietrza, na przykład w liniach produkcyjnych. Standardy branżowe, takie jak ISO 8573, określają wymagania dotyczące jakości powietrza i wydajności sprężarek, co podkreśla znaczenie strumienia objętości jako wskaźnika efektywności. W praktyce, przed wyborem sprężarki, warto dokładnie oszacować potrzebny strumień objętości, aby dobrać odpowiedni model, co pozwoli na optymalizację kosztów eksploatacji i zapewnienie odpowiedniego wsparcia dla procesów produkcyjnych.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

W sprężarce pneumatycznej nie ma możliwości regulacji ciśnienia powietrza. Jakie jest najbardziej prawdopodobne źródło awarii?

A. Uszkodzenie membrany w reduktorze sprężarki.
B. Uszkodzenie uszczelki w zaworze zwrotnym łączącym zbiornik z rurą tłoczącą.
C. Przerwanie obwodu elektrycznego, który zasila silnik sprężarki.
D. Zabrudzenie zaworu zasysającego powietrze
Nieprawidłowe wnioski dotyczące problemów z regulacją ciśnienia powietrza w sprężarce pneumatycznej często wynikają z błędnego zrozumienia roli poszczególnych elementów systemu. Przerwanie obwodu elektrycznego zasilającego silnik napędzający sprężarkę nie wpływa na samą regulację ciśnienia, ponieważ silnik, mimo braku zasilania, nie ma wpływu na wewnętrzne funkcje reduktora. Dodatkowo, uszkodzenie uszczelki w zaworze zwrotnym, chociaż może powodować wycieki powietrza, nie jest bezpośrednią przyczyną braku regulacji ciśnienia, a raczej skutkiem ubocznym, który może manifestować się w inny sposób, na przykład w postaci spadku ciśnienia w zbiorniku. Zabrudzenie zaworu zasysającego powietrze również prowadzi do problemów, ale jego wpływ na regulację jest pośredni i zależny od innych czynników. Ważne jest, aby przy analizie awarii sprężarki stosować logiczne podejście, które uwzględnia wszystkie aspekty działania systemu pneumatycznego, w tym rolę reduktora w kontrolowaniu ciśnienia. Zrozumienie mechanizmów działania sprężarki i jej komponentów jest kluczowe dla skutecznego diagnozowania problemów i wdrażania skutecznych rozwiązań w praktyce przemysłowej.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.