Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 23 maja 2025 09:47
  • Data zakończenia: 23 maja 2025 10:02

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Przy pracy z urządzeniami, które są zasilane, należy używać narzędzi izolowanych oznaczonych

A. symbolem podwójnego trójkąta z określoną wartością napięcia
B. napisem "narzędzie bezpieczne"
C. zielonym kolorem z żółtą obręczą
D. symbolem kwadratu z określoną wartością napięcia
Stosowanie narzędzi izolowanych w pracy z urządzeniami pod napięciem jest niezwykle istotne dla zapewnienia bezpieczeństwa, jednak nie wszystkie oznaczenia są równoznaczne z właściwym zabezpieczeniem. Odpowiedzi wskazujące na kolor zielony z żółtym pierścieniem, znak kwadratu z wartością napięcia czy napis "narzędzie bezpieczne" nie mają podstaw w powszechnie uznawanych standardach. Narzędzia oznaczone kolorem zielonym z żółtym pierścieniem mogą sugerować, że są one przeznaczone do użytku w określonych warunkach, ale nie dostarczają konkretnej informacji o ich odporności na napięcie, co jest kluczowe w pracy z elektrycznością. Z kolei oznaczenie kwadratu z wartością napięcia może być mylące, ponieważ nie określa ono, czy narzędzie jest rzeczywiście izolowane, a tylko wskazuje na parametry, które mogą być różne w zależności od zastosowania. Ponadto, napis "narzędzie bezpieczne" nie jest standardowym oznaczeniem w branży, co może prowadzić do fałszywego poczucia bezpieczeństwa u użytkowników. Wiele osób myśli, że wystarczy jedynie odpowiedni kolor lub napis, aby zapewnić sobie bezpieczeństwo. Takie myślenie jest błędne, ponieważ bezpieczeństwo w pracy z elektrycznością wymaga dokładnej znajomości specyfikacji narzędzi oraz ich zastosowania. Kluczowe jest, aby operatorzy sprzętu byli świadomi, że tylko narzędzia oznaczone z zachowaniem norm, takich jak podwójny trójkąt z określeniem wartości napięcia, mogą zagwarantować odpowiedni poziom ochrony przed porażeniem elektrycznym.

Pytanie 2

Do działań wstępnych, które pozwolą na prawidłowy montaż nowego paska klinowego w przekładni pasowej, nie należy zaliczać

A. oceny stopnia naprężenia
B. sprawdzenia wymiarów
C. weryfikacji czystości paska
D. analizy stopnia zużycia
Wszystkie wymienione czynności, z wyjątkiem sprawdzenia stopnia naprężenia, są istotnymi operacjami przygotowawczymi, które należy wykonać przed montażem nowego paska klinowego. Weryfikacja wymiarów jest kluczowym krokiem, ponieważ właściwe dopasowanie paska do przekładni pasowej zapewnia jego prawidłowe działanie. W przeciwnym razie, jeśli pasek będzie za długi lub za krótki, może prowadzić do nadmiernego zużycia, a nawet uszkodzenia innych elementów układu napędowego. Kontrola czystości paska oraz otoczenia montażowego również nie może być pomijana. Zanieczyszczenia mogą prowadzić do niewłaściwego osadzenia paska, co z kolei może skutkować awariami. Ocena stopnia zużycia jest równie ważna, gdyż pozwala na identyfikację, czy wymiana paska jest rzeczywiście konieczna. Typowym błędem myślowym jest przekonanie, że sprawdzenie naprężenia można wykonać przed montażem paska. Jednakże naprężenie dotyczy już zamontowanego paska, dlatego nie jest to czynność przygotowawcza. Właściwe zrozumienie procesu montażu paska klinowego i związanych z nim operacji przygotowawczych jest kluczowe dla zapewnienia długotrwałego i niezawodnego działania układów napędowych.

Pytanie 3

Przed ponownym połączeniem silnika elektrycznego z napędzaną maszyną konieczne jest przeprowadzenie

A. pomiary obrotów wirnika
B. kontroli kierunku obrotu wirnika
C. pomiary napięcia zasilającego
D. kontroli temperatury uzwojenia
Pomiar napięcia zasilania, prędkości wirnika i kontrola temperatury stojana to istotne rzeczy w pracy silników elektrycznych, ale przed ponownym połączeniem silnika z maszyną nie są aż tak kluczowe. Wydaje mi się, że skupienie na napięciu może być trochę mylące, bo choć prawidłowe napięcie jest konieczne do dobrego działania silnika, to wcale nie zapewnia, że wirnik obraca się w dobrą stronę. Czasami napięcie jest w normie, a kierunek obrotów i tak jest zły, co może prowadzić do poważnych szkód. Co do prędkości wirnika, to też jest to ważne, ale bardziej w kontekście wydajności. Nie można jednak polegać tylko na tym, by wiedzieć, czy sprzęt jest gotowy do pracy, bo prędkość nie mówi nam nic o kierunku, w jakim wirnik się obraca. Kontrola temperatury stojana jest bardziej związana z tym, jak pracuje silnik, a nie z jego przygotowaniem do połączenia. Wysoka temperatura może oznaczać problemy, ale nic nie mówi o kierunku obrotów. Dlatego, stawianie na te kwestie przed połączeniem, może prowadzić do błędnych wniosków i ryzyka awarii, co pokazuje, jak ważne jest, żeby najpierw upewnić się, że kierunek obrotów jest prawidłowy.

Pytanie 4

W normalnych warunkach działania wyłącznika różnicowoprądowego wektorowa suma natężeń prądów sinusoidalnych przepływających w przewodach fazowych oraz neutralnym wynosi

A. 0 A
B. 3 A
C. 2 A
D. 1 A
Odpowiedzi 1 A, 2 A i 3 A sugerują istnienie różnicy prądów w obwodzie, co w przypadku prawidłowego działania wyłącznika różnicowoprądowego jest niepoprawne. Wyłącznik ten działa na zasadzie pomiaru różnicy między prądem wpływającym a wypływającym, a w warunkach normalnych te dwa prądy powinny być równe, co prowadzi do zera. W przypadku podania wartości 1 A, 2 A czy 3 A można by błędnie wnioskować, że w obwodzie występuje jakaś forma upływu prądu, co jest mylące. Typowym błędem w myśleniu jest założenie, że każdy prąd płynący przez obwód musi generować różnice natężeń, co nie jest zgodne z zasadami zachowania energii. W praktyce, w instalacjach elektrycznych, sumowanie prądów sinusoidalnych w obwodzie powinno zawsze prowadzić do zera, co jest warunkiem stabilności i bezpieczeństwa systemu. Warto pamiętać, że niewłaściwe zrozumienie działania wyłączników różnicowoprądowych może prowadzić do błędnych decyzji w projektowaniu i eksploatacji instalacji elektrycznych, co w skrajnych przypadkach może zagrażać życiu i zdrowiu użytkowników.

Pytanie 5

Który z poniższych elementów nagle obniża swoją rezystancję po osiągnięciu określonego poziomu napięcia na jego terminalach?

A. Tensometr.
B. Gaussotron.
C. Termistor.
D. Warystor.
Warystor to element elektroniczny, którego rezystancja gwałtownie spada po przekroczeniu określonego napięcia, znanego jako napięcie nominalne. Ten mechanizm jest zjawiskiem nieliniowym, co oznacza, że warystor działa jako izolator, gdy napięcie jest poniżej tego poziomu, ale staje się przewodnikiem, gdy napięcie przekracza tę granicę. Warystory są często stosowane w obwodach ochronnych, aby zabezpieczać urządzenia przed przepięciami, na przykład w zasilaczach oraz w systemach zabezpieczeń. Gdy napięcie wzrasta, warystor skutecznie 'odprowadza' nadmiar energii, co zapobiega uszkodzeniu innych komponentów w obwodzie. Z punktu widzenia norm i dobrych praktyk, warystory są zalecane w projektach, gdzie występuje ryzyko przepięć, zgodnie z normami IEC 61000-4-5 dotyczącymi odporności na przepięcia. Dodatkowo, ich zastosowanie w ochronie obwodów elektronicznych staje się kluczowe w kontekście wzrastającej liczby urządzeń narażonych na zakłócenia sieciowe oraz zmienność napięcia.

Pytanie 6

Obniżenie temperatury czynnika w sprężarkach skutkuje

A. osadzaniem zanieczyszczeń na dnie zbiornika
B. wzrostem ciśnienia sprężonego powietrza
C. skraplaniem pary wodnej oraz osuszaniem powietrza
D. powiększaniem objętości sprężonego powietrza
Wzrost ciśnienia sprężonego powietrza po schłodzeniu czynnika jest zjawiskiem fizycznym wynikającym z zastosowania zasady gazów doskonałych, która mówi, że przy stałej objętości gazu, jego ciśnienie rośnie wraz ze spadkiem temperatury. W praktyce, schładzanie czynnika roboczego w sprężarkach służy nie tylko do podniesienia efektywności procesu sprężania, ale również do dehydratacji powietrza, co jest kluczowe w aplikacjach przemysłowych. Zastosowanie systemów chłodzenia w sprężarkach przyczynia się do redukcji kondensacji pary wodnej, co zapobiega korozji i osadzaniu się zanieczyszczeń w układzie pneumatycznym. Udoskonalone systemy, takie jak sprężarki o wyższej wydajności czy chłodnice powietrza, przyczyniają się do zwiększenia efektywności energetycznej, co jest zgodne z najlepszymi praktykami w branży. W efekcie, poprawa ciśnienia sprężonego powietrza poprzez schładzanie czynnika roboczego jest kluczowym elementem dla uzyskania wysokiej jakości sprężonego powietrza.

Pytanie 7

Olej mineralny wzbogacony składnikami, które poprawiają właściwości antykorozyjne oraz odporność na starzenie, a także z dodatkami zwiększającymi smarność, oznaczany jest jakim symbolem?

A. HLP
B. HVLP
C. H
D. HL
Wybór złych symboli olejów może sporo namieszać w ich właściwościach względem potrzeb. Na przykład, symbol HVLP mówi o olejach hydraulicznych, które mają dobre właściwości smarujące, ale brakuje im tych dodatków antykorozyjnych. Również symbol HL informuje o olejach, które nie mają dodatków przeciwutleniających ani poprawiających smarność, co ogranicza ich użycie w trudniejszych warunkach. Znowu, oznaczenie H dotyczy olejów hydraulicznych, które nie mówią nic więcej o ich specyficznych właściwościach. Często myli się te symbole i ich zastosowanie, co może prowadzić do poważnych problemów w hydraulikach, jak przegrzewanie czy korozja. Dlatego tak ważne jest, aby znać różnice między tymi oznaczeniami i wiedzieć, jak je stosować w praktyce w przemyśle.

Pytanie 8

Falownik to urządzenie przetwarzające moc, które konwertuje prąd

A. zmienny o regulowanej częstotliwości na prąd zmienny 50 Hz
B. stały na prąd zmienny o regulowanej częstotliwości
C. zmienny o częstotliwości 50 Hz na prąd stały
D. trój fazowy na prąd jednofazowy
Falownik jest kluczowym urządzeniem w systemach zasilania, które przekształca prąd stały (DC) na prąd zmienny (AC) o regulowanej częstotliwości. Ta funkcjonalność jest istotna w wielu zastosowaniach, w tym w napędach silników elektrycznych, gdzie regulacja prędkości i momentu obrotowego jest niezbędna do efektywnego działania. Falowniki są szeroko stosowane w przemyśle, na przykład w systemach HVAC (ogrzewanie, wentylacja, klimatyzacja), które wymagają elastycznej regulacji wydajności. Dzięki zastosowaniu falowników, użytkownicy mogą oszczędzać energię, co jest zgodne z zasadami zrównoważonego rozwoju oraz standardami efektywności energetycznej, takimi jak normy IEC 61800. Współczesne falowniki często wyposażone są w zaawansowane funkcje, takie jak kontrola wektora, co pozwala na osiąganie wysokiej precyzji w regulacji parametrów pracy. W praktyce, przekształcenie DC na AC umożliwia zasilanie różnych urządzeń zasilanych prądem zmiennym, co czyni falowniki niezbędnymi w nowoczesnych systemach automatyki oraz robotyki.

Pytanie 9

Jaką metodę należy wykorzystać do pomiaru prędkości obrotowej wirnika silnika napędzającego system mechatroniczny?

A. Termoluminescencyjną
B. Ultradźwiękową
C. Radiometryczną
D. Stroboskopową
Odpowiedź stroboskopowa jest prawidłowa, ponieważ technika ta jest powszechnie stosowana do pomiaru prędkości obrotowej wirujących elementów, takich jak wały silników. Stroboskopowe pomiary opierają się na zjawisku stroboskopowym, które wykorzystuje krótkie impulsy światła emitowane przez stroboskop do oświetlania wirującego obiektu. W momencie, gdy częstotliwość błysków stroboskopu jest zsynchronizowana z prędkością obrotową wału, obiekt wydaje się zatrzymany, co pozwala dokładnie określić jego prędkość obrotową. Przykładem zastosowania tej metody mogą być sytuacje w przemyśle, gdzie konieczne jest monitorowanie prędkości wałów w maszynach produkcyjnych. Metoda stroboskopowa jest również preferowana w badaniach laboratoryjnych, ponieważ nie wpływa na działanie mierzonych elementów, co jest zgodne z najlepszymi praktykami w inżynierii. Dodatkowo, ta metoda jest szeroko opisana w normach takich jak ISO 24410, które określają wymagania dotyczące pomiarów prędkości obrotowej.

Pytanie 10

Jakie urządzenie jest używane do pomiaru ciśnienia w systemach hydraulicznych?

A. tensometr
B. przepływomierz
C. manometr
D. zawór nadążny
Chociaż tensometry, zawory nadążne i przepływomierze pełnią ważne funkcje w systemach hydraulicznych, nie są one odpowiednie do bezpośredniego pomiaru ciśnienia. Tensometry służą do mierzenia odkształceń materiałów, co ma zastosowanie w kontrolach strukturalnych, ale nie dostarczają bezpośrednich informacji o ciśnieniu w układzie hydraulicznym. Z kolei zawory nadążne są mechanizmami regulacyjnymi, które kontrolują przepływ płynów, ale nie są urządzeniami pomiarowymi i nie mogą samodzielnie dostarczać danych o ciśnieniu. Przepływomierze natomiast mierzą przepływ cieczy lub gazu i dostarczają informacji o ilości medium przechodzącego przez dany punkt, ale nie informują o ciśnieniu, które jest kluczowym aspektem w monitorowaniu stanu układów hydraulicznych. Zrozumienie, jakie urządzenia służą do konkretnego zastosowania, jest kluczowe dla efektywności i bezpieczeństwa operacji w inżynierii hydraulicznej. Typowym błędem jest mylenie funkcji tych urządzeń, co może prowadzić do niewłaściwego doboru sprzętu oraz potencjalnych awarii systemów hydraulicznych.

Pytanie 11

Jaką sprężarkę klasyfikuje się jako sprężarkę wyporową?

A. Sprężarkę promieniową
B. Turbosprężarkę
C. Sprężarkę śrubową
D. Sprężarkę osiową
Sprężarka śrubowa to jeden z typów sprężarek wyporowych, które działają na zasadzie mechanicznego zwiększania ciśnienia gazu poprzez jego zmniejszanie objętości w zamkniętej przestrzeni. W sprężarkach śrubowych dwa wirniki, w kształcie śrub, obracają się w przeciwnych kierunkach, co powoduje zasysanie gazu i jego sprężanie. Taki typ sprężarki jest szeroko stosowany w przemyśle, w tym w systemach pneumatycznych, systemach chłodzenia oraz w aplikacjach wymagających ciągłego przepływu sprężonego powietrza. Dzięki swojej konstrukcji, sprężarki śrubowe charakteryzują się wysoką wydajnością, niskim poziomem hałasu oraz długą żywotnością. Standardy branżowe, takie jak ISO 8573-1, określają wymagania dotyczące jakości sprężonego powietrza, co sprawia, że sprężarki śrubowe są często wybierane ze względu na ich zdolność do dostarczania powietrza o wysokiej czystości i niskiej wilgotności, co jest kluczowe w wielu zastosowaniach przemysłowych.

Pytanie 12

Jakiego rodzaju materiału należy użyć do produkcji narzędzi do mechanicznej obróbki skrawaniem, takich jak frezy?

A. Mosiądz
B. Stal szybkotnącą
C. Brąz
D. Żeliwo szare
Stal szybkotnąca, znana również jako stal HSS (high-speed steel), jest materiałem o wysokiej twardości i odporności na ścieranie, co czyni ją idealnym wyborem do produkcji narzędzi skrawających takich jak frezy. Jej zdolność do zachowania wysokiej wydajności przy dużych prędkościach obróbczych sprawia, że jest powszechnie stosowana w przemyśle metalowym. Przykładowo, narzędzia wykonane z stali szybkotnącej mogą pracować w temperaturach przekraczających 600°C, co znacznie zwiększa ich efektywność w mechanicznej obróbce metali. Ponadto, stal HSS posiada doskonałe właściwości cieplne, co umożliwia jej użycie w formach skrawających, które są narażone na intensywne warunki pracy. Dzięki tym właściwościom, stal szybkotnąca jest zgodna z normami ISO oraz innymi standardami jakości, co czyni ją najlepszym wyborem do produkcji narzędzi skrawających.

Pytanie 13

Która z wymienionych działań, które są częścią montażu osłon przy użyciu wielu mocowań śrubowych, powinna być realizowana ściśle zgodnie z wytycznymi?

A. Smarowanie odpowiednim smarem
B. Polerowanie ręczne powierzchni
C. Dobór narzędzi
D. Dokręcanie śrub
Dokręcanie śrub jest kluczowym etapem montażu osłon za pomocą połączeń śrubowych, ponieważ ma na celu zapewnienie odpowiedniej siły i stabilności całej konstrukcji. Zgodnie z normami branżowymi, każde połączenie mechaniczne powinno być dokręcone zgodnie z zaleceniami producenta oraz przy użyciu odpowiednich narzędzi, które gwarantują dokładność momentu dokręcania. Przykładowo, w przypadku zastosowania połączeń śrubowych w motoryzacji, niewłaściwe dokręcenie może prowadzić do wibracji, uszkodzeń komponentów oraz w konsekwencji do poważnych awarii. Ważne jest również, aby stosować się do procedur, takich jak sekwencyjne dokręcanie, które ma na celu równomierne rozłożenie sił i minimalizację ryzyka deformacji elementów. Ponadto, zastosowanie momentomierzy jest rekomendowane, aby uzyskać powtarzalność i zgodność z wymaganiami technicznymi. Takie podejście nie tylko zwiększa bezpieczeństwo, ale również przedłuża żywotność montowanych osłon, co jest kluczowe w kontekście efektywności i niezawodności mechanizmów.

Pytanie 14

Metoda osuszania sprężonego powietrza, w której w pierwszej fazie usuwana jest para wodna oraz olej za pomocą węgla aktywowanego, a w drugiej następuje odessanie pary wodnej w kapilarach żelu krzemionkowego, określana jest jako

A. konwekcją
B. desorpcją
C. adsorpcją
D. absorpcją
W procesach związanych z osuszaniem sprężonego powietrza, niepoprawne odpowiedzi mogą być mylące, szczególnie dla osób mniej zaznajomionych z terminologią. Konwekcja odnosi się do transportu ciepła poprzez ruch płynów, a nie do procesu usuwania wilgoci. Absorpcja, choć wydaje się zbliżona, polega na wchłanianiu substancji przez inną substancję, co różni się od adsorpcji, gdzie cząsteczki są przyciągane do powierzchni materiału, a nie wnikają w jego objętość. Desorpcja z kolei to proces, w którym substancje, wcześniej adsorbowane, są uwalniane z powierzchni materiału, a więc nie jest to etap osuszania, a raczej proces przeciwny. Te nieścisłości mogą prowadzić do błędnych wniosków w kontekście doboru technologii osuszania w różnych aplikacjach przemysłowych. Zrozumienie różnic pomiędzy tymi procesami jest kluczowe dla efektywnego zaprojektowania systemów uzdatniania powietrza, które spełniają wymagania jakościowe oraz normy branżowe, takie jak ISO 8573. W związku z tym, aby skutecznie przeprowadzić proces usuwania wilgoci, należy skupić się na technikach adsorpcji, które zapewniają najwyższą efektywność oraz niezawodność w aplikacjach wymagających precyzyjnej kontroli warunków atmosferycznych.

Pytanie 15

Podczas naprawy pieca indukcyjnego pracownik doznał poparzenia ramienia. Jaką pomoc powinien otrzymać w pierwszej kolejności?

A. miejsca oparzone polewać zimną wodą, a następnie na ranę oparzeniową założyć jałowy opatrunek
B. miejsca oparzone posmarować tłustym kremem, a następnie na ranę oparzeniową zastosować okład z 1% kwasu octowego
C. zdjąć odzież i bieliznę z oparzonych miejsc, a następnie miejsca oparzone polewać wodą utlenioną
D. zdjąć odzież i bieliznę z oparzonych miejsc, a następnie na ranę oparzeniową nałożyć okład z 3% roztworu sody oczyszczonej
Odpowiedź dotycząca polewania miejsc oparzonych zimną wodą jest prawidłowa, ponieważ pierwszym krokiem w przypadku oparzeń jest schłodzenie uszkodzonego miejsca. Schłodzenie oparzenia zimną wodą (najlepiej w temperaturze pokojowej lub lekko chłodnej) powinno trwać od 10 do 20 minut. Dzięki temu zmniejsza się ból oraz ogranicza głębokość oparzenia. Woda działa również jako czynnik nawilżający, co jest istotne, ponieważ oparzenia mogą prowadzić do dalszej utraty wilgoci. Po schłodzeniu, na oparzenie należy nałożyć jałowy opatrunek, co jest standardową praktyką w pierwszej pomocy. Opatrunek chroni ranę przed zanieczyszczeniami oraz sprzyja procesowi gojenia. Warto wspomnieć, że w przypadku poważniejszych oparzeń, w tym oparzeń drugiego i trzeciego stopnia, niezbędna jest konsultacja z lekarzem. Stosowanie jałowego opatrunku jest zgodne z wytycznymi zawartymi w podręcznikach dotyczących pierwszej pomocy."

Pytanie 16

Do metod oceny stanu łożysk tocznych nie zalicza się pomiaru

A. prędkości
B. hałasów
C. ciepłoty
D. wibracji
Wybór pomiaru drgań, szumów czy temperatury do oceny stanu łożysk tocznych wydaje się sensowny, ale pomiar prędkości nie ma tak solidnych podstaw. Drgania są kluczowe w diagnostyce maszyn, bo ich analiza może pomóc w wczesnym wykrywaniu problemów, jak uszkodzenia czy niewłaściwe ustawienie. Pomiar szumów też jest ważny, bo może ujawniać nieprawidłowości w pracy łożysk. Monitorowanie temperatury jest istotne, żeby zapobiec przegrzewaniu łożysk, co jest ważne dla ich trwałości. Samo mierzenie prędkości obrotowej nie daje wystarczających informacji o stanie łożysk, bo nie bierze pod uwagę czynników, które mogą wpływać na ich wydajność, jak uszkodzenia czy zużycie. Te dwa pojęcia często się myli, co prowadzi do błędnych wniosków. Lepiej skupić się na kompleksowej analizie drgań, która lepiej oddaje stan łożysk. Warto zrozumieć, że diagnostyka łożysk wymaga różnych metod, a nie tylko pomiaru prędkości.

Pytanie 17

Czy rdzenie maszyn elektrycznych produkuje się z stali?

A. krzemowych
B. krzemowo-manganowych
C. chromowych
D. chromowo-krzemowych
Wybór stali chromowej, chromowo-krzemowej czy krzemowo-manganowej jako materiałów rdzeniowych dla maszyn elektrycznych świadczy o pewnym nieporozumieniu w kwestii zastosowania materiałów ferromagnetycznych. Stal chromowa, choć charakteryzująca się wysoką odpornością na korozję, nie jest optymalnym materiałem dla rdzeni magnetycznych ze względu na wysokie straty magnetyczne, które prowadzą do obniżenia efektywności energetycznej urządzeń. Z kolei stal chromowo-krzemowa, mimo że zawiera krzem, nie ma takich samych właściwości magnetycznych jak czysta stal krzemowa, co ogranicza jej zastosowanie w maszynach elektrycznych. Dodatkowo, stal krzemowo-manganowa również nie jest odpowiednia, gdyż mangan wpływa na właściwości magnetyczne w sposób negatywny, zwiększając straty energii. W praktyce, używanie tych rodzajów stali może prowadzić do problemów z wydajnością i przegrzewaniem się urządzeń, co jest sprzeczne z zasadami projektowania efektywnych maszyn elektrycznych. Kluczowe jest zrozumienie, że dobór odpowiednich materiałów w inżynierii elektrycznej nie jest przypadkowy, lecz oparty na szczegółowych badaniach właściwości fizycznych i chemicznych materiałów. Prawidłowe zrozumienie właściwości materiałów oraz ich zastosowania jest kluczowe dla projektowania nowoczesnych urządzeń elektrycznych, a wybór stali krzemowej jako materiału rdzeniowego jest potwierdzony przez liczne standardy branżowe.

Pytanie 18

Które z poniższych urządzeń nie należy do kategorii mechatronicznych?

A. drukarka laserowa
B. chłodziarko-zamrażarka z cyfrowym sterowaniem
C. silnik indukcyjny klatkowy
D. odtwarzacz płyt CD oraz DVD
Wybór odpowiedzi, które wskazują na urządzenia mechatroniczne, raczej wynika z tego, że nie do końca rozumiesz, co to takiego. Przykłady jak drukarka laserowa, odtwarzacz płyt CD i DVD czy sterowana cyfrowo chłodziarko-zamrażarka to rzeczywiście łączą w sobie mechanikę, elektronikę i informatykę, przez co mogą być uznane za mechatroniczne. Przykładowo, drukarka laserowa to zaawansowane urządzenie, które łączy różne technologie – optykę, elektronikę i mechanikę – żeby drukować z dużą precyzją. Odtwarzacze płyt również wykorzystują mechanizmy do ładowania płyt i mają systemy laserowe do odczytu danych oraz elektroniki do przetwarzania dźwięku i obrazu. A te chłodziarko-zamrażarki, które są sterowane cyfrowo, to złożone systemy z czujnikami temperatury i mechaniką, które pomagają zarządzać temperaturą i oszczędzać energię. Warto, żebyś przy wyborze odpowiedzi pamiętał, że mechatronika to głównie systemy, gdzie mechanika spotyka elektronikę. Często popełniane błędy to takie, że zawężasz definicję mechatroniki tylko do mechaniki, przez co pomijasz ważne elektroniczne i cyfrowe elementy, które są kluczowe dla działania tych systemów.

Pytanie 19

Jakie pomiary należy przeprowadzić, aby zidentyfikować awarię w urządzeniu mechatronicznym, które uruchamia wyłącznik różnicowoprądowy w chwili włączenia zasilania?

A. Napięcia zasilania
B. Poboru prądu
C. Rezystancji izolacji
D. Ciągłości uzwojeń
Wykonanie pomiaru napięcia zasilania, choć istotne w diagnozowaniu układów elektrycznych, nie jest wystarczające do zlokalizowania przyczyny zadziałania wyłącznika różnicowoprądowego. Pomiar ten dostarcza informacji o dostępności zasilania, ale nie daje odpowiedzi na pytanie o stan izolacji czy potencjalne upływy prądu. Z kolei pomiar ciągłości uzwojeń jest również niewłaściwą metodą w kontekście zadziałania wyłącznika różnicowoprądowego, ponieważ dotyczy on jedynie sprawdzenia, czy obwody są zamknięte i nie ma przerw w przewodach. Ciągłość uzwojeń nie dostarcza informacji o stanie izolacji, przez co nie pozwala na identyfikację problemu związanego z upływem prądu. Pomiar poboru prądu, chociaż może wskazywać na obciążenie układu, nie identyfikuje problemów izolacyjnych, które są kluczowe dla działania wyłączników różnicowoprądowych. Często w praktyce technicy mogą mylić zjawisko zadziałania wyłącznika z innymi problemami, co prowadzi do nieefektywnych działań naprawczych. Dlatego tak ważne jest, aby zrozumieć, że diagnostyka oparta na rezystancji izolacji jest fundamentem w zapewnieniu bezpieczeństwa i niezawodności systemów mechatronicznych.

Pytanie 20

Demontaż przekładni pasowej zaczyna się od

A. zdemontowania koła pasowego o mniejszej średnicy
B. poluzowania naciągu pasów
C. zdemontowania koła pasowego o większej średnicy
D. demontażu wałów
Poluzowanie naciągu pasów jest kluczowym krokiem w demontażu przekładni pasowych, ponieważ pozwala na swobodne odłączenie elementów układu. W praktyce, zanim przystąpimy do demontażu, ważne jest, aby zminimalizować napięcie w pasach, co zapewnia łatwe usunięcie kół pasowych, zarówno większych, jak i mniejszych. Podczas pracy z przekładniami pasowymi, zgodnie z normami branżowymi, należy zawsze rozpoczynać demontaż od poluzowania naciągu, aby uniknąć uszkodzeń komponentów oraz zapewnić bezpieczeństwo. Przykładowo, w wielu zakładach przemysłowych, przed demontażem przekładni, technicy wykonują inspekcję stanu pasów oraz kół pasowych, aby upewnić się, że nie ma widocznych uszkodzeń. Taki proces pozwala na uniknięcie niepotrzebnych kosztów związanych z wymianą uszkodzonych elementów, a także przyspiesza proces konserwacji maszyn. Dlatego, poluzowanie naciągu pasów jest nie tylko procedurą techniczną, ale także praktycznym podejściem do zarządzania zasobami w zakładzie.

Pytanie 21

Jaki rodzaj oprogramowania trzeba zainstalować na komputerze, aby mieć możliwość wspierania procesów produkcyjnych związanych z kontrolą maszyn CNC?

A. CAM
B. CAD
C. CAP
D. SCADA
Odpowiedź "CAM" (Computer-Aided Manufacturing) jest prawidłowa, ponieważ oprogramowanie CAM jest kluczowym narzędziem w procesach wytwarzania, szczególnie w kontekście sterowania maszynami CNC (Computer Numerical Control). Oprogramowanie CAM pozwala na generowanie kodów G, które są niezbędne do precyzyjnego sterowania maszynami, takimi jak frezarki, tokarki czy wtryskarki. Dzięki zastosowaniu CAM, inżynierowie i technicy mogą projektować złożone geometrie części, które następnie są bezpośrednio przekładane na ruchy maszyn, co znacząco zwiększa wydajność produkcji i redukuje ryzyko błędów. W praktyce, systemy CAM są zintegrowane z systemami CAD (Computer-Aided Design), co umożliwia płynne przejście od etapu projektowania do produkcji. Branża wytwórcza korzysta z oprogramowania CAM zgodnie z najlepszymi praktykami, takimi jak standardy ISO, co zapewnia wysoką jakość i powtarzalność procesów wytwarzania. Dodatkowo, korzystanie z CAM może przyspieszyć czasy realizacji projektów oraz umożliwić produkcję złożonych części, które byłyby trudne do wykonania tradycyjnymi metodami.

Pytanie 22

Transformator specjalny działający w warunkach zbliżonych do zwarcia, do którego podłącza się przyrząd pomiarowy, nosi nazwę

A. przekładnik napięciowy
B. transformator bezpieczeństwa
C. transformator do zmiany liczby faz
D. przekładnik prądowy
Zarówno transformator bezpieczeństwa, jak i przekładnik napięciowy, posiadają swoje unikalne zastosowania, ale nie pełnią funkcji zbliżonej do przekładnika prądowego. Transformator bezpieczeństwa jest zaprojektowany w celu ograniczenia napięcia i ochrony systemów pomiarowych przed wysokimi wartościami napięcia, co sprawia, że nie może pracować w pełni obciążonym stanie zwarcia, jak to ma miejsce w przypadku przekładników prądowych. Jego zastosowanie głównie koncentruje się na zapewnieniu bezpieczeństwa ludzi oraz urządzeń w obwodach elektrycznych. Z kolei przekładnik napięciowy działa na zasadzie przekształcania wysokiego napięcia na niskie w celu pomiaru napięcia w obwodach. Oba te urządzenia są używane w systemach pomiarowych, ale ich struktura i funkcjonalność są inne. Zastosowanie transformatorów do zmiany liczby faz dotyczy innego aspektu konwersji energii elektrycznej i nie ma zastosowania w kontekście pomiarów prądowych. Wybór niewłaściwego urządzenia do określonego pomiaru często wynika z braku zrozumienia różnic między tymi urządzeniami, co może prowadzić do poważnych błędów w analizie działania systemu. W praktyce ważne jest, aby dokładnie rozumieć zastosowania różnych typów transformatorów i przekładników, aby odpowiednio je wykorzystać w projektach elektrycznych oraz zapewnić bezpieczeństwo i efektywność operacji.

Pytanie 23

Jakie z wymienionych elementów powinny być stosowane, aby uniknąć wycieków płynów?

A. Podkładki
B. Zawleczki
C. Uszczelki
D. Płytki
Uszczelki są kluczowym elementem w wielu zastosowaniach, które mają na celu zapobieganie wyciekaniu płynów. Działają one na zasadzie wypełnienia przestrzeni między dwoma lub więcej elementami, co eliminuje możliwość przedostawania się cieczy. W praktyce uszczelki są stosowane w połączeniach rur, zbiornikach, pompach oraz silnikach, gdzie ich rola jest nieoceniona. Na przykład, w silnikach spalinowych uszczelki głowicy są niezbędne, aby zapobiec wyciekowi oleju oraz płynu chłodzącego, co mogłoby prowadzić do poważnych uszkodzeń. W branży produkcyjnej i przemysłowej stosuje się różne materiały do produkcji uszczelek, takie jak guma, silikon, teflon czy materiały kompozytowe, które są dostosowane do specyficznych warunków pracy. Zgodność z normami ISO oraz innymi standardami branżowymi zapewnia, że uszczelki spełniają wymagania dotyczące szczelności i odporności na różne czynniki chemiczne i termiczne. Zastosowanie uszczelek zgodnie z najlepszymi praktykami znacząco wpływa na trwałość i efektywność systemów, w których są stosowane.

Pytanie 24

Siłownik, który przesuwa tłok w jedną stronę dzięki sprężonemu powietrzu, a powrót tłoka jest wymuszany przez sprężynę, określamy jako siłownik pneumatyczny

A. jednostronnej pracy.
B. dwustronnej pracy, bez amortyzacji.
C. różnicowy.
D. dwustronnej pracy.
Siłownik jednostronnego działania to urządzenie, w którym sprężone powietrze działa na tłok jedynie w jednym kierunku, podczas gdy jego powrót do pozycji wyjściowej jest wymuszany przez sprężynę. Tego typu siłowniki są powszechnie stosowane w aplikacjach, gdzie nie jest wymagane ciągłe działanie w obie strony, co czyni je idealnym rozwiązaniem w systemach automatyki i pneumatyki. Przykładem zastosowania siłowników jednostronnego działania są chwytaki pneumatyczne, które chwytają obiekty w jednym kierunku, a następnie powracają do pozycji startowej dzięki sprężynie. Warto zwrócić uwagę, że siłowniki tego typu są często projektowane zgodnie z normami ISO, co zapewnia ich wysoką jakość i niezawodność. Dodatkowo, ograniczenie ruchu do jednej strony pozwala na oszczędność miejsca oraz efektywniejsze wykorzystanie sprężonego powietrza, co przekłada się na niższe koszty eksploatacyjne w dłuższej perspektywie czasowej.

Pytanie 25

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, sterowanego przez PLC, co należy zrobić?

A. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz PLC
B. odłączyć przewody zasilające do sterownika oraz przewody pneumatyczne od elektrozaworu
C. zatrzymać zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu oraz przewody pneumatyczne
D. wprowadzić sterownik PLC w stan STOP, a następnie wyłączyć zasilanie elektryczne i pneumatyczne układu
Wprowadzenie sterownika PLC w tryb STOP oraz wyłączenie zasilania elektrycznego i pneumatycznego układu to kluczowe kroki przed rozpoczęciem wymiany zaworu elektropneumatycznego. Takie podejście minimalizuje ryzyko błędów oraz zapewnia bezpieczeństwo podczas prac serwisowych. W trybie STOP sterownik nie wykonuje żadnych operacji, co zapobiega niekontrolowanemu działaniu urządzeń. Wyłączenie zasilania elektrycznego oraz pneumatycznego jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa pracy z systemami pneumatycznymi i automatyki. Przykładowo, w przemyśle automatycznym często stosuje się blokady mechaniczne i elektryczne, aby upewnić się, że urządzenia są całkowicie unieruchomione. Dobrym standardem jest również przeprowadzenie analizy ryzyka przed rozpoczęciem takich prac oraz oznaczenie strefy roboczej, aby zminimalizować ryzyko wypadków. W ten sposób, poprzez zastosowanie odpowiednich procedur, można uniknąć niebezpiecznych sytuacji i zapewnić bezpieczne warunki pracy.

Pytanie 26

W systemie mechatronicznym jako sposób przenoszenia napędu użyto paska zębatego. Podczas rutynowej inspekcji paska należy ocenić jego stopień zużycia oraz

A. naprężenie
B. bicie osiowe
C. temperaturę
D. smarowanie
Naprężenie paska zębatego jest kluczowym czynnikiem wpływającym na jego wydajność oraz trwałość. Utrzymanie odpowiedniego naprężenia jest niezbędne, aby zapewnić właściwe przeniesienie napędu i uniknąć poślizgu paska. Zbyt niskie naprężenie może prowadzić do niewłaściwego zazębienia zębatek, co w efekcie zwiększa ryzyko uszkodzenia paska oraz zębatek. Z kolei zbyt wysokie naprężenie może powodować nadmierne zużycie łożysk oraz innych elementów mechanicznych, co obniża efektywność całego systemu. Przykładowo, w różnych aplikacjach przemysłowych, takich jak maszyny CNC czy taśmociągi, regularne sprawdzanie i dostosowywanie naprężenia paska jest praktyką zgodną z normami ISO 9001, co zapewnia wysoką jakość procesu produkcyjnego. Dobre praktyki inżynieryjne sugerują, aby kontrola naprężenia była przeprowadzana w cyklach serwisowych, a także po każdej wymianie paska. W przypadku wykrycia nieprawidłowości, należy dostosować naprężenie zgodnie z zaleceniami producenta, co zapewnia optymalną wydajność i minimalizuje ryzyko awarii.

Pytanie 27

Wartość natężenia oświetlenia podczas wykonywania precyzyjnych zadań powinna wynosić

A. 800 lx
B. 600 lx
C. 100 lx
D. 300 lx
Wybór natężenia oświetlenia mniejszego niż 800 lx w kontekście precyzyjnych prac wiąże się z wieloma niebezpiecznymi konsekwencjami. Natężenie 600 lx, 300 lx czy 100 lx może wydawać się wystarczające w mniej wymagających warunkach, jednak w przypadku zadań wymagających dużej dokładności, takich jak montaż komponentów elektronicznych lub prace laboratoryjne, zbyt niskie oświetlenie może prowadzić do poważnych błędów. Przykładowo, oświetlenie na poziomie 600 lx może nie dostarczyć wystarczającej widoczności, co zwiększa ryzyko popełnienia błędów, które mogą skutkować uszkodzeniem delikatnych części lub złożeniem wadliwych produktów. Natężenie 300 lx to wartość, która w praktyce jest stosowana w biurach, ale nie jest to poziom odpowiedni dla precyzyjnych prac, gdzie każdy detal ma znaczenie. Natomiast 100 lx to wartość, która mogłaby być tolerowana w pomieszczeniach magazynowych, ale nie w sytuacjach wymagających szczególnej uwagi. Z tego względu, przy podejmowaniu decyzji o poziomie oświetlenia, ważne jest, aby kierować się standardami i zaleceniami branżowymi, które jasno określają wymagania w tej dziedzinie. Nieprawidłowe oszacowanie natężenia oświetlenia może prowadzić do nieefektywności pracy oraz zwiększenia ryzyka wypadków. Z tego względu, dla zapewnienia bezpieczeństwa i jakości, zawsze należy dążyć do osiągnięcia optymalnych warunków oświetleniowych.

Pytanie 28

Jakie urządzenie stosowane do zasilania silnika indukcyjnego potrafi regulować częstotliwość wyjściową?

A. Chopper
B. Falownik
C. Stycznik
D. Prostownik
Falownik jest urządzeniem, które konwertuje stałe napięcie na napięcie przemienne o regulowanej częstotliwości i amplitudzie. Dzięki temu pozwala na precyzyjne sterowanie prędkością obrotową silnika indukcyjnego, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak napędy elektryczne w robotyce, systemach HVAC czy transportery taśmowe. W praktyce, falowniki umożliwiają oszczędność energii poprzez dostosowanie mocy do rzeczywistych potrzeb, co jest zgodne z normami wydajności energetycznej. Dodatkowo, falowniki są zgodne z normami IEC i są szeroko stosowane w automatyzacji procesów przemysłowych, co potwierdza ich istotność w nowoczesnych rozwiązaniach inżynieryjnych. Warto zauważyć, że falowniki mogą również pełnić funkcje zabezpieczeń, takie jak ochrona przed przeciążeniem, co zwiększa trwałość systemów napędowych. W kontekście przemysłowym, ich zastosowanie prowadzi do znacznych oszczędności operacyjnych oraz zwiększenia efektywności procesów produkcyjnych.

Pytanie 29

Podłączenie kondensatora (w układzie równoległym do obciążenia) do wyjścia jednofazowego prostownika działającego w konfiguracji mostka Graetza wpłynie na napięcie wyjściowe w sposób

A. zmiany przebiegu jednopulsowego na dwupulsowy
B. redukcji tętnień
C. zmniejszenia składowej stałej
D. zmiany przebiegu dwupulsowego na jednopulsowy
Zrozumienie wpływu kondensatora na wyjście prostownika jest kluczowe dla prawidłowego projektowania układów elektronicznych. Nieprawidłowe założenie, że kondensator zmienia przebieg jednopulsowy na dwupulsowy, wynika z mylnego rozumienia działania prostowników. W rzeczywistości, prostownik mostkowy zawsze generuje przebieg dwupulsowy, ponieważ każdy cykl prądu zmiennego jest konwertowany na dwa impulsy napięcia stałego. Dodanie kondensatora nie zmienia tego fundamentalnego charakteru działania prostownika. Kolejną błędną koncepcją jest stwierdzenie, że kondensator zmniejsza składową stałą napięcia. W rzeczywistości, kondensator może jedynie wygładzać zmiany napięcia, ale nie prowadzi do zmiany wartości średniej napięcia wyjściowego. W praktycznych zastosowaniach, kondensatory są wykorzystywane głównie do eliminacji tętnień, a nie do modyfikacji składowej stałej. Warto również zauważyć, że dodanie kondensatora nie zmienia przebiegu dwupulsowego na jednopulsowy, ponieważ takie podejście ignoruje zasadnicze różnice w strukturze sygnału. Zamiast tego, kondensator pełni funkcję stabilizatora, poprawiając jakość napięcia na wyjściu. Wnioskując, kluczowe jest, aby przy projektowaniu układów zasilających w pełni zrozumieć rolę kondensatora oraz jego działanie w kontekście analizy częstotliwościowej i filtracji sygnału.

Pytanie 30

Jak należy przeprowadzić połączenie wciskowe skurczowe piasty z wałkiem?

A. Podnieść temperaturę obu elementów, a następnie połączyć je z użyciem siły
B. Obniżyć temperaturę obu elementów i połączyć je, stosując siłę
C. Zastosować siłę, aby nasunąć jeden element na drugi w temperaturze otoczenia
D. Obniżyć temperaturę wałka, a następnie wyrównać temperaturę obu elementów po połączeniu
Wykonanie połączenia wciskowego skurczowego polega na manipulacji temperaturą elementów, co jest kluczowe dla uzyskania odpowiednich właściwości mechanicznych. W metodzie obniżania temperatury wałka, jego średnica zmniejsza się, co umożliwia łatwe nasunięcie piasty na wałek. Po połączeniu, oba elementy powinny być podgrzane do temperatury roboczej, co prowadzi do ich rozszerzenia i zapewnia solidne, trwałe połączenie. Tego rodzaju połączenia są często stosowane w przemyśle motoryzacyjnym, maszynowym, a także w aplikacjach, gdzie wymagane są wysokie obciążenia i trwałość. Najlepsze praktyki w tym zakresie podkreślają znaczenie zachowania odpowiednich tolerancji oraz monitorowania procesów termicznych, co zapobiega odkształceniom i uszkodzeniom materiałów. Zastosowanie tej metody gwarantuje nie tylko solidność połączenia, ale również jego wysoką odporność na wibracje i zmiany temperatury, co jest niezbędne w dynamicznych warunkach pracy.

Pytanie 31

Jak można zweryfikować, czy przewód elektryczny jest w pełni sprawny?

A. woltomierz
B. omomierz
C. induktor
D. amperomierz
Omomierz jest urządzeniem pomiarowym, które służy do pomiaru oporu elektrycznego. Jest niezastąpiony w diagnostyce instalacji elektrycznych, szczególnie do sprawdzania, czy przewód elektryczny nie jest przerwany. Gdy przewód jest przerwany, jego opór będzie nieskończonością, co omomierz zarejestruje. Dzięki temu można szybko zlokalizować uszkodzenia w instalacji. W praktyce, omomierze są często wykorzystywane do weryfikacji ciągłości obwodów w różnych zastosowaniach, od prostych napraw domowych po skomplikowane instalacje przemysłowe. Zgodnie ze standardami bezpieczeństwa elektrycznego, regularne testowanie oporu przewodów umożliwia zapobieganie potencjalnym awariom oraz zwiększa bezpieczeństwo użytkowników. Dodatkowo, omomierze są używane do pomiaru rezystancji izolacji, co jest kluczowe w utrzymaniu właściwego stanu technicznego instalacji. Zatem, korzystając z omomierza, można nie tylko wykryć przerwy w przewodach, ale również ocenić ich stan ogólny.

Pytanie 32

Czujnik, który działa na zasadzie generowania różnicy potencjałów w kontakcie z przewodnikami wykonanymi z różnych metali, to

A. termistor
B. pirometr
C. element termoelektryczny
D. element bimetaliczny
Wybierając termistor, można wprowadzić się w błąd przez mylną interpretację działania tego elementu. Termistor działa na zasadzie zmiany oporu elektrycznego w zależności od temperatury, jednak nie generuje napięcia na podstawie różnicy potencjałów dwóch różnych metali. Jego zastosowanie obejmuje głównie czujniki temperatury w układach elektronicznych, ale nie ma związku z efektem Seebecka. Z kolei pirometr, który również może być mylnie wskazany jako odpowiedź, jest narzędziem wykorzystywanym do bezdotykowego pomiaru temperatury, lecz opiera się na pomiarze promieniowania cieplnego, a nie na różnicy potencjałów między metalami. Element bimetaliczny, pomimo że wykorzystywany do pomiaru temperatury, działa na zasadzie różnicy rozszerzalności cieplnej dwóch metali, co prowadzi do zginania się elementu, ale także nie wykorzystuje efektu Seebecka. Zrozumienie różnic między tymi technologiami jest kluczowe dla prawidłowego doboru czujników w aplikacjach przemysłowych, gdzie precyzja i specyfika pomiarów mają kluczowe znaczenie dla efektywności procesów produkcyjnych.

Pytanie 33

Podczas nieostrożnego lutowania pracownik narażony jest przede wszystkim na

A. poparzenie dłoni
B. uszkodzenie wzroku
C. uszkodzenie słuchu
D. krwawienie z nosa
Poparzenia dłoni są jednym z najczęstszych zagrożeń dla pracowników lutujących, ze względu na wysoką temperaturę topnienia materiałów lutowniczych oraz używanych narzędzi. W trakcie lutowania, szczególnie przy użyciu lutownic o dużej mocy, istnieje ryzyko kontaktu nagrzanych elementów z naskórkiem, co może prowadzić do poważnych oparzeń. Przykładem dobrej praktyki w zapobieganiu takim incydentom jest stosowanie odpowiedniej odzieży ochronnej, takiej jak rękawice odporną na wysoką temperaturę oraz osłony na przedramiona. Ponadto, w standardach BHP w przemyśle elektronicznym zaleca się regularne szkolenia dla pracowników, aby zwiększyć ich świadomość na temat zagrożeń związanych z lutowaniem i nauczyć ich technik bezpiecznej pracy. Dodatkowo, stosowanie narzędzi takich jak podkładki izolacyjne oraz zachowanie odpowiedniego dystansu od elementów, które mogą być gorące, jest kluczowe dla minimalizacji ryzyka poparzeń.

Pytanie 34

Aby sprawdzić stan bezpieczników, znaleźć niedokręcone złącza oraz zidentyfikować przegrzane elementy instalacji bez konieczności wyłączania zasilania, należy wykorzystać

A. miernik RLC
B. miernik uniwersalny
C. kamerę termowizyjną
D. miernik parametrów instalacji
Kamera termowizyjna jest specjalistycznym narzędziem, które pozwala na bezdotykowe monitorowanie temperatury obiektów w instalacjach elektrycznych. Dzięki wykrywaniu różnic temperatur, możliwe jest szybkie zlokalizowanie przegrzanych elementów, takich jak zwarcia, przeciążenia czy niedokręcone złącza, co może prowadzić do potencjalnych awarii. W praktyce, technicy często używają kamer termograficznych do regularnych przeglądów instalacji, co umożliwia wczesne wykrywanie problemów zanim dojdzie do uszkodzenia sprzętu czy pożaru. W branży energetycznej oraz budowlanej, zgodnie z normą NFPA 70E, regularne inspekcje termograficzne są kluczowe dla zapewnienia bezpieczeństwa i efektywności systemów elektrycznych. Zastosowanie kamery termograficznej jest zatem zgodne z najlepszymi praktykami konserwacyjnymi, a także przyczynia się do zmniejszenia kosztów eksploatacyjnych poprzez minimalizację ryzyka awarii.

Pytanie 35

Aby zweryfikować ciągłość połączeń elektrycznych pomiędzy różnymi elementami systemu, należy skorzystać z

A. amperomierza
B. woltomierza
C. wskaźnika napięcia
D. omomierza
Omomierz jest urządzeniem służącym do pomiaru oporu elektrycznego, co czyni go idealnym narzędziem do sprawdzania ciągłości połączeń elektrycznych. W kontekście instalacji elektrycznych, ciągłość połączeń jest kluczowa dla zapewnienia bezpieczeństwa i niezawodności systemu. Użycie omomierza pozwala na szybkie zidentyfikowanie przerw w obwodzie oraz nieprawidłowych połączeń, co może być kluczowe w przypadku awarii. Przykładem praktycznego zastosowania omomierza jest testowanie przewodów przed ich podłączeniem do zasilania - w ten sposób można upewnić się, że nie ma przerw, które mogłyby prowadzić do ryzyka porażenia prądem lub uszkodzenia sprzętu. Dobre praktyki branżowe zalecają regularne sprawdzanie ciągłości połączeń w instalacjach elektrycznych, zwłaszcza w warunkach, gdzie mogą występować zmienne obciążenia lub wysokie napięcia. Ponadto, zgodnie z normami IEC 60364, przeglądy instalacji elektrycznych powinny obejmować pomiar oporu izolacji oraz ciągłości, co podkreśla znaczenie omomierza w codziennej pracy elektryków.

Pytanie 36

Znamionowe napięcie międzyfazowe uzwojenia stojana silnika asynchronicznego, trójfazowego, o danych znamionowych podanych w tabelce jest równe

Δ400V5,9A
2,5kWS1cosφ = 0,8
1425obr/min50Hz
Y240V6,6A
Izol. – Kl.B/FIP3335kg

A. 400 V
B. 230 V
C. 240 V
D. 380V
Poprawna odpowiedź to 400 V, co jest zgodne z danymi podanymi na tabliczce znamionowej silnika asynchronicznego. Znamionowe napięcie międzyfazowe dla silników trójfazowych standardowo wynosi 400 V w układzie Δ (delta). To napięcie jest kluczowe przy projektowaniu i użytkowaniu instalacji elektrycznych, ponieważ określa, jakie napięcie będzie występować pomiędzy poszczególnymi fazami. Znajomość tych wartości jest niezbędna dla inżynierów i techników zajmujących się instalacjami oraz konserwacją urządzeń elektrycznych. W praktyce, przy podłączeniu silnika do zasilania, napięcie międzyfazowe musi być zgodne z jego znamionowym napięciem, aby zapewnić prawidłowe działanie i wydajność silnika. Ponadto, znajomość tego napięcia jest istotna przy dobieraniu odpowiednich zabezpieczeń oraz urządzeń kontrolnych, co wpływa na bezpieczeństwo i efektywność systemu.

Pytanie 37

Który z poniższych czujników nie może być użyty jako czujnik zbliżeniowy?

A. Optycznego
B. Pojemnościowego
C. Indukcyjnego
D. Rezystancyjnego
Czujnik rezystancyjny nie może być zastosowany jako czujnik zbliżeniowy, ponieważ jego działanie opiera się na pomiarze oporu elektrycznego, który zmienia się w odpowiedzi na zewnętrzne zmiany, takie jak temperatura czy siła nacisku. W przeciwieństwie do czujników pojemnościowych, optycznych i indukcyjnych, które mogą wykrywać obecność obiektów na podstawie ich właściwości fizycznych lub elektromagnetycznych, czujnik rezystancyjny wymaga bezpośredniego kontaktu z obiektem, aby zareagować na zmiany. Przykładem zastosowania czujnika rezystancyjnego jest pomiar temperatury w termistorze, gdzie zmiana oporu jest bezpośrednio związana z temperaturą. W kontekście nowoczesnych systemów automatyki, użycie czujników zbliżeniowych, takich jak pojemnościowe czy indukcyjne, staje się kluczowe dla poprawy bezpieczeństwa i efektywności procesów, ponieważ pozwalają na detekcję obiektów bez potrzeby fizycznego kontaktu, co znacząco zwiększa trwałość i niezawodność systemów. Praktyki te są zgodne z aktualnymi standardami w dziedzinie automatyki i robotyki.

Pytanie 38

Siłownik, zasilany sprężonym powietrzem o ciśnieniu roboczym 8 bar, ma maksymalną liczbę cykli nmax = 50/min oraz zużywa 1,4 litra powietrza w trakcie jednego cyklu. Jakie parametry powinna mieć sprężarka tłokowa do zasilania tego siłownika?

A. wydajność 5,3 m3/h, ciśnienie maksymalne 1,0 MPa
B. wydajność 3,6 m3/h, ciśnienie maksymalne 0,7 MPa
C. wydajność 3,6 m3/h, ciśnienie maksymalne 1,0 MPa
D. wydajność 5,3 m3/h, ciśnienie maksymalne 0,7 MPa
Wybrana odpowiedź jest poprawna, ponieważ wymagana wydajność sprężarki tłokowej wynosi co najmniej 5,3 m3/h, aby sprostać zapotrzebowaniu siłownika. Siłownik wykonuje 50 cykli na minutę, zużywając 1,4 litra powietrza na cykl. Łączne zużycie powietrza wynosi 50 cykli/min x 1,4 litra/cykl = 70 litrów/minutę, co przelicza się na 4,2 m3/h. Wybór sprężarki o wydajności 5,3 m3/h zapewnia odpowiedni zapas, co jest zgodne z praktykami inżynieryjnymi, które zalecają uwzględnienie marginesu zapasu wydajności dla osiągnięcia stabilnej pracy. Dodatkowo, maksymalne ciśnienie 1,0 MPa (10 bar) spełnia wymagania robocze siłownika, który działa przy ciśnieniu 8 bar. Użycie sprężarki z wyższym ciśnieniem pozwoli również na ewentualne straty ciśnienia w systemie oraz wzmożone zapotrzebowanie w przypadku intensywnej pracy siłownika, co jest istotne w aplikacjach przemysłowych, takich jak automatyzacja produkcji oraz systemy transportu pneumatycznego.

Pytanie 39

Jakie jest przeznaczenie przyłącza oznaczonego literą T na zaworze hydraulicznym 4/2, które ma oznaczenia A, B, P oraz T?

A. Zbiornika sprężonego powietrza
B. Siłownika jednostronnego działania
C. Zbiornika oleju hydraulicznego
D. Siłownika dwustronnego działania
Podłączenie przyłącza T do zbiornika sprężonego powietrza jest niewłaściwie zrozumiane, ponieważ systemy hydrauliczne i pneumatyczne różnią się zasadniczo w swoim działaniu i zastosowaniu. Zbiorniki sprężonego powietrza są przeznaczone do gromadzenia powietrza pod ciśnieniem i są używane w systemach pneumatycznych, gdzie energia jest przekazywana przez sprężone powietrze. Zastosowanie przyłącza T w tym kontekście wprowadzałoby w błąd, ponieważ olej hydrauliczny nie może być użyty w systemie pneumatycznym, co mogłoby prowadzić do uszkodzeń komponentów i awarii całego układu. Z kolei podłączenie do siłownika jednostronnego działania również jest nieprawidłowe, ponieważ taki siłownik potrzebuje jedynie jednego przyłącza do zasilania, a powrót oleju odbywa się przez inne kanały, co nie ma związku z przyłączem T. Siłownik dwustronnego działania wymaga natomiast zarówno zasilania, jak i odprowadzania oleju, ale jego konstrukcja nie przewiduje podłączenia do zbiornika w ten sposób. Zrozumienie funkcji przyłącza T w kontekście zaworu hydraulicznego 4/2 jest fundamentalne dla efektywnego zarządzania systemem hydraulicznym, dlatego kluczowe jest, aby nie mylić jego zastosowania z systemami pneumatycznymi czy z siłownikami, które operują na innych zasadach.

Pytanie 40

Osoba pracująca na linii produkcyjnej blach, która prowadzi proces odlewania taśmy cynkowo-tytanowej, powinna poza obuwiem, rękawicami i kaskiem roboczym posiadać odzież

A. bawełnianą w formie kombinezonu
B. roboczą trudnopalną
C. termoaktywną
D. roboczą standardową
Odpowiedź "robocze trudnopalne" jest poprawna, ponieważ w procesach związanych z odlewaniem metali, takich jak cynkowo-tytanowa taśma, istnieje wysokie ryzyko wystąpienia pożaru oraz poparzeń. Ubrania robocze trudnopalne są zaprojektowane z myślą o ochronie przed wysokimi temperaturami i płomieniami, co jest szczególnie istotne w środowiskach przemysłowych, gdzie pracownicy mogą być narażeni na kontakt z gorącymi materiałami czy odpryskami. Takie odzież jest wykonana z materiałów, które nie tylko opóźniają zapłon, ale także ograniczają rozwój ognia, co daje pracownikom cenny czas na ewakuację w przypadku zagrożenia. Przykładem może być odzież wykonana z tkanin takich jak Nomex czy Kevlar, które są powszechnie stosowane w przemyśle. Ponadto, stosowanie odzieży roboczej trudnopalnej jest zgodne z normami BHP oraz standardami branżowymi, które wymagają odpowiednich środków ochrony osobistej w środowisku pracy. Dlatego ważne jest, aby operatorzy linii produkcyjnej byli odpowiednio zabezpieczeni, by zminimalizować ryzyko wypadków związanych z ogniem.