Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 1 kwietnia 2025 09:49
  • Data zakończenia: 1 kwietnia 2025 10:00

Egzamin niezdany

Wynik: 8/40 punktów (20,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Czego można dokonać za pomocą cęgów bocznych?

A. formować końcówki żył przewodów elektrycznych
B. skręcać żyły przewodów elektrycznych
C. usuwać izolację z żył przewodów elektrycznych
D. ciąć żyły przewodów elektrycznych
Odpowiedzi, które wskazują na formowanie końcówek, skręcanie lub usuwanie izolacji z żył przewodów elektrycznych, na pierwszy rzut oka mogą wydawać się logiczne, jednak w rzeczywistości nie są one właściwym zastosowaniem cęgów bocznych. Formowanie końcówek żył wymaga narzędzi takich jak szczypce do końcówek, które są zaprojektowane do tego celu, wykorzystując inną zasadę działania. Skręcanie żył przewodów elektrycznych to proces, który wymaga zastosowania odpowiednich narzędzi, takich jak szczypce do skręcania, co zapewnia prawidłowe połączenie elektryczne, w przeciwieństwie do cęgów bocznych, które nie są przeznaczone do tego działania. Usuwanie izolacji to także zadanie dla narzędzi takich jak nożyce do izolacji, które precyzyjnie odcinają izolację, nie uszkadzając samej żyły. W kontekście tej analizy, omyłkowe przypisanie funkcji do cęgów bocznych może prowadzić do nieefektywności i potencjalnych uszkodzeń przewodów, co jest sprzeczne z najlepszymi praktykami w zakresie bezpieczeństwa i efektywności pracy w elektrotechnice. Używanie niewłaściwych narzędzi może również stwarzać ryzyko błędów w instalacjach, co może skutkować awarią urządzeń, a nawet zagrożeniem dla zdrowia i życia ludzi. Dlatego ważne jest zrozumienie, jakie narzędzia są przeznaczone do konkretnych zadań w pracy z przewodami elektrycznymi.

Pytanie 3

Woltomierz analogowy wskazał 30 działek. Urządzenie jest ustawione na zakres 100 V, a cała skala ma 100 działek. Jaką wartość napięcia odczytał woltomierz?

A. 30 V
B. 33,3 V
C. 3 V
D. 3,33 V
Woltomierz analogowy przedstawia wskazanie w oparciu o skalę, na której 100 działek odpowiada maksymalnemu zakresowi pomiarowemu, czyli 100 V. W tym przypadku, każda działka skali reprezentuje 1 V (100 V / 100 działek = 1 V/działkę). Jeśli wskazówka wychyliła się na 30 działek, oznacza to, że woltomierz wskazuje 30 V (30 działek * 1 V/działkę = 30 V). Ta zasada obliczeń jest szczególnie przydatna w praktyce, ponieważ umożliwia szybkie oszacowanie wartości napięcia na podstawie wskazania miernika. W branży elektrycznej precyzyjne pomiary napięcia są kluczowe do zapewnienia poprawności instalacji oraz bezpieczeństwa urządzeń. Na przykład, w zastosowaniach przemysłowych, takich jak kontrola zasilania maszyn, dokładne odczyty napięcia są niezbędne do monitorowania parametrów pracy urządzeń oraz ochrony przed uszkodzeniami. Zrozumienie, jak interpretować wartości wskazywane przez woltomierz, jest fundamentalne dla każdego specjalisty w dziedzinie elektrotechniki.

Pytanie 4

Czego nie uwzględnia się w dokumentacji dotyczącej montażu elektronicznego?

A. dokumentacji techniczno-ruchowej (DTR)
B. zestawu rysunków montażowych (odnoszących się do wszystkich faz produkcji)
C. współrzędnych podzespołów (pick&place)
D. pełnej listy materiałowej (BOM)
Dokumentacja montażu elektronicznego obejmuje szereg kluczowych elementów, które są niezbędne do efektywnego i prawidłowego złożenia urządzeń elektronicznych. Na przykład, kompletny zestaw rysunków montażowych jest fundamentalny, ponieważ przedstawia szczegółowe instrukcje dotyczące położenia i sposobu montażu poszczególnych komponentów na płytce drukowanej. Współrzędne elementów są równie istotne, gdyż umożliwiają automatyzację procesu montażu za pomocą maszyn pick-and-place, co znacząco zwiększa efektywność produkcji. Lista materiałów (BOM) to kolejny element fundamentalny, który nie tylko dostarcza informacji o potrzebnych komponentach, ale także pozwala na zarządzanie zapasami i planowanie zakupów, co jest kluczowe dla każdej linii produkcyjnej. Typowym błędem myślowym jest mylenie celu DTR z dokumentacją montażową; podczas gdy DTR koncentruje się na funkcjonowaniu i konserwacji już zmontowanego urządzenia, dokumentacja montażowa zapewnia informacje niezbędne do złożenia tego urządzenia. Niezrozumienie tej różnicy może prowadzić do nieprawidłowego dobierania dokumentów w procesach produkcji, co w konsekwencji wpływa na jakość i efektywność całego procesu montażu. W praktyce, zawsze należy dostarczać odpowiednią dokumentację montażową, aby zapewnić, że proces produkcji odbywa się zgodnie z ustalonymi standardami i najlepszymi praktykami w branży.

Pytanie 5

Jakie z poniższych symptomów może wystąpić w momencie, gdy w niezabezpieczonej sieci energetycznej dojdzie do przepięcia?

A. Włączenie wyłącznika różnicowoprądowego, zamontowanego w tej sieci
B. Wzrost poboru prądu przez urządzenia elektroniczne zasilane z tej sieci
C. Włączenie wyłącznika nadprądowego, chroniącego urządzenia zasilane z tej sieci
D. Uszkodzenie urządzeń elektronicznych zasilanych z tej sieci
Przy analizie objawów, jakie mogą wystąpić podczas pojawienia się przepięcia w niezabezpieczonej sieci energetycznej, istnieje pewne mylne rozumienie funkcji wyłączników nadprądowych oraz różnicowoprądowych. Wyłącznik nadprądowy działa głównie w sytuacjach, gdy następuje przeciążenie lub zwarcie, co może prowadzić do znacznego wzrostu prądu, jednak nie jest on przeznaczony do ochrony przed przepięciami. Przepięcie może występować bez wzrostu prądu do poziomów, które spowodowałyby zadziałanie tego typu wyłącznika. Wyłącznik różnicowoprądowy z kolei ma na celu wykrywanie różnicy prądów między przewodem fazowym a neutralnym, co jest ważne w przypadku wykrywania uszkodzonych izolacji i ryzyka porażenia prądem elektrycznym. Niemniej jednak, nie zareaguje on na przepięcia, a jego zastosowanie w kontekście przepięć jest zatem nieadekwatne. Zwiększenie poboru energii przez urządzenia elektroniczne w odpowiedzi na przepięcie to kolejny błąd myślowy. W rzeczywistości przepięcia prowadzą do uszkodzenia lub wyłączenia sprzętu, a nie do jego intensyfikacji. Właściwe zrozumienie mechanizmów zabezpieczeń elektrycznych jest kluczowe dla projektowania systemów, które minimalizują ryzyko uszkodzeń i zapewniają ich niezawodność w warunkach zmiennych obciążeń i zjawisk atmosferycznych.

Pytanie 6

Jaką czynność należy zrealizować przed włączeniem sterownika PLC w systemie automatyki?

A. Odłączyć sygnały od sterownika
B. Wprowadzić program do sterownika
C. Ustawić zegar wewnętrzny w sterowniku
D. Odłączyć elementy wykonawcze od sterownika
Jak wprowadzasz program do sterownika PLC, to tak naprawdę robisz kluczowy krok przed jego uruchomieniem. To właśnie ten program definiuje, jak cały system automatyki ma działać. Bez odpowiedniego oprogramowania sterownik po prostu nie wykona żadnych operacji ani nie zareaguje na sygnały, które dostaje. Przykładowo, w systemach sterujących procesem produkcji, program mówi nam, jak sterować zaworami czy silnikami, żeby osiągnąć zamierzony efekt. Dobrze jest też, żeby wprowadzenie programu było zgodne z dokumentacją i procedurami firmy, bo to zapewnia, że wszystko będzie działać tak, jak powinno. Zgodnie z normami IEC 61131-3, które dotyczą programowania PLC, każdy program powinien być dobrze przetestowany w symulatorze przed wgraniem do rzeczywistego systemu. Dzięki temu można znaleźć błędy i poprawić logikę sterowania. Podsumowując, wprowadzenie programu to nie tylko praktyka, ale też kluczowy element, który zapewnia bezpieczeństwo i efektywność całego systemu automatyki.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jak nazywa się jednostka ładunku elektrycznego?

A. kelwin
B. herc
C. farad
D. kulomb
Farad, będący jednostką pojemności, a nie ładunku, jest używany do opisu zdolności kondensatorów do gromadzenia ładunku elektrycznego. 1 farad to pojemność, która gromadzi 1 kulomb ładunku przy napięciu 1 wolt. Wartości farada są na ogół bardzo duże w zastosowaniach praktycznych, dlatego w inżynierii często używa się jego podwielkości. Zrozumienie tej jednostki jest kluczowe w kontekście projektowania obwodów elektrycznych, ale nie jest związane bezpośrednio z jednostką ładunku elektrycznego. Kelwin, jako jednostka temperatury, nie ma żadnego związku z ładunkiem elektrycznym. Używa się go do pomiaru temperatury w kontekście termodynamiki, co jest zupełnie inną dziedziną fizyki niż elektryczność. Natomiast herc, jako jednostka częstotliwości, mierzy liczbę cykli na sekundę w zjawiskach okresowych, takich jak fale elektromagnetyczne. Stosowanie herców jest istotne w telekomunikacji i technologii radiowej, ale ponownie, nie odnosi się do miary ładunku elektrycznego. W przypadku wyboru nieprawidłowych odpowiedzi, często pojawia się nieporozumienie dotyczące różnic między jednostkami i pojęciami w naukach przyrodniczych, co prowadzi do zamieszania. Kluczowe jest zrozumienie, że każda jednostka ma swoje specyficzne zastosowanie i kontekst, a mylenie ich może prowadzić do poważnych błędów w obliczeniach i projektach inżynieryjnych.

Pytanie 10

Jaki element elektroniczny jest określany przez symbole: S-źródło, G-bramka, D-dren?

A. Tranzystor bipolarny
B. Tranzystor unipolarny
C. Trymer
D. Tyrystor
Tyrystory, tranzystory bipolarne oraz trymer to elementy elektroniczne o różnych zastosowaniach i zasadach działania, które nie pasują do opisanego schematu terminali S, G i D. Tyrystor jest urządzeniem półprzewodnikowym, które działa jako przełącznik i jest aktywowany przez impuls prądowy, jednak posiada tylko dwa główne terminale: anody i katody. Jego struktura oraz sposób działania są inne niż w tranzystorze unipolarnym, co prowadzi do nieporozumień w identyfikacji. Tranzystor bipolarny, z kolei, ma trzy terminale: emiter, bazę i kolektor, gdzie prąd przepływa na podstawie sygnału wejściowego z bazy, co różni się od zasady działania tranzystora unipolarnego, gdzie kluczową rolę odgrywa napięcie na bramce. Natomiast trymer jest kondensatorem o regulowanej pojemności, wykorzystywanym głównie w obwodach rezonansowych, co również nie odpowiada opisanemu terminowi. Błędy w analizie pytania mogą prowadzić do mylnego rozumienia podstaw elektroniki, a także do niewłaściwego doboru komponentów w praktycznych zastosowaniach. Zrozumienie różnicy między tymi elementami jest kluczowe dla skutecznego projektowania systemów elektronicznych, co wymaga znajomości ich właściwości i funkcji. Przy projektowaniu obwodów, istotne jest stosowanie odpowiednich elementów w zależności od wymagań aplikacji i standardów branżowych.

Pytanie 11

Jakie jest zadanie konwertera satelitarnego?

A. regulacja napięcia w obwodzie antenowym
B. przekazywanie sygnału z satelity do odbiornika satelitarnego
C. przesyłanie sygnału z odbiornika satelitarnego do satelity
D. dopasowywanie reaktancji anteny satelitarnej
Wybór odpowiedzi, która sugeruje, że konwerter satelitarny wyrównuje napięcie w obwodzie antenowym, jest nieprawidłowy, ponieważ konwerter nie jest odpowiedzialny za zarządzanie napięciem w antenie. Jego kluczową rolą jest konwersja sygnału, a nie regulacja parametrów elektrycznych. W rzeczywistości napięcie w obwodzie antenowym jest często optymalizowane przez inne komponenty, takie jak wzmacniacze sygnału lub zasilacze, które są odpowiedzialne za dostarczanie właściwego napięcia do elementów aktywnych systemu antenowego. Podobnie, sugestia, że konwerter dostarcza sygnał z odbiornika satelitarnego do satelity, jest błędna, ponieważ konwertery działają w kierunku przeciwnym, tj. z satelity do odbiornika. Odbiornik nie ma możliwości wysyłania sygnałów do satelity, gdyż to satelita jest odpowiedzialny za nadawanie sygnału do wielu odbiorców na Ziemi. Koncepcja dopasowania reaktancji anteny również nie odnosi się do funkcji konwertera. Odpowiednie dopasowanie reaktancji jest kwestią projektowania anteny i obwodów RF, które mają na celu minimalizację strat sygnału i zapewnienie maksymalnej efektywności odbioru. Wszelkie nieporozumienia wynikają najczęściej z pomylenia funkcji poszczególnych komponentów systemu satelitarnego oraz braku zrozumienia ich specyficznych zadań w całej infrastrukturze komunikacyjnej.

Pytanie 12

Aby wykonać otwór na kołek rozporowy w betonie, należy użyć

A. wiertarki udarowej
B. wkrętarki
C. młotka
D. młota pneumatycznego
Wykonanie otworu pod kołek rozporowy w ścianie betonowej wymaga zastosowania wiertarki udarowej, ponieważ jej konstrukcja łączy funkcję wiercenia z działaniem udarowym, co pozwala na efektywne przełamywanie twardych materiałów, takich jak beton. Wiertarka udarowa jest wyposażona w mechanizm udarowy, który generuje dodatkową siłę uderzenia, co znacznie ułatwia proces wiercenia w betonie, który charakteryzuje się dużą twardością i gęstością. Przykładem praktycznego zastosowania wiertarki udarowej jest montaż różnych elementów, takich jak półki, wieszaki czy systemy oświetleniowe, które wymagają solidnego osadzenia w betonie. W standardach budowlanych i remontowych zaleca się używanie wiertarek udarowych z odpowiednimi wiertłami do betonu, aby zapewnić zarówno skuteczność, jak i bezpieczeństwo pracy. Wybór odpowiedniej wiertarki i wierteł zgodnych z wymaganiami projektu jest kluczowy dla uzyskania trwałych i bezpiecznych połączeń.

Pytanie 13

Która z topologii sieci komputerowych gwarantuje największą niezawodność?

A. Siatki.
B. Drzewa.
C. Pierścienia.
D. Gwiazdy.
Wybór innych topologii, takich jak drzewo, gwiazda czy pierścień, prowadzi do ograniczonej niezawodności w porównaniu z siatką. Topologia drzewa, mimo że jest uporządkowana i łatwa do rozbudowy, jest podatna na awarie głównego węzła, co może spowodować utratę komunikacji w całej gałęzi. W przypadku awarii jednego z węzłów w strukturze drzewiastej, inne urządzenia w tej samej gałęzi przestają działać, co jest znaczącym ograniczeniem w kontekście niezawodności. Topologia gwiazdy natomiast, choć łatwa do zarządzania, również cierpi na problem centralnego węzła; jeśli centralny przełącznik ulegnie awarii, cała sieć przestaje funkcjonować. Natomiast pierścień, choć oferuje równomierną dystrybucję danych, ma swoje ograniczenia związane z potrzeba przekazywania sygnału przez wszystkie węzły. Awaria jednego z węzłów może przerwać komunikację w całym pierścieniu, co czyni ją mało odporną na błędy. Wybór odpowiedniej topologii powinien być oparty na analizie wymagań systemowych i środowiskowych. W praktyce, projektanci sieci powinni dążyć do implementacji rozwiązań, które zapewniają wysoką dostępność i odporność na awarie, co czyni topologię siatki najkorzystniejszą opcją w wielu współczesnych zastosowaniach.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Co oznacza zapis IP20 w kontekście urządzenia elektronicznego?

A. częstotliwość napięcia zasilającego
B. ilość zacisków wyjściowych
C. moc pozorna
D. stopień ochrony obudowy
Zapis IP20 na urządzeniu elektronicznym oznacza stopień ochrony obudowy, który jest określany według standardu IEC 60529. IP to skrót od 'Ingress Protection' i wskazuje na poziom ochrony przed wnikaniem ciał stałych oraz cieczy. Liczba '2' oznacza, że obudowa jest chroniona przed dostępem do części niebezpiecznych przy użyciu palca (do 12,5 mm), co czyni ją względnie bezpieczną w normalnych warunkach eksploatacji. Liczba '0' wskazuje, że urządzenie nie jest chronione przed wodą. Przykładem zastosowania IP20 mogą być urządzenia elektroniczne używane w pomieszczeniach, które nie są narażone na kontakt z wodą, jak np. komputery stacjonarne czy osprzęt biurowy. Zrozumienie oznaczeń IP jest kluczowe dla zapewnienia odpowiedniego poziomu bezpieczeństwa i trwałości urządzeń w różnych środowiskach pracy. W praktyce, dobór odpowiedniego stopnia ochrony obudowy powinien być zgodny z warunkami, w jakich dany sprzęt będzie używany, aby zabezpieczyć go przed uszkodzeniami.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Aby zabezpieczyć pracowników przed podwyższonym promieniowaniem fal elektromagnetycznych, wykorzystuje się

A. chodniki izolacyjne
B. fartuchy ochronne
C. kaski ochronne
D. ekrany z uziemieniem
Zastosowanie fartuchów roboczych, chodników izolacyjnych oraz kasków ochronnych w kontekście ochrony przed falami elektromagnetycznymi jest niewłaściwe, ponieważ te środki nie są zaprojektowane w celu redukcji promieniowania elektromagnetycznego. Fartuchy robocze mają na celu ochronę przed substancjami chemicznymi, ciepłem lub mechanicznymi uszkodzeniami, lecz nie oferują skutecznej ochrony przed falami elektromagnetycznymi. Chodniki izolacyjne, choć mogą być używane do ochrony przed porażeniem elektrycznym, nie działają jako bariera dla promieniowania elektromagnetycznego i nie eliminują jego szkodliwego wpływu. Kaski ochronne z kolei są przystosowane do ochrony głowy przed uderzeniami i nie mają właściwości związanych z osłoną przed promieniowaniem elektromagnetycznym. Typowym błędem myślowym jest zakładanie, że wszystkie środki ochrony osobistej mogą być stosowane w każdym kontekście, co prowadzi do błędnych wniosków. W rzeczywistości, aby skutecznie chronić pracowników przed promieniowaniem elektromagnetycznym, konieczne jest zastosowanie specjalistycznych rozwiązań, takich jak ekrany z uziemieniem, które są dostosowane do specyficznych zagrożeń. Właściwe zrozumienie i zastosowanie odpowiednich środków ochrony jest kluczowe dla zapewnienia bezpieczeństwa w miejscu pracy.

Pytanie 18

Co oznacza opis na przewodzie YTDY 6×0,5?

A. sześciożyłowy z żyłą aluminiową typu linka, o przekroju żyły 0,5 mm2
B. sześciożyłowy z żyłą miedzianą typu drut, o przekroju żyły 0,5 mm2
C. sześciożyłowy z żyłą miedzianą typu linka, o przekroju żyły 0,5 mm2
D. sześciożyłowy z żyłą aluminiową typu drut, o przekroju żyły 0,5 mm2
Odpowiedź wskazująca na przewód sześciożyłowy z żyłą miedzianą typu drut o przekroju żyły 0,5 mm2 jest poprawna, ponieważ oznaczenie YTDY odnosi się do specyfikacji przewodów elektrycznych, w których 'Y' oznacza przewód miedziany, 'T' oznacza, że przewód ma zastosowanie do instalacji w trudnych warunkach, a 'D' i 'Y' oznaczają odpowiednio, że przewód jest wielożyłowy i ma izolację z PVC. Przewody z żyłą miedzianą są powszechnie używane w instalacjach elektrycznych ze względu na dobre przewodnictwo elektryczne oraz odporność na utlenianie. Przykładem zastosowania tego typu przewodu może być okablowanie oświetleniowe w budynkach mieszkalnych, gdzie przewody o małym przekroju są wystarczające do zasilania energooszczędnych źródeł światła. W przypadku instalacji, które nie wymagają znacznych obciążeń, przewody o przekroju 0,5 mm2 są odpowiednie, a ich elastyczność sprawia, że można je łatwo układać w różnych konfiguracjach. Zgodnie z normą PN-EN 60228, przewody tego typu powinny być stosowane zgodnie z określonymi zasadami, co zapewnia bezpieczeństwo użytkowania.

Pytanie 19

Czynniki wpływające na zniekształcenie sygnału przesyłanego w światłowodzie jednomodowym to

A. dyspersja chromatyczna
B. pole elektromagnetyczne
C. pole elektrostatyczne
D. dyspersja międzymodowa
Dyspersja międzymodowa jest zjawiskiem, które występuje głównie w światłowodach wielomodowych, gdzie różne tryby propagacji światła mogą podróżować różnymi ścieżkami. W kontekście światłowodów jednomodowych, dyspersja międzymodowa nie ma zastosowania, ponieważ te światłowody są zaprojektowane tak, aby prowadzić tylko jeden tryb światła, co minimalizuje ryzyko zniekształceń związanych z tym zjawiskiem. Pole elektromagnetyczne oraz pole elektrostatyczne również nie mają bezpośredniego wpływu na zniekształcenia sygnału w światłowodach. Pole elektromagnetyczne może wpływać na sygnały w różnych technologiach komunikacyjnych, ale w kontekście przesyłu światłowodowego nie jest to istotne, ponieważ światłowody działają na zasadzie propagacji światła, a nie fal elektromagnetycznych w tradycyjnym sensie. Pole elektrostatyczne, z drugiej strony, dotyczy interakcji ładunków elektrycznych, które również nie wpływają na sygnał w światłowodach. Typowe błędy myślowe mogą prowadzić do mylenia tych pojęć z dyspersją chromatyczną, której skutki są bardziej zauważalne w kontekście transmisji danych. Zrozumienie tych różnic jest kluczowe dla projektowania i optymalizacji systemów światłowodowych oraz dla efektywnego rozwiązywania problemów związanych z zniekształceniami sygnału.

Pytanie 20

Który rodzaj kondensatora wymaga zachowania polaryzacji podczas jego wymiany?

A. Ceramiczny
B. Elektrolityczny
C. Foliowy
D. Powietrzny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kondensatory elektrolityczne są elementami, które wymagają zachowania polaryzacji podczas wymiany, co jest kluczowym aspektem ich użytkowania. Są one zaprojektowane z wykorzystaniem elektrody, która jest wytwarzana z materiału przewodzącego, oraz dielektryka, który jest elektrolitem. Polaryzacja oznacza, że kondensator ma określoną biegunowość - jeden terminal działa jako anoda, a drugi jako katoda. W przypadku zamiany miejscami tych biegunów może dojść do uszkodzenia kondensatora, a nawet wybuchu. W praktycznych zastosowaniach, kondensatory elektrolityczne są powszechnie używane w zasilaczach, filtrach i układach audio, gdzie ich zdolność do przechowywania dużych ładunków sprawia, że są niezbędne. Ważne jest również stosowanie norm, takich jak IEC 60384, które regulują parametry kondensatorów elektrolitycznych, aby zapewnić ich niezawodność i bezpieczeństwo w aplikacjach. Wymieniając te komponenty, należy zawsze upewnić się, że nowe kondensatory mają odpowiednią biegunowość, aby uniknąć poważnych problemów.

Pytanie 21

Gdy po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać piski, co należy zrobić?

A. zwiększyć napięcie zasilania elektrozaczepu
B. zwiększyć poziom głośności w panelu
C. dostosować poziom głośności w unifonie
D. dostosować napięcie w kasecie rozmownej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyregulowanie poziomu głośności w unifonie jest kluczowym krokiem w sytuacji, gdy po podłączeniu domofonu pojawiają się niepożądane piski. Tego rodzaju odgłosy często są wynikiem ustawienia zbyt wysokiego poziomu głośności, co prowadzi do zjawiska zwane sprzężeniem akustycznym. Poprawne dostosowanie głośności może znacznie poprawić komfort użytkowania systemu domofonowego. W praktyce, odpowiednia regulacja głośności może obejmować zarówno zmniejszenie poziomu dźwięku w unifonie, jak i dostosowanie ustawień w kasecie rozmownej. Warto również sprawdzić, czy nie występują inne źródła zakłóceń, takie jak kiepskiej jakości przewody lub nieodpowiednie połączenia. Ważne jest, aby przed przystąpieniem do regulacji głośności, zapoznać się z instrukcją obsługi urządzenia, aby zrozumieć, gdzie znajduje się potencjometr lub przycisk głośności. W kontekście norm branżowych, właściwe ustawienie głośności w urządzeniach audio powinno być zgodne z zaleceniami producenta, co zapewnia optymalną jakość dźwięku i minimalizuje ryzyko wystąpienia nieprzyjemnych odgłosów.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Który amperomierz powinien być użyty do zmierzenia natężenia prądu 0,5 A przepływającego przez czujnik o rezystancji wyjściowej w przybliżeniu 100 Ω, aby pomiar był jak najbardziej precyzyjny?

A. Cyfrowy na zakresie I = 1 A i RWE = 5 Ω
B. Cyfrowy na zakresie I = 10 A i RWE = 5 Ω
C. Analogowy na zakresie I = 10 A i RWE = 50 Ω
D. Analogowy na zakresie I = 1 A i RWE = 50 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór cyfrowego amperomierza na zakresie 1 A z wewnętrznym oporem 5 Ω to naprawdę dobry ruch, jeśli chodzi o pomiar natężenia prądu 0,5 A. Osobiście uważam, że cyfrowe amperomierze są znacznie lepsze niż analogowe, bo dają bardziej rzetelne wyniki i mniejsze błędy pomiarowe. Gdy mierzysz 0,5 A, użycie zakresu 1 A to strzał w dziesiątkę – na pewno dostaniesz bardziej dokładne odczyty niż z większym zakresem. Niski opór wewnętrzny, czyli te 5 Ω, jest ważne, bo dzięki temu amperomierz nie wpływa za bardzo na mierzony obwód. To ma znaczenie, gdy masz czujnik o rezystancji 100 Ω, bo wtedy każdy mały wpływ mógłby zniekształcić wyniki. Jak dla mnie, to kluczowe w pomiarach, zwłaszcza w sytuacjach, gdzie liczą się drobne zmiany, jak w czujnikach temperatury czy ciśnienia. Z tego, co pamiętam, standardy jak IEC 61010 mówią, że warto wybierać dobre narzędzia pomiarowe, żeby minimalizować błędy i zapewnić bezpieczeństwo.

Pytanie 25

Na stanowiskach zajmujących się naprawą i konserwacją sprzętu elektronicznego nie jest wymagane

A. zerowania ochronnego
B. wyłączników różnicowoprądowych
C. uziemienia ochronnego
D. klimatyzacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klimatyzacja, choć może być korzystna w pewnych warunkach pracy, nie jest wymagana na stanowiskach do naprawy i konserwacji urządzeń elektronicznych. Kluczowe jest, aby urządzenia te były odpowiednio wentylowane, co można osiągnąć poprzez naturalną cyrkulację powietrza lub odpowiednie systemy wentylacyjne. Dobrą praktyką w tym zakresie jest zapewnienie, że temperatura w pomieszczeniu nie przekracza zalecanych norm, aby nie wpływać negatywnie na wrażliwe komponenty elektroniczne. Zastosowanie klimatyzacji może być korzystne w kontekście stabilizacji temperatury, ale nie jest to wymóg normatywny. Przykładem może być warsztat serwisowy, gdzie mechanicy stosują wentylację, aby utrzymać optymalne warunki pracy, ale niekoniecznie korzystają z klimatyzacji. Warto zaznaczyć, że odpowiednie warunki pracy, w tym temperatura, mają kluczowe znaczenie dla wydajności i trwałości sprzętu elektronicznego.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Podczas konserwacji systemu telewizyjnego, oceniając jakość sygnału w gniazdku abonenckim, co należy zmierzyć?

A. moc
B. MER i BER
C. prąd
D. napięcie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź MER i BER jest prawidłowa, ponieważ są to kluczowe wskaźniki jakości sygnału w instalacjach telewizyjnych. MER (Modulation Error Ratio) oraz BER (Bit Error Rate) służą do oceny jakości sygnału cyfrowego. MER mierzy stosunek błędów modulacji do sygnału, a jego wysoka wartość wskazuje na dobrą jakość sygnału, co jest kluczowe dla prawidłowego odbioru sygnału telewizyjnego. Z kolei BER informuje nas o liczbie błędnych bitów w transmisji, co pozwala na ocenę stabilności i niezawodności połączenia. W praktyce, podczas konserwacji systemów telewizyjnych, technicy powinni używać dedykowanych mierników, które umożliwiają pomiar tych wartości. Przykładowo, w systemach DVB-T/T2, stosowanie wartości MER powyżej 30 dB jest zalecane dla zapewnienia wysokiej jakości odbioru. Dobre praktyki w tym zakresie obejmują również regularne sprawdzanie parametrów sygnału w różnych porach dnia, aby zidentyfikować potencjalne problemy związane z zakłóceniami w otoczeniu.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Dwóch techników w czasie 5 godzin instaluje system wideofonowy dla 10 lokatorów. Koszt zakupu materiałów wynosi 2 000 zł. Jaki jest koszt instalacji dla jednego lokatora, jeżeli stawka roboczogodziny jednego pracownika to 50 zł, a całość obciążona jest 22% VAT?

A. 200 zł
B. 305 zł
C. 250 zł
D. 350 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby ustalić koszt instalacji dla pojedynczego lokatora, należy najpierw obliczyć całkowity koszt robocizny i materiałów. Dwóch monterów pracuje przez 5 godzin, co daje łącznie 10 roboczogodzin. Przy stawce 50 zł za godzinę roboczogodzina koszt robocizny wynosi 10 roboczogodzin x 50 zł = 500 zł. Następnie dodajemy koszt materiałów, który wynosi 2000 zł, co daje całkowity koszt instalacji równy 500 zł + 2000 zł = 2500 zł. Ponieważ instalacja dotyczy 10 lokatorów, koszt dla jednego lokatora wynosi 2500 zł / 10 = 250 zł. Należy jednak pamiętać, że do całkowitego kosztu dodawany jest podatek VAT w wysokości 22%. Zatem koszt brutto wynosi 250 zł + 22% x 250 zł = 250 zł + 55 zł = 305 zł. Takie podejście pokazuje, jak ważne jest uwzględnianie wszystkich kosztów oraz podatków przy kalkulacji cen, co jest standardem w branży budowlanej i instalacyjnej.

Pytanie 30

Obudowa wzmacniacza dystrybucyjnego z oznaczeniem IP64 gwarantuje

A. ochronę przed wnikaniem pyłu w ilościach wpływających na pracę urządzenia oraz ochronę przed strumieniem wody z każdego kierunku
B. pełną ochronę przed wnikaniem pyłu oraz zabezpieczenie przed strumieniem wody z każdego kierunku
C. ochronę przed wnikaniem pyłu w ilościach, które mogą zakłócać funkcjonowanie urządzenia oraz ochronę przed kroplami opadającymi pod dowolnym kątem, ze wszystkich stron
D. całkowitą ochronę przed wnikaniem pyłu oraz ochronę przed kroplami padającymi pod dowolnym kątem, ze wszystkich stron

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obudowa wzmacniacza dystrybucyjnego oznaczona kodem IP64 zapewnia całkowitą ochronę przed wnikaniem pyłu oraz ochronę przed kroplami padającymi pod dowolnym kątem, ze wszystkich stron. Kod IP (Ingress Protection) jest standardem określającym stopień ochrony urządzeń elektronicznych przed wnikaniem ciał stałych oraz cieczy. W przypadku IP64, pierwsza cyfra '6' oznacza całkowitą ochronę przed pyłem, co oznacza, że żadne cząstki pyłu nie mogą przeniknąć do wnętrza obudowy, co chroni sprzęt przed uszkodzeniem oraz zapewnia jego prawidłowe działanie. Druga cyfra '4' wskazuje, że obudowa jest odporna na krople wody padające pod różnymi kątami, co oznacza, że nie ma ryzyka uszkodzenia, gdy woda pada na nią z góry. Takie właściwości są szczególnie ważne w aplikacjach, gdzie urządzenia są narażone na trudne warunki atmosferyczne, na przykład w przemysłowych instalacjach, które mogą być narażone na pył, wilgoć oraz różne zanieczyszczenia. Przykładowe zastosowania to obudowy wzmacniaczy w systemach audio, które mogą być używane zarówno na zewnątrz, jak i wewnątrz, a ich niezawodność jest kluczowa dla jakości dźwięku.

Pytanie 31

Zgodnie z dyrektywą 2002/95/EC Parlamentu Europejskiego z dnia 27 stycznia 2003, w sprzęcie ogólnego przeznaczenia (z wyjątkiem wybranych urządzeń techniki komputerowej oraz systemów telekomunikacyjnych) zabrania się stosowania w stopach lutowniczych

A. cyny
B. pasty lutowniczej
C. ołowiu
D. kalafonii

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zgodnie z dyrektywą 2002/95/EC, znaną jako dyrektywa RoHS (Restriction of Hazardous Substances), stosowanie ołowiu w sprzęcie powszechnego użytku jest zabronione ze względu na jego potencjalnie szkodliwy wpływ na zdrowie ludzi i środowisko. Ołów jest substancją toksyczną, która może prowadzić do poważnych problemów zdrowotnych, w tym uszkodzenia układu nerwowego, szczególnie u dzieci. Dlatego dyrektywa RoHS ma na celu ograniczenie obecności niebezpiecznych substancji w produktach elektronicznych. Przykładowo, w produkcji lutowia stosuje się alternatywne materiały, takie jak lutowie bezołowiowe, które może zawierać cynę, srebro i miedź, aby spełniać wymagania środowiskowe i zdrowotne. Warto również zauważyć, że zgodność z dyrektywą RoHS jest kluczowym elementem procesów certyfikacji produktów elektronicznych, co przekłada się na ich akceptację na rynkach europejskich.

Pytanie 32

W trakcie pomiaru rezystancji po zamontowaniu komponentów wykryto bardzo wysoką rezystancję, która była efektem pojawienia się zimnego lutu na połączeniu jednego z komponentów z polem lutowniczym. Jak można usunąć tę wadę?

A. Przylutować obok komponentu odcinek przewodu
B. Wylutować komponent i przylutować koniecznie nowy o identycznych parametrach
C. Wylutować komponent i po sprawdzeniu jego funkcjonalności ponownie przylutować ten element
D. Przylutować obok komponentu drugi element tego samego typu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wylutowanie elementu i późniejsze przylutowanie go po sprawdzeniu, czy działa, to naprawdę najlepszy sposób na pozbycie się zimnego lutowania. Zimny lut, który ma wysoką rezystancję, pojawia się najczęściej, gdy podgrzanie elementów lutowniczych jest niewystarczające albo lutowia nie są zbyt dobrej jakości. Kiedy wylutujesz element, możesz dokładnie sprawdzić, czy działa poprawnie, co jest mega ważne, jak chcesz, żeby cały układ funkcjonował. Dobrze jest też przetestować lut pod kątem przewodności i pewności, żeby nie było innych problemów. Gdy przylutujesz go znowu, pamiętaj o odpowiednich technikach lutowania i temperaturze. Użycie lutownicy, która ma regulowaną temperaturę, może bardzo poprawić jakość tych połączeń. Ta metoda jest zgodna z najlepszymi standardami, takimi jak IPC-A-610, gdzie mówią, co jest akceptowalne w lutach i połączeniach elektronicznych. Jak połączenie lutownicze jest dobrze zrobione, to nie tylko ma niską rezystancję, ale też zwiększa stabilność i niezawodność całego układu.

Pytanie 33

Jaka wartość w systemie szesnastkowym odpowiada binarnej liczbie 01101101?

A. C6
B. 6D
C. 7B
D. BC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 6D jest poprawna, ponieważ liczba binarna 01101101 w systemie szesnastkowym odpowiada wartości 6D. Aby zrozumieć, jak dokonano tej konwersji, warto zauważyć, że system binarny jest systemem pozycyjnym z podstawą 2, a system szesnastkowy ma podstawę 16. Liczbę binarną dzielimy na grupy po cztery bity, co daje nam 0110 i 1101. Następnie każdą z tych grup zamieniamy na odpowiadające wartości w systemie szesnastkowym: 0110 to 6, a 1101 to D. Tak więc, 01101101 to 6D w systemie szesnastkowym. W praktyce takie konwersje są niezwykle ważne, szczególnie w programowaniu na poziomie niskim oraz przy pracy z systemami sprzętowymi, gdzie operacje na bitach i bajtach są powszechne. Rozumienie konwersji między systemami liczbowymi jest fundamentalne w inżynierii oprogramowania oraz w projektowaniu systemów cyfrowych, gdzie często zachodzi potrzeba interpretacji wartości binarnych w bardziej zrozumiałych dla ludzi systemach, takich jak hex.

Pytanie 34

Opady śniegu mogą prowadzić do znacznego obniżenia jakości odbioru sygnału

A. radiowego naziemnego
B. telewizji kablowej
C. telewizji satelitarnej
D. telewizyjnego naziemnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Opady śniegu mogą znacząco wpłynąć na jakość odbioru sygnału telewizji satelitarnej ze względu na charakterystykę transmisji satelitarnej, która opiera się na sygnałach radiowych wysyłanych z satelitów krążących na wysokich orbitach. Sygnały te są podatne na zjawiska atmosferyczne, takie jak opady deszczu czy śniegu, które mogą powodować tłumienie sygnału. W przypadku opadów śniegu, cząsteczki wody i kryształki lodu mogą powodować znaczące straty sygnału, co skutkuje zakłóceniami lub całkowitym brakiem odbioru. Dla przykładu, w sytuacji intensywnych opadów śniegu, użytkownicy telewizji satelitarnej mogą doświadczać problemów z sygnałem, co może objawiać się w postaci zniekształceń obrazu, zacinania się transmisji lub brakiem sygnału. Standardy dotyczące instalacji anten satelitarnych oraz dobre praktyki wskazują, że odpowiednie umiejscowienie anteny oraz jej właściwe zabezpieczenie przed opadami mogą minimalizować te problemy, jednak całkowite ich wyeliminowanie może być trudne. Z tego powodu w regionach o dużych opadach śniegu, użytkownicy powinni rozważyć systemy, które potrafią zredukować wpływ warunków atmosferycznych na jakość sygnału.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jakim skrótem literowym określa się wskaźnik błędów modulacji w cyfrowej telewizji?

A. PSNR
B. BER
C. SNR
D. MER
SNR, czyli Signal-to-Noise Ratio, jest wskaźnikiem stosunku energii sygnału do energii szumów. Choć jego pomiar jest istotny, nie odnosi się bezpośrednio do jakości modulacji sygnału, jak to ma miejsce w przypadku MER. Wysoki wskaźnik SNR świadczy o tym, że sygnał jest znacznie silniejszy od szumów, ale nie uwzględnia on jakości samej modulacji, co jest kluczowe w systemach cyfrowych. PSNR, czyli Peak Signal-to-Noise Ratio, z kolei jest stosowany głównie w kontekście jakości obrazu, a jego zastosowanie w telewizji cyfrowej jest marginalne i nie dostarcza informacji o błędach modulacji. BER, czyli Bit Error Rate, mierzy natomiast procent błędnych bitów w przesyłanym sygnale, co jest istotnym wskaźnikiem, ale również nie odnosi się bezpośrednio do samego procesu modulacji. Wybór SNR, PSNR lub BER zamiast MER prowadzi do niepełnego obrazu jakości sygnału, ponieważ te wskaźniki nie dostarczają pełnej perspektywy na temat błędów związanych z samą modulacją. Analizując te wskaźniki, można łatwo wpaść w pułapkę myślenia, że silniejszy sygnał automatycznie oznacza lepszą jakość, co jest błędnym założeniem. W praktyce, nawet przy wysokim SNR, niska wartość MER może wskazywać na problemy z jakością obrazu, co podkreśla znaczenie zrozumienia różnic między tymi wskaźnikami.

Pytanie 38

Zakres częstotliwości, podany w dokumentacji technicznej wzmacniacza, to

A. częstotliwość graniczna dolna
B. suma częstotliwości granicznych górnej i dolnej
C. częstotliwość graniczna górna
D. różnica między częstotliwością graniczną górną a dolną
Częstotliwości graniczne górna i dolna są ważne, ale same z siebie nie dają pełnego obrazu pasma przenoszenia. Kiedy mówi się tylko o jednej z nich, to nie jest to do końca to, co powinno być. Górna częstotliwość graniczna mówi o maksymalnej częstotliwości, którą wzmacniacz może ogarnąć, a dolna o minimalnej. Trzeba pamiętać, że żeby wzmacniacz dobrze działał, musi mieć odpowiedni zakres częstotliwości, więc znajomość tylko jednej z granic niewiele daje. Mówienie o sumie częstotliwości granicznych to też błąd, bo to w ogóle nie odnosi się do pasma przenoszenia. Pasmo przenoszenia to tak naprawdę różnica między tymi granicami, dzięki czemu można zrozumieć, jak szeroki zakres częstotliwości wzmacniacz obsługuje. Często ludzie mylą to z pojedynczymi wartościami, co prowadzi do zamieszania i niepełnego zrozumienia działania wzmacniaczy w praktyce. Wiedza o pasmie przenoszenia jest super istotna w dziedzinach audio i telekomunikacyjnej, gdzie jakość sygnału naprawdę ma duże znaczenie.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.