Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 26 maja 2025 16:24
  • Data zakończenia: 26 maja 2025 16:37

Egzamin zdany!

Wynik: 37/40 punktów (92,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Kogenerator w trakcie spalania np. biogazu wytwarza energię

A. jedynie mechaniczną
B. wyłącznie energię cieplną
C. tylko energię elektryczną
D. elektryczną i cieplną
Kogenerator, znany również jako jednostka skojarzonej produkcji energii (CHP), jest urządzeniem, które jednocześnie produkuje energię elektryczną oraz cieplną podczas procesu spalania paliw, takich jak biogaz. Biogaz, będący odnawialnym źródłem energii, jest wykorzystywany w kogeneratorach ze względu na swoją niską emisję szkodliwych substancji oraz możliwość efektywnego przetwarzania odpadów organicznych. Kogeneratory działają na zasadzie wykorzystania ciepła odpadowego, które normalnie byłoby tracone w tradycyjnych systemach produkcji energii. Dzięki temu, uzyskują one wyższą efektywność energetyczną, często przekraczającą 80%. Przykładem zastosowania kogeneratorów jest wykorzystanie w zakładach przemysłowych, które potrzebują zarówno prądu, jak i ciepła do procesów produkcyjnych. Tego rodzaju systemy przyczyniają się do obniżenia kosztów energetycznych oraz zmniejszenia śladu węglowego, co jest zgodne z trendami zrównoważonego rozwoju i najlepszymi praktykami w zarządzaniu energią.

Pytanie 2

Na instalacji fotowoltaicznej zaobserwowano, że panele fotowoltaiczne generują energię prądu stałego, jednak nie jest ona przekształcana na energię prądu zmiennego. Jakie urządzenie jest odpowiedzialne za konwersję prądu stałego produkowanego przez instalację fotowoltaiczną na prąd zmienny?

A. Watomierz
B. Prostownik
C. Inwerter
D. Przekładnik napięciowy
Inwerter to kluczowe urządzenie w systemach fotowoltaicznych, którego podstawową funkcją jest przekształcanie prądu stałego (DC) w prąd zmienny (AC). Panele fotowoltaiczne generują energię w postaci prądu stałego, która nie może być bezpośrednio wykorzystywana w większości aplikacji domowych ani nie może być wprowadzana do sieci elektroenergetycznej, gdyż ta operuje na prądzie zmiennym. Dlatego inwertery pełnią nie tylko rolę technologiczną, ale także zapewniają zgodność z przepisami i normami dotyczącymi jakości energii. W praktyce inwertery są odpowiedzialne za monitorowanie parametrów pracy systemu, optymalizację produkcji energii oraz zabezpieczenie przed przeciążeniem czy innymi nieprawidłowościami. Dobre praktyki branżowe wskazują na znaczenie wyboru inwertera o odpowiedniej mocy i funkcjach, takich jak monitoring online, co pozwala na bieżąco kontrolować wydajność instalacji.

Pytanie 3

Za zaworem rozprężnym w układzie pompy ciepła obserwuje się następujące wartości termodynamiczne:

A. wysokie ciśnienie – wysoka temperatura
B. niskie ciśnienie – wysoka temperatura
C. wysokie ciśnienie – niska temperatura
D. niskie ciśnienie – niska temperatura
Odpowiedź "niskie ciśnienie – niska temperatura" jest poprawna, ponieważ po przejściu przez zawór rozprężny w układzie pompy ciepła następuje obniżenie ciśnienia czynnika chłodniczego, co prowadzi do jego rozprężenia i obniżenia temperatury. Zjawisko to jest zgodne z zasadą zachowania energii oraz zasadami termodynamiki, a szczególnie z równaniami stanu gazów. W praktyce, po rozprężeniu, czynnik chłodniczy w stanie niskociśnieniowym i niskotemperaturowym wchodzi do parownika, gdzie absorbuje ciepło z otoczenia. Działanie to ma kluczowe znaczenie w kontekście efektywności energetycznej systemów grzewczych. W projektowaniu instalacji, kluczowe jest zrozumienie tych procesów, aby optymalizować ich funkcjonowanie. Na przykład, w standardach ASHRAE dotyczących systemów HVAC, podkreśla się znaczenie prawidłowego doboru i ustawienia zaworu rozprężnego dla zapewnienia efektywności energetycznej oraz minimalizacji strat ciepła.

Pytanie 4

Którego rodzaju kosztorysu nie tworzy wykonawca prac?

A. Inwestorskiego
B. Ofertowego
C. Zamiennego
D. Powykonawczego
Wiesz, wykonawca nie zajmuje się robieniem kosztorysu inwestorskiego. To inwestor albo jego przedstawiciel powinien tym się zająć. Kosztorys inwestorski to taki dokument, który szacuje, ile będzie kosztować cały projekt budowlany. Przydaje się głównie do planowania finansowego i oceny, czy inwestycja się opłaca. Z mojego doświadczenia, taki kosztorys musi być zrobiony według norm, na przykład PN-ISO 9001, żeby był rzetelny i przejrzysty. Generalnie powinien zawierać szczegółowy opis robót, materiałów i przewidywanych kosztów, co pozwala inwestorowi podjąć świadomą decyzję przy wyborze wykonawcy. Oczywiście w czasie przetargów, wykonawcy też robią kosztorysy ofertowe i powykonawcze, ale i tak za kosztorys inwestorski odpowiada inwestor, co jest zgodne z najlepszymi praktykami w branży budowlanej.

Pytanie 5

Jak często należy przeprowadzać pomiar rezystancji poszczególnych ogniw w akumulatorach?

A. co 6 miesięcy
B. raz w roku
C. codziennie
D. raz w miesiącu
Pomiar rezystancji ogniw w bateriach akumulatorów co 6 miesięcy stanowi najlepszą praktykę w zakresie monitorowania stanu technicznego akumulatorów. Takie podejście pozwala na wczesne wykrywanie potencjalnych problemów, takich jak degradacja ogniw czy nieprawidłowe połączenia. Regularne pomiary umożliwiają również ocenę efektywności procesów ładowania oraz rozładowania akumulatorów. Wiele norm branżowych, takich jak IEC 62485, podkreśla znaczenie systematycznego monitorowania parametrów elektrycznych akumulatorów, co przyczynia się do poprawy ich żywotności oraz bezpieczeństwa eksploatacji. Przykładowo, w aplikacjach takich jak zasilanie awaryjne lub systemy energii odnawialnej, regularne sprawdzanie rezystancji ogniw może zapobiec nieprzewidzianym awariom i zapewnia ciągłość działania systemów zasilających. Systematyczne pomiary są również istotne dla oceny stanu cyklu życia akumulatorów, co ma kluczowe znaczenie w kontekście przywracania ich do pełnej funkcjonalności.

Pytanie 6

Diody bypass w systemie fotowoltaicznym zazwyczaj są instalowane

A. pomiędzy dwoma panelami w stringu
B. na końcu rzędu paneli
C. między łańcuchem paneli a akumulatorem
D. w skrzynce przyłączeniowej panelu fotowoltaicznego
Diody bypass w instalacji fotowoltaicznej są kluczowymi elementami, które zapewniają optymalną wydajność paneli słonecznych. Montuje się je w puszce przyłączeniowej panelu fotowoltaicznego, co pozwala na ich skuteczne działanie w sytuacjach, gdy jeden z ogniw panelu ulegnie zaciemnieniu lub uszkodzeniu. Dzięki diodom bypass, prąd może płynąć z pominięciem niedziałającego ogniwa, co minimalizuje straty mocy i pozwala na dalsze generowanie energii przez pozostałe sprawne ogniwa. Zastosowanie tych diod zgodnie z normami branżowymi, takimi jak IEC 61215 dla paneli słonecznych, jest powszechną praktyką, która zapewnia długoterminową niezawodność instalacji. Przykładowo, w przypadku instalacji solarnych na dachach z drzewami w pobliżu, gdzie cień może padać na część paneli, diody bypass pomagają utrzymać wydajność systemu, co jest krytyczne dla jego zwrotu z inwestycji. Warto również zauważyć, że odpowiednie umiejscowienie tych diod może wpływać na gwarancję paneli, dlatego ich instalacja powinna być przeprowadzona zgodnie z zaleceniami producenta.

Pytanie 7

Jakie ogniwo fotowoltaiczne wykazuje najwyższą efektywność?

A. Monokrystaliczne
B. Polikrystaliczne
C. Hybrydowe
D. Amorficzne
Monokrystaliczne ogniwa fotowoltaiczne, chociaż charakteryzują się wysoką efektywnością, nie osiągają najwyższych sprawności w porównaniu do hybrydowych odpowiedników. Ich budowa polega na wykorzystaniu jednego kryształu krzemu, co ogranicza ich zdolność do absorpcji światła w niekorzystnych warunkach, takich jak chmury czy cień. Z drugiej strony, ogniwa amorficzne zdobijają uznanie za swoją elastyczność i możliwość wielowarstwowych zastosowań, ale ich sprawność w konwersji energii jest znacznie niższa, nie przekraczająca zazwyczaj 10-12%. Polikrystaliczne ogniwa, mimo że są tańsze w produkcji, także nie dorównują sprawnością ogniw hybrydowych. Wiele osób błędnie myśli, że wybór ogniw monokrystalicznych lub polikrystalicznych jest najlepszym rozwiązaniem ze względu na ich popularność, jednakże nie uwzględniają przy tym postępu technologicznego oraz badań nad ogniwami hybrydowymi. W rzeczywistości, wybór odpowiedniego typu ogniwa powinien opierać się na specyficznych potrzebach projektu oraz na warunkach, w jakich będą one używane. Ważne jest, aby przy podejmowaniu decyzji o wyborze technologii fotowoltaicznej, konsultować się z ekspertami oraz kierować się obowiązującymi standardami branżowymi, takimi jak IEC 61730, które opisują wymagania dotyczące bezpieczeństwa i wydajności modułów fotowoltaicznych.

Pytanie 8

Jakiego rodzaju instalację PV należy zbudować, aby móc sprzedawać energię elektryczną do sieci energetycznej?

A. Wyspową
B. Autonomiczną
C. Off-grid
D. On-grid
Odpowiedź 'On-grid' jest prawidłowa, ponieważ instalacje fotowoltaiczne typu on-grid są zaprojektowane do współpracy z siecią elektroenergetyczną. W przypadku tego typu instalacji, panele słoneczne generują energię elektryczną, która jest wykorzystywana do zasilania budynku, a nadwyżka energii może być odsprzedawana do sieci. Przykładem zastosowania instalacji on-grid jest dom jednorodzinny, który produkuje więcej energii, niż zużywa, i sprzedaje nadwyżki energii lokalnemu operatorowi sieci. Takie rozwiązanie sprzyja efektywności energetycznej i obniżeniu kosztów eksploatacyjnych. W Polsce, zgodnie z Ustawą o OZE, właściciele instalacji on-grid mają prawo do odsprzedaży energii, co jest regulowane przez system net-billingu, gdzie nadwyżki energii są rozliczane na korzystnych warunkach. Standardy instalacji on-grid obejmują również konieczność zastosowania inwerterów sieciowych, które przekształcają prąd stały wytworzony przez panele na prąd zmienny, odpowiedni do wprowadzenia do sieci.

Pytanie 9

W czasie zimowym można wykorzystać odwrócony cykl cieczy roboczej w systemie solarnym do eliminacji śniegu oraz rozmrażania lodu na powierzchni kolektorów słonecznych?

A. próżniowo-rurowych
B. rurowych heat-pipe
C. płaskich cieczowych
D. płaskich próżniowych
Odpowiedź "płaskich cieczowych" jest prawidłowa, ponieważ kolektory płaskie wykorzystują ciecz roboczą, zazwyczaj wodę lub mieszanki wodne, do absorpcji ciepła ze słońca. W okresie zimowym, gdy na powierzchni kolektorów gromadzi się śnieg lub lód, zastosowanie obiegu cieczy roboczej pozwala na zwiększenie temperatury w układzie, co prowadzi do efektywnego usunięcia zanieczyszczeń. Proces ten zachodzi dzięki podgrzewaniu cieczy w kolektorze, co umożliwia jej cyrkulację i transport ciepła w celu poprawy efektywności systemu słonecznego. Dobre praktyki w branży zalecają regularne monitorowanie i konserwację instalacji, aby zapewnić ich prawidłowe działanie w trudnych warunkach atmosferycznych. Oprócz tego, zastosowanie płaskich kolektorów cieczowych jest zgodne z normami efektywności energetycznej, co przyczynia się do optymalizacji kosztów eksploatacyjnych i zwiększenia trwałości systemu.

Pytanie 10

Zalecana objętość zbiornika solarnego wynosi

A. od 2 do 2,5 razy większa niż dzienne zapotrzebowanie na ciepłą wodę użytkową
B. mniejsza niż dzienne zapotrzebowanie na ciepłą wodę użytkową
C. taka sama jak dzienne zapotrzebowanie na ciepłą wodę użytkową
D. od 1,5 do 2 razy większa niż dzienne zapotrzebowanie na ciepłą wodę użytkową
Zalecana pojemność zasobnika solarnego powinna być większa od dziennego zapotrzebowania na ciepłą wodę użytkową, aby umożliwić efektywne wykorzystanie energii słonecznej. W praktyce, pojemność zasobnika od 1,5 do 2 razy większa od zapotrzebowania zapewnia, że woda jest odpowiednio podgrzewana w ciągu dnia, a nadmiar ciepła może być magazynowany na wieczór lub noc. Takie podejście jest zgodne z wytycznymi i normami zawartymi w standardach budowlanych oraz praktykami w zakresie systemów grzewczych. Dla przykładu, jeśli średnie dzienne zapotrzebowanie na ciepłą wodę wynosi 100 litrów, to pojemność zasobnika powinna wynosić od 150 do 200 litrów. Umożliwia to nie tylko zaspokojenie bieżącego zapotrzebowania, ale także buforowanie ciepła, co jest niezbędne w okresach niskiej inszolacji słonecznej. Dodatkowo, zwiększona pojemność zasobnika przyczynia się do lepszej stabilności systemu, minimalizując ryzyko przegrzania i strat ciepła.

Pytanie 11

Aby podłączyć kocioł na biomasę do wymiennika c.w.u w wodnej instalacji grzewczej w systemie otwartym, można zastosować rurę

A. z polipropylenu
B. Alu-PEX
C. ze stali nierdzewnej
D. ze stali ocynkowanej
Stal nierdzewna jest materiałem, który doskonale sprawdza się w instalacjach grzewczych, w tym w podłączeniach kotłów na biomasę do wężownic zasobników c.w.u. W porównaniu z innymi materiałami, stal nierdzewna charakteryzuje się wysoką odpornością na korozję oraz na wysokie temperatury i ciśnienia, co jest kluczowe w instalacjach, gdzie zachodzi transfer energii cieplnej. Zastosowanie stali nierdzewnej zapewnia długotrwałość i niezawodność połączenia, co jest istotne dla użytkowników szukających efektywnych i bezpiecznych rozwiązań. Przykładowo, w wielu nowoczesnych instalacjach grzewczych w budynkach mieszkalnych, stal nierdzewna jest preferowanym materiałem do tworzenia węzłów ciepłowniczych oraz do łączenia elementów takich jak kotły, zasobniki czy wymienniki ciepła. Dodatkowo, stosowanie stali nierdzewnej często jest zgodne z wymogami norm budowlanych oraz standardów dotyczących instalacji grzewczych, co zwiększa bezpieczeństwo oraz efektywność systemów grzewczych.

Pytanie 12

Jaki powinien być minimalny czas trwania testu szczelności kolektora słonecznego?

A. 5 minut
B. 12 minut
C. 15 minut
D. 10 minut
Minimalny czas trwania próby szczelności kolektora słonecznego wynoszący 15 minut jest zgodny z zaleceniami wielu standardów branżowych, w tym normy EN 12975 dotyczącej kolektorów słonecznych. Taki okres jest wystarczający, aby upewnić się, że wszelkie potencjalne wycieki powietrza lub cieczy zostały wykryte, a także aby system osiągnął stabilny stan pracy. Przykładowo, w praktyce inżynierskiej, próby szczelności przeprowadza się poprzez zastosowanie ciśnienia wyższego od normalnego, co pozwala na identyfikację miejsc nieszczelnych. W przypadku kolektorów słonecznych, prawidłowe przeprowadzenie próby szczelności jest kluczowe dla zapewnienia ich efektywności oraz długowieczności. Nieprawidłowe uszczelnienia mogą prowadzić do strat energii, a w skrajnych przypadkach do poważnych uszkodzeń systemu. Dlatego kluczowe jest przestrzeganie zalecanych czasów trwania prób, co zapewnia zgodność z procedurami jakości oraz bezpieczeństwa.

Pytanie 13

Najlepiej poprowadzić przewody łączące płaski kolektor, usytuowany na dachu, z zasobnikiem ciepła znajdującym się w piwnicy

A. po zewnętrznej elewacji budynku
B. w kanale wentylacyjnym komina
C. w kanale spalinowym komina
D. po wewnętrznej elewacji budynku
Wybór innych opcji w kontekście prowadzenia przewodów łączących kolektor płaski z zasobnikiem ciepła często wynika z niepełnego zrozumienia zasad efektywności transportu ciepła oraz bezpieczeństwa systemów grzewczych. Prowadzenie przewodów po zewnętrznej ścianie budynku może prowadzić do znacznych strat ciepła, szczególnie w okresach chłodniejszych, co jest sprzeczne z podstawowymi zasadami efektywności energetycznej. Zewnętrzne umiejscowienie przewodów naraża je również na działanie niekorzystnych warunków atmosferycznych, co może prowadzić do uszkodzeń oraz obniżonej wydajności. Z kolei umieszczanie przewodów w kanale wentylacyjnym komina nie jest zalecane, ponieważ kanały wentylacyjne są projektowane z myślą o cyrkulacji powietrza, a nie transportowaniu ciepła. Takie podejście nie tylko może prowadzić do problemów z kondensacją, ale również do zanieczyszczenia jakości powietrza wewnątrz budynku. Ponadto, nieodpowiednie umiejscowienie przewodów może stanowić zagrożenie dla bezpieczeństwa, w szczególności w kontekście ewentualnych pożarów. Zrozumienie tych zasad jest kluczowe do prawidłowego projektowania i instalacji systemów grzewczych, co ma bezpośredni wpływ na ich wydajność oraz żywotność.

Pytanie 14

Jaki jest maksymalny współczynnik przenikania ciepła (Uc max) dla zewnętrznych ścian nowych obiektów budowlanych od 01.01.2017 r. przy t1 ≥ 16°C?

A. 0,23 W/m2 · K
B. 0,25 W/m2 · K
C. 0,20 W/m2 · K
D. 0,28 W/m2 · K
Maksymalny współczynnik przenikania ciepła (Uc max) dla ścian zewnętrznych nowych budynków, obowiązujący od 1 stycznia 2017 roku, wynosi 0,23 W/m² · K. Ta wartość została ustalona w związku z wprowadzeniem nowych przepisów dotyczących efektywności energetycznej budynków, które mają na celu zmniejszenie zużycia energii oraz poprawę komfortu cieplnego. W praktyce oznacza to, że ściany zewnętrzne nowych budynków muszą być zaprojektowane w taki sposób, aby ich izolacyjność termiczna była na odpowiednio wysokim poziomie. Przykłady zastosowania tej normy można znaleźć w projektach budowlanych, gdzie wykorzystuje się materiały o niskiej przewodności cieplnej, takie jak wełna mineralna, styropian czy nowoczesne systemy izolacji, które spełniają wymagane standardy. Wprowadzenie surowszych norm Uc ma na celu także ograniczenie emisji CO2 oraz zwiększenie komfortu mieszkańców, co jest zgodne z celami zrównoważonego rozwoju i polityką energetyczną Unii Europejskiej.

Pytanie 15

Jaką wartość odpowiada 3,3 MPa?

A. 33 000 Pa
B. 3,3 bar
C. 33 bar
D. 33 kPa
Wartość 3,3 MPa rzeczywiście odpowiada 33 barom, ponieważ przeliczenie między tymi jednostkami opiera się na standardowym przeliczniku, w którym 1 MPa jest równy 10 barom. Dlatego aby uzyskać wartość w barach, należy pomnożyć ilość megapaskali przez 10. W praktyce, znajomość tych jednostek jest niezbędna w różnych dziedzinach inżynierii, szczególnie w hydraulice i pneumatyce, gdzie ciśnienie odgrywa kluczową rolę. W zastosowaniach przemysłowych, takich jak systemy hydrauliczne, ważne jest, aby być w stanie szybko i precyzyjnie przeliczać wartości ciśnienia. Wartości ciśnienia mogą być wyrażane w różnych jednostkach, a ich poprawne konwertowanie jest istotne dla utrzymania bezpieczeństwa i efektywności systemów. Ponadto, zgodność z normami międzynarodowymi oraz zrozumienie jednostek SI (Systemu Jednostek Międzynarodowych) jest kluczowe w każdej dziedzinie techniki, co podkreśla znaczenie znajomości jednostek ciśnienia.

Pytanie 16

Zbyt niska histereza w regulatorze systemu solarnego może skutkować

A. częstym włączaniem oraz wyłączaniem pompy
B. częstym działaniem zaworu bezpieczeństwa
C. obniżeniem ciśnienia w instalacji
D. szybszym zużyciem płynu solarnego
Ustawienie zbyt małej histerezy w sterowniku solarnym może prowadzić do częstego włączania i wyłączania pompy, co jest związane z działaniem systemu regulacji temperatury. Histereza to różnica temperatury, przy której urządzenie przełącza się z trybu pracy na inny, na przykład z ogrzewania na schładzanie. Gdy histereza jest zbyt mała, nawet niewielkie wahania temperatury mogą powodować, że pompa będzie włączać się i wyłączać zbyt często. Taki stan rzeczy może prowadzić do wzrostu zużycia energii, obniżenia efektywności systemu oraz przyspieszonego zużycia mechanicznych elementów pompy. Przykładem dobrych praktyk jest stosowanie histerezy w obrębie od 5 do 10°C w systemach solarnych, co zapewnia stabilność pracy i minimalizuje ryzyko nadmiernego obciążenia komponentów. Warto również pamiętać, że odpowiednie ustawienia histerezy mogą przyczynić się do poprawy komfortu użytkowania, eliminując niepożądane efekty, takie jak hałas związany z częstym włączaniem i wyłączaniem urządzeń.

Pytanie 17

Najlepszym surowcem, z którego powinny być zrobione łopaty wirnika turbiny wiatrowej o mocy 2 MW, jest

A. włókna szklane
B. miedź
C. stal
D. aluminium
Włókna szklane są materiałem o doskonałych właściwościach mechanicznych i niskiej masie, co czyni je idealnym wyborem do produkcji łopat wirników turbin wiatrowych o mocy 2 MW. Ich wysoka wytrzymałość na rozciąganie oraz odporność na działanie warunków atmosferycznych, w tym korozji, sprawiają, że są one bardziej trwałe w porównaniu do innych materiałów, takich jak stal czy aluminium. Wykorzystanie włókien szklanych w konstrukcji łopat pozwala na osiągnięcie większej efektywności energetycznej, ponieważ umożliwia produkcję dłuższych i lżejszych łopat, co z kolei zwiększa powierzchnię do chwytania wiatru. Przykładem zastosowania tego materiału mogą być nowoczesne turbiny wiatrowe, które korzystają z kompozytów z włókien szklanych w połączeniu z żywicami epoksydowymi, co pozwala na osiągnięcie wysokiej wydajności i długowieczności. Standardy branżowe, takie jak IEC 61400, zalecają stosowanie materiałów kompozytowych w konstrukcji łopat, co potwierdza ich przewagę nad innymi materiałami.

Pytanie 18

Gdzie oraz w jaki sposób należy zainstalować jednostkę zewnętrzną powietrznej pompy ciepła?

A. W odległości co najmniej 0,3 m od ściany budynku, z czerpnią powietrza skierowaną w stronę ściany
B. Bezpośrednio przy zewnętrznej ścianie budynku, z czerpnią powietrza skierowaną w stronę ściany
C. W odległości co najmniej 0,3 m od ściany budynku, z wyrzutem powietrza skierowanym w stronę ściany
D. Bezpośrednio przy zewnętrznej ścianie budynku, z wyrzutem powietrza skierowanym w stronę ściany
Jednostka zewnętrzna powietrznej pompy ciepła powinna być zamontowana w odpowiedniej odległości od ściany budynku, co ma kluczowe znaczenie dla efektywności jej pracy. Umiejscowienie urządzenia w odległości co najmniej 0,3 m od ściany zapewnia odpowiednią cyrkulację powietrza, co jest niezbędne do prawidłowego poboru i wydajności pracy pompy. Takie umiejscowienie minimalizuje również hałas i wibracje, które mogą przenikać do struktury budynku, co jest szczególnie istotne w przypadku budynków mieszkalnych. Skierowanie czerpni powietrza w stronę ściany chroni ją przed bezpośrednim działaniem wiatru i opadów, co pomaga w stabilizowaniu warunków pracy pompy, zwiększając jej wydajność i żywotność. Dodatkowo, przestrzeń pomiędzy jednostką a ścianą ułatwia odprowadzanie skroplin, co zapobiega ich zamarzaniu na elewacji budynku. Takie wytyczne są zgodne z zaleceniami producentów oraz normami branżowymi, co potwierdza ich zasadność.

Pytanie 19

Aby skręcić rury o dużych średnicach w trudno dostępnych miejscach, należy zastosować klucz

A. uniwersalny
B. szwedzki
C. łańcuchowy
D. nastawny
Klucz łańcuchowy jest specjalistycznym narzędziem przeznaczonym do skręcania i odkręcania rur dużych średnic, szczególnie w miejscach o ograniczonym dostępie. Jego konstrukcja pozwala na pewne chwytanie rur, dzięki czemu minimalizuje ryzyko ich uszkodzenia. Klucz łańcuchowy działa na zasadzie owinięcia łańcucha wokół rury, co umożliwia jego pewne obracanie i jednocześnie zapewnia dużą siłę chwytu. W praktyce, zastosowanie klucza łańcuchowego jest niezwykle istotne w branżach takich jak hydraulika czy instalacje przemysłowe, gdzie często spotyka się rury o dużych średnicach. W takich przypadkach tradycyjne klucze, takie jak klucze nastawne czy szwedzkie, mogą okazać się nieefektywne lub wręcz niemożliwe do użycia ze względu na ograniczoną przestrzeń roboczą. Użycie klucza łańcuchowego jest zgodne z dobrą praktyką, ponieważ pozwala na zachowanie bezpieczeństwa pracy oraz efektywności wykonywanych działań. Warto pamiętać, że prawidłowe użycie tego narzędzia wymaga również znajomości technik ich stosowania oraz odpowiednich procedur BHP, co dodatkowo zwiększa efektywność całego procesu.

Pytanie 20

Jakie rodzaje diod chronią przed termicznym uszkodzeniem paneli fotowoltaicznych podłączonych szeregowo?

A. Bocznikujące
B. Tunelowe
C. Impulsowe
D. Blokujące
Diody bocznikujące, znane także jako diody bypass, są kluczowym elementem w systemach fotowoltaicznych, które zapobiegają termicznemu zniszczeniu paneli słonecznych połączonych szeregowo. W przypadku, gdy jeden z paneli jest zacieniony lub uszkodzony, może to prowadzić do efektu hot-spot, gdzie uszkodzony panel generuje ciepło, które może prowadzić do jego degradacji lub całkowitego zniszczenia. Diody bocznikujące działają poprzez 'bypasowanie' prądu wokół uszkodzonego panelu, co pozwala pozostałym panelom na kontynuowanie pracy i generowanie energii. Przykładowo, w typowych instalacjach, diody te są umieszczane równolegle do ogniw w module fotowoltaicznym, co pozwala na efektywne zarządzanie problemami związanymi z różnymi poziomami wydajności ogniw. Zgodnie z najlepszymi praktykami branżowymi, stosowanie diod bocznikujących zwiększa niezawodność systemów PV oraz ich ogólną wydajność, minimalizując ryzyko uszkodzeń termicznych i finansowych strat związanych z koniecznością wymiany uszkodzonych paneli.

Pytanie 21

Jakie elementy należy wykorzystać do zamocowania ogniwa fotowoltaicznego na dachu o konstrukcji dwuspadowej?

A. nity aluminiowe
B. kotwy krokwiowe
C. śruby rzymskie
D. kołki rozporowe
Kotwy krokwiowe to takie specjalne elementy, które przydają się, kiedy mocujemy różne konstrukcje do dachu, szczególnie w przypadku instalacji ogniw fotowoltaicznych na dachach dwuspadowych. Ich zadaniem jest zapewnienie, że panele słoneczne są dobrze przymocowane, co jest mega ważne dla ich efektywności i bezpieczeństwa, zwłaszcza podczas niekorzystnej pogody. Te kotwy są zaprojektowane tak, żeby znosiły mocne wiatry i ciężar związany z opadami śniegu. W praktyce montuje się je bezpośrednio do krokwi, co pomaga równomiernie rozłożyć ciężar. Wg norm budowlanych, ważne jest, żeby wybierać odpowiednie kotwy, które pasują do konkretnej specyfiki dachu i materiałów, z jakich jest zbudowany. Użycie tych kotw nie tylko zwiększa bezpieczeństwo, ale też wydłuża żywotność całej instalacji. Wiele firm zajmujących się fotowoltaiką również poleca takie rozwiązania, co pokazuje, jak istotne są w tej branży.

Pytanie 22

Czynnik przenoszący ciepło z dolnego źródła do pompy oraz z pompy do instalacji o oznaczeniu A/A dotyczy pomp ciepła, w których dolnym źródłem ciepła jest

A. grunt, a górnym powietrze wewnętrzne lub woda grzewcza; w instalacji dolnego źródła krąży solanka, natomiast w instalacji grzewczej krąży woda
B. grunt, a górnym powietrze wewnętrzne; czynnikiem pośredniczącym między dolnym źródłem ciepła a pompą ciepła jest roztwór glikolu, natomiast między pompą ciepła a górnym źródłem ciepła powietrze
C. powietrze wywiewane, natomiast górnym powietrze wewnętrzne; czynnikiem pośredniczącym jest czynnik roboczy pompy ciepła
D. woda powierzchniowa lub głębinowa, a górnym powietrze wewnętrzne lub woda grzewcza; czynnikiem pośredniczącym jest woda
Odpowiedź wskazująca, że dolnym źródłem ciepła jest powietrze wywiewane, a górnym powietrze wewnętrzne, jest prawidłowa, ponieważ opisuje pracę pompy ciepła typu A/A. W takim systemie pompa ciepła wykorzystuje powietrze wywiewane z budynku jako źródło ciepła, co jest szczególnie efektywne w kontekście wentylacji mechanicznej. W praktyce, energia cieplna z powietrza wywiewanego jest przekazywana do czynnika roboczego pompy ciepła, który następnie przetwarza tę energię, aby ogrzewać powietrze wewnętrzne lub wodę grzewczą. Stosowanie tego typu rozwiązań jest zgodne z najnowszymi standardami efektywności energetycznej, takie jak normy EN 14511, które definiują testy i parametry dla pomp ciepła. Efektywność tego systemu podnosi również zastosowanie zaawansowanych filtrów, które poprawiają jakość powietrza wewnętrznego, co jest kluczowe w kontekście zdrowia użytkowników. Warto również zaznaczyć, że systemy te są coraz częściej wykorzystywane w budynkach pasywnych i niskoenergetycznych, gdzie efektywność energetyczna jest kluczowym czynnikiem. Zastosowanie takich rozwiązań przyczynia się do zmniejszenia kosztów eksploatacji oraz obniżenia emisji CO2.

Pytanie 23

Jakie narzędzie jest używane do pomiarów średnic rur, zaworów i kształtek, zarówno zewnętrznych, jak i wewnętrznych?

A. dalmierz
B. suwmiarka
C. anemometr
D. kątomierz
Suwmiarka to narzędzie pomiarowe, które pozwala na precyzyjne mierzenie zarówno zewnętrznych, jak i wewnętrznych średnic różnych obiektów, takich jak rury, zawory czy kształtki. W praktyce, suwmiarka wykorzystywana jest w wielu branżach, w tym w mechanice, budownictwie oraz inżynierii, gdzie dokładność pomiarów jest kluczowa dla zapewnienia jakości wykonywanych prac. Suwmiarki mogą być analogowe lub cyfrowe, co umożliwia łatwe odczytywanie wyników. Dobre praktyki zalecają użycie suwmiarek z funkcją zerowania oraz z dokładnością pomiaru wynoszącą co najmniej 0,02 mm, co jest szczególnie istotne w precyzyjnych zastosowaniach. Ponadto, obsługa suwmiarek jest dosyć intuicyjna, co czyni je narzędziem dostępnym dla szerokiego kręgu użytkowników, nawet tych początkujących w dziedzinie pomiarów. Dlatego suwmierz jest uważany za niezbędne narzędzie w każdym warsztacie czy laboratorium, gdzie wymagane są dokładne pomiary liniowe.

Pytanie 24

Co oznacza symbol PE-HD na rurze?

A. homopolimer polietylenu
B. polietylen o niskiej gęstości
C. polietylen o średniej gęstości
D. polietylen o wysokiej gęstości
Oznaczenie PE-HD odnosi się do polietylenu wysokiej gęstości, który jest jednym z najczęściej stosowanych tworzyw sztucznych w branży budowlanej oraz przemysłowej. PE-HD charakteryzuje się wysoką odpornością na chemikalia, działanie wysokich temperatur oraz promieniowanie UV, co czyni go idealnym materiałem do produkcji rur wykorzystywanych w różnych systemach wodociągowych, kanalizacyjnych oraz gazowych. Dzięki swojej gęstości i strukturze, PE-HD ma również dobrą odporność na uszkodzenia mechaniczne, co jest szczególnie ważne w przypadku instalacji w trudnych warunkach. Standardy ISO 4427 oraz EN 12201 określają wymagania techniczne dla rur PE-HD, co zapewnia ich wysoką jakość oraz niezawodność. W praktyce, rury oznaczone jako PE-HD są powszechnie stosowane do transportu wody pitnej oraz ścieków, a także w systemach irygacyjnych. Warto również zauważyć, że proces recyklingu PE-HD jest stosunkowo prosty, co przyczynia się do zrównoważonego rozwoju i ochrony środowiska.

Pytanie 25

Jakie jest napięcie łańcucha modułów (stringu) po jego odłączeniu od falownika?

A. napięciu pojedynczego modułu
B. zero
C. nieskończoności
D. sumie napięć wszystkich modułów
Odpowiedź wybrana jako poprawna, czyli suma napięć wszystkich modułów, jest zgodna z zasadami łączenia paneli fotowoltaicznych w łańcuchach (stringach). W przypadku, gdy moduły są połączone szeregowo, ich napięcia sumują się, co jest kluczowym aspektem przy projektowaniu systemów fotowoltaicznych. Na przykład, jeśli mamy trzy moduły o napięciu nominalnym 30 V każdy, to napięcie całego stringu po odłączeniu od falownika wynosi 90 V. To zjawisko ma istotne znaczenie podczas obliczania wymaganej mocy falownika oraz projektowania instalacji, aby zapewnić optymalną wydajność systemu. Dobrą praktyką jest zawsze sprawdzanie parametrów technicznych modułów oraz falowników, aby zapewnić ich wzajemną kompatybilność. Dodatkowo, znajomość obliczeń napięcia w łańcuchach pozwala na unikanie przeciążeń i poprawia efektywność energetyczną instalacji. W kontekście standardów, normy IEC 61730 i IEC 61215 są kluczowe w zapewnieniu bezpieczeństwa i wydajności modułów fotowoltaicznych.

Pytanie 26

Aby biogaz produkowany w biogazowni był odpowiedni do spalania, należy go wcześniej właściwie przystosować. Głównie usuwa się z niego szkodliwy

A. wodoru
B. dwutlenek węgla
C. siarkowodoru
D. tlenek węgla
Siarkowodór jest kluczowym zanieczyszczeniem, które musi być usunięte z biogazu przed jego spalaniem. Jego obecność w biogazie stanowi poważne zagrożenie dla efektywności i bezpieczeństwa procesów energetycznych. Siarkowodór jest związkiem o silnych właściwościach korozjogennych, co oznacza, że może powodować poważne uszkodzenia elementów metalowych, takich jak silniki, rury oraz komory spalania. W praktyce, oczyszczanie biogazu ze siarkowodoru odbywa się za pomocą różnych metod, takich jak absorpcja chemiczna, adsorpcja na węglu aktywnym, czy też wykorzystanie bioreaktorów, w których mikroorganizmy przetwarzają H2S na mniej szkodliwe substancje. Stosowanie odpowiednich technologii oczyszczania jest niezbędne, aby zapewnić długotrwałą i bezawaryjną pracę instalacji biogazowych. Dobre praktyki w branży podkreślają znaczenie regularnego monitorowania jakości biogazu oraz dostosowywania procesów oczyszczania w zależności od zmieniających się warunków operacyjnych. Efektywne usunięcie siarkowodoru nie tylko wydłuża żywotność urządzeń, ale również zwiększa efektywność energetyczną całego systemu.

Pytanie 27

Po zakończeniu robót związanych z zamknięciem wykopu należy przeprowadzić odbiór

A. częściowego
B. inwestorskiego
C. końcowego
D. gwarancyjnego
Odpowiedź częściowa jest prawidłowa, ponieważ odbiór częściowy jest kluczowym elementem procesu budowlanego, umożliwiającym kontrolę jakości wykonanych prac na różnych etapach projektu. Po zakończeniu robót zakrywania wykopu, dokonanie odbioru częściowego pozwala inspektorom i kierownikom budowy na weryfikację, czy prace zostały zrealizowane zgodnie z projektem oraz normami budowlanymi. Na tym etapie można sprawdzić, czy zastosowane materiały są odpowiadające wymaganiom technicznym, jak również ocenić, czy wykonane czynności nie stwarzają zagrożenia dla dalszych prac. Praktyczne zastosowanie odbioru częściowego jest szczególnie widoczne w dużych projektach budowlanych, gdzie każdy etap wymaga szczegółowej analizy i dokumentacji, co zwiększa przejrzystość inwestycji i minimalizuje ryzyko późniejszych usterek. W kontekście dobrych praktyk budowlanych, odbiór częściowy jest nie tylko procedurą kontrolną, ale także sposobem na zapewnienie ciągłości i bezpieczeństwa prac budowlanych. Dodatkowo, dokumentacja z odbioru częściowego jest istotna w razie przyszłych roszczeń lub kontroli zewnętrznych.

Pytanie 28

W elektrowni wodnej zainstalowany jest generator o mocy P=100 kW. Jaką częstotliwość powinno mieć napięcie, aby mogła ona współdziałać z Polskim Systemem Energetycznym?

A. 20 Hz
B. 50 Hz
C. 80 Hz
D. 70 Hz
Odpowiedź 50 Hz jest prawidłowa, ponieważ w Polsce, jak i w większości krajów europejskich, standardowa częstotliwość napięcia w sieci elektroenergetycznej wynosi właśnie 50 Hz. Taka częstotliwość została przyjęta jako norma w celu zapewnienia stabilności i kompatybilności systemów energetycznych. Współpraca generatorów prądu z systemem energetycznym opiera się na synchronizacji ich częstotliwości z siecią. Przykładowo, elektrownie wodne, które korzystają z turbin wodnych, muszą dostarczać energię o odpowiedniej częstotliwości, aby mogły zostać włączone do krajowej sieci. Zastosowanie generatorów o mocy 100 kW w Polsce, które muszą pracować w harmonii z innymi źródłami energii, jak elektrownie wiatrowe czy słoneczne, również potwierdza konieczność utrzymania tej standardowej częstotliwości. Takie podejście zwiększa efektywność całego systemu elektroenergetycznego oraz minimalizuje ryzyko awarii związanych z zaburzeniem synchronizacji.

Pytanie 29

Liczbę robót związanych z realizacją wykopu należy zapisać w obmiarze z odpowiednią jednostką

A. m2
B. m3
C. r-g
D. m-g
Poprawna odpowiedź to m3, ponieważ ilość robót związanych z wykonaniem wykopu odnosi się do objętości ziemi, którą należy usunąć. Objecie wykopu, niezależnie od jego kształtu, oblicza się w metrach sześciennych (m3). Przykładem może być wykop pod fundamenty budynku, gdzie konieczne jest obliczenie objętości ziemi do usunięcia, aby określić ilość materiałów, kosztów robocizny oraz czasu potrzebnego na wykonanie prac. W branży budowlanej zgodnie z dobrymi praktykami standardowe jednostki miary, takie jak m3, są kluczowe do precyzyjnego kalkulowania ilości materiałów i kosztów, które są istotne na każdym etapie inwestycji budowlanej. Efektywne zarządzanie projektem wymaga nie tylko znajomości jednostek, ale także umiejętności ich zastosowania w praktyce, co pozwala na optymalizację procesów budowlanych oraz minimalizację kosztów.

Pytanie 30

W jakiej temperaturze, zgodnie z normami STC, dokonuje się oceny parametrów paneli fotowoltaicznych?

A. 15°C
B. 20°C
C. 25°C
D. 30°C
Właściwości paneli fotowoltaicznych według warunków STC (Standard Test Conditions) są sprawdzane w temperaturze 25°C. Jest to kluczowa informacja, ponieważ STC stanowią bazę odniesienia dla producentów i instalatorów systemów fotowoltaicznych, umożliwiając porównywanie wydajności różnych paneli w jednakowych warunkach. Warto zaznaczyć, że temperatura ma istotny wpływ na wydajność ogniw fotowoltaicznych; wyższe temperatury często prowadzą do spadku efektywności. Przykładowo, przy temperaturze wynoszącej 40°C, wydajność paneli może zmniejszyć się o kilka procent w porównaniu do warunków STC. Dobre praktyki branżowe zalecają, aby podczas projektowania instalacji fotowoltaicznych brać pod uwagę lokalne warunki klimatyczne, aby przewidzieć rzeczywistą wydajność systemu, a także odpowiednio dostosować rozwiązania inżynieryjne. Zrozumienie STC jest kluczowe dla osób zajmujących się projektowaniem i instalacją systemów PV, a także dla inwestorów, którzy chcą ocenić opłacalność takich inwestycji.

Pytanie 31

Aby zamontować kocioł na biomasę inwestor zebrał 4 oferty i dokonał ich zestawienia. Wskaż ofertę, w której sprawność kotła jest największa.

Nominalna moc kotła kWSprawność cieplna %Zużycie paliwa kg/hMaksymalna temperatura robocza °CPojemność wodna kotła dm³
A.2387,7-88,12,685100
B.2381,8-83,52,685100
C.25902,495190
D.3090-922,48570

A. B.
B. A.
C. C.
D. D.
Oferta D jest zdecydowanie najlepsza, bo ma najwyższą sprawność kotła, w granicach 90-92%. Wybór kotła o takiej sprawności to kluczowa sprawa, jeśli chodzi o efektywność energetyczną instalacji grzewczej. Według europejskich norm, kotły na biomasę powinny mieć sprawność przynajmniej 85%, a te powyżej 90% to już naprawdę świetny wynik. Wysoka sprawność oznacza, że spalimy mniej paliwa i emitujemy mniej spalin. Krótko mówiąc, to w końcu oszczędności dla użytkownika i lepsza sytuacja dla środowiska. Także, warto zwracać uwagę na parametry techniczne przy wyborze kotłów, porównując nie tylko sprawność, ale także emisję CO2. To pasuje do najlepszych praktyk związanych z ekologią. Dobrze dobrany kocioł na biomasę to nie tylko komfort cieplny, ale także rozsądne wykorzystanie odnawialnych źródeł energii.

Pytanie 32

Jakich informacji nie jest konieczne zawarcie w "Księdze obmiaru" przy instalacji ogniwa fotowoltaicznego?

A. Jednostki pomiarowej
B. Kubatury pomieszczenia
C. Typu urządzeń
D. Liczby zainstalowanych urządzeń
Książka obmiaru dla montażu ogniwa fotowoltaicznego jest dokumentem, który ma za zadanie szczegółowe zarejestrowanie informacji dotyczących zamontowanych urządzeń oraz ich parametrów technicznych. W kontekście tej książki, informacje dotyczące ilości zamontowanych urządzeń, rodzaju urządzeń oraz jednostek miary są kluczowe. Ilość zamontowanych paneli fotowoltaicznych oraz ich rodzaj (np. monokrystaliczne, polikrystaliczne) mają bezpośredni wpływ na efektywność systemu oraz jego zgodność z przyjętymi normami. Jednostki miary są istotne do precyzyjnego określenia wydajności, mocy oraz rozmiarów komponentów instalacji. Natomiast kubatura pomieszczenia, w którym znajdują się urządzenia, nie jest informacją niezbędną w kontekście księgi obmiaru, ponieważ nie ma bezpośredniego wpływu na funkcjonowanie paneli fotowoltaicznych. Przykładowo, w przypadku montażu paneli na dachu, kubatura pomieszczenia nie ma znaczenia dla samej wydajności instalacji. Zgodnie z najlepszymi praktykami branżowymi, Książka obmiaru powinna być starannie prowadzona, aby zapewnić zgodność z wymaganiami prawnymi oraz normami jakości.

Pytanie 33

Energia petrotermiczna jest gromadzona w

A. warstwie wodonośnej
B. wodzie gruntowej
C. parze
D. suchych porowatych skałach
Odpowiedź 'suchych porowatych skałach' jest prawidłowa, ponieważ zasoby energii petrotermicznej są związane z geotermalnymi systemami, w których ciepło zgromadzone w suchych porowatych skałach może być wykorzystane do produkcji energii. Te skały, często nazywane skałami zbiornikowymi, charakteryzują się zdolnością do gromadzenia wody i pary, co czyni je idealnym medium do transportu ciepła. Przykłady zastosowania obejmują instalacje geotermalne, gdzie ciepło z tych skał jest wykorzystywane do ogrzewania budynków lub generowania energii elektrycznej. W praktyce, dobrze zaprojektowane systemy geotermalne mogą znacząco przyczynić się do zrównoważonego rozwoju energetycznego, redukując emisję CO2 i minimalizując zależność od paliw kopalnych. Istotne jest, aby inżynierowie i specjaliści zajmujący się energią odnawialną przestrzegali standardów takich jak ISO 14001, które dotyczą zarządzania środowiskowego oraz efektywności energetycznej w kontekście takich projektów.

Pytanie 34

W trakcie transportu kolektory słoneczne powinny być chronione przed uszkodzeniami mechanicznymi?

A. folią ochronną i obudową drewnianą
B. folią ochronną i kołkami świadkami
C. obudową stalową i kołkami świadkami
D. obudową drewnianą i taśmą bitumiczną
Folia ochronna oraz drewniana obudowa to genialne rozwiązanie, żeby dobrze zabezpieczyć kolektory słoneczne podczas transportu. Folia świetnie chroni delikatne elementy przed różnymi rysami, kurzem i innymi brudami, które mogą się przydarzyć w drodze. Z kolei drewniana obudowa, to już coś solidniejszego, co świetnie ochroni kolektory przed mechanicznymi uderzeniami i zapewni stabilność w trakcie przewozu. Takie podejście jest zgodne z tym, co mówi branża, bo stosowanie odpowiednich materiałów ochronnych naprawdę zmniejsza ryzyko uszkodzenia sprzętu. W praktyce niektóre firmy zajmujące się instalacją kolektorów słonecznych korzystają z takich rozwiązań, co pozwala im utrzymać jakość i ograniczyć reklamacje. Dobrze zabezpieczone kolektory to też lepsza reputacja firmy w oczach klientów, a to w dłuższym czasie przekłada się na sukces biznesowy.

Pytanie 35

Na jakim dokumencie oferent przetargu na montaż instalacji fotowoltaicznej w budynku szkoły opiera swoją propozycję?

A. Projekt budowlany szkoły
B. Rachunki za energię elektryczną szkoły
C. Plan zagospodarowania przestrzennego
D. Specyfikacja istotnych warunków zamówienia
Specyfikacja istotnych warunków zamówienia (SIWZ) jest kluczowym dokumentem w procesie przetargowym, który szczegółowo określa wymagania dotyczące przedmiotu zamówienia, w tym wypadku montażu instalacji fotowoltaicznej. Dokument ten zawiera nie tylko opis zamówienia, ale także kryteria oceny ofert, warunki udziału w postępowaniu oraz inne istotne informacje, które są niezbędne do przygotowania oferty. Przykładowo, SIWZ może zawierać specyfikacje techniczne dotyczące parametrów instalacji, wymagane certyfikaty, oraz wymogi dotyczące dokumentacji powykonawczej. Dzięki temu, oferent ma pełną wiedzę na temat oczekiwań zamawiającego, co pozwala na składanie ofert zgodnych z wymaganiami oraz na właściwe oszacowanie kosztów. W praktyce, stosowanie SIWZ jako podstawy do opracowania oferty jest zgodne z ustawą Prawo zamówień publicznych, co zapewnia transparentność i uczciwość postępowań przetargowych.

Pytanie 36

Na podstawie danych zawartych w tabeli określ koszty pośrednie Kp montażu instalacji kolektorów słonecznych przy założeniu Kp: 75% od (R+S).

Koszty bezpośrednie montażu instalacji kolektorów słonecznychWartość
Robocizna R2200
Materiały M5800
Sprzęt S1200

A. 1 650 zł
B. 900 zł
C. 5 250 zł
D. 2 550 zł
Zanim zaczniemy liczyć koszty pośrednie przy montażu instalacji kolektorów słonecznych, musimy najpierw zsumować wydatki na robociznę i sprzęt. To taki kluczowy krok. Jeśli na przykład mamy koszty robocizny na poziomie 3 000 zł i sprzętu 1 000 zł, to łączna suma to 4 000 zł. Potem musimy policzyć 75% z tej wartości, co daje nam 3 000 zł. Warto też pamiętać, że w branży montażu instalacji solarnych koszty pośrednie mogą obejmować różne wydatki, jak transport czy ubezpieczenie. Dobrze określone koszty pośrednie to nie tylko dobra praktyka, ale też klucz do efektywnego zarządzania budżetem. Jak to dobrze policzymy, może to znacząco wpłynąć na rentowność całego projektu i decyzje inwestycyjne.

Pytanie 37

Aby osiągnąć jak najlepszą efektywność całorocznej instalacji słonecznej do podgrzewania wody użytkowej w Polsce, kolektory powinny być ustawione pod kątem w stronę południową względem poziomu wynoszącym:

A. 70°
B. 20°
C. 90°
D. 45°
Ustawienie kolektorów słonecznych pod kątem 45° jest uznawane za najlepszą praktykę w Polsce, co wynika z potrzeb optymalizacji wydajności energetycznej. Kąt ten zbliża się do średniej szerokości geograficznej kraju, która wynosi około 52°, co przekłada się na maksymalne wykorzystanie promieniowania słonecznego w ciągu roku. Kolektory ustawione pod tym kątem efektywnie zbierają energię słoneczną, minimalizując straty związane z kątami padania promieni słonecznych w różnych porach roku. Dodatkowo, ustawienie pod kątem 45° korzystnie wpływa na śnieg i deszcz, ponieważ ułatwia ich zsuwanie się z powierzchni kolektorów, co zapewnia ich długotrwałą efektywność. W praktyce, instalacje orientowane na południe z takim kątem są w stanie zwiększyć wydajność systemu o około 10-15% w porównaniu do innych bardziej ekstremalnych kątów. Aby zapewnić sobie maksymalne korzyści, warto także zwrócić uwagę na lokalne warunki atmosferyczne oraz cienie od otaczających obiektów, co podkreśla znaczenie kompleksowego podejścia do projektowania systemów solarnych.

Pytanie 38

Który typ kotła pozwala na odzyskanie ciepła z pary wodnej obecnej w spalinach?

A. Nadkrytyczny
B. Kondensacyjny
C. Odzyskowy
D. Przepływowy
Wybór innych typów kotłów w kontekście odzyskiwania ciepła pary wodnej może prowadzić do mylnych koncepcji dotyczących ich działania i zastosowania. Kocioł odzyskowy, choć również skierowany na poprawę efektywności, nie jest zaprojektowany do kondensacji pary wodnej, lecz do odzyskiwania ciepła z różnych procesów przemysłowych, co nie zawsze wiąże się z wykorzystaniem spalin. Kocioł przepływowy, z kolei, ma na celu podgrzewanie wody w czasie rzeczywistym, bez magazynowania, co sprawia, że jego struktura i zasady działania nie przewidują odzyskiwania ciepła spalin. W przypadku kotłów nadkrytycznych, ich działanie opiera się na pracy przy wysokim ciśnieniu, co ogranicza możliwości kondensacji pary wodnej i tym samym odzysku energii cieplnej. Typowe błędy myślowe związane z wyborem niewłaściwego kotła mogą wynikać z niewłaściwego zrozumienia procesu kondensacji oraz korzyści, jakie niesie ze sobą efektywne wykorzystanie energii zawartej w spalinach. Zrozumienie podstawowych zasad działania tych różnych typów kotłów oraz ich zastosowania w praktyce jest kluczowe dla wyboru odpowiedniego systemu grzewczego, który odpowiada specyficznym potrzebom użytkownika.

Pytanie 39

Oblicz objętość pomieszczenia o wymiarach 4 x 3 m oraz wysokości 3 m?

A. 24 m3
B. 48 m3
C. 36 m3
D. 15 m3
Aby obliczyć kubaturę pomieszczenia, należy zastosować wzór: V = długość x szerokość x wysokość. W przypadku podanych wymiarów, mamy długość 4 m, szerokość 3 m oraz wysokość 3 m. Po podstawieniu wartości do wzoru otrzymujemy V = 4 m x 3 m x 3 m = 36 m³. Ta obliczona kubatura jest kluczowa w wielu zastosowaniach, takich jak określenie objętości powietrza w pomieszczeniu, co wpływa na systemy wentylacyjne i klimatyzacyjne. W praktyce, znajomość kubatury pomieszczeń jest również istotna podczas planowania ogrzewania, ponieważ obliczenia te mogą pomóc w określeniu mocy grzewczej potrzebnej do utrzymania komfortowej temperatury. Dodatkowo, w budownictwie, odpowiednie obliczenie kubatury ma znaczenie dla uzyskania niezbędnych pozwoleń oraz spełnienia norm budowlanych, co jest istotne dla bezpieczeństwa i efektywności energetycznej budynku.

Pytanie 40

Oznaczenie PE-HD na rurze w systemie instalacyjnym wskazuje, że rurę wyprodukowano z

A. polietylenu o niskiej gęstości
B. polietylenu o wysokiej gęstości
C. homopolimeru polietylenu
D. polietylenu o średniej gęstości
Oznaczenie PE-HD odnosi się do polietylenu wysokiej gęstości, materiału powszechnie stosowanego w różnych dziedzinach przemysłu, w tym w budownictwie i infrastrukturze. Polietylen wysokiej gęstości charakteryzuje się dużą wytrzymałością, odpornością na działanie chemikaliów oraz niską absorpcją wody, co czyni go idealnym materiałem do produkcji rur do transportu wody, gazu oraz w instalacjach kanalizacyjnych. Dodatkowo, PE-HD jest materiałem ekologicznym, ponieważ można go poddawać recyklingowi, co jest zgodne z globalnymi trendami w kierunku zrównoważonego rozwoju. Rury wykonane z polietylenu wysokiej gęstości są często stosowane w systemach nawadniania, wodociągach oraz w systemach odprowadzania ścieków. Zgodnie z normami, takimi jak PN-EN 12201, rury PE-HD muszą spełniać określone wymagania dotyczące jakości, co zapewnia ich trwałość i niezawodność w użytkowaniu.