Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 26 kwietnia 2025 22:55
  • Data zakończenia: 26 kwietnia 2025 23:20

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaką grupę oznaczeń powinno się wykorzystać do przedstawienia przyłącza czterodrogowych rozdzielaczy hydraulicznych na schemacie układu hydraulicznego?

A. 1, 2, 3, 4
B. X, Y, Z, W
C. 1, A, 2, B
D. P, T, A, B
Wybór oznaczeń innych niż P, T, A, B pokazuje pewne nieporozumienia dotyczące zasadniczych koncepcji hydrauliki. Oznaczenia X, Y, Z, W nie mają uznania w standardach hydraulicznych i nie są powszechnie stosowane do reprezentowania funkcji przyłączy. Tego typu oznaczenia mogą prowadzić do niejasności w komunikacji między inżynierami oraz podczas konstrukcji systemów hydraulicznych, co może skutkować błędami w projektowaniu i montażu. Podobnie, wybór numeracji 1, 2, 3, 4 również nie jest adekwatny, ponieważ numery nie dostarczają żadnych informacji o funkcji lub przeznaczeniu poszczególnych przyłączy w układzie hydraulicznym. Takie podejście może prowadzić do błędnego zrozumienia schematów przez osoby pracujące z danym systemem. Warto podkreślić, że oznaczenia powinny być zgodne z przyjętymi standardami, aby zapewnić jednoznaczność i profesjonalizm w dokumentacji technicznej. Niekiedy inżynierowie mogą mylić się, zakładając, że jakiekolwiek oznaczenia mogą być użyte w schematach, co w praktyce prowadzi do chaosu i utrudnia serwisowanie oraz diagnostykę systemów hydraulicznych, które powinny być jak najbardziej przejrzyste i jednoznaczne.

Pytanie 2

W mechatronicznym urządzeniu uszkodzony został sterownik LOGO 12/24RC. W tabeli przedstawiono producenta informacje dotyczące stosowanych oznaczeń. Które dane odpowiadają uszkodzonemu sterownikowi?

 — 12/24: zasilanie napięciem 12/24 V DC
 — 230: zasilanie napięciem 115 ÷ 240 V AC/DC
 — R: wyjścia przekaźnikowe (brak symbolu R - wyjścia tranzystorowe)
 — C: wbudowany zegar tygodniowy
 — o: wersja bez wyświetlacza (LOGO! Pure)
 — DM: binarny moduł rozszerzenia
 — AM: analogowy moduł rozszerzenia
 — CM: komunikacyjny moduł zewnętrzny (np. moduły EIB/KNX)
 — TD: Panel tekstowy

A. Napięcie zasilania 115 ÷ 240 V AC, wyjścia przekaźnikowe, analogowy moduł rozszerzenia, wersja bez wyświetlacza.
B. Napięcie zasilania 12 V lub 24 V DC, wyjścia przekaźnikowe, wbudowany zegar tygodniowy, wersja z wyświetlaczem.
C. Napięcie zasilania 115 ÷ 240 V AC, wyjścia tranzystorowe, wbudowany zegar tygodniowy, wersja bez wyświetlacza.
D. Napięcie zasilania 12 V lub 24 V AC, wyjścia tranzystorowe, binarny moduł rozszerzenia, wersja z wyświetlaczem.
Wybrana odpowiedź jest poprawna, ponieważ dokładnie odzwierciedla specyfikację sterownika LOGO 12/24RC. Ten model rzeczywiście działa na napięciu 12 V lub 24 V DC, co jest kluczowe dla jego prawidłowego funkcjonowania w różnych aplikacjach automatyki. Wyjścia przekaźnikowe pozwalają na sterowanie obwodami z większymi obciążeniami, co jest niezbędne w wielu projektach mechatronicznych. Wbudowany zegar tygodniowy umożliwia programowanie zaawansowanych harmonogramów pracy, co zwiększa efektywność energetyczną systemów oraz pozwala na automatyzację procesów zgodnie z wymaganiami użytkownika. Wersja z wyświetlaczem ułatwia monitorowanie i diagnostykę, co jest nieocenione w praktyce inżynieryjnej. Dobrym przykładem zastosowania może być automatyka budynkowa, gdzie sterownik ten kontroluje oświetlenie i systemy grzewcze zgodnie z zaprogramowanym harmonogramem. Zrozumienie specyfikacji sterowników, takich jak LOGO, jest kluczowe dla inżynierów zajmujących się automatyką, ponieważ pozwala na ich prawidłowy dobór i zastosowanie w praktyce.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

W instalacji zasilającej bez osuszaczy, przewód do rozprowadzania sprężonego powietrza powinien być układany ze spadkiem w kierunku przepływu powietrza, wynoszącym blisko

A. 5%
B. 13%
C. 11%
D. 1%
Przewód rozprowadzający sprężone powietrze powinien być montowany ze spadkiem wynoszącym około 1% w kierunku przepływu powietrza z kilku istotnych powodów. Przede wszystkim, taki spadek umożliwia efektywne usuwanie wilgoci, która jest nieodłącznym towarzyszem sprężonego powietrza. Wilgoć, będąc cięższa od powietrza, gromadzi się w dolnych partiach przewodów, co może prowadzić do korozji ich wnętrza oraz obniżenia efektywności systemu. Przy odpowiednim nachyleniu, woda jest skutecznie odprowadzana, co znacząco poprawia wydajność systemu sprężonego powietrza. W praktyce, montując przewody ze spadkiem 1%, można zobaczyć znaczną różnicę w ilości zanieczyszczeń i osadów w zbiornikach, co przekłada się na dłuższą żywotność sprzętu i zmniejszenie kosztów utrzymania. Dobrymi praktykami w branży są regularne inspekcje i konserwacja systemów sprężonego powietrza, co powinno obejmować również kontrolę nachylenia przewodów. Warto również odnosić się do standardów, takich jak ISO 8573, które definiują jakość sprężonego powietrza i podkreślają znaczenie eliminacji wilgoci w systemach pneumatycznych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

W zakres czynności konserwacyjnych dla zespołu hydraulicznego, realizowanych raz w roku, nie wchodzi

A. czyszczenie filtra
B. kontrola szczelności zespołu oraz przewodów
C. wymiana płynu hydraulicznego
D. sprawdzenie wartości rezystancji uziemienia
Wybór odpowiedzi dotyczącej wymiany płynu hydraulicznego, sprawdzenia szczelności zespołu i przewodów, czy czyszczenia filtra, może być błędny, jeśli uznamy, że wszystkie te czynności są częścią chaotycznego procesu konserwacyjnego. W rzeczywistości, każda z tych czynności ma swoje miejsce w harmonogramie konserwacji hydrauliki, ponieważ przyczyniają się do optymalnego działania systemu. Wymiana płynu hydraulicznego jest kluczowa, gdyż nieodpowiedni płyn może prowadzić do uszkodzenia pompy czy siłowników. Kontrola szczelności jest istotna z punktu widzenia bezpieczeństwa oraz efektywności energetycznej systemu, ponieważ nieszczelności mogą powodować straty płynów i obniżać wydajność. Z kolei czyszczenie filtra ma na celu eliminację zanieczyszczeń, które mogą wpływać na ciśnienie systemu oraz funkcjonowanie całego układu hydraulicznego. Niezrozumienie różnicy między tymi czynnościami a rutynowym sprawdzeniem wartości rezystancji uziemienia może prowadzić do niewłaściwego zarządzania konserwacją. Warto pamiętać, że wszystkie te działania powinny być wykonywane zgodnie z zaleceniami producentów oraz normami, takimi jak PN-EN 982, które zapewniają odpowiednie procedury konserwacyjne. Brak takiego rozróżnienia może prowadzić do poważnych konsekwencji, w tym do awarii systemu hydraulicznego w wyniku niedopatrzenia w zakresie jego konserwacji.

Pytanie 13

W systemie mechatronicznym planowane jest użycie sieci polowej AS-i w wersji 2.0. Jaką maksymalną ilość urządzeń podrzędnych jedno urządzenie główne (master) może obsługiwać?

A. 64 urządzenia
B. 32 urządzenia
C. 31 urządzeń
D. 24 urządzenia
Wybór liczby 24, 32 lub 64 urządzeń jest nieprawidłowy i opiera się na nieporozumieniach dotyczących specyfikacji technicznych sieci AS-i. Standard AS-i 2.0 wyraźnie określa maksymalną liczbę urządzeń podporządkowanych na poziomie 31. Wybierając 24, można sądzić, że jest to mniejsza liczba, jednak nie odnosi się to do rzeczywistych możliwości systemu AS-i. Użytkownicy mogą myśleć, że niższe liczby są łatwiejsze w zarządzaniu, co jest błędnym założeniem, ponieważ sieć AS-i jest zaprojektowana do obsługi dużych ilości urządzeń w sposób wydajny i zorganizowany. Z kolei wybór 32 lub 64 urządzeń wskazuje na niedopasowanie do specyfikacji standardu, co może prowadzić do przekroczenia możliwości, co w praktyce skutkuje awariami, błędami komunikacyjnymi i znacznymi opóźnieniami w operacjach. Takie błędne podejście często wynika z niewłaściwego zrozumienia koncepcji architektury sieci oraz jej ograniczeń, co jest kluczowe w kontekście projektowania i implementacji systemów automatyzacji. Wiedza na temat tych ograniczeń jest niezbędna dla inżynierów, aby unikać nieefektywnych rozwiązań i zapewnić zgodność z najlepszymi praktykami w branży.

Pytanie 14

Jakiego narzędzia należy użyć, aby zidentyfikować instrukcję, która wywołuje nieprawidłowe działanie programu?

A. Kompilatorem
B. Debuggerem
C. Asemblerem
D. Deasemblerem
Kiedy programista decyduje się używać kompilatora, assemblera czy deassemblera zamiast debuggera, to tak naprawdę wchodzi w obszar, gdzie nie rozwiąże problemów z błędami w kodzie. Kompilator zajmuje się przetwarzaniem kodu źródłowego na kod maszynowy, ale jego działanie ogranicza się do sprawdzania składni i robienia plików wykonywalnych. Nie daje możliwości, żeby na bieżąco analizować zachowanie programu. Podobnie jest z assemblerem, który zamienia kod w asemblerze na kod maszynowy, a deassembler to po prostu odwrotny proces. To oznacza, że te narzędzia nie umożliwiają monitorowania działania programu ani szukania błędów w jego logice. Kiedy ktoś wybiera te narzędzia, może mieć mylne wrażenie, że wie, jak działa aplikacja, a tak naprawdę brakuje mu ważnych informacji o jej stanie, gdy działa. Takie błędy często wynikają z tego, że nie do końca rozumie się, do czego służą różne narzędzia w procesie tworzenia oprogramowania. Osoby korzystające z takich narzędzi mogą skupić się na niewłaściwych rzeczach, co prowadzi do gorszego debugowania i dłuższego czasu na rozwiązanie problemów.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Pomiar natężenia prądu zasilającego silnik przeprowadza się w celu ustalenia

A. temperatury pracy silnika
B. obciążenia silnika
C. poślizgu silnika
D. prędkości obrotowej silnika
Pomiar natężenia prądu zasilania silnika jest kluczowym elementem w ocenie obciążenia, które silnik musi pokonać w trakcie pracy. W praktyce, jeśli silnik napotyka na większy opór, na przykład przy rozpoczęciu pracy przy pełnym obciążeniu, natężenie prądu wzrasta, co skutkuje koniecznością dostarczenia większej mocy. Zrozumienie relacji między natężeniem prądu a obciążeniem silnika jest istotne, szczególnie w kontekście monitorowania wydajności i optymalizacji pracy maszyn. W standardach branżowych, takich jak IEC 60034 dotyczących silników elektrycznych, uwzględnia się pomiary prądowe jako część regularnych inspekcji. Gromadzenie takich danych pozwala na przewidywanie awarii i planowanie konserwacji, co przekłada się na dłuższą żywotność sprzętu oraz efektywność energetyczną. Prawidłowe pomiary natężenia prądu umożliwiają również dostosowanie parametrów pracy silnika do aktualnych potrzeb roboczych, co jest kluczowe w automatyzacji procesów przemysłowych.

Pytanie 17

Jaką rolę odgrywa zawór przelewowy w hydraulicznej prasie?

A. Filtruje zanieczyszczenia z oleju.
B. Umożliwia regulację wartości siły wytwarzanej przez prasę.
C. Chroni przed powrotem oleju z rozdzielacza do pompy.
D. Zrzuca olej z siłownika do zbiornika.
Istnieje wiele błędnych przekonań dotyczących funkcji zaworu przelewowego w prasie hydraulicznej, które mogą prowadzić do mylnych wniosków. Nieprawdziwe jest stwierdzenie, że zawór ten odprowadza olej z siłownika do zbiornika, ponieważ jego podstawowym zadaniem nie jest transport oleju, lecz regulacja ciśnienia w systemie. W praktyce, odprowadzanie oleju z siłownika realizowane jest przez inne elementy układu hydraulicznego, np. przez zawory sterujące. Również stwierdzenie, że zawór przelewowy zapobiega cofaniu oleju z rozdzielacza do pompy, jest mylne. Choć zawory mogą pełnić funkcję zabezpieczającą, to ich główną rolą nie jest zapobieganie cofaniu, ale raczej utrzymanie optymalnego ciśnienia. Kolejna niepoprawna koncepcja sugeruje, że zawór przelewowy odfiltrowuje zanieczyszczenia z oleju. W rzeczywistości filtracja oleju to zadanie innych elementów, takich jak filtry hydrauliczne, które są projektowane specjalnie do usuwania zanieczyszczeń. Zrozumienie rzeczywistej roli zaworu przelewowego jest kluczowe dla prawidłowego funkcjonowania układów hydraulicznych oraz zapewnienia ich efektywności i bezpieczeństwa. Wiedza na temat rzeczywistych funkcji poszczególnych komponentów systemu hydraulicznego jest niezbędna do dokonywania świadomych wyborów projektowych oraz eksploatacyjnych.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Jakie kroki należy podjąć w celu stworzenia układu kombinacyjnego asynchronicznego?

A. Zbudować tabelę Karnaugha, zredukować funkcję, sformułować równanie i w oparciu o nie wykonać schemat logiczny układu
B. Opracować algorytm przy pomocy metody Grafcet, a następnie na jego podstawie stworzyć program dla sterownika PLC
C. Przygotować graf sekwencji, stworzyć program lub wykonać schemat układu z użyciem przerzutników
D. Przygotować diagram czasowy, na jego podstawie sformułować równanie stanu oraz narysować schemat z użyciem przerzutników JK
Poprawna odpowiedź dotyczy procesu projektowania układu kombinacyjnego asynchronicznego, który jest kluczowy w elektronice cyfrowej. Opracowanie tabeli Karnaugha jest istotnym krokiem, ponieważ umożliwia zminimalizowanie funkcji logicznej, co w konsekwencji prowadzi do uproszczenia układu i redukcji liczby używanych bramek logicznych. Minimalizacja funkcji logicznej za pomocą tabeli Karnaugha jest powszechnie stosowaną metodą, która pozwala na wizualizację i eliminację zbędnych zmiennych, co przekłada się na mniejsze zużycie energii oraz miejsce na płytce drukowanej. Po uzyskaniu zminimalizowanej funkcji logicznej, kolejnym krokiem jest zapisanie równania, które służy jako podstawa do stworzenia schematu logicznego. Schemat logiczny przedstawia sposób połączeń między bramkami logicznymi, co jest niezbędne do zbudowania funkcjonalnego układu. Tego rodzaju podejście jest zgodne z dobrymi praktykami inżynierii cyfrowej, gdzie kluczowe jest nie tylko zrozumienie teorii, ale także umiejętność praktycznej aplikacji w projektach inżynieryjnych.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Podwyższenie częstotliwości napięcia zasilającego silnik indukcyjny klatkowy o 20 Hz spowoduje

A. zatrzymanie działania silnika
B. niestabilną pracę silnika
C. wzrost prędkości obrotowej wirnika silnika
D. spadek prędkości obrotowej wirnika silnika
Zwiększenie częstotliwości napięcia zasilającego silnik indukcyjny klatkowy prowadzi do zwiększenia prędkości obrotowej wirnika. Wynika to z zasady, że prędkość obrotowa silnika indukcyjnego jest bezpośrednio związana z częstotliwością zasilania, określaną przez równanie: n = (120 * f) / p, gdzie n to prędkość w obrotach na minutę, f to częstotliwość zasilania, a p to liczba par biegunów. Wzrost częstotliwości o 20 Hz zwiększa liczbę zmian pola magnetycznego, co z kolei przyspiesza ruch wirnika. Przykładowo, w aplikacjach przemysłowych, takich jak napędy elektryczne w dźwigach lub taśmach produkcyjnych, odpowiednia regulacja częstotliwości zasilania pozwala na precyzyjne dostosowanie prędkości obrotowej silnika do wymagań procesu technologicznego. Ponadto, w praktyce stosuje się inwertery, które umożliwiają płynną regulację częstotliwości, pozwalając na oszczędności energii oraz zwiększenie efektywności pracy silników. Warto również zauważyć, że zmiany te są zgodne z normami IEC dotyczących napędów elektrycznych, które podkreślają znaczenie optymalizacji i efektywności energetycznej.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Aby na rysunku oznaczyć promień łuku, należy zastosować literę

A. D
B. R
C. X
D. Φ
Odpowiedź "R" jest poprawna, ponieważ w rysunku technicznym promień łuku oznacza się literą "R". Termin ten wywodzi się od angielskiego słowa "radius", które z kolei oznacza promień. Użycie symbolu "R" jest standardem w praktyce inżynieryjnej oraz architektonicznej, zgodnym z normami ISO oraz innymi wytycznymi branżowymi. W kontekście rysunku technicznego, precyzyjne oznaczenie promienia jest kluczowe dla zachowania właściwych proporcji oraz parametrów konstrukcyjnych. Na przykład, w projektowaniu elementów mechanicznych, takich jak wały, zębatki czy różnego rodzaju połączenia, właściwe oznaczenie promieni łuków ma kluczowe znaczenie dla prawidłowego dopasowania komponentów. Dobre praktyki w rysunku technicznym zalecają stosowanie jasnych i zrozumiałych symboli, co pozwala uniknąć błędów w interpretacji rysunków przez różnych wykonawców. Warto również dodać, że w przypadku bardziej złożonych projektów, w których występują różne promienie, stosowanie symbolu "R" jako oznaczenia jest niezwykle pomocne w identyfikacji i weryfikacji tych parametrów na etapie wytwarzania.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jakie parametry mierzy prądnica tachometryczna?

A. odkształceń
B. prędkości obrotowych
C. wydłużeń
D. naprężeń liniowych
Prądnica tachometryczna jest kluczowym urządzeniem w systemach automatyki przemysłowej, a jej główną funkcją jest pomiar prędkości obrotowych silników i innych elementów mechanicznych. Działa na zasadzie zjawiska elektromagnetycznego, gdzie obracająca się wirnik generuje pole magnetyczne, które przekształca się w sygnał elektryczny proporcjonalny do prędkości obrotowej. Taki sygnał można następnie używać do monitorowania parametrów pracy maszyn, co pozwala na optymalizację ich wydajności i zapobieganie awariom. Przykładowo, w systemach napędowych, monitorowanie prędkości obrotowej jest kluczowe dla synchronizacji ruchu i zapewnienia bezpieczeństwa. Normy takie jak ISO 9001 często wymagają dokładnych pomiarów parametrów pracy urządzeń, co czyni prądnice tachometryczne niezastąpionym narzędziem w wielu gałęziach przemysłu. Zrozumienie zasad działania prądnic tachometrycznych jest niezbędne dla inżynierów zajmujących się automatyką i kontrolą procesów.

Pytanie 30

Na podstawie fragmentu instrukcji określ, co należy zrobić przed zamontowaniem reduktora podczas podłączania butli z gazem ochronnym do półautomatu spawalniczego.

Podłączenie gazu ochronnego
1. Butlę z odpowiednim gazem ochronnym należy ustawić obok półautomatu i zabezpieczyć ją przed przewróceniem się.
2. Zdjąć zabezpieczający ją kołpak i na moment odkręcić zawór butli w celu usunięcia ewentualnych zanieczyszczeń.
3. Zamontować reduktor tak, aby manometry były w pozycji pionowej.
4. Połączyć półautomat z butlą wężem.
5. Odkręcić zawór reduktora tylko przed przystąpieniem do spawania. Po zakończeniu spawania, zawór butli należy zakręcić.

A. Zdjąć kołpak z butli i na krótką chwilę odkręcić zawór butli.
B. Odkręcić zawór reduktora na czas montażu, a następnie go zakręcić.
C. Ustawić poziomo butlę z gazem ochronnym.
D. Podłączyć wąż do półautomatu i do butli.
Pomimo że wiele osób może sądzić, iż odkręcanie zaworu reduktora w czasie montażu lub podłączanie węża do półautomatu i butli może być wystarczającym krokiem przed rozpoczęciem pracy, to takie podejście może prowadzić do poważnych problemów. Okrężne podejście do montażu reduktora, jak sugerowanie odkręcania zaworu reduktora, jest niezgodne z zaleceniami, ponieważ może doprowadzić do niekontrolowanego wydostawania się gazu, co stwarza ryzyko pożaru oraz eksplozji. Ponadto, podłączanie węża do półautomatu przed uprzednim oczyszczeniem zaworu butli również może skutkować wprowadzeniem zanieczyszczeń do układu, co negatywnie wpływa na jakość spawania i prowadzi do awarii sprzętu. W branży spawalniczej ważne jest, aby każda czynność była przeprowadzona w odpowiedniej kolejności, zgodnie z przyjętymi normami i zaleceniami producentów. Ignorowanie kroków przygotowawczych może prowadzić do nieefektywnego spawania, a także zwiększa ryzyko wypadków. W praktyce, aby zapewnić bezpieczeństwo i efektywność, należy zawsze postępować zgodnie z instrukcją, co w kontekście podłączania butli z gazem ochronnym oznacza zdjęcie kołpaka oraz odkręcenie zaworu butli przed jakimkolwiek montażem. To fundamentalna zasada, która powinna być znana każdemu operatorowi sprzętu spawalniczego.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Selsyn trygonometryczny (resolver) wykorzystywany w serwomechanizmach ma na celu pomiar

A. szybkości liniowej
B. szybkości kątowej
C. przemieszczeń kątowych
D. przemieszczeń liniowych
Selsyn trygonometryczny, znany również jako resolver, jest kluczowym elementem w serwomechanizmach, który służy do pomiaru przemieszczeń kątowych. Jego działanie opiera się na przekształceniu ruchu obrotowego na sygnał elektryczny, co pozwala na dokładne określenie kąta obrotu wału. Przykładowo, w automatycznych systemach sterowania, takich jak roboty przemysłowe czy systemy CNC, selsyny są używane do monitorowania pozycji narzędzi i ich precyzyjnego ustalania. Zastosowanie selsynów w takich aplikacjach jest zgodne z najlepszymi praktykami w zakresie automatyzacji, zapewniając nieprzerwaną i dokładną informację zwrotną o położeniu. Z perspektywy inżynieryjnej, pomiar przemieszczeń kątowych jest niezbędny do precyzyjnego sterowania ruchem, co wpływa na efektywność i jakość produkcji. Warto zaznaczyć, że standardy branżowe, takie jak ISO 9409, definiują wymagania dotyczące takich systemów, co świadczy o ich znaczeniu w nowoczesnych technologiach automatyzacji.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jak często należy wykonywać przeglądy techniczne w urządzeniach i systemach mechatronicznych?

A. Minimum raz do roku
B. Raz na pięć lat
C. Co dwa lata
D. Co trzy lata
Odpowiedź "Co najmniej raz w roku" jest zgodna z obowiązującymi przepisami prawa oraz najlepszymi praktykami w zarządzaniu urządzeniami i systemami mechatronicznymi. Regularne przeglądy techniczne, przeprowadzane co najmniej raz w roku, mają kluczowe znaczenie dla zapewnienia bezpieczeństwa użytkowników oraz niezawodności operacyjnej urządzeń. Takie przeglądy pozwalają na wczesne wykrycie potencjalnych usterek, co w konsekwencji minimalizuje ryzyko awarii. Przykładem może być systemy automatyki przemysłowej, w których regularne inspekcje komponentów, takich jak czujniki czy siłowniki, mogą zapobiec kosztownym przestojom produkcyjnym. Ponadto, zgodnie z normą PN-EN ISO 13849-1, regularne przeglądy są niezbędne do zapewnienia zgodności systemów z wymaganiami bezpieczeństwa. Wiedza na temat częstotliwości przeglądów jest kluczowa dla inżynierów i techników, którzy odpowiadają za operacyjną gotowość i bezpieczeństwo systemów mechatronicznych.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.