Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 24 maja 2025 00:28
  • Data zakończenia: 24 maja 2025 00:48

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W serwisie samochodowym klient zgłosił problem związany z nadmiernym zużyciem wewnętrznych elementów bieżnika kół przednich. Jakie działanie powinien podjąć mechanik jako pierwsze?

A. zweryfikować sprawność amortyzatorów
B. sprawdzić, czy układ hamulcowy nie jest uszkodzony
C. zamienić koła przednie stronami
D. sprawdzić, czy w układzie zawieszenia nie występują luzy
Odpowiedź 'sprawdzić, czy nie występują luzy w układzie zawieszenia' jest prawidłowa, ponieważ luzy w zawieszeniu mogą prowadzić do nierównomiernego zużycia opon, co objawia się nadmiernym zużyciem bieżnika. Układ zawieszenia jest kluczowy dla stabilności i komfortu jazdy, a wszelkie luzu mogą wpływać na geometrię kół, co w konsekwencji prowadzi do problemów z ich zużyciem. Mechanik powinien sprawdzić wszystkie elementy zawieszenia, takie jak łożyska, wahacze, tuleje i stabilizatory, aby upewnić się, że działają one poprawnie. W przypadku stwierdzenia luzów, konieczna jest ich naprawa lub wymiana, co może znacząco poprawić trwałość opon oraz bezpieczeństwo jazdy. Regularna kontrola układu zawieszenia jest zgodna z najlepszymi praktykami w branży motoryzacyjnej, gdzie zaleca się coroczne przeglądy, zwłaszcza w przypadku pojazdów intensywnie eksploatowanych.

Pytanie 2

Gdzie instaluje się świece żarowe w silnikach diesla?

A. w misce olejowej
B. w układzie wydechowym
C. w bloku chłodnicy
D. w głowicy silnika
Świece żarowe w silnikach wysokoprężnych pełnią kluczową rolę w procesie rozruchu silnika, zwłaszcza w niskotemperaturowych warunkach. Montowane są w głowicy silnika, gdzie mają za zadanie podgrzewać mieszankę powietrzno-paliwową, co ułatwia jej zapłon. Dzięki temu silniki diesla mogą osiągnąć stabilną pracę nawet w trudnych warunkach atmosferycznych. Użycie świec żarowych znacząco poprawia wydajność silnika, redukuje emisję spalin i zmniejsza zużycie paliwa. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie jakości komponentów w silnikach, co czyni świece żarowe kluczowym elementem konstrukcji silnika wysokoprężnego. Dla przykładu, w wielu nowoczesnych pojazdach stosuje się świece żarowe z systemem automatycznego wyłączania po osiągnięciu optymalnej temperatury, co zwiększa ich żywotność i efektywność.

Pytanie 3

Oparzenia spowodowane gorącymi elementami oraz cieczami mogą wystąpić w trakcie

A. instalacji części synchronizatorów
B. pielęgnacji karoserii
C. zajmowania się działającym silnikiem
D. sprawdzania komponentów silnika
Odpowiedź "obsługi pracującego silnika" jest prawidłowa, ponieważ oparzenia gorącymi częściami i płynami najczęściej zdarzają się w trakcie pracy silnika, gdy jego elementy osiągają wysokie temperatury. W takich sytuacjach, szczególnie przy kontaktach z elementami układu chłodzenia, układem wydechowym czy innymi gorącymi komponentami, ryzyko oparzeń jest znacznie zwiększone. Przykładem może być wymiana oleju silnikowego, podczas której silnik musi być rozgrzany do pracy, a kontakt z gorącym olejem lub innymi cieczami może prowadzić do poważnych oparzeń. Zgodnie z normami BHP w przemyśle motoryzacyjnym, pracownicy powinni nosić odpowiednie środki ochrony osobistej, takie jak rękawice odporne na wysoką temperaturę oraz odzież ochronną, aby minimalizować ryzyko urazów. Weryfikacja procedur bezpieczeństwa oraz odpowiednie szkolenia z zakresu obsługi silników przyczyniają się do zmniejszenia liczby wypadków związanych z oparzeniami.

Pytanie 4

Który z rodzajów odpadów generowanych w warsztacie samochodowym stanowi istotne zagrożenie dla środowiska?

A. Oleje silnikowe
B. Tarcze sprzęgła
C. Filtry powietrza
D. Klocki hamulcowe
Oleje silnikowe są jednym z najbardziej szkodliwych odpadów powstających w warsztatach samochodowych. Zawierają szereg zanieczyszczeń, w tym metale ciężkie, związki organiczne i dodatki chemiczne, które mogą negatywnie wpływać na środowisko, szczególnie w przypadku niewłaściwego składowania lub utylizacji. Według standardów ochrony środowiska, takich jak normy ISO 14001, właściwe zarządzanie odpadami, w tym olejami, jest kluczowe dla zmniejszenia ich wpływu na ekosystemy. Praktycznym rozwiązaniem w warsztatach jest stosowanie systemów zbierania i recyklingu olejów, co pozwala na ich ponowne wykorzystanie oraz ograniczenie zanieczyszczenia gleby i wód gruntowych. Dobre praktyki obejmują także szkolenie personelu w zakresie odpowiedniej obsługi olejów oraz przestrzegania przepisów dotyczących ich przechowywania i utylizacji. Odpowiedzialne podejście do zarządzania olejami silnikowymi nie tylko wspiera zrównoważony rozwój, ale także przyczynia się do uzyskania certyfikatów środowiskowych, co zwiększa konkurencyjność warsztatu.

Pytanie 5

Sprzęt do wyważania kół w pojazdach jest uzupełnieniem wyposażenia stacji do

A. analizy układu hamulcowego pojazdu
B. demontażu i montażu opon
C. sprawdzania ustawienia kół oraz osi w samochodzie
D. weryfikacji zawieszenia pojazdu
Wszystkie pozostałe odpowiedzi nie oddają istoty roli urządzenia do wyważania kół. Sprawdzanie zawieszenia samochodu, choć istotne, nie ma bezpośredniego związku z wyważeniem kół. W rzeczywistości, zawieszenie odpowiada za amortyzację oraz stabilność pojazdu, ale jego kontrola nie eliminuje potrzeby odpowiedniego wyważenia kół, które jest kluczowe dla zachowania prawidłowego prowadzenia pojazdu. Badanie układu hamulcowego samochodu również nie jest związane z wyważaniem kół; układ hamulcowy skupia się na skutecznej i bezpiecznej dezaktywacji ruchu pojazdu, co jest zupełnie inną kategorią diagnostyki. Ponadto, badanie ustawienia kół i osi samochodu, chociaż wymaga precyzyjnych pomiarów, koncentruje się na geometrii zawieszenia oraz kątach kół, a nie na wyważeniu ich masy. Prawidłowe myślenie w tym kontekście powinno uwzględniać, że wyważanie kół to osobny proces, który nie jest tożsamy z innymi wspomnianymi czynnościami, lecz powinien być traktowany jako kluczowy krok w utrzymaniu pojazdu w optymalnym stanie. Z tego powodu, zrozumienie roli wyważania kół jest fundamentem dla każdego technika zajmującego się serwisowaniem samochodów.

Pytanie 6

W trakcie spawania gazowego niemożliwe jest

A. korzystanie z skórzanych rękawic ochronnych
B. aplikowanie defektoskopu
C. nasączenie olejem lub innym tłuszczem zaworów butli
D. zbyt duże przewietrzanie warsztatu / hali
Smarowanie olejem lub innym tłuszczem zaworów butli podczas spawania gazowego jest niedopuszczalne, ponieważ może prowadzić do poważnych zagrożeń związanych z bezpieczeństwem. Tłuszcze mogą ułatwić zapłon oraz prowadzić do eksplozji, szczególnie w obecności gazów palnych. W praktyce, podczas obsługi butli gazowych, kluczowe jest przestrzeganie zasad bezpieczeństwa, które obejmują m.in. unikanie substancji łatwopalnych w pobliżu źródeł ognia. Zgodnie z dokumentami i normami branżowymi, takimi jak PN-EN ISO 3834, w procesach spawania należy stosować się do rygorystycznych norm bezpieczeństwa, aby minimalizować ryzyko pożaru i eksplozji. Dlatego ważne jest używanie odpowiednich technik konserwacyjnych, które nie wprowadzą dodatkowych zagrożeń. Na przykład, w przypadku potrzeby smarowania, zaleca się stosowanie środków przystosowanych do użycia w warunkach spawania, które nie są łatwopalne.

Pytanie 7

Wartość sprężania w silnikach z zapłonem iskrowym w porównaniu do silników z zapłonem samoczynnym jest

A. nie do porównania.
B. zawsze identyczna.
C. zawsze wyższa.
D. niższa.
Silniki z zapłonem iskrowym, takie jak silniki benzynowe, charakteryzują się niższym stopniem sprężania w porównaniu do silników z zapłonem samoczynnym (silników Diesla). Zazwyczaj stopień sprężania w silnikach benzynowych wynosi od 8 do 12, podczas gdy w silnikach Diesla wartość ta może wynosić od 14 do 25. Niższy stopień sprężania w silnikach z zapłonem iskrowym pozwala na uniknięcie zjawiska klekotania, które jest bardziej powszechne przy wyższych wartościach sprężania. W praktyce oznacza to, że silniki z zapłonem iskrowym mogą być łatwiej uruchamiane w różnych warunkach oraz mają mniejsze wymagania dotyczące jakości paliwa, co czyni je bardziej elastycznymi. Ponadto, niższy stopień sprężania wpływa na efektywność spalania i moc silnika, co może być istotne w kontekście osiągów i ekonomiki jazdy. W związku z tym, zrozumienie różnic w stopniach sprężania między tymi dwoma typami silników jest kluczowe dla inżynierów i projektantów pojazdów, którzy muszą dostosować parametry silników do ich zamierzonych zastosowań.

Pytanie 8

Podczas naprawy układu hamulcowego pojazdu obowiązkowo należy

A. odpowietrzyć układ po wymianie płynu hamulcowego
B. zawsze wymieniać klocki hamulcowe na nowe
C. sprawdzić ciśnienie w oponach pod kątem bezpiecznej jazdy
D. ustawić geometrię kół, jeśli to konieczne po naprawie zawieszenia
Podczas naprawy układu hamulcowego nie ma obowiązku zawsze wymieniać klocków hamulcowych, chyba że ich stan tego wymaga. Klocki powinny być wymieniane zgodnie z ich zużyciem, a nie automatycznie przy każdej naprawie. To często spotykany błąd, że każdy serwis wymaga wymiany klocków, co może prowadzić do niepotrzebnych kosztów. Sprawdzenie ciśnienia w oponach jest ważne dla ogólnego bezpieczeństwa pojazdu, ale nie jest bezpośrednio powiązane z naprawą układu hamulcowego. To element rutynowej konserwacji, który powinien być wykonywany regularnie, ale nie jest związany z samą naprawą hamulców. Ustawienie geometrii kół jest ważne, ale jest zazwyczaj związane z naprawą zawieszenia, a nie samych hamulców. Geometria kół wpływa na prowadzenie pojazdu i zużycie opon, natomiast sama naprawa układu hamulcowego zazwyczaj nie wymaga ponownego ustawienia geometrii, chyba że doszło do wymiany elementów zawieszenia, które mogłyby wpłynąć na ustawienie kół. To typowe nieporozumienie, że każda praca przy układzie hamulcowym wymaga regulacji geometrii.

Pytanie 9

Zanim rozpoczniesz badanie poprawności funkcjonowania układu hamulcowego w Stacji Kontroli Pojazdów, co należy zrobić w pierwszej kolejności?

A. zmierzyć ciśnienie w oponach
B. sprawdzić zawartość wody w płynie hamulcowym
C. sprawdzić grubość klocków hamulcowych
D. ocenić działanie serwomechanizmu
Patrząc na inne odpowiedzi, widać, że każde z tych działań ma swoje miejsce w diagnostyce pojazdu, ale żadne z nich nie powinno być pierwszym krokiem przed badaniem układu hamulcowego. Owszem, mierzenie grubości klocków hamulcowych jest ważne, ale działa to tylko wtedy, gdy opony są prawidłowo napompowane. Zresztą sprawdzenie serwomechanizmu też ma znaczenie, ale przy niskim ciśnieniu w oponach może nie zadziałać jak powinno. Jak opony są źle napompowane, to serwomechanizm nie będzie działał efektywnie, co wpłynie na cały układ hamulcowy. Z drugiej strony, kontrola zawartości wody w płynie hamulcowym jest ważna na dłuższą metę, ale to nie pomoże w momencie testu. Prawidłowe ciśnienie w oponach to baza dla wszystkich dalszych działań związanych z diagnostyką hamulców. Jak to zignorujemy, to możemy mieć złe wyniki testu i narazić się na niebezpieczne sytuacje na drodze.

Pytanie 10

Pojęcia takie jak: kąt wyprzedzenia osi sworznia zwrotnicy oraz kąt pochylenia osi sworznia zwrotnicy odnoszą się do układu

A. kierowniczego
B. napędowego
C. jezdnego
D. hamulcowego
Kąt wyprzedzenia osi sworznia zwrotnicy oraz kąt pochylenia osi sworznia zwrotnicy to kluczowe parametry w układzie kierowniczym pojazdów. Kąt wyprzedzenia ma wpływ na stabilność pojazdu podczas jazdy na prostych odcinkach drogi oraz w zakrętach, co jest istotne dla bezpieczeństwa i komfortu prowadzenia. Kąt pochylenia osi sworznia zwrotnicy jest natomiast wskaźnikiem, który wpływa na zużycie opon oraz na zachowanie się pojazdu w różnych warunkach drogowych. W praktyce, poprawne ustawienie tych kątów według standardów producentów samochodów, takich jak SAE (Society of Automotive Engineers), jest niezbędne dla zapewnienia optymalnych właściwości jezdnych. Przykładowo, niewłaściwe wyprzedzenie osi sworznia może prowadzić do trudności w prowadzeniu pojazdu oraz szybszego zużycia elementów układu kierowniczego. Dlatego regularne kontrole geometrii zawieszenia oraz układu kierowniczego są zalecane dla utrzymania pojazdu w dobrym stanie.

Pytanie 11

Z zamieszczonego obok wydruku z analizy spalin pojazdu wynika, że stężenie tlenu w spalinach wynosi

RODZAJ PALIWA: Benzyna
POMIAR CIĄGŁY:
SILNIK T= 0°C ZA ZIMNY
obj< 20
CO = 0.76 % obj
CO2=12.68 % obj
O2 = 3.21 % obj
HC = 508 ppm obj
λ =1.141
NOx= 120 ppm obj

A. 508 ppm.
B. 1.141
C. 3,21 %.
D. 12,60 %.
Analiza spalin w samochodzie to ważny temat, bo wpływa na jego efektywność ekologiczną i ekonomiczną. Odpowiedzi 508 ppm i 1.141, mimo że mogą brzmieć ok, dotyczą innych parametrów i nie odnoszą się do stężenia tlenu w objętości. PPM to jednostka, którą zazwyczaj używamy do gazów, ale w analizie spalin lepiej trzymać się tych samych jednostek, bo inaczej można się pogubić. Odpowiedź 12,60% jest też błędna, bo sugeruje znacznie większe stężenie tlenu niż to, które mamy w analizie. Takie wartości mogą prowadzić do błędnych wniosków o efektywności spalania i wskazywać na problemy z układem dolotowym albo wtryskowym. W branży, błędne interpretacje mogą skutkować źle ustawionym silnikiem, co w dłuższej perspektywie zwiększa zużycie paliwa i emisję. Ważne, żeby podczas analizy wyników zawsze brać pod uwagę jednostki i ich kontekst, bo inaczej możemy się pomylić i źle ocenić stan techniczny samochodu.

Pytanie 12

Jeśli przekładnia w skrzyni biegów wynosi ib=1,0, a przekładnia tylnego mostu to it=4,1, jakie jest całkowite przełożenie układu napędowego?

A. 4,1
B. 5,1
C. 3,1
D. 1,0
Wybór błędnej odpowiedzi na pytanie dotyczące przełożenia całkowitego układu napędowego najczęściej wynika z nieporozumień związanych z zasadami obliczania przełożeń w kontekście skrzyń biegów i tylnych mostów. Warto zauważyć, że przełożenie całkowite nie jest sumą jednostkowych przełożeń, co sugeruje wybór odpowiedzi wskazujący na 5,1. Tego typu błąd myślowy może wynikać z mylnego przyjęcia teorii, że im więcej biegów lub wyższe przełożenie z przodu i z tyłu, tym większy rezultat. W rzeczywistości, całkowite przełożenie oblicza się poprzez mnożenie, co ilustruje prosta zasada dotycząca przenoszenia ruchu obrotowego przez różne elementy napędowe. Przełożenie 1,0 oznacza, że skrzynia biegów nie wprowadza żadnych zmian w obrotach silnika, podczas gdy przełożenie 4,1 w tylnym moście wskazuje na czterokrotne zwiększenie momentu obrotowego na kołach. Z tego względu, całkowite przełożenie wynosi zaledwie 4,1, co jest kluczowe dla zrozumienia, jak działa napęd w pojazdach. Odpowiedzi 3,1 i 1,0 również wynikają z uproszczonego podejścia do obliczeń; błędne zrozumienie mechaniki przełożenia prowadzi do niepoprawnych wniosków. W praktyce znajomość tych zasad wpływa na właściwe dobieranie przełożeń, co ma znaczenie dla efektywności i osiągów pojazdów, a także ich zastosowania w różnych warunkach drogowych.

Pytanie 13

Termin DOHC odnosi się do układu

A. dolnozaworowego z jednym wałkiem rozrządu w kadłubie
B. górnozaworowego z pojedynczym wałkiem rozrządu w głowicy
C. górnozaworowego z jednym wałkiem rozrządu umieszczonym w kadłubie
D. górnozaworowego z dwoma wałkami rozrządu zainstalowanymi w głowicy
Analizując inne odpowiedzi, można zauważyć, że pomieszanie terminologii oraz konstrukcji układów rozrządu prowadzi do nieporozumień. W pierwszej z błędnych odpowiedzi wspomniano o górnozaworowym układzie z jednym wałkiem rozrządu w kadłubie. Rzeczywiście, jednym z popularnych układów jest SOHC (Single Overhead Camshaft), który wykorzystuje tylko jeden wałek rozrządu, jednak jego umiejscowienie w kadłubie jest nieprawidłowe, ponieważ w przypadku SOHC wałek również znajduje się w głowicy silnika. Odpowiedź mówiąca o dolnozaworowym układzie z jednym wałkiem rozrządu w kadłubie odnosi się do konstrukcji, która była popularna w starszych silnikach, jednak nie jest to układ, który by się zaliczał do standardów współczesnych konstrukcji, gdzie dominują układy górnozaworowe. Współczesne silniki są projektowane z myślą o optymalizacji osiągów i efektywności, co czyni układ DOHC standardem w silnikach o wyższej mocy. Zrozumienie różnicy pomiędzy tymi terminami jest kluczowe, aby właściwie rozpoznać oraz ocenić funkcjonalność silnika w kontekście jego zastosowania, co jest niezbędne w profesjonalnych dyskusjach na temat inżynierii silników.

Pytanie 14

Regulacja silnika spalinowego na stanowisku serwisowym w czasie pracy silnika może być przeprowadzona po

A. ustawieniu znaków ostrzegawczych
B. zakładaniu okularów ochronnych
C. zakładaniu rękawic roboczych
D. podłączeniu odciągu spalin do rury wydechowej
Ustawienie tablic ostrzegawczych, założenie rękawic drelichowych oraz okularów ochronnych to ważne aspekty bezpieczeństwa pracy, jednak same w sobie nie zapewniają odpowiednich warunków do wykonywania czynności regulacyjnych silnika spalinowego. Tablice ostrzegawcze informują o potencjalnych zagrożeniach, ale nie eliminują ryzyka, które powstaje w wyniku emisji spalin. Użytkowanie rękawic i okularów ochronnych jest istotne z perspektywy zabezpieczenia pracownika przed mechanicznymi i chemicznymi zagrożeniami, jednak nie chroni przed szkodliwym działaniem toksycznych gazów. Czynności regulacyjne przy pracującym silniku powinny odbywać się w odpowiednio wentylowanym pomieszczeniu, a kluczową rolę w tym procesie odgrywa odciąg spalin. W praktyce, pominięcie tego kroku może prowadzić do poważnych konsekwencji zdrowotnych, takich jak zatrucia czy przewlekłe choroby układu oddechowego. Dlatego tak ważne jest, aby przed przystąpieniem do regulacji silnika zapewnić odpowiednie warunki pracy, które minimalizują ryzyko narażenia na szkodliwe substancje. Użytkownicy często popełniają błąd, myśląc, że wystarczy założyć sprzęt ochronny, aby móc działać w środowisku zanieczyszczonym, co jest błędnym rozumowaniem. Rzeczywiste bezpieczeństwo pracy w takich warunkach wymaga znacznie bardziej kompleksowego podejścia, a zrozumienie roli systemów odciągowych jest kluczowe dla utrzymania zdrowia pracowników.

Pytanie 15

Aby pozbyć się nadmiernego luzu nowego sworznia tłokowego w główce korbowodu, konieczne jest wykonanie operacji na tulejce ślizgowej główki korbowodu

A. frezować
B. szlifować
C. wymienić na nową
D. przetoczyć
Wymiana tulejki ślizgowej główki korbowodu na nową jest kluczowym krokiem w usuwaniu nadmiernego luzu nowego sworznia tłokowego. Użycie nowej tulejki zapewnia optymalne dopasowanie i minimalizuje ryzyko wystąpienia luzu, co jest niezwykle istotne dla prawidłowego działania silnika. Przykładowo, w silnikach spalinowych, które pracują pod wysokim obciążeniem, odpowiednie dopasowanie elementów jest niezbędne, aby zminimalizować zużycie oraz ryzyko awarii. Zgodnie z dobrymi praktykami w branży mechanicznej, wymiana uszkodzonych lub zużytych komponentów jest standardową procedurą naprawczą. Ponadto, nowa tulejka zapewnia lepsze smarowanie oraz wydajniejsze przenoszenie obciążeń, co przyczynia się do dłuższej żywotności silnika. Warto również zwrócić uwagę, że podczas wymiany tulejki należy stosować się do wskazówek producenta dotyczących tolerancji oraz materiałów, z których wykonane są nowe elementy, aby zapewnić ich kompatybilność i wysoką jakość działania.

Pytanie 16

Trudności w włączeniu jednego z biegów w synchronizowanej skrzyni biegów zazwyczaj są spowodowane uszkodzeniem

A. łożyskowania synchronizatora tego biegu
B. koła zębatego tego biegu
C. łożyskowania koła zębatego tego biegu na wałku
D. synchronizatora tego biegu
Synchronizator biegu w skrzyni biegów pełni kluczową rolę w procesie zmiany przełożeń, umożliwiając płynne włączanie biegów. Jego zadaniem jest dostosowanie prędkości obrotowej wałka skrzyni biegów do prędkości obrotowej koła zębatego, co eliminuje ryzyko zgrzytu podczas włączania biegu. Uszkodzenie synchronizatora, na przykład poprzez zużycie materiału ciernego lub zatarcie, prowadzi do trudności w przełączaniu biegów. Przykładem praktycznym może być sytuacja, w której kierowca próbuje włączyć drugi bieg, a skrzynia blokuje się lub wydaje nieprzyjemne dźwięki. W takim przypadku konieczna jest diagnostyka i ewentualna wymiana synchronizatora. Zgodnie z dobrymi praktykami branżowymi, regularne przeglądy i konserwacja elementów skrzyni biegów, w tym synchronizatorów, są kluczowe dla zapewnienia ich długotrwałej wydajności. Warto zwrócić uwagę na odpowiednią eksploatację pojazdu, co również wpływa na trwałość tych elementów.

Pytanie 17

Srednicówka czujnikowa jest wykorzystywana do pomiaru średnicy

A. tarczy hamulcowej
B. wewnętrznej cylindra
C. trzonka zaworu
D. czopa wału korbowego
Wybór odpowiedzi dotyczący trzonka zaworu, czopa wału korbowego czy tarczy hamulcowej jest błędny, ponieważ każde z tych elementów ma inne wymagania pomiarowe i nie jest celem działania srednicówki czujnikowej. Trzonek zaworu, na przykład, może mieć różne średnice w różnych jego częściach, a pomiar średnicy trzonka wymaga innych narzędzi, takich jak suwmiarki lub mikrometry, które są bardziej odpowiednie do pomiarów zewnętrznych, a nie wewnętrznych. Podobnie, czop wału korbowego, będący kluczowym elementem silnika, również nie jest mierzony za pomocą srednicówki czujnikowej, ponieważ jego średnica jest mierzona w inny sposób, często w kontekście dopasowania do łożysk. Tarcza hamulcowa z kolei, która może być przedmiotem pomiaru grubości i średnicy zewnętrznej, również nie mieści się w zakresie działania srednicówki czujnikowej, która jest dedykowana do pomiarów średnic wewnętrznych. Wszelkie błędne wnioski mogą wynikać z niepełnego zrozumienia funkcji i zastosowania narzędzi pomiarowych, a także z zamiany pojęć dotyczących różnych typów pomiarów, co prowadzi do nieprecyzyjnych i nieadekwatnych rozwiązań w kontekście inżynierskim.

Pytanie 18

Przy użyciu urządzenia BHE-5 możliwe jest zdiagnozowanie systemu

A. zapłonowego
B. hamulcowego
C. kierowniczego
D. napędowego
Wybór odpowiedzi dotyczącej innych układów, takich jak napędowy, kierowniczy czy zapłonowy, wskazuje na pewne nieporozumienia związane z funkcją urządzenia BHE-5. Układ napędowy, odpowiedzialny za przenoszenie mocy z silnika na koła, nie jest bezpośrednio związany z diagnostyką hamulców. Wymaga to zastosowania innych narzędzi diagnostycznych, które oceniają moc silnika oraz efektywność przekładni. Podobnie, układ kierowniczy, który zapewnia kontrolę nad kierunkiem jazdy, także wymaga własnych specyficznych narzędzi do oceny stanu technicznego, takich jak testery luzów i geometrii. Z kolei układ zapłonowy, odpowiedzialny za inicjację procesu spalania w silniku, nie ma związku z działaniem hamulców. Przykłady narzędzi diagnostycznych dla tych układów obejmują analizatory spalin i testerów zapłonu, które kierują uwagę na inne aspekty techniki samochodowej. Wybór niewłaściwej odpowiedzi może wynikać z braku zrozumienia, które systemy są kluczowe dla bezpieczeństwa i jak ważne jest posiadanie odpowiednich narzędzi do ich diagnozowania. Właściwa interpretacja funkcji urządzeń diagnostycznych jest kluczowa w pracy mechaników, którzy muszą mieć pełną wiedzę na temat różnicy pomiędzy układami i ich specyfiką, aby efektywnie identyfikować problemy i podejmować odpowiednie działania naprawcze.

Pytanie 19

Pomiar zużycia gładzi cylindrów wykonuje się przy użyciu

A. głębokomościomierza
B. suwmiarki modułowej
C. mikrometru
D. średnicówki czujnikowej
Użycie średnicówki czujnikowej do pomiaru zużycia gładzi cylindrów jest najlepszym rozwiązaniem, ponieważ umożliwia uzyskanie wysokiej precyzji i dokładności pomiarów. Średnicówki czujnikowe, zwane także czujnikami średnicy lub czujnikami cylindrycznymi, są narzędziami pomiarowymi, które pozwalają na bezpośrednie mierzenie średnic otworów, wałów czy cylindrów. Dzięki zastosowaniu mechanizmu pomiarowego z odczytem cyfrowym lub analogowym, średnicówki te oferują dokładność do 0,001 mm. Praktycznym zastosowaniem średnicówki czujnikowej jest kontrola wymiarów w procesie produkcji silników, gdzie zachowanie odpowiednich tolerancji wymiarowych jest kluczowe dla prawidłowego funkcjonowania. W branży motoryzacyjnej standardy takie jak ISO 2768 określają wymagania dotyczące tolerancji wymiarowych, dlatego wykorzystanie średnicówki czujnikowej jest zgodne z tymi normami. Dodatkowo, pomiar za pomocą tego narzędzia może być wspomagany przez systemy komputerowe, co pozwala na łatwe archiwizowanie i analizowanie danych pomiarowych.

Pytanie 20

Pomiar jałowego skoku pedału hamulca przeprowadza się przy użyciu

A. płytek referencyjnych
B. przymiaru kreskowego
C. mikrometru
D. kątomierza
Pomiar jałowego skoku pedału hamulca przy użyciu płytek wzorcowych nie jest praktycznym podejściem, ponieważ płytki wzorcowe służą głównie do kalibracji narzędzi pomiarowych, a nie do bezpośrednich pomiarów wymiarów. Ta pomyłka wynika z nieporozumienia dotyczącego funkcji pomiarowych i zastosowania poszczególnych narzędzi. Płytki wzorcowe mogą być stosowane w określonych zadaniach, na przykład do weryfikacji dokładności przymiarów, ale nie są one odpowiednie do pomiaru skoku pedału hamulca. Kątomierz, z drugiej strony, jest narzędziem do pomiaru kątów, co również czyni go nieadekwatnym do pomiaru skoku pedału. Użytkownik, który wybiera kątomierz, może jest mylić z pomiarem konta naciągu pedału, co jest zupełnie inną procedurą. Mikrometr z kolei, mimo że jest precyzyjnym narzędziem pomiarowym, używany jest głównie do pomiarów małych wymiarów, takich jak grubości lub średnice, a nie do pomiarów skoku, który wymaga korzystania z narzędzi umożliwiających pomiar większych odległości. Właściwe zrozumienie zastosowania każdego narzędzia pomiarowego jest kluczowe w kontekście bezpieczeństwa i efektywności pracy w warsztatach, dlatego wybór przymiaru kreskowego jako narzędzia do pomiaru skoku pedału hamulca jest zgodny z dobrą praktyką branżową.

Pytanie 21

Wymianę pasa napędowego sprzętu silnika należy zrealizować

A. w trakcie przymusowego badania technicznego
B. podczas wymiany rozrządu
C. przy wymianie pompy wodnej
D. po określonym przebiegu i stopniu zużycia
Wymiana paska napędowego w silniku to naprawdę ważna rzecz, o której nie można zapominać. Trzeba to robić w odpowiednich momentach, na przykład po przejechaniu określonej liczby kilometrów lub gdy zauważymy, że coś z nim nie tak. Zazwyczaj znajdziesz te informacje w instrukcji obsługi pojazdu albo w materiałach od producenta. W wielu przynajmniej autach mówi się, żeby wymieniać ten pasek co 60 000 - 100 000 kilometrów, ale to nie jest reguła, bo każda jazda to coś innego. Na przykład, jak jeździsz w trudnych warunkach albo agresywnie, ten pasek może wymagać wymiany wcześniej. Regularne sprawdzanie stanu paska, na przykład jego napięcia czy wyglądu, to świetny sposób na uniknięcie poważniejszych problemów, jak awaria silnika. Dbanie o pasek to też dobra praktyka, która przekłada się na to, że auto działa lepiej i jest bezpieczniejsze. Poza tym, wymieniając go na czas, możesz uniknąć kosztownych napraw w przyszłości.

Pytanie 22

Przyczyną nadmiernego zużycia zewnętrznej części jednej z opon może być

A. niewłaściwy kąt wyprzedzenia sworznia zwrotnicy
B. zbyt wysokie ciśnienie w oponie
C. niewłaściwy kąt pochylenia koła
D. zbyt niskie ciśnienie w oponie
Niewłaściwy kąt pochylenia koła, znany również jako kąt nachylenia, ma kluczowe znaczenie dla równomiernego zużycia opon. Gdy kąt ten jest zbyt duży lub zbyt mały, powoduje to, że zewnętrzna lub wewnętrzna krawędź opony nie jest w pełni w kontakcie z nawierzchnią drogi. W rezultacie dochodzi do nadmiernego zużycia opony po jednej ze stron. W praktyce oznacza to, że pojazd może poruszać się w sposób niezgodny z zamierzonym, co nie tylko wpływa na komfort jazdy, ale przede wszystkim na bezpieczeństwo. Właściwe ustawienie kąta pochylenia koła można osiągnąć poprzez precyzyjne regulacje zawieszenia, co jest zgodne z zaleceniami producentów pojazdów oraz standardami branżowymi. Regularne sprawdzanie i dostosowywanie geometrii zawieszenia powinno być częścią rutynowej konserwacji pojazdu, aby zapewnić optymalne osiągi i wydłużyć żywotność opon.

Pytanie 23

Jakim narzędziem dokonujemy pomiaru grubości zębów kół zębatych w skrzyni biegów?

A. suwmiarki modułowej
B. liniału
C. czujnika zegarowego
D. średnicówki mikrometrycznej
Pomiar grubości zębów kół zębatych przy użyciu czujnika zegarowego, średnicówki mikrometrycznej czy liniału może prowadzić do nieprecyzyjnych wyników, co jest nieakceptowalne w kontekście inżynierii mechanicznej. Czujnik zegarowy, mimo że jest niezwykle czułym narzędziem, jest przede wszystkim stosowany do pomiarów odchyleń i przemieszczeń, a nie do bezpośredniego pomiaru grubości zębów. W praktyce jego zastosowanie wymaga dodatkowych ustaleń dotyczących punktów pomiarowych, co może wprowadzić dodatkowe źródła błędów. Średnicówka mikrometryczna jest narzędziem doskonałym do pomiaru średnic, jednak nie zapewnia wystarczającej funkcjonalności w kontekście pomiaru grubości zębów, ponieważ jej budowa i przeznaczenie są ukierunkowane na mniejsze średnice, a nie na dokładne pomiary grubości. Liniał, choć jest łatwo dostępny i powszechnie stosowany, nie dostarcza odpowiedniej precyzji pomiaru wymaganej w inżynierii. Ponadto, pomiar bezpośredni przy użyciu liniału jest podatny na błędy związane z odczytem, a także na błędy związane z nieprawidłowym ułożeniem narzędzia pomiarowego. Błędy te mogą prowadzić do poważnych konsekwencji w procesie produkcyjnym, gdzie precyzja i jakość są kluczowe dla funkcjonowania całego systemu mechanicznego.

Pytanie 24

Po wymianie końcówek drążka kierowniczego należy koniecznie zweryfikować oraz w razie potrzeby przeprowadzić regulację

A. wyważenia kół
B. ustawienia świateł
C. zbieżności kół przednich
D. zbieżności kół tylnych
Po wymianie końcówek drążka kierowniczego kluczowe jest sprawdzenie i regulacja zbieżności kół przednich, ponieważ niewłaściwa zbieżność może prowadzić do nierównomiernego zużycia opon, pogorszenia stabilności pojazdu oraz negatywnego wpływu na jego właściwości jezdne. Zbieżność odnosi się do ustawienia kół w stosunku do siebie oraz do linii środkowej pojazdu. Utrzymanie prawidłowej zbieżności jest niezbędne, aby zapewnić optymalne prowadzenie i komfort jazdy. Przykładowo, jeśli kółka są zbieżne zbyt mocno do wewnątrz lub na zewnątrz, może to prowadzić do trudności w manewrowaniu oraz zwiększonego oporu toczenia. W praktyce, po wymianie końcówek drążka, mechanicy często korzystają z profesjonalnych urządzeń do pomiaru zbieżności, aby precyzyjnie ustawić kąty pracy kół. Zgodnie z zaleceniami branżowymi, regulację zbieżności powinno się przeprowadzać co najmniej raz w roku lub po każdej większej interwencji w układ kierowniczy, aby zapewnić długoterminowe bezpieczeństwo i efektywność pojazdu.

Pytanie 25

Rozmontowanie pełnej kolumny McPhersona na pojedyncze części przeprowadza się przy użyciu

A. ściągacza do sprężyn
B. ręcznej prasy
C. specjalnie uformowanej dźwigni
D. prasy hydraulicznej
Ściągacz do sprężyn jest narzędziem niezbędnym do demontażu kolumny McPhersona, ponieważ umożliwia on bezpieczne i skuteczne usunięcie sprężyny zawieszenia, która jest elementem pod dużym ciśnieniem. W trakcie demontażu ważne jest, aby sprężynę odpowiednio ściągnąć, aby zminimalizować ryzyko uszkodzenia innych komponentów oraz zapewnić bezpieczeństwo osoby wykonującej tę operację. Ściągacze do sprężyn są dostępne w różnych wersjach, w tym ręcznych oraz hydraulicznych, co pozwala na dostosowanie narzędzia do konkretnych warunków pracy. Zastosowanie ściągacza do sprężyn jest zgodne z najlepszymi praktykami w branży motoryzacyjnej, które podkreślają znaczenie używania odpowiednich narzędzi do przeprowadzania prac serwisowych. Warto zauważyć, że niewłaściwe lub nieodpowiednie narzędzia mogą prowadzić do uszkodzenia kolumny McPhersona, co zwiększa koszty naprawy oraz czas przestoju pojazdu.

Pytanie 26

Podczas przeglądu technicznego samochodu stwierdzono potrzebę wymiany oleju silnikowego oraz klocków hamulcowych w kwocie 120,00 zł za komplet. Koszt 4 l oleju z filtrem olejowym wyniósł 160,00 zł, a wartość robocizny to 320,00 zł. Całkowity koszt usługi po uwzględnieniu 10% rabatu wyniósł

A. 560,00 zł
B. 540,00 zł
C. 480,00 zł
D. 600,00 zł
Aby obliczyć łączny koszt usługi po uwzględnieniu zniżki, należy zsumować wszystkie koszty związane z wymianą oleju oraz klocków hamulcowych. Koszt wymiany klocków hamulcowych wynosi 120,00 zł, a koszt oleju silnikowego i filtra to 160,00 zł. Koszt robocizny wynosi 320,00 zł. Łączny koszt usługi przed zniżką wynosi 120,00 zł + 160,00 zł + 320,00 zł = 600,00 zł. Następnie należy obliczyć 10% zniżkę, co daje 60,00 zł. Po odjęciu zniżki od pierwotnego kosztu, otrzymujemy 600,00 zł - 60,00 zł = 540,00 zł. Przykład ten ilustruje ważność znajomości procedur przeglądów okresowych oraz umiejętności kalkulacji kosztów, co jest kluczowe w profesjonalnym zarządzaniu pojazdami. W praktyce, wiele warsztatów stosuje podobne podejście do kalkulacji kosztów usług, aby zapewnić transparentność i zrozumiałość dla klienta, co jest zgodne z dobrymi praktykami w branży motoryzacyjnej.

Pytanie 27

Jakim urządzeniem dokonuje się pomiaru bicia osiowego tarczy hamulcowej?

A. pasametrem
B. czujnikiem zegarowym
C. średnicówką mikrometryczną
D. suwmiarką modułową
Czujnik zegarowy jest kluczowym narzędziem w pomiarze bicia osiowego tarczy hamulcowej, ponieważ pozwala na precyzyjne określenie odchylenia od osi obrotu. Umożliwia to wykrycie nawet najmniejszych nieprawidłowości, co jest niezwykle ważne dla bezpieczeństwa pojazdu. W praktyce, czujnik zegarowy jest umieszczany na tarczy hamulcowej, a następnie obraca się koło. Wskazania czujnika pokazują wahania, które można zaobserwować w różnych punktach tarczy. Tarcze hamulcowe muszą spełniać określone normy, aby zapewnić odpowiednią efektywność hamowania oraz minimalizować wibracje. Odpowiednie bicia osiowe mogą prowadzić do nierównomiernego zużycia klocków hamulcowych oraz pogorszenia działania układu hamulcowego. W branży motoryzacyjnej, standardy takie jak te określone przez SAE (Society of Automotive Engineers) lub ISO (International Organization for Standardization) podkreślają znaczenie precyzyjnych pomiarów w celu zapewnienia bezpieczeństwa i wydajności pojazdu. Zastosowanie czujnika zegarowego w tej dziedzinie jest zatem niezbędne, aby dokonać rzetelnej oceny stanu technicznego tarczy hamulcowej, co przekłada się na bezpieczeństwo jazdy i żywotność komponentów.

Pytanie 28

Rozpoczynając naprawę samochodu, technik serwisowy powinien najpierw

A. włączyć hamulec ręczny i podłożyć kliny pod koła
B. przygotować fakturę za wykonane usługi
C. osłonić wnętrze pojazdu pokrowcami ochronnymi
D. zajmować miejsce na stanowisku naprawczym
Zabezpieczenie wnętrza pojazdu pokrowcami ochronnymi jest kluczowym krokiem przed rozpoczęciem jakiejkolwiek naprawy. To działanie ma na celu ochronę tapicerki oraz innych elementów wnętrza przed zanieczyszczeniami, uszkodzeniami oraz przetarciami, które mogą wystąpić w trakcie pracy. Przykładowo, podczas naprawy silnika lub podzespołów, użycie narzędzi, smarów czy płynów eksploatacyjnych może prowadzić do nieprzyjemnych plam. W przemyśle motoryzacyjnym standardem jest stosowanie pokrowców ochronnych, co zapobiega nie tylko zniszczeniom materialnym, ale również zwiększa ogólną estetykę i wartość pojazdu. Dobre praktyki wskazują, że przed przystąpieniem do prac mechanicznych, warto również odpowiednio przygotować miejsce pracy, co pozwala na zachowanie porządku oraz zwiększa bezpieczeństwo. Prawidłowe zabezpieczenie wnętrza wpływa na wrażenie klienta oraz może przyczynić się do jego większego zadowolenia z usług serwisowych.

Pytanie 29

Odczuwane wibracje podczas startu pojazdu mogą świadczyć o

A. zablokowaniu systemu chłodzenia
B. uszkodzeniu tarczy sprzęgłowej
C. deformacji tarczy hamulcowej
D. niewyważeniu kół
Kiedy tarcza sprzęgłowa jest uszkodzona, możesz odczuwać nieprzyjemne drgania, jak ruszasz pojazdem. To ta część, która łączy silnik z skrzynią biegów, więc jest dość ważna. Jak tarcza się zużyje albo przegrzeje, to moc jest przenoszona nierównomiernie i to właśnie te drgania możesz odczuwać w kabinie. Przykłady? Kiedy wciśniesz pedał sprzęgła i czujesz stuk lub wibracje, to może znaczy, że czas na wymianę tarczy. W motoryzacji dobrze jest regularnie sprawdzać sprzęgło, szczególnie w autach, które jeżdżą sporo albo mają duży przebieg. Wymiana uszkodzonej tarczy jest mega istotna, żeby jazda była bezpieczna i komfortowa, a cały układ dobrze działał.

Pytanie 30

Częścią mechaniczną układu hamulcowego jest

A. dźwignia hamulca ręcznego
B. zbiornik płynu hamulcowego
C. cylinderek hamulcowy
D. korektor siły hamowania
Dźwignia hamulca ręcznego to jeden z najważniejszych elementów w mechanice auta, który pozwala kierowcom zatrzymać pojazd, zwłaszcza w sytuacjach, kiedy trzeba działać szybko. Używa się jej do zaciągania hamulców tylnej osi i działa na zasadzie przenoszenia siły mechanicznej, co jest bardzo praktyczne. Na przykład, gdy parkujesz na stoku, zaciągnięcie hamulca ręcznego jest wręcz kluczowe, żeby auto się nie stoczyło. W branży motoryzacyjnej obowiązują różne normy, jak ISO 26262, które mówią o bezpieczeństwie tych systemów, więc dźwignia ta musi być niezawodna. Ważne, żeby regularnie sprawdzać jej stan, bo wpływa to na nasze bezpieczeństwo na drodze. Moim zdaniem, każdy kierowca i mechanik powinien rozumieć, jak działa ta dźwignia, bo to nie tylko kwestia bezpieczeństwa, ale też komfortu jazdy.

Pytanie 31

Masa własna pojazdu obejmuje

A. masę pojazdu oraz wyposażenia, bez płynów eksploatacyjnych i bez kierowcy
B. masę pojazdu oraz standardowego wyposażenia z płynami eksploatacyjnymi, lecz bez kierowcy
C. masę standardowego wyposażenia pojazdu, jednak bez kierowcy
D. masę pojazdu oraz normalnego wyposażenia, a także kierowcy i pasażera
Masa własna pojazdu odnosi się do całkowitej masy pojazdu, która obejmuje masę samego pojazdu, jego standardowego wyposażenia oraz wszelkich płynów eksploatacyjnych, takich jak olej silnikowy, płyn chłodzący czy paliwo. Kluczowym aspektem jest to, że masa własna nie uwzględnia kierowcy ani pasażerów. W praktyce, znajomość masy własnej pojazdu jest istotna dla określenia jego osiągów, takich jak przyspieszenie, zużycie paliwa oraz bezpieczeństwo. Normy branżowe, takie jak ISO 612, definiują metody pomiaru masy pojazdów, co pozwala na porównywanie różnych modeli pod kątem ich masy oraz efektywności. Ponadto, producenci pojazdów często podają masę własną w dokumentacji technicznej, co jest istotne dla użytkowników planujących przewóz towarów czy osób, a także dla osób zajmujących się tuningiem pojazdów. Ich świadomość odnośnie do masy własnej jest kluczowa dla zapewnienia bezpieczeństwa i legalności eksploatacji pojazdów na drogach publicznych.

Pytanie 32

Jakie informacje powinny być zawarte w dokumentacji dotyczącej przyjęcia pojazdu do diagnostyki?

A. regulacji świateł
B. wady nadwozia
C. regulacji zbieżności
D. wady podwozia
Zauważam, że niektóre odpowiedzi nie do końca rozumieją, jak ważna jest dokumentacja diagnostyczna. Uszkodzenia podwozia, mimo że są istotne, nie są priorytetem, gdy przyjmujemy auto do diagnostyki. To nadwozie, z uwagi na swoje znaczenie dla bezpieczeństwa pasażerów, powinno być na pierwszym miejscu. Ustawienie zbieżności jest ważne, ale to bardziej efekt diagnostyki niż coś, co trzeba badać na etapie przyjęcia. A ustawienie świateł? Też istotne, ale nie wpływa bezpośrednio na integralność pojazdu. Często jest tak, że ludzie koncentrują się na technicznych aspektach, które nie są aż tak krytyczne dla bezpieczeństwa. Powinno się skupić na uszkodzeniach, które naprawdę zagrażają stabilności i bezpieczeństwu pasażerów, a to właśnie uszkodzenia nadwozia są kluczowe w tej kwestii.

Pytanie 33

Jaką rolę odgrywa synchronizator?

A. Włącza sprzęgło
B. Utrzymuje stałą prędkość silnika
C. Przekazuje moment obrotowy na koła napędowe
D. Płynnie łączy koło biegu z wałem
Odpowiedzi, które wskazują na inne funkcje synchronizatora, nie oddają jego rzeczywistej roli w mechanice pojazdu. Załączenie sprzęgła, stabilizacja prędkości silnika czy przenoszenie momentu obrotowego na koła napędzane to procesy, które są realizowane przez inne komponenty układu napędowego. Sprzęgło, na przykład, to element odpowiedzialny za oddzielanie silnika od skrzyni biegów, co umożliwia zmianę przełożeń. Stabilizacja prędkości silnika jest funkcją, którą realizują systemy elektroniczne, takie jak kontrola trakcji czy systemy zarządzania silnikiem, a nie synchronizatory. Oprócz tego, przeniesienie momentu obrotowego na koła napędzane jest w gestii układu różnicowego i napędu, który działa na zasadzie przekazywania mocy z silnika przez skrzynię biegów. Wynika stąd, że błędne pojmowanie funkcji synchronizatorów często prowadzi do mylnych wniosków o ich zastosowaniu i znaczeniu. Ważne jest, aby zrozumieć, że prawidłowe działanie synchronizatora ma kluczowy wpływ na efektywność pracy całego układu napędowego oraz na komfort jazdy. Zaniedbanie tego elementu może skutkować nie tylko problemami z płynnością zmiany biegów, ale także przyspieszonym zużyciem innych komponentów, co w dłuższym czasie prowadzi do kosztownych napraw.

Pytanie 34

Który z komponentów należy do hydraulicznego systemu hamulcowego?

A. Zawór sterujący
B. Pompa hamulcowa
C. Kable hamulcowe
D. Zbiornik powietrza
Linki hamulcowe, zbiornik powietrza oraz zawór sterujący nie są elementami hydraulicznego układu hamulcowego, co może wprowadzać w błąd osoby analizujące ten temat. Linki hamulcowe są stosowane w mechanicznych układach hamulcowych, takich jak hamulce ręczne, gdzie działają na zasadzie mechanicznego przesunięcia. W hydraulicznych układach hamulcowych, zamiast linki, wykorzystuje się płyn hamulcowy, co pozwala na szybkie i skuteczne przeniesienie siły z pedału hamulca na klocki hamulcowe. Zbiornik powietrza natomiast jest elementem układów pneumatycznych, które są stosowane głównie w pojazdach ciężarowych i nie są częścią standardowych hydraulicznych układów hamulcowych w samochodach osobowych. Zawór sterujący, mimo że może być używany w różnych układach hydraulicznych, nie jest kluczowym elementem tradycyjnego hydraulicznego układu hamulcowego. Często mylone są te terminy z powodu ich użycia w różnych kontekstach, co prowadzi do nieporozumień. Kluczowe jest zrozumienie, że hydrauliczne układy hamulcowe opierają się na działaniu płynów i odpowiednich komponentów, które umożliwiają skuteczne hamowanie pojazdu, co jest fundamentem bezpieczeństwa na drodze.

Pytanie 35

Aby ocenić użyteczność eksploatacyjną płynu hamulcowego, konieczne jest zmierzenie jego temperatury

A. wrzenia
B. krzepnięcia
C. zamarzania
D. odparowywania
Pomiar temperatury wrzenia płynu hamulcowego jest kluczowym aspektem oceny jego przydatności eksploatacyjnej. Płyny hamulcowe, w szczególności te na bazie glikolu, charakteryzują się określoną temperaturą wrzenia, która wpływa na ich skuteczność i bezpieczeństwo. W momencie, gdy temperatura wrzenia płynu hamulcowego spada poniżej zalecanych wartości, może dojść do zjawiska wrzenia w układzie hamulcowym, co prowadzi do poważnych problemów z hamowaniem. W praktyce, zbyt wysoka temperatura pracy układu hamulcowego, na przykład podczas intensywnego użytkowania pojazdu, może powodować degradację płynu, co skutkuje obniżeniem jego temperatury wrzenia. Regularne pomiary tej temperatury, realizowane zgodnie z normami takimi jak DOT (Department of Transportation) czy SAE (Society of Automotive Engineers), pozwalają na wczesne wykrycie problemów i wymianę płynu hamulcowego, co jest kluczowe dla zapewnienia bezpieczeństwa na drodze. Przykładowo, w pojazdach sportowych, gdzie intensywne hamowanie jest na porządku dziennym, monitorowanie temperatury wrzenia płynu hamulcowego powinno być standardową praktyką serwisową.

Pytanie 36

Który z elementów układu kierowniczego jest najbardziej podatny na zużycie?

A. Drążek kierowniczy
B. Kolumna kierownicza
C. Sworzeń kulisty
D. Przekładnia kierownicza
Sworzeń kulisty jest kluczowym elementem układu kierowniczego pojazdu, który łączy drążki kierownicze z kołami. Jest on narażony na znaczne zużycie, ponieważ podczas manewrowania pojazdem, szczególnie w trakcie skręcania, podlega intensywnym obciążeniom oraz ruchom. Jego konstrukcja pozwala na pewną elastyczność, co umożliwia płynne kierowanie pojazdem, ale jednocześnie prowadzi do szybszego zużycia materiałów. Przykładem może być samochód osobowy, w którym sworzeń kulisty ulega zużyciu w wyniku eksploatacji oraz korozji spowodowanej działaniem czynników atmosferycznych i soli drogowej. Regularne przeglądy techniczne, zgodne z zaleceniami producenta, powinny obejmować kontrolę stanu sworzni kulistych, aby zapobiec ich uszkodzeniu i potencjalnym awariom przekładającym się na bezpieczeństwo jazdy. W przypadku wykrycia luzu lub zużycia, wymiana sworznia powinna być przeprowadzona niezwłocznie, co jest zgodne z dobrymi praktykami w dziedzinie utrzymania pojazdów.

Pytanie 37

Typ NTC czujnika termistorowego

A. nie reaguje na zmiany temperatury
B. zmniejsza swoją rezystancję wraz ze wzrostem temperatury
C. utrzymuje stałą rezystancję w temperaturach od 20°C do 150°C
D. zwiększa swoją rezystancję wraz ze wzrostem temperatury
Czujniki termistorowe NTC to specyficzny rodzaj czujników temperatury, które działają na zasadzie zmiany rezystancji w odpowiedzi na zmiany temperatury. Jednakże, skojarzenie ich z utrzymywaniem stałej rezystancji w pewnym zakresie temperatur lub z brakiem reakcji na zmiany temperatury jest fundamentalnym nieporozumieniem. Termistory NTC nie tylko nie utrzymują stałej rezystancji, ale wręcz ich kluczowa funkcjonalność polega na tym, że ich rezystancja zmienia się w sposób znaczny w zależności od temperatury. Na przykład, w przypadku temperatury wzrastającej, rezystancja tych czujników maleje, co jest całkowicie przeciwne do stwierdzenia, że zwiększa się ona przy wzroście temperatury. Tego typu błędne rozumowanie może prowadzić do poważnych konsekwecji w projektowaniu systemów monitorowania i kontroli temperatury. Użycie termistorów, które nie reagują na zmiany temperatury, jest całkowicie nieefektywne w aplikacjach wymagających precyzyjnych pomiarów, jak w medycynie czy przemyśle elektronicznym. W praktyce, czujniki NTC są projektowane w taki sposób, aby zapewniały odpowiednią charakterystykę temperaturową, co czyni je niezbędnymi w wielu zastosowaniach, w których precyzja jest kluczowa. Dlatego znajomość ich działania oraz zasad wykorzystywania jest niezbędna dla każdego inżyniera czy technika zajmującego się systemami pomiarowymi.

Pytanie 38

W przednim lewym kole auta zaobserwowano pęknięcie tarczy hamulcowej, a zmierzona grubość okładzin ciernych klocków hamulcowych wynosi 1,4 mm. W trakcie naprawy należy wymienić

A. tarcze i klocki hamulcowe wszystkich kół
B. tarcze oraz klocki hamulcowe osi przedniej
C. wyłącznie tarcze hamulcowe kół osi przedniej
D. jedynie tarczę hamulcową koła lewego przedniego
Odpowiedź, która wskazuje na konieczność wymiany zarówno tarcz, jak i klocków hamulcowych kół osi przedniej, jest prawidłowa z kilku powodów. Pęknięcie tarczy hamulcowej może prowadzić do nierównomiernego zużycia klocków hamulcowych oraz obniżenia skuteczności hamowania. Zgodnie z obowiązującymi standardami w branży motoryzacyjnej, podczas wymiany tarczy hamulcowej zawsze zaleca się wymianę klocków hamulcowych na tej samej osi, aby zapewnić równomierne działanie układu hamulcowego oraz uniknąć sytuacji, w której nowe komponenty będą pracować z zużytymi elementami. Przykładowo, jeśli nowe tarcze są połączone z klockami o niewłaściwej grubości, może to prowadzić do zwiększonego ryzyka przegrzewania się i szybszego zużycia nowych tarcz. W praktyce, wymiana tarcz i klocków hamulcowych na osi przedniej zapewnia lepsze bezpieczeństwo oraz komfort jazdy, a także wydłuża żywotność całego układu hamulcowego.

Pytanie 39

Podczas próby olejowej, kiedy mierzono ciśnienie sprężania w silniku z zapłonem iskrowym, zaobserwowano wzrost ciśnienia w cylindrze o 0,4 MPa w porównaniu do pomiaru bez oleju. Najbardziej prawdopodobnym zakresem uszkodzeń silnika jest nieszczelność

A. układu tłok-cylinder
B. uszczelki pod głowicą
C. zaworu dolotowego
D. zaworu wylotowego
Nieszczelności w silniku można analizować z różnych perspektyw, jednak wskazanie zaworów dolotowych, wylotowych czy uszczelki pod głowicą jako potencjalnych źródeł problemów nie jest zasadne w kontekście wzrostu ciśnienia sprężania przy próbie olejowej. Zawory dolotowe odpowiadają za wprowadzenie mieszanki paliwowo-powietrznej do cylindra, a ich nieszczelność najczęściej prowadzi do spadku ciśnienia, ponieważ mieszanka nie jest poprawnie zamykana w cyklu sprężania. Zawory wylotowe, z drugiej strony, odpowiadają za wydostawanie się spalin, a ich nieszczelność również powoduje utratę ciśnienia, co także jest sprzeczne z zaobserwowanym zjawiskiem. Uszczelka pod głowicą, choć kluczowa dla szczelności układu, zwykle ujawnia swoje problemy przy wyższych temperaturach lub ciśnieniach, prowadząc do wycieku płynów, a nie sprężania. Dlatego, w kontekście wzrostu ciśnienia podczas używania oleju, należy koncentrować się na układzie tłok-cylinder. Ignorowanie tej logiki diagnostycznej może prowadzić do nieprawidłowych wniosków oraz nieefektywnej naprawy silnika. Kluczowe jest zrozumienie, że różne komponenty silnika mają swoje specyficzne funkcje i ich uszkodzenia manifestują się w różny sposób, co wymaga dokładnej analizy objawów.

Pytanie 40

Jakie urządzenie wykorzystuje się do pomiaru ciśnienia sprężania w silniku?

A. oscyloskop
B. stetoskop
C. manometr
D. stroboskop
Manometr jest narzędziem służącym do pomiaru ciśnienia, które jest kluczowe w diagnostyce silników spalinowych. W przypadku badania ciśnienia sprężania silnika, manometr umożliwia precyzyjny pomiar ciśnienia w cylindrach, co pozwala na ocenę stanu uszczelek zaworów oraz pierścieni tłokowych. Pomiar ten jest istotny, ponieważ niskie ciśnienie sprężania może wskazywać na zużycie silnika lub uszkodzenia, co może prowadzić do spadku mocy i zwiększonego zużycia paliwa. W praktyce, manometr umieszcza się w gnieździe świecy zapłonowej i uruchamia się silnik, aby uzyskać wynik pomiaru. W branży motoryzacyjnej, regularne sprawdzanie ciśnienia sprężania jest zalecane jako część rutynowych przeglądów, co jest zgodne z dobrymi praktykami diagnostyki silników. Przykładem zastosowania manometru może być diagnoza problemów z silnikiem w warsztatach samochodowych, gdzie mechanicy stosują ten przyrząd do identyfikacji usterki i planowania napraw. Wiedza o ciśnieniu sprężania jest również kluczowa dla entuzjastów motoryzacji, którzy dbają o osiągi swoich pojazdów.