Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 14 maja 2025 06:16
  • Data zakończenia: 14 maja 2025 06:21

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zamiana diody prostowniczej na płycie zasilacza wymaga

A. wylutowania uszkodzonej diody, oczyszczenia otworów na płycie, uformowania i pobielenia końcówek nowej diody i jej wlutowania
B. wycięcia uszkodzonej diody, uformowania i pobielenia końcówek nowej diody, a następnie jej wlutowania
C. wylutowania uszkodzonej diody oraz wlutowania nowej diody
D. wycięcia uszkodzonej diody, wylutowania jej końcówek oraz wlutowania nowej diody
Wybór odpowiedzi oznaczonej numerem 4 jest prawidłowy, ponieważ obejmuje wszystkie kluczowe etapy wymiany diody prostowniczej na płycie zasilacza. Pierwszym krokiem jest wylutowanie uszkodzonej diody, co jest niezbędne do usunięcia elementu, który nie działa poprawnie. Następnie ważne jest oczyszczenie otworów na płycie, aby upewnić się, że nie ma resztek lutowia, które mogą wpływać na jakość połączenia nowej diody. Kolejnym krokiem jest uformowanie i pobielenie końcówek nowej diody, co zapewnia lepszą adhezję podczas lutowania oraz zmniejsza ryzyko utlenienia. Ostatecznie, wlutowanie nowej diody powinno być przeprowadzone zgodnie z zasadami dobrego lutowania, aby zapewnić niezawodność i trwałość połączenia. Przestrzeganie tych kroków jest zgodne z rekomendacjami standardów IPC dotyczących montażu elektronicznego, co gwarantuje długotrwałe i bezpieczne funkcjonowanie urządzenia.

Pytanie 2

Aby odkręcić śrubę z sześciokątnym gniazdem, konieczne jest zastosowanie klucza

A. płaskiego
B. nasadowego
C. nasadowego
D. imbusowego
Wybór odpowiedzi dotyczących klucza nasadowego lub płaskiego jest nieprawidłowy, a ich zastosowanie w kontekście wykręcania śruby z gniazdem sześciokątnym jest niewłaściwe. Klucz nasadowy, mimo że jest popularnym narzędziem do pracy z różnymi rodzajami śrub, jest skonstruowany głównie do pracy z gniazdami prostokątnymi lub sześciokątnymi zewnętrznie, a nie wewnętrznie jak w przypadku gniazd sześciokątnych. Użycie klucza nasadowego w tym przypadku może prowadzić do uszkodzenia gniazda, ponieważ nie zapewnia on płynnego dopasowania do kształtu sześciokątnego. Klucz płaski z kolei, choć również użyteczny w wielu zastosowaniach, jest przeznaczony do pracy z zewnętrznymi krawędziami śrub, a nie do gniazd wewnętrznych. Użycie klucza płaskiego w przypadku śrub sześciokątnych jest mało efektywne, ponieważ nie zapewnia odpowiedniego chwytu, co może skutkować poślizgiem i uszkodzeniem zarówno klucza, jak i samej śruby. Typowym błędem myślowym jest założenie, że klucze nasadowe i płaskie mogą zastąpić klucz imbusowy w każdym zastosowaniu, co nie znajduje uzasadnienia w praktyce inżynieryjnej i może prowadzić do niepożądanych sytuacji podczas pracy. Dlatego ważne jest, aby dobierać narzędzia zgodnie z ich przeznaczeniem, co jest kluczowe dla bezpieczeństwa i efektywności pracy.

Pytanie 3

Jak definiuje się natężenie przepływu Q cieczy w rurociągu?

A. stosunek pola przekroju rurociągu do prędkości, z jaką ciecz przepływa.
B. iloczyn ciśnienia cieczy oraz pola przekroju rurociągu.
C. iloczyn prędkości cieczy oraz czasu jej przepływu.
D. stosunek objętości cieczy, która przechodzi przez przekrój do czasu, w jakim dokonuje się ten przepływ.
Natężenie przepływu Q w rurociągu jest często mylone z innymi pojęciami związanymi z dynamiką cieczy. Przykładowo, odniesienie do stosunku pola przekroju rurociągu do prędkości przepływu cieczy jest błędne, ponieważ nie uwzględnia ono istoty natężenia jako miary objętości w jednostce czasu. Z kolei iloczyn ciśnienia cieczy i pola przekroju rurociągu odnosi się do mocy hydraulicznej, a nie do natężenia przepływu. Ten błąd w interpretacji może prowadzić do nieporozumień w projektowaniu systemów hydraulicznych, gdzie kluczowe jest zrozumienie różnic pomiędzy tymi wielkościami. Podobnie, iloczyn prędkości i czasu przepływu cieczy nie odpowiada definicji natężenia, ponieważ czas musi być rozumiany jako jednostka, a nie jako wartość, która w sposób bezpośredni łączy się z prędkością. Typowym błędem myślowym w tym kontekście jest skupienie się na jednostkach zamiast na fizycznym znaczeniu przepływu. W praktyce inżynieryjnej, właściwe zrozumienie i stosowanie definicji natężenia przepływu jest kluczowe dla obliczeń związanych z projektowaniem rur, pomp oraz całych instalacji, co wpływa na ich efektywność i funkcjonalność.

Pytanie 4

Jak należy przeprowadzić połączenie wciskowe skurczowe piasty z wałkiem?

A. Obniżyć temperaturę obu elementów i połączyć je, stosując siłę
B. Podnieść temperaturę obu elementów, a następnie połączyć je z użyciem siły
C. Obniżyć temperaturę wałka, a następnie wyrównać temperaturę obu elementów po połączeniu
D. Zastosować siłę, aby nasunąć jeden element na drugi w temperaturze otoczenia
Podejście do łączenia elementów na podstawie podwyższenia ich temperatury przed połączeniem wiąże się z pewnymi ryzykami. Wysoka temperatura może prowadzić do odkształceń materiałów, co negatywnie wpływa na ich właściwości mechaniczne. Napotykany problem z zastosowaniem siły do połączenia w temperaturze otoczenia, bez wcześniejszego przygotowania elementów, może skutkować nieprawidłowym dopasowaniem, co z kolei prowadzi do luzów, a w konsekwencji do awarii w pracy maszyny. Rozszerzenie elementów pod wpływem podwyższonej temperatury ma swoje ograniczenia i nie zawsze zapewnia potrzebną precyzję. Ponadto, obniżenie temperatury zamiast podwyższania powoduje, że elementy pasują do siebie ściślej, co przekłada się na lepszą jakość połączenia. Wiele standardów branżowych, takich jak ISO 286 dotyczące tolerancji wymiarowych, wskazuje na kluczowe znaczenie precyzyjnego dopasowania elementów, co jest realizowane poprzez metodę skurczową. Dlatego błędne jest zakładanie, że siła i temperatura mogą być jedynymi czynnikami decydującymi o jakości połączeń skurczowych.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Do spawania metali za pomocą łuku elektrycznego wykorzystuje się zasilacz o

A. wysokim napięciu i małym prądzie
B. niskim napięciu i dużym prądzie
C. wysokim napięciu i dużym prądzie
D. niskim napięciu i małym prądzie
Spawanie metali za pomocą łuku elektrycznego to nie lada wyzwanie, ale jeśli dobrze dobierzesz parametry prądu, wszystko pójdzie gładko. Ważne jest, żeby ustawić niskie napięcie i dość wysoki prąd. Niskie napięcie zmniejsza ryzyko, że coś się przebije, a przy tym zapewnia stabilność łuku spawalniczego, co jest mega istotne. Wysoki prąd z kolei pozwala na topnienie materiałów, więc można uzyskać spoiny dobrej jakości. Jak wiesz, przy spawaniu MIG/MAG, TIG czy MMA, te zasady naprawdę obowiązują. Zgodnie z normami, takimi jak ISO 4063, odpowiednie ustawienia to klucz do trwałych i wytrzymałych spoin. Dzięki tym parametrom, tworzona złącza będą odporne na zmęczenie i różne uszkodzenia, co w przemyśle, np. przy budowie maszyn czy konstrukcjach stalowych, jest bardzo ważne.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Środek gaśniczy, który może być zastosowany do likwidacji wszystkich kategorii pożarów i nie powoduje znacznych, nieodwracalnych uszkodzeń, na przykład w przypadku gaszenia sprzętu komputerowego, to

A. proszek gaśniczy
B. piana gaśnicza
C. dwutlenek węgla
D. woda
Proszek gaśniczy to uniwersalny środek gaśniczy, który jest skuteczny w gaszeniu pożarów różnych grup, w tym grup A (materiały stałe), B (cieczy palnych) i C (gazy palne). Jego działanie polega na obniżeniu temperatury oraz odcięciu dopływu tlenu do ognia. Proszki gaśnicze, takie jak proszek ABC, są szczególnie polecane w miejscach, gdzie występuje ryzyko pożaru sprzętu elektronicznego, jak komputery czy serwery, ponieważ ich użycie nie powoduje uszkodzenia sprzętu przez wodę. Dodatkowo, proszki są wybierane w obiektach przemysłowych i magazynach, gdzie występuje wiele materiałów łatwopalnych. Warto zaznaczyć, że stosowanie proszków gaśniczych powinno odbywać się zgodnie z odpowiednimi normami, takimi jak PN-EN 2 dotycząca gaśnic przenośnych. Przykładem praktycznego zastosowania proszku gaśniczego może być akcja gaśnicza w serwerowni, gdzie zastosowanie wody mogłoby prowadzić do poważnych uszkodzeń sprzętu. Dlatego proszek gaśniczy jest rekomendowany jako najbezpieczniejsza opcja w takich sytuacjach.

Pytanie 9

Silnik komutatorowy przez dłuższy czas był przeciążony, co doprowadziło do powstania zwarć międzyzwojowych. Proces naprawy silnika obejmuje wymianę

A. uzwojenia
B. szczotek
C. łożysk
D. komutatora
Wymiana uzwojenia w silniku komutatorowym jest kluczowym krokiem w naprawie uszkodzonego silnika, który uległ długotrwałemu przeciążeniu, prowadzącemu do zwarć międzyzwojowych. Uzwojenie jest odpowiedzialne za generowanie pola magnetycznego, które umożliwia pracę silnika. W przypadku zwarć międzyzwojowych, wirujące pole magnetyczne przestaje działać efektywnie, co prowadzi do znacznych strat energetycznych i potencjalnych uszkodzeń innych komponentów silnika. Wymiana uzwojenia polega na demontażu uszkodzonych zwojów oraz na ich zastąpieniu nowymi, co wymaga precyzyjnego wykonania, aby zapewnić właściwe parametry pracy silnika. Ważne jest, aby stosować materiały o wysokiej jakości oraz przestrzegać norm dotyczących izolacji, co pozwala na długotrwałą i niezawodną pracę silnika. Praktyka pokazuje, że właściwie wymienione uzwojenie znacząco zwiększa efektywność oraz żywotność silnika, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jaką metodę łączenia metali należy wybrać, gdy maksymalna temperatura w trakcie łączenia nie może przekroczyć 450OC?

A. Spawanie gazowe
B. Lutowanie twarde
C. Spawanie elektryczne
D. Lutowanie miękkie
Lutowanie twarde, spawanie gazowe oraz spawanie elektryczne to techniki, które ze względu na procesy, jakie wykorzystują, nie są odpowiednie w sytuacji, gdy temperatura nie może przekraczać 450°C. Lutowanie twarde polega na łączeniu materiałów przy użyciu stopów lutowniczych, których temperatura topnienia jest znacznie wyższa niż w przypadku lutowania miękkiego, zwykle przekraczająca 450°C. To sprawia, że materiały mogą ulegać nieodwracalnym zmianom, co jest niedopuszczalne w wielu aplikacjach. Spawanie gazowe oraz spawanie elektryczne to procesy, które polegają na wytwarzaniu wysokotemperaturowego łuku elektrycznego lub ognia, co prowadzi do miejscowego topnienia materiału i zmiany jego właściwości fizycznych. Przy tych metodach temperatura w miejscu łączenia często znacznie przekracza 450°C, co może prowadzić do odkształceń, utraty wytrzymałości oraz innych negatywnych skutków dla komponentów. Typowym błędem myślowym jest zakładanie, że każda z tych technik jest odpowiednia w każdej sytuacji. Niezrozumienie różnicy w temperaturach procesów lutowniczych i spawalniczych może prowadzić do nieodwracalnych uszkodzeń materiałów, a także do niezgodności z wymaganiami jakościowymi i standardami branżowymi, które regulują procesy łączenia w różnych gałęziach przemysłu.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Którego urządzenia nie wolno zasilać z źródła napięcia oznaczonego jako 400 V; 3/N/PE ~50 Hz?

A. Silnika jednofazowego o napięciu 230 V
B. Silnika prądu stałego o napięciu 400 V
C. Transformatora trójfazowego o napięciu górnym 400 V i skojarzeniu Dy5
D. Silnika trójfazowego klatkowego o napięciu międzyfazowym 400 V skojarzonego w Δ
Odpowiedzi wskazujące na inne urządzenia, takie jak silnik jednofazowy o napięciu 230 V, transformator trójfazowy o napięciu górnym 400 V, czy silnik trójfazowy klatkowy o napięciu międzyfazowym 400 V skojarzonego w Δ, sugerują pewne nieporozumienia dotyczące zasilania elektrycznego i charakterystyki tych urządzeń. Silnik jednofazowy o napięciu 230 V nie może być podłączony do systemu 400 V bez zastosowania transformatora obniżającego napięcie, ponieważ może to prowadzić do uszkodzenia silnika. Transformator trójfazowy, mimo że może być zasilany napięciem 400 V, wymaga poprawnego doboru napięcia, a jego skojarzenie Dy5 oznacza, że napięcie międzyfazowe wynosi 400 V, co czyni go odpowiednim do pracy w tym systemie. Silnik trójfazowy klatkowy o napięciu międzyfazowym 400 V jest zaprojektowany do pracy w systemach trójfazowych i bywa używany w wielu aplikacjach przemysłowych. Niezrozumienie tych podstawowych zasad zasilania prowadzi często do niebezpiecznych sytuacji w praktyce, takich jak niewłaściwe podłączenie urządzeń do źródeł energii, co może skutkować zarówno uszkodzeniem sprzętu, jak i zagrożeniem dla bezpieczeństwa operatorów. Każde urządzenie powinno być zasilane zgodnie z jego specyfikacją techniczną oraz odpowiednimi normami, aby uniknąć problemów eksploatacyjnych.

Pytanie 19

Pracownik upadł na twardą nawierzchnię z wysokości 4 metrów i doznał drobnego urazu głowy, jednak jest przytomny i odczuwa mrowienie w kończynach. Co należy zrobić w pierwszej kolejności?

A. podnieść poszkodowanego i opatrzyć ranę głowy
B. pozostawić poszkodowanego w pozycji leżącej i wezwać pomoc
C. przenieść poszkodowanego w bezpieczne miejsce i wezwać pomoc
D. posadzić poszkodowanego na krześle i opatrzyć ranę głowy
W sytuacji, gdy pracownik doznał urazu po upadku z wysokości, kluczowe jest zapewnienie mu bezpieczeństwa oraz niedopuszczenie do pogorszenia jego stanu. Pozostawienie poszkodowanego w pozycji leżącej minimalizuje ryzyko poważniejszych obrażeń, takich jak uraz kręgosłupa czy wstrząs mózgu. W takiej pozycji można również monitorować jego stan oraz ułatwić dostęp do oddechu, co jest istotne w przypadku potencjalnych problemów z oddychaniem. Natychmiastowe wezwanie pomocy medycznej jest niezbędne, ponieważ tylko wykwalifikowany personel medyczny może przeprowadzić szczegółową ocenę stanu poszkodowanego oraz zapewnić odpowiednie leczenie. Dobre praktyki w zakresie pierwszej pomocy podkreślają, że nie należy przemieszczać poszkodowanego, chyba że grozi mu bezpośrednie niebezpieczeństwo, takie jak pożar czy wybuch. Na przykład, w przypadku urazów głowy, stabilizacja kręgosłupa jest absolutnie priorytetowa. Zastosowanie standardów pierwszej pomocy, takich jak ABC (Airway, Breathing, Circulation), pozwala na efektywne zarządzanie sytuacją, zapewniając bezpieczeństwo i komfort poszkodowanego do czasu przybycia służb medycznych.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Który z poniższych czujników jest elementem serwomechanizmu sterującego ruchem ramienia robota?

A. Enkoder
B. Mostek tensometryczny
C. Pirometr
D. Przepływomierz powietrza
Enkoder jest elementem pomiarowym, który odgrywa kluczową rolę w systemach serwomechanizmów, szczególnie w aplikacjach związanych z robotyką. Jego główną funkcją jest precyzyjne określanie pozycji oraz prędkości obrotowej silnika, co jest niezbędne do dokładnego sterowania ruchem ramion robota. Enkodery mogą być optyczne, magnetyczne lub mechaniczne, każdy rodzaj ma swoje zastosowania w zależności od wymagań projektu. W praktyce, enkoder zastosowany w ramieniu robota pozwala na precyzyjne pozycjonowanie, co jest szczególnie istotne w zadaniach wymagających wysokiej dokładności, takich jak montaż komponentów elektronicznych czy operacje chirurgiczne. W kontekście standardów branżowych, stosowanie enkoderów w robotach przemysłowych jest zgodne z normami ISO 10218, które określają wymagania dotyczące bezpieczeństwa robotów. To sprawia, że enkodery są nie tylko niezawodne, ale także kluczowe dla zapewnienia jakości i bezpieczeństwa w automatyzacji procesów przemysłowych.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Siłownik, zasilany sprężonym powietrzem o ciśnieniu roboczym 8 bar, ma maksymalną liczbę cykli nmax = 50/min oraz zużywa 1,4 litra powietrza w trakcie jednego cyklu. Jakie parametry powinna mieć sprężarka tłokowa do zasilania tego siłownika?

A. wydajność 5,3 m3/h, ciśnienie maksymalne 0,7 MPa
B. wydajność 5,3 m3/h, ciśnienie maksymalne 1,0 MPa
C. wydajność 3,6 m3/h, ciśnienie maksymalne 1,0 MPa
D. wydajność 3,6 m3/h, ciśnienie maksymalne 0,7 MPa
Wybrana odpowiedź jest poprawna, ponieważ wymagana wydajność sprężarki tłokowej wynosi co najmniej 5,3 m3/h, aby sprostać zapotrzebowaniu siłownika. Siłownik wykonuje 50 cykli na minutę, zużywając 1,4 litra powietrza na cykl. Łączne zużycie powietrza wynosi 50 cykli/min x 1,4 litra/cykl = 70 litrów/minutę, co przelicza się na 4,2 m3/h. Wybór sprężarki o wydajności 5,3 m3/h zapewnia odpowiedni zapas, co jest zgodne z praktykami inżynieryjnymi, które zalecają uwzględnienie marginesu zapasu wydajności dla osiągnięcia stabilnej pracy. Dodatkowo, maksymalne ciśnienie 1,0 MPa (10 bar) spełnia wymagania robocze siłownika, który działa przy ciśnieniu 8 bar. Użycie sprężarki z wyższym ciśnieniem pozwoli również na ewentualne straty ciśnienia w systemie oraz wzmożone zapotrzebowanie w przypadku intensywnej pracy siłownika, co jest istotne w aplikacjach przemysłowych, takich jak automatyzacja produkcji oraz systemy transportu pneumatycznego.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Urządzenie do pomiaru o zakresie od 0,1 do 10 m3/s to

A. miernik mętności
B. miernik prędkości
C. czujnik poziomu
D. przepływomierz
Przepływomierz to urządzenie, które służy do pomiaru przepływu cieczy lub gazów w określonym czasie. Miernik o zakresie pomiarowym od 0,1 do 10 m³/s jest typowym przykładem przepływomierza, który znajduje zastosowanie w różnych branżach, takich jak przemysł chemiczny, energetyczny czy wodociągowy. Przepływomierze mogą działać na różnych zasadach, w tym na zasadzie pomiaru różnicy ciśnień, elektromagnetycznych czy ultradźwiękowych. Przykładem zastosowania jest monitoring zużycia wody w systemach wodociągowych, gdzie dokładne pomiary przepływu pomagają w zarządzaniu zasobami oraz w identyfikacji nieszczelności w instalacjach. W kontekście dobrej praktyki, regularna kalibracja przepływomierzy jest kluczowa, aby zapewnić ich dokładność i niezawodność, co jest zgodne z normami ISO 9001 dotyczących zarządzania jakością.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.