Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 22 maja 2025 16:03
  • Data zakończenia: 22 maja 2025 16:04

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jakie urządzenie powinno być użyte, aby zredukować natężenie prądu rozruchowego silnika indukcyjnego, który napędza systemy mechatroniczne?

A. Włącznik z opóźnieniem
B. Ochrona przed przeciążeniem
C. Układ miękkiego startu
D. Sterownik PLC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Układ miękkiego startu to kluczowe urządzenie stosowane w systemach napędowych, które znacząco redukuje prąd rozruchowy silników indukcyjnych. Jego działanie polega na stopniowym zwiększaniu napięcia, co pozwala na kontrolowane uruchamianie silnika. Dzięki temu unika się nagłych skoków prądu, które mogą prowadzić do uszkodzeń zarówno samego silnika, jak i pozostałych elementów instalacji elektrycznej. W praktyce, układ miękkiego startu jest często stosowany w aplikacjach wymagających dużej mocy, takich jak pompy, wentylatory czy prasy hydrauliczne. Wprowadzenie tego rozwiązania przyczynia się nie tylko do przedłużenia żywotności silnika, ale także do obniżenia kosztów eksploatacji związanych z awariami. Dodatkowo, zastosowanie układów miękkiego startu wpisuje się w standardy efektywności energetycznej, co jest kluczowe w dobie zwracania uwagi na oszczędność energii. Warto podkreślić, że w przypadku silników z napędem mechatronicznym, układ ten umożliwia lepszą synchronizację z pozostałymi komponentami systemu, co przyczynia się do zwiększenia ich wydajności.

Pytanie 3

Rozpoczynając konserwację instalacji światłowodowej, co należy wykonać w pierwszej kolejności?

A. podłączyć mikroskop ręczny z monitorem LCD
B. zajrzeć do otworu z wiązką lasera w kablu
C. zajrzeć do otworu z wiązką lasera w modemie
D. podłączyć reflektometr

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podłączenie mikroskopu ręcznego do monitora LCD na początku konserwacji instalacji światłowodowej to naprawdę ważny krok. Pozwala to na dokładne sprawdzenie włókien światłowodowych. Mikroskopy zapewniają powiększenie, które ułatwia zauważenie mikrouszkodzeń i zanieczyszczeń, co może mieć wpływ na jakość sygnału. Z mojego doświadczenia, inspekcja wizualna włókien przed dalszymi czynnościami to standard w branży telekomunikacyjnej i zgadza się z wytycznymi od ITU. Dzięki mikroskopowi można odkryć różne problemy, jak nieodpowiednie zakończenia włókien, odpryski czy zarysowania. Takie rzeczy mogą spowodować straty sygnału albo przerwy w transmisji. Im wcześniej znajdziemy problemy, tym szybciej można je naprawić i zaoszczędzić pieniądze. Użycie mikroskopu ręcznego to umiejętność, która przyda się każdemu technikowi zajmującemu się instalacją i konserwacją światłowodów. Przykładowo, jak wykryjesz zanieczyszczenia, to technik może je wyczyścić specjalnymi materiałami, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

W jakim trybie operacyjnym sterownik PLC wykonuje wszystkie etapy cyklu pracy?

A. START
B. TERM
C. STOP
D. RUN

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Tryb pracy RUN w sterownikach PLC jest kluczowy, ponieważ to właśnie w tym trybie realizowane są wszystkie zaprogramowane fazy cyklu pracy urządzenia. W trybie RUN sterownik interpretuje i wykonuje instrukcje zawarte w programie użytkownika, co oznacza, że w tym czasie mogą być realizowane operacje wejść i wyjść, obliczenia, a także podejmowanie decyzji na podstawie zdefiniowanych warunków. Na przykład, w systemach automatyki przemysłowej, w których PLC steruje procesem produkcyjnym, tryb RUN jest niezbędny do ciągłego monitorowania i kontrolowania parametrów, takich jak temperatura, ciśnienie czy poziom substancji. W praktyce, aby zapewnić niezawodność działania, stosuje się procedury uruchamiania i stopniowego przechodzenia do trybu RUN, co jest zgodne z zasadami bezpieczeństwa i dobrymi praktykami w projektowaniu systemów automatyki. Warto również zwrócić uwagę, że w różnych standardach automatyki, takich jak IEC 61131-3, podkreśla się znaczenie trybu RUN jako głównego trybu operacyjnego, w którym następuje realizacja logiki sterowania.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

W jakiej postaci należy przedstawiać w schematach układów sterowania styki przekaźników i styczników?

A. Nieprzewodzenia
B. Przewodzenia
C. Niewzbudzonym
D. Wzbudzonym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Styki styczników i przekaźników należy przedstawiać w stanie niewzbudzonym, co jest zgodne z praktykami stosowanymi w projektowaniu schematów układów sterowania. Stan niewzbudzony odzwierciedla rzeczywistą sytuację, w której urządzenia te nie są aktywowane przez sygnał sterujący. Taki sposób reprezentacji ułatwia zrozumienie i analizę działania systemu, ponieważ jasno wskazuje na domyślne warunki pracy. W projektach zgodnych z normą IEC 61082, która dotyczy dokumentacji systemów automatyki, podkreśla się znaczenie reprezentacji stanów urządzeń w sposób, który odzwierciedla ich stan bez aktywacji. Niewzbudzone styki są także kluczowe w kontekście bezpieczeństwa, ponieważ nieprawidłowe przedstawienie ich w stanie przewodzenia mogłoby sugerować, że układ działa poprawnie, gdy w rzeczywistości może dochodzić do awarii. Przykładem zastosowania tej zasady może być układ sterujący silnikiem, gdzie styki muszą być przedstawione jako niewzbudzone, aby uniknąć ryzyka niekontrolowanego uruchomienia maszyny w wyniku błędnej interpretacji schematu.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Parametry takie jak powierzchnia membrany, temperatura operacyjna, typ napędu, maksymalne ciśnienie, skok oraz precyzja położenia są charakterystyczne dla

A. silnika hydraulicznego
B. siłownika pneumatycznego
C. siłownika hydraulicznego
D. smarownicy pneumatycznej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Siłowniki pneumatyczne charakteryzują się różnorodnymi parametrami, które wpływają na ich wydajność i zastosowanie w różnych systemach automatyki. Powierzchnia membrany, temperatura pracy i maksymalne ciśnienie to kluczowe aspekty, które determinują zdolność siłownika do generowania odpowiedniej siły. Na przykład, w aplikacjach wymagających precyzyjnej kontroli położenia, takich jak w automatyzacji w przemyśle spożywczym lub pakowaniu, wybór siłownika pneumatycznego z odpowiednimi parametrami staje się kluczowy. Dobre praktyki w branży zalecają dostosowanie tych parametrów do specyfiki aplikacji, co obejmuje m.in. dobór odpowiednich materiałów odpornych na temperatury oraz ciśnienia robocze, aby zapewnić długotrwałość i niezawodność. Dodatkowo, siłowniki pneumatyczne są często wykorzystywane w liniach produkcyjnych ze względu na swoją szybkość działania, co czyni je idealnymi do operacji wymagających dynamicznych ruchów. Zgodność z normami ISO oraz uwzględnienie aspektów bezpieczeństwa jest również istotnym elementem przy projektowaniu systemów z ich użyciem.

Pytanie 15

Długotrwałe użytkowanie układu hydraulicznego z czynnikiem roboczym o innej lepkości niż ta wskazana w dokumentacji techniczno-ruchowej może prowadzić do

A. uszkodzenia pompy hydraulicznej
B. zwiększenia tempa działania układu
C. intensywnych drgań układu
D. spadku ciśnienia czynnika roboczego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Długotrwała eksploatacja układu hydraulicznego z czynnikiem roboczym o innej lepkości niż zalecana w dokumentacji techniczno-ruchowej może prowadzić do uszkodzenia pompy hydraulicznej. Pompy hydrauliczne są projektowane do pracy z określoną lepkością oleju, co wpływa na ich wydajność oraz żywotność. Zmiana lepkości czynnika roboczego może skutkować nieprawidłowym smarowaniem i przegrzewaniem się pompy, co w konsekwencji prowadzi do jej uszkodzenia. Przykładem zastosowania tej wiedzy jest regularne monitorowanie lepkości oleju oraz jego wymiana zgodnie z zaleceniami producenta. W praktyce, stosowanie oleju o nieodpowiedniej lepkości może skutkować zwiększonym zużyciem elementów układu hydraulicznego, co nie tylko wpływa na efektywność działania, ale również na bezpieczeństwo całego systemu. Standardy, takie jak ISO 6743, dostarczają szczegółowych wytycznych dotyczących właściwego doboru olejów hydraulicznych, co jest kluczowe dla zapewnienia długotrwałej i niezawodnej pracy układów hydraulicznych.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Podczas serwisowania układów hydraulicznych, jakie działanie jest kluczowe?

A. Usuwanie zanieczyszczeń z powierzchni zewnętrznych
B. Sprawdzenie szczelności połączeń
C. Sprawdzenie jakości farby na urządzeniach
D. Malowanie rurociągów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie szczelności połączeń w układach hydraulicznych to kluczowy krok w procesie serwisowania. Wszelkie nieszczelności mogą prowadzić do wycieków płynów, co z kolei może skutkować spadkiem ciśnienia roboczego, co jest niebezpieczne dla całego systemu. Nieszczelności mogą także prowadzić do zanieczyszczenia płynu hydraulicznego, co ma negatywny wpływ na wydajność i trwałość pompy oraz innych elementów układu. Regularne sprawdzanie szczelności pomaga w wykrywaniu potencjalnych problemów zanim doprowadzą one do poważniejszych awarii. Dzięki temu można zapewnić dłuższą żywotność układu i uniknąć kosztownych napraw. Stosując odpowiednie metody diagnostyczne, takie jak testy ciśnieniowe czy użycie specjalnych płynów detekcyjnych, można zlokalizować nawet najmniejsze nieszczelności. W praktyce, konserwacja i sprawdzanie szczelności połączeń jest nie tylko dobrą praktyką, ale wręcz standardem w branży, który zapewnia bezpieczne i efektywne działanie układów hydraulicznych.

Pytanie 19

Jaka jest minimalna liczba bitów przetwornika A/C, która powinna być użyta w układzie, aby dla zakresu pomiarowego 0 mA ÷ 20 mA uzyskać rozdzielczość równą 0,01 mA?

A. 10 bitowy
B. 12 bitowy
C. 16 bitowy
D. 11 bitowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 11-bitowa jest poprawna, ponieważ aby osiągnąć wymaganą rozdzielczość 0,01 mA w zakresie 0-20 mA, musimy najpierw obliczyć liczbę poziomów kwantyzacji. Zakres pomiarowy wynoszący 20 mA podzielony przez rozdzielczość 0,01 mA daje nam 2000 poziomów. Następnie, aby określić wymaganą liczbę bitów w przetworniku A/C, stosujemy wzór 2^n ≥ 2000. Logarytm z podstawą 2 z 2000 wynosi około 10,97, co po zaokrągleniu w górę daje 11. Przetwornik 11-bitowy, oferując 2048 poziomów, spełnia wymogi co do rozdzielczości, ponieważ zapewnia wystarczającą ilość poziomów do uchwycenia zmian w sygnale. W praktyce przetworniki o takiej rozdzielczości są powszechnie stosowane w systemach automatyki przemysłowej, gdzie precyzyjny pomiar prądu jest kluczowy dla monitorowania i kontrolowania procesów. Dobrą praktyką jest również użycie przetworników A/C zgodnych z normami IEC 61000, które zapewniają wysoką jakość pomiarów w trudnych warunkach przemysłowych.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Silniki komutatorowe jako urządzenia napędowe w urządzeniach mechatronicznych nie powinny być stosowane w

A. pomieszczeniach zagrożonych wybuchem
B. zadaszonej hali produkcyjnej
C. pomieszczeniach o niskiej temperaturze
D. pomieszczeniach klimatyzowanych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Silniki komutatorowe to urządzenia, które w procesie pracy generują łuk elektryczny. Ten zjawisko jest szczególnie niebezpieczne w warunkach, gdzie obecne są substancje łatwopalne lub wybuchowe. W pomieszczeniach zagrożonych wybuchem, takich jak te, w których magazynowane są gazy, opary palnych cieczy lub pyły, użycie silników komutatorowych może prowadzić do poważnych wypadków. Standardy i wytyczne, takie jak ATEX (dyrektywa Unii Europejskiej dotycząca urządzeń przeznaczonych do stosowania w atmosferach wybuchowych), jednoznacznie wskazują na konieczność stosowania alternatywnych napędów, które nie generują łuków elektrycznych. W praktyce w takich środowiskach zaleca się użycie silników bezkomutatorowych lub innych technologii, które eliminują ryzyko zapłonu. Dlatego ważne jest, aby projektanci i inżynierowie, którzy pracują w obszarach zagrożonych wybuchem, dokładnie przestrzegali norm i standardów bezpieczeństwa, aby zminimalizować ryzyko wypadków.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Które nastawy muszą zostać wybrane w oknie konfiguracyjnym timera, aby załączał swoje wyjście na 5 sekund od momentu podania na jego wejście logicznej jedynki?

Ilustracja do pytania
A. Typ timera – TP, czas bazowy – 10 ms, wartość Preset - 50
B. Typ timera – TON, czas bazowy – 1 ms, wartość Preset - 500
C. Typ timera – TP, czas bazowy – 10 ms, wartość Preset - 500
D. Typ timera – TOF, czas bazowy – 10 ms, wartość Preset - 500

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybranie timera typu TP (Timer Pulse) jest poprawnym rozwiązaniem, ponieważ ten typ timera służy do generowania impulsów na wyjściu przez zdefiniowany czas, który jest ustalany na podstawie wartości Preset pomnożonej przez czas bazowy. W tym przypadku, przy ustawieniu czas bazowy na 10 ms oraz wartość Preset równą 500, otrzymujemy łączny czas działania wyjścia wynoszący 5000 ms, co odpowiada 5 sekundom. Takie nastawy są szczególnie przydatne w aplikacjach, w których wymagane jest precyzyjne sterowanie czasem, na przykład w automatyce przemysłowej przy sygnalizacji stanów maszyn czy w systemach sterowania, gdzie precyzyjne opóźnienia są kluczowe. Przy projektowaniu systemów automatyki warto również stosować się do standardów IEC 61131, które regulują stosowanie timerów i zapewniają ich poprawną implementację w różnych systemach sterowania.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Gdzie nie mogą być umieszczone przewody sieci komunikacyjnych?

A. W pobliżu przewodów silnoprądowych
B. W pomieszczeniach z dużym zakurzeniem
C. Na zewnątrz obiektów
D. W pomieszczeniach o niskich temperaturach

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że przewody sieci komunikacyjnych nie powinny znajdować się blisko przewodów silnoprądowych, jest prawidłowa z kilku istotnych względów. Przede wszystkim, są to dwa różne typy przewodów, które z definicji pełnią różne funkcje: przewody silnoprądowe dostarczają energię elektryczną, podczas gdy przewody komunikacyjne przesyłają sygnały danych. Umieszczanie ich w bliskiej odległości może prowadzić do zakłóceń elektromagnetycznych, co negatywnie wpływa na jakość przesyłanych danych. Dodatkowo, w przypadku uszkodzenia przewodów silnoprądowych, istnieje ryzyko powstania zwarcia, co może zagrażać bezpieczeństwu nie tylko kabli komunikacyjnych, ale i całej instalacji. W praktyce, zgodnie z normami branżowymi, np. PN-EN 50174-2, zaleca się utrzymanie odpowiednich odległości między tymi przewodami oraz stosowanie odpowiednich osłon i ochrony kablowej. Dzięki przestrzeganiu tych zasad, można zminimalizować ryzyko zakłóceń oraz zapewnić bezpieczeństwo i niezawodność obu systemów.

Pytanie 31

Jakie powinno być natężenie przepływu oleju dla silnika hydraulicznego o pojemności jednostkowej 5 cm3/obr., aby wałek wyjściowy osiągnął prędkość 1200 obr./min?

A. 6,0 dm3/min
B. 0,1 dm3/min
C. 0,6 dm3/min
D. 1,2 dm3/min

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby zrozumieć, dlaczego odpowiedź 6,0 dm3/min jest poprawna, musimy uwzględnić zarówno chłonność jednostkową silnika hydraulicznego, jak i prędkość obrotową wałka. Chłonność jednostkowa wynosząca 5 cm³/obr. oznacza, że na każdy obrót wałka silnik potrzebuje 5 cm³ oleju. Przy prędkości 1200 obr./min, całkowite zapotrzebowanie na olej można obliczyć, mnożąc chłonność przez prędkość obrotową: 5 cm³/obr. * 1200 obr./min = 6000 cm³/min. Konwertując to na dm³/min (1 dm³ = 1000 cm³), otrzymujemy 6,0 dm³/min. Taka wiedza jest kluczowa w praktyce inżynierskiej, gdzie precyzyjne obliczenia przepływu oleju są niezbędne do zapewnienia optymalnej wydajności systemów hydraulicznych. Niewłaściwe natężenie przepływu może prowadzić do uszkodzenia silnika lub niewłaściwego działania układu hydraulicznego, co podkreśla znaczenie starannych obliczeń w projektowaniu układów hydraulicznych oraz zgodności z normami branżowymi dotyczącymi systemów hydraulicznych.

Pytanie 32

Które z poniższych działań jest częścią procesu programowania sterowników PLC?

A. Smarowanie ruchomych części mechanicznych
B. Wymiana filtrów powietrza
C. Kalibracja czujników ciśnienia
D. Tworzenie i testowanie logiki sterowania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Programowanie sterowników PLC to kluczowy etap w procesie automatyzacji systemów mechatronicznych. Tworzenie i testowanie logiki sterowania to fundamentalne działania w tym procesie. Logika sterowania polega na definiowaniu sekwencji działań, które sterownik musi wykonać, aby osiągnąć zamierzony efekt. Na przykład, w aplikacjach przemysłowych PLC kontrolują pracę maszyn, zarządzając sygnałami wejściowymi i wyjściowymi. Tworzenie logiki sterowania wymaga zrozumienia procesu, który ma być automatyzowany, oraz umiejętności programowania w językach takich jak Ladder Diagram, Function Block Diagram czy Structured Text. Testowanie jest równie ważne, ponieważ pomaga wykryć błędy i upewnić się, że system działa zgodnie z oczekiwaniami. Często stosuje się symulacje, aby przetestować program przed jego wdrożeniem na rzeczywistym sprzęcie, co minimalizuje ryzyko awarii. Praktyczne zastosowanie tej wiedzy obejmuje szeroką gamę branż od produkcji, przez motoryzację, aż po systemy HVAC. Dobre praktyki w programowaniu PLC obejmują również dokumentowanie kodu, co ułatwia przyszłe modyfikacje i konserwację.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Który kabel w sieci elektrycznej zasilającej silnik trójfazowy jest oznaczony izolacją w kolorze żółto-zielonym?

A. Sterujący
B. Neutralny
C. Ochronny
D. Fazowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przewód z izolacją w kolorach żółto-zielonym jest klasycznym przewodem ochronnym, co jest zgodne z normą PN-EN 60446, która określa zasady oznaczania przewodów elektrycznych. Ochrona przed porażeniem prądem elektrycznym jest kluczowym aspektem bezpieczeństwa w instalacjach elektrycznych, zwłaszcza w kontekście urządzeń przemysłowych, takich jak silniki trójfazowe. Przewód ochronny jest odpowiedzialny za uziemienie urządzenia, co minimalizuje ryzyko porażenia w przypadku awarii izolacji. Przykładowo, w przypadku uszkodzenia silnika, przewód ochronny prowadzi niebezpieczny prąd do ziemi, zapobiegając poważnym wypadkom. Stosowanie przewodów ochronnych zgodnie z przyjętymi normami, takimi jak norma IEC 60364, jest niezbędne dla bezpieczeństwa pracowników oraz użytkowników urządzeń elektrycznych. Warto również zwrócić uwagę, że przewody ochronne powinny być regularnie kontrolowane oraz, w miarę potrzeby, wymieniane, by zapewnić ich skuteczność.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jakie czujniki mogą dostarczać dane do sterownika PLC o poziomie cieczy nieprzewodzącej w zbiorniku mechatronicznym działającym jako niezależny system napełniania i dozowania?

A. Indukcyjne
B. Magnetyczne
C. Pojemnościowe
D. Termoelektryczne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik pojemnościowy to urządzenie, które mierzy poziom cieczy nieprzewodzącej poprzez pomiar zmiany pojemności elektrycznej między elektrodami, która zmienia się w zależności od poziomu cieczy. W przypadku cieczy nieprzewodzących, takich jak oleje czy niektóre chemikalia, czujnik pojemnościowy jest idealnym rozwiązaniem, ponieważ nie wymaga kontaktu z cieczą, co eliminuje ryzyko korozji czy zanieczyszczenia. Zastosowanie czujników pojemnościowych w systemach mechatronicznych, takich jak autonomiczne układy napełniania i dozowania, jest powszechne ze względu na ich dużą precyzję oraz niezawodność. Przykładowo, w przemyśle spożywczym, czujniki te mogą być wykorzystywane do monitorowania poziomu oleju w maszynach do pakowania, co zapewnia optymalne warunki pracy urządzenia. Stosowanie czujników pojemnościowych jest zgodne z normami ISO 9001 dotyczącymi zapewnienia jakości w procesach produkcyjnych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.