Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 7 maja 2025 11:06
  • Data zakończenia: 7 maja 2025 11:38

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaką precyzję graficzną można osiągnąć dla mapy o skali 1:2000, jeśli średni błąd lokalizacji elementu terenowego na tej mapie wynosi ±0,1 mm w skali mapy?

A. ±0,002 m
B. ±2 m
C. ±0,2 m
D. ±0,02 m
Wybór innych odpowiedzi może wynikać z nieprawidłowego zrozumienia relacji między skalą mapy a rzeczywistymi wymiarami w terenie. Odpowiedzi takie jak ±0,002 m, ±2 m czy ±0,02 m są błędne ze względu na niewłaściwe przeliczenie błędu pomiarowego w kontekście skali. Na przykład, odpowiedź ±0,002 m mogłaby wynikać z pomylenia jednostek lub niezrozumienia, że przeliczenie dotyczy skali, a nie jedynie wartości błędu. Z kolei ±2 m to znacznie większa wartość, która nie znajduje zastosowania w kontekście mapy w skali 1:2000. Tego rodzaju oszacowania mogą prowadzić do poważnych błędów w pracach geodezyjnych, gdzie precyzja jest kluczowa. Dodatkowo, odpowiedź ±0,02 m również nie odzwierciedla właściwego przeliczenia, ponieważ jest to wartość, która nie odpowiada założonemu błędowi pomiarowemu. Problemem jest często brak umiejętności przeliczania błędów pomiarów w kontekście skali, co jest podstawą w geodezji i kartografii. Dobrze zrozumiane zasady przeliczania błędów w zależności od skali mapy są niezbędne, aby uniknąć nieporozumień i błędnych interpretacji w praktyce zawodowej.

Pytanie 2

Jeżeli rzeczywista długość odcinka wynosi 86,00 m, a jego długość na mapie to 43,00 mm, to w jakiej skali została stworzona mapa, na której ten odcinek został zobrazowany?

A. 1:1000
B. 1:2000
C. 1:250
D. 1:500
Odpowiedź 1:2000 jest prawidłowa, ponieważ skala mapy jest wyrażona jako stosunek długości w terenie do długości na mapie. W tym przypadku długość odcinka w terenie wynosi 86,00 m, co przelicza się na 86000 mm, zaś na mapie długość tego odcinka wynosi 43,00 mm. Aby obliczyć skalę, należy podzielić długość w terenie przez długość na mapie: 86000 mm / 43 mm = 2000. Oznacza to, że 1 mm na mapie odpowiada 2000 mm (czyli 2 m) w terenie. Przykładowo, w praktyce skala 1:2000 jest często stosowana w planowaniu urbanistycznym oraz w szczegółowych mapach geodezyjnych, co pozwala na precyzyjne odwzorowanie obiektów i ich lokalizacji. Dobrą praktyką jest również uwzględnianie w dokumentacji mapowej aspektów takich jak dokładność pomiarów oraz zastosowanie odpowiednich symboli i oznaczeń, co zapewnia lepsze zrozumienie prezentowanych informacji.

Pytanie 3

Jaką odległość mają punkty hektometrowe na osi trasy?

A. 150 m
B. 200 m
C. 100 m
D. 50 m
Wybierając odpowiedzi inne niż 100 m, można wprowadzić się w błąd co do podstawowych zasad pomiarowych w kontekście tras i punktów odniesienia. Odpowiedź wskazująca na 50 m nie tylko ignoruje fakt, że punkty hektometrowe są definiowane jako oddalone o 100 m, ale także sugeruje, że mogłyby być one stosowane w sytuacjach, gdzie precyzyjna lokalizacja nie jest kluczowa. To zaburza zrozumienie koncepcji dystansu w kontekście tras transportowych. Odpowiedź 150 m również jest myląca, ponieważ nie odzwierciedla rzeczywistych standardów pomiarowych, które uwzględniają jedynie jednostki metrów w wielokrotności setek. Natomiast 200 m wskazuje na znaczny błąd, gdyż wydłuża odległość między punktami, co może prowadzić do problemów w zarządzaniu ruchem i lokalizacji obiektów. W praktyce, używanie błędnych odległości może skutkować niewłaściwym planowaniem tras i zwiększoną nieefektywnością w operacjach logistycznych. Zrozumienie poprawnych jednostek miary i ich zastosowania jest niezbędne do prawidłowego funkcjonowania w branży transportowej, a także do unikania typowych błędów myślowych, które mogą zniekształcić rzeczywisty obraz sytuacji na trasie.

Pytanie 4

Jakie jest pochylenie linii łączącej punkty A i B, które znajdują się na sąsiednich warstwicach, jeśli odległość między nimi wynosi 50 m, a cięcie warstwicowe to 0,5 m?

A. iAB = 10%
B. iAB = 0,5%
C. iAB = 1%
D. iAB = 5%
Prawidłowa odpowiedź to iAB = 1%. Aby obliczyć pochylenie linii łączącej dwa punkty A i B na podstawie odległości międzywarstwicowej oraz różnicy wysokości, stosujemy wzór na pochylenie, które wyraża się jako stosunek różnicy wysokości do poziomej odległości między punktami. W tym przypadku różnica wysokości wynosi 0,5 m, a pozioma odległość wynosi 50 m. Zatem pochylenie wyliczamy według wzoru: iAB = (wysokość / odległość) * 100%. Czyli: iAB = (0,5 m / 50 m) * 100% = 1%. Pochylenie to istotny parametr w geodezji, inżynierii lądowej oraz w planowaniu przestrzennym, ponieważ wpływa na projektowanie dróg, infrastruktury oraz systemów odwodnienia. Przykład praktycznego zastosowania można znaleźć w projektowaniu dróg, gdzie odpowiednie pochylenie zapewnia bezpieczną jazdę i efektywne odprowadzanie wody opadowej. Ponadto, znajomość pochylenia warstwic jest kluczowa w ocenie stabilności gruntów i w budownictwie. W kontekście standardów, pochylenia powinny być zgodne z wytycznymi zawartymi w normach geodezyjnych oraz budowlanych.

Pytanie 5

Aby zaktualizować część mapy zasadniczej, geodeta powinien uzyskać informacje

A. z urzędu wojewódzkiego
B. z ewidencji gruntów oraz budynków
C. z urzędu miasta
D. z państwowego zasobu geodezyjnego i kartograficznego
Odpowiedź "z państwowego zasobu geodezyjnego i kartograficznego" jest prawidłowa, ponieważ to właśnie ten zasób stanowi kompleksowe źródło aktualnych i wiarygodnych danych geodezyjnych i kartograficznych, które są niezbędne do aktualizacji mapy zasadniczej. W Polsce państwowy zasób geodezyjny i kartograficzny jest gromadzony i udostępniany przez Główny Urząd Geodezji i Kartografii (GUGiK), a jego zawartość obejmuje m.in. dane o granicach nieruchomości, infrastrukturze oraz elementach zagospodarowania przestrzennego. Przykładowo, przy aktualizacji mapy zasadniczej, geodeta powinien korzystać z ortofotomap oraz modelu 3D, które są dostępne w ramach tego zasobu. Warto też zaznaczyć, że korzystanie z państwowego zasobu geodezyjnego i kartograficznego jest zgodne z obowiązującymi przepisami prawa, w tym Ustawą z dnia 17 maja 1989 r. – Prawo geodezyjne i kartograficzne, co zapewnia rzetelność i aktualność pozyskiwanych danych, co jest kluczowe dla precyzyjnego odwzorowania rzeczywistości na mapach.

Pytanie 6

W jakim celu stosuje się metodę biegunową w pomiarach geodezyjnych?

A. Do określania kąta nachylenia powierzchni w projektach architektonicznych.
B. Do wykonywania pomiarów przemieszczeń w pionie w budownictwie.
C. Do wyznaczania kątów poziomych pomiędzy punktami w terenie.
D. Do określania współrzędnych punktów na podstawie jednej odległości i dwóch kątów.
Metoda biegunowa to jedna z najważniejszych i najczęściej stosowanych metod w geodezji. Jej głównym celem jest określanie współrzędnych punktów w terenie na podstawie jednej odległości i dwóch kątów — poziomego i pionowego. Dzięki tej metodzie można precyzyjnie ustalić lokalizację punktów w przestrzeni, co jest kluczowe w wielu zastosowaniach inżynieryjnych i budowlanych. W praktyce geodezyjnej metoda ta jest nieoceniona ze względu na swoją dokładność i efektywność. Na przykład, przy realizacji projektów infrastrukturalnych, takich jak budowa dróg, mostów czy budynków, precyzyjne określenie położenia punktów względem siebie jest niezbędne do prawidłowego przebiegu prac. Metoda biegunowa jest również szeroko stosowana w kartografii oraz przy tworzeniu map topograficznych. W standardach branżowych i dobrych praktykach geodezyjnych uznawana jest za podstawową technikę pomiarową, której znajomość jest niezbędna dla każdego profesjonalnego geodety. Dzięki jej zastosowaniu możliwe jest unikanie błędów w lokalizacji i zapewnienie zgodności projektów budowlanych z planami.

Pytanie 7

Długość odcinka zmierzonego na mapie o skali 1:500 wynosi 11,1 cm. Jaka jest rzeczywista długość tego odcinka w terenie?

A. 55,50 m
B. 2,22 m
C. 5,55 m
D. 22,20 m
Odpowiedź 55,50 m to dobry wybór. Jeśli popatrzysz na scale 1:500, to każdy centymetr na mapie oznacza 500 centymetrów w rzeczywistości. Czyli, żeby znaleźć długość w terenie, wystarczy pomnożyć długość na mapie, czyli 11,1 cm przez 500. Jak to zrobimy, to wychodzi 11,1 cm * 500 = 5550 cm, co daje nam 55,50 m. Rozumienie, jak działa skala, jest mega ważne w geodezji i kartografii, bo precyzyjne pomiary to podstawa przy wszelkich projektach budowlanych czy drogowych. Na przykład, przy projektowaniu jakiejś infrastruktury miejskiej, znajomość skali mapy pozwala lepiej przenieść to, co zaplanowaliśmy na rzeczywistość. To ma spore znaczenie, żeby wszystko było zgodne z planami zagospodarowania i innymi standardami, jak normy geodezyjne. Generalnie, umiejętność przeliczania wymiarów z map na rzeczywiste odległości to coś, co powinien umieć każdy inżynier czy geodeta.

Pytanie 8

Jakiego z wymienionych przyrządów należy użyć do pomiaru przemieszczeń w kierunku pionowym przęseł mostu?

A. Inklinometru
B. Pionownika
C. Niwelatora
D. Tensometru
Wybór instrumentu do pomiaru przemieszczeń pionowych przęseł mostu jest kluczowy dla zapewnienia stabilności i bezpieczeństwa takiej konstrukcji. Tensometr, jako urządzenie do pomiaru odkształceń materiałów, koncentruje się na analizie naprężeń i deformacji, a nie na bezpośrednim pomiarze przemieszczeń pionowych. Zastosowanie tensometru w tej sytuacji mogłoby prowadzić do nieprecyzyjnych wniosków, ponieważ nie uwzględnia on ogólnych zmian wysokości konstrukcji. Pionownik, z kolei, służy do ustalania pionowości obiektów i nie jest narzędziem do pomiaru przemieszczeń, co również czyni go nieodpowiednim w kontekście pomiarów mostowych. Inklinometr, mimo że jest użyteczny w monitorowaniu kątów nachylenia, nie jest dedykowany do pomiarów poziomych przemieszczeń, co ogranicza jego zastosowanie w kontekście pomiarów przęseł mostowych. W praktyce, wybór niewłaściwego instrumentu do monitorowania przemieszczeń mógłby prowadzić do niewłaściwej oceny kondycji mostu i potencjalnych zagrożeń. W związku z tym, kluczowym jest, aby odpowiednio dobierać narzędzia pomiarowe, zgodnie z ich przeznaczeniem i funkcjonalnością, co zapewnia bezpieczeństwo i niezawodność konstrukcji inżynieryjnych.

Pytanie 9

Wartość punktu na profilu podłużnym 2/4+27 wskazuje, że znajduje się on w odległości od początku trasy wynoszącej

A. 2724 m
B. 2742 m
C. 2427 m
D. 2472 m
W przypadku błędnych odpowiedzi, takich jak 2472 m, 2724 m lub 2742 m, występują istotne niedopatrzenia w interpretacji zapisu punktu na profilu podłużnym. Często zdarza się, że osoby mylą odczytywanie wartości metrycznych, co prowadzi do zastosowania niewłaściwych jednostek do określenia odległości. Odpowiedź 2472 m sugeruje, że dodano 200 metrów do wartości kilometra, co nie znajduje uzasadnienia w standardzie zapisu. Analogicznie, w przypadku 2724 m i 2742 m błędne założenia dotyczą dodania lub odjęcia metrów od wartości podstawowej. W praktyce, takie błędne interpretacje mogą prowadzić do znacznych problemów przy planowaniu i realizacji projektów, jednocześnie zwiększając ryzyko wypadków i opóźnień. Istotne jest zrozumienie, że zapisy takie jak 2/4+27 są ściśle ustalone i każdy element ma swoje znaczenie, które należy respektować, aby uniknąć pomyłek. W branży budowlanej i transportowej kluczowe jest przestrzeganie standardów geodezyjnych, które definiują zasady dotyczące oznaczania i identyfikacji punktów na trasach. Właściwe interpretowanie profilu podłużnego jest niezbędne nie tylko w pracach inżynieryjnych, ale również w zarządzaniu ruchem drogowym, co podkreśla znaczenie rzetelnej edukacji w zakresie geodezji i inżynierii.

Pytanie 10

Na mapie w skali 1:2000 zmierzono odcinek o długości 145,4 mm. Jakiemu odcinkowi w rzeczywistości odpowiada ta długość?

A. 145,40 m
B. 14,54 m
C. 29,08 m
D. 290,80 m
Odpowiedź 290,80 m jest prawidłowa, ponieważ skala mapy 1:2000 oznacza, że 1 mm na mapie odpowiada 2000 mm w terenie. Aby przeliczyć długość odcinka zmierzonego na mapie na rzeczywistą długość w terenie, należy pomnożyć długość mierzonego odcinka przez współczynnik skali. W tym przypadku mamy 145,4 mm, więc przeliczenie przedstawia się następująco: 145,4 mm * 2000 mm/mm = 290800 mm, co po przeliczeniu na metry daje 290,80 m. Tego rodzaju obliczenia są niezwykle istotne w geodezji, planowaniu przestrzennym oraz w inżynierii, gdzie precyzyjne pomiary mają kluczowe znaczenie. Standardy branżowe, takie jak normy geodezyjne, nakładają na specjalistów obowiązek dokładności w przeliczaniu skali, co zapewnia właściwe wykonanie projektów budowlanych i infrastrukturalnych. Umiejętność przeliczania jednostek oraz rozumienie zasad skali ma także zastosowanie w analizach geograficznych i tworzeniu map tematycznych.

Pytanie 11

Który ze sporządzanych w terenie dokumentów geodezyjnych jest wykorzystywany m.in. do zlokalizowania trwale ustalonego punktu osnowy?

A. Szkic budowlany
B. Plan osnowy
C. Szkic polowy
D. Opis topograficzny
Analizując inne dokumenty geodezyjne, łatwo można zauważyć ich różnorodność oraz specyfikę, która nie zawsze jest zrozumiała dla osób nieobeznanych z tematem. Projekt osnowy to dokument, który ma na celu zaplanowanie rozmieszczenia punktów osnowy, jednak nie jest to dokument powstający w terenie, lecz raczej przedprojektowy. Ponadto, jego zawartość nie umożliwia odnalezienia konkretnego, zastabilizowanego punktu osnowy, ponieważ projekt ma charakter koncepcyjny, a nie operacyjny. Szkic tyczenia, z drugiej strony, jest dokumentem używanym w trakcie prac geodezyjnych do zaznaczania lokalizacji budynków czy innych obiektów, ale także nie służy bezpośrednio do identyfikacji punktów osnowy. Warto zauważyć, że szkic polowy to dokument, który jest bardziej roboczy i obejmuje zapisy dotyczące pomiarów wykonanych na ziemi, ale również nie dostarcza pełnej informacji o stałych punktach osnowy. Zrozumienie różnicy między tymi dokumentami i ich zastosowaniami jest kluczowe dla każdego geodety, a błędne przypisanie ich funkcji może prowadzić do nieporozumień oraz błędów w wykonaniu prac geodezyjnych. W branży geodezyjnej ważne jest, aby każdy dokument był wykorzystywany zgodnie z jego przeznaczeniem, co wpływa na efektywność i dokładność prowadzonych pomiarów oraz projektów.

Pytanie 12

Jakiego typu przyrządów geodezyjnych należy użyć do przeprowadzenia pomiarów w metodzie tachimetrii klasycznej?

A. Teodolitu oraz łaty niwelacyjnej
B. Niwelatora oraz tyczki
C. Teodolitu oraz tyczki
D. Niwelatora oraz łaty niwelacyjnej
Wybór niepoprawnych zestawów przyrządów geodezyjnych często wynika z niepełnego zrozumienia metod pomiarowych. Na przykład, niwelator i tyczka są używane do pomiarów wysokości, ale nie pozwalają na precyzyjne pomiary kątów, co jest kluczowe w tachimetrii. Niwelator służy głównie do poziomowania i ustalania różnic wysokości, lecz nie może być użyty do określenia kątów poziomych. Dlatego jego użycie w kontekście tachimetrii jest niewłaściwe, gdyż nie dostarcza wszystkich niezbędnych danych do pełnej analizy geodezyjnej. Podobnie, teodolit i łata niwelacyjna, choć skutecznie współdziałają w pomiarach kątów i różnic wysokości, nie są skonfigurowane do pracy w ramach tachimetrii, która wymaga innego podejścia. Użycie teodolitu i tyczki również prowadzi do nieprawidłowych wyników, ponieważ tyczki służą do zaznaczania punktów w terenie, ale nie mają funkcji pomiarowych, które są kluczowe w tej metodzie. Przy pomiarach geodezyjnych niezwykle istotne jest zrozumienie, że każdy przyrząd geodezyjny ma swoje specyficzne zastosowanie, a ich niewłaściwe łączenie prowadzi do błędów pomiarowych oraz nieefektywności w realizacji projektów budowlanych. Zrozumienie tych różnic jest kluczowe dla uzyskania dokładnych i wiarygodnych wyników w geodezji.

Pytanie 13

Maksymalna różnica dwukrotnego pomiaru ΔH na jednym stanowisku, przeprowadzonego metodą niwelacji geometrycznej, powinna wynosić nie więcej niż

A. +/- 4 mm
B. +/- 3 mm
C. +/- 5 mm
D. +/- 2 mm
Wybór odpowiedzi inne niż +/- 4 mm może prowadzić do nieporozumień dotyczących precyzji pomiarów w niwelacji geometrycznej. Odpowiedzi takie jak +/- 2 mm, +/- 3 mm oraz +/- 5 mm ustawiają zbyt rygorystyczne lub zbyt liberalne wymagania co do dokładności pomiarów. Zbyt wysoka dokładność, jak w przypadku +/- 2 mm, może nie być realistyczna w warunkach polowych, gdzie czynniki takie jak warunki atmosferyczne, nierówności terenu czy niewłaściwe ustawienie sprzętu mogą wprowadzać znaczne zmiany w wynikach. Z kolei zbyt duży zakres błędu, jak +/- 5 mm, nie zapewnia wystarczającej precyzji, co jest kluczowe w kontekście inżynieryjnym, gdzie różnice w wysokościach mogą prowadzić do poważnych problemów konstrukcyjnych. Ponadto, brak zrozumienia standardów branżowych dotyczących tolerancji błędu może prowadzić do opóźnień w projektach oraz zwiększenia kosztów związanych z korektą błędów. W praktyce, zgodnie z wytycznymi organizacji takich jak FIG czy ISO, akceptowalny błąd pomiaru w niwelacji geometrycznej powinien wynosić maksymalnie +/- 4 mm, co pozwala na zrównoważenie precyzji i wykonalności pomiarów w rzeczywistych warunkach.

Pytanie 14

Jakie jest przybliżone znaczenie błędu względnego dla odcinka o długości 500,00 m, który został zmierzony z błędem średnim ±10 cm?

A. 1/1000
B. 1/2000
C. 1/500
D. 1/5000
Wybór niepoprawnych odpowiedzi może wynikać z nieprawidłowego zrozumienia definicji błędu względnego oraz sposobu jego obliczania. Przykładem są ułamki 1/1000 i 1/2000, które mogą wydawać się uzasadnione, jednak nie uwzględniają rzeczywistego stosunku błędu do wartości pomiaru. W przypadku błędu bezwzględnego 10 cm w odniesieniu do długości 500 m, błędy te sugerują, że niektórzy mogą mylić jednostki miary lub nieprawidłowo interpretować pojęcie błędu względnego jako małego udziału w dłuższym odcinku. Pamiętaj, że błąd względny informuje nas o tym, jak znaczący jest błąd pomiarowy w stosunku do całkowitych wymiarów obiektu. Kolejną typową pomyłką jest mylenie błędu względnego z wartością bezwzględną; błąd bezwzględny to po prostu wartość błędu, natomiast błąd względny to jego stosunek do całkowitych wymiarów. Odpowiedzi takie jak 1/500 mogą się wydawać realne, jednak nie uwzględniają rzeczywistego wpływu błędu na całkowitą długość. Przy analizowaniu wyników pomiarów warto stosować standardy metrologiczne, które pomogą w wyciąganiu poprawnych wniosków oraz w ocenie dokładności i precyzji narzędzi pomiarowych.

Pytanie 15

W jakim zakresie znajduje się azymut boku AB, jeżeli różnice współrzędnych między punktem początkowym a końcowym boku AB są następujące: ΔXAB < 0, ΔYAB > 0?

A. 300÷400g
B. 100÷200g
C. 200÷300g
D. 0÷100g
Zrozumienie azymutów i ich zakresów jest kluczowe w geodezji i inżynierii lądowej. Odpowiedzi sugerujące przedziały 200÷300g, 0÷100g, czy 300÷400g są błędne z powodu niewłaściwej interpretacji różnic współrzędnych. Przedział 0÷100g sugeruje kierunki północno-wschodnie, gdzie zarówno ΔX, jak i ΔY byłyby dodatnie, co jest sprzeczne z danymi, ponieważ ΔX jest ujemne. Natomiast przedział 200÷300g obejmuje azymuty w kierunku południowym, które nie pasują do sytuacji, gdy ΔY jest dodatnie, a ΔX ujemne. Przedział 300÷400g, który odpowiada kierunkowi południowo-zachodniemu, również nie jest właściwy w obliczeniach, ponieważ ten azymut oznacza, że zarówno współrzędne X, jak i Y byłyby skierowane w kierunku południowym. Zrozumienie, jak różnice współrzędnych wpływają na określenie azymutu, jest kluczowe dla uniknięcia takich błędów w przyszłości. W praktycznych zastosowaniach geodezyjnych, precyzyjne obliczenia tych wartości są niezbędne do określenia właściwych kierunków w pracy terenowej oraz w inżynierii, a także w systemach informacji geograficznej, gdzie dokładność obliczeń wpływa na efektywność wykonania projektów.

Pytanie 16

Na jakiej odległości od startu trasy usytuowany jest punkt 1/5+78,00 m?

A. 2578,00 m
B. 1578,00 m
C. 578,00 m
D. 278,00 m
Wybór innych odpowiedzi może wynikać z błędnej interpretacji oznaczenia 1/5+78,00 m. Odpowiedzi takie jak 2578,00 m czy 578,00 m mogą sugerować, że odległość została źle oszacowana, co często zdarza się w trakcie projektowania tras, gdy nieprawidłowo odczytuje się oznaczenia w dokumentacji. W przypadku 2578,00 m błędnie doliczono dodatkowe metry, które nie są wpisane w oznaczeniu. Takie podejście prowadzi do nadmiernego szacowania dystansu, co może skutkować poważnymi konsekwencjami w planowaniu. Podobnie, opcja 578,00 m wskazuje na niepełne zrozumienie oznaczenia, w którym brak jest uwzględnienia dodatkowych metrów. Warto zauważyć, że w inżynierii i geodezji ważne jest stosowanie standardów, takich jak normy geodezyjne, które pomagają w zachowaniu spójności w interpretacji i obliczeniach. Błędy myślowe mogą wynikać z niedostatecznego zrozumienia kontekstu oznaczenia oraz z braku doświadczenia w stosowaniu właściwych praktyk w terenie. W kontekście projektowania tras kluczowe jest umiejętne łączenie teorii z praktycznymi zastosowaniami, aby uniknąć pomyłek, które mogą prowadzić do znacznych kosztów i opóźnień w realizacji projektów.

Pytanie 17

Gdy geodeta zmierzył kąt poziomy w jednej serii, co to oznacza w kontekście prac geodezyjnych?

A. zmierzył kąt w dwóch ustawieniach lunety.
B. zmierzył kąt w jednym ustawieniu lunety.
C. wykonał średnią arytmetyczną z dwóch pomiarów.
D. wykonał średnią arytmetyczną z dwóch odczytów.
Pomiar kąta poziomego w jednej serii oznacza, że geodeta pomierzył kąt w dwóch położeniach lunety, co jest standardową procedurą w geodezji. Technika ta pozwala na uzyskanie bardziej precyzyjnych wyników poprzez redukcję błędów systematycznych, które mogą wystąpić w wyniku nieprecyzyjnego ustawienia instrumentu. Obliczając kąt w dwóch położeniach lunety, geodeta może obliczyć średnią wartość, co zwiększa dokładność pomiarów. Na przykład, jeśli kąt pomierzony w pierwszym położeniu lunety wynosi 45°20'50", a w drugim 45°21'10", to obliczając średnią arytmetyczną: (45°20'50" + 45°21'10") / 2, uzyskujemy wynik 45°21'00", co jest bardziej wiarygodne niż poleganie na pojedynczym pomiarze. Jest to zgodne z dobrymi praktykami, które nakazują wykonywanie pomiarów z kilku pozycji, aby zminimalizować wpływ błędów losowych i systematycznych. Warto również zaznaczyć, że stosowanie tej metody jest kluczowe w kontekście geodezyjnych prac terenowych, gdzie precyzyjne pomiary są niezbędne dla prawidłowego określenia lokalizacji i geometrii obiektów."

Pytanie 18

Jeśli odcinkowi na mapie o długości 1 cm odpowiada odległość 50 m w rzeczywistości, to oznacza, że mapa została stworzona w skali

A. 1:500
B. 1:10 000
C. 1:1 000
D. 1:5 000
Te odpowiedzi, które wybrałeś, są błędne i wynikają z niezrozumienia, jak działa proporcja między długością na mapie a rzeczywistością. Na przykład, 1:1 000 mówi, że 1 cm na mapie to 1 000 cm w terenie, co by oznaczało, że 1 cm to tylko 10 m – to nie pasuje do podanej odległości 50 m. Odpowiedź 1:500 też jest zła, bo mówi, że 1 cm to 500 cm w rzeczywistości, czyli 5 m, co znowu nie ma sensu. A skala 1:10 000? No to by oznaczało, że 1 cm to 10 000 cm, co daje 100 m, a to znowu niezgodne z danymi z pytania. Często ludzie mają problem z przeliczaniem jednostek i nie rozumieją, jak te skale działają. W kartografii trzeba precyzyjnie obliczać skalę, bo złe zrozumienie wymiarów może prowadzić do dużych błędów przy planowaniu czy interpretacji map. W sumie, dobrze jest ogarnąć te rzeczy, zwłaszcza jak się pracuje z danymi geograficznymi.

Pytanie 19

Na podstawie pomiarów niwelacyjnych uzyskano wysokości punktów 1, 2, 3, 4, 5 oraz 6:

H1 = 214,34 m; H2 = 215,32 m; H3 = 213,78 m; H4 = 217,09 m; H5 = 216,11 m; H6 = 212,96 m.

Jaką z wymienionych wysokości należy uznać jako poziom odniesienia przy rysowaniu profilu terenu, który biegnie wzdłuż tych punktów?

A. 217,00 m
B. 211,00 m
C. 215,00 m
D. 213,00 m
Wybór 211,00 m jako poziomu porównawczego przy wykreślaniu profilu terenu jest właściwą decyzją, gdyż jest to wartość, która pozwala na uzyskanie stabilnej bazy odniesienia dla analizy wysokości punktów. W pomiarach niwelacyjnych, istotne jest, aby wybrać poziom, który odzwierciedla najniższy z punktów w badanym obszarze. W tym przypadku, 211,00 m jest wartością poniżej wszystkich zarejestrowanych wysokości punktów, co umożliwia łatwe odczytywanie różnic wysokości. Przykładowo, jeśli będziemy porównywać wysokości punktów 1-6 w kontekście ich lokalizacji na profilu, odniesienie do 211,00 m będzie sprzyjać większej przejrzystości analiz i wizualizacji. W praktyce, wybór takiego poziomu porównawczego jest zgodny z zasadą, że wszelkie wymiary i różnice powinny być przedstawiane względem wspólnej, stabilnej bazy, co jest kluczowe w inżynierii lądowej i geodezji. Dodatkowo, zapewnia to zgodność z normami branżowymi dotyczącymi precyzyjnych pomiarów i analiz terenowych, co wpływa na efektywność dalszych prac projektowych.

Pytanie 20

Jakiego skrótu należy użyć na mapie zasadniczej w przypadku opisu drogi, która nie ma swojej nazwy?

A. al.
B. pl.
C. ul.
D. dr.
Skrót "dr." oznacza "droga" i jest prawidłowo stosowany w kontekście opisywania dróg, które nie mają przypisanej nazwy. W polskiej terminologii kartograficznej skróty stosowane na mapach zasadniczych muszą być zgodne z określonymi standardami, aby zapewnić czytelność i zrozumiałość dla użytkowników. Na przykład, w przypadku dróg o charakterze lokalnym, które nie posiadają nazwy, zastosowanie skrótu "dr." jest powszechnie akceptowane. To podejście wspiera jednolitą komunikację w dokumentacji geodezyjnej oraz w planowaniu przestrzennym. W praktyce, na mapach miejskich czy wiejskich, skrót "dr." pozwala na szybkie identyfikowanie typów dróg, co jest istotne zarówno dla mieszkańców, jak i dla służb ratunkowych czy dostawczych. Warto dodać, że stosowanie odpowiednich skrótów przyczynia się do jednoznaczności i precyzji w interpretacji danych przestrzennych, co jest kluczowe w procesach decyzyjnych.

Pytanie 21

Na podstawie tabeli określ dopuszczalną długość domiaru prostokątnego do budynku przy pomiarze sytuacyjnym metodą ortogonalną.

Grupa
szczegółów terenowych
Dopuszczalna
długość rzędnej
Dopuszczalny błąd pomiaru
długości rzędnej i odciętej
I25 m0,05 m
II50 m0,05 m
III70 m0,10 m

A. 25 m
B. 0,10 m
C. 50 m
D. 0,05 m
Wybór odpowiedzi innych niż 25 m prowadzi do niepełnego zrozumienia zasad pomiarów sytuacyjnych oraz wymagań dotyczących długości domiarów prostokątnych. Odpowiedzi 0,10 m, 0,05 m oraz 50 m mogą wydawać się logiczne, jednak każda z nich jest nieadekwatna w kontekście określenia dopuszczalnej długości rzędnej dla grupy I. Odpowiedź 0,10 m i 0,05 m są zbyt małe w porównaniu do przyjętych norm, co może prowadzić do poważnych błędów pomiarowych, a także ogranicza możliwość uzyskania pełnych i prawidłowych danych geodezyjnych. Zbyt krótki domiar może nie uwzględniać wszystkich istotnych szczegółów terenowych, co skutkuje niedokładnościami w dalszej obróbce danych. Z kolei 50 m, jako długość przekraczająca maksymalne wartości wskazane w tabeli, może skutkować przeszacowaniem i naruszeniem standardów wymaganych w branży geodezyjnej. Typowym błędem myślowym jest zatem nieprzestrzeganie tabeli oraz ignorowanie jej zapisów, co prowadzi do wybierania długości, które nie są zgodne z ustalonymi normami. W geodezji niezwykle istotne jest, aby nie tylko znać zasady, ale także umieć je stosować w praktyce, co zapewnia jakość i dokładność wykonywanych pomiarów.

Pytanie 22

Jakiej wartości pomiaru w przód z łaty niwelacyjnej należy się spodziewać, jeśli poszukiwany punkt znajduje się w odległości 60,00 m od punktu wyjściowego niwelety drogi o nachyleniu i = -3%, a odczyt w tył z łaty ustawionej na początku niwelety wyniósł w = 1500 mm?

A. p = 3000 mm
B. p = 1800 mm
C. p = 3300 mm
D. p = 3390 mm
Wybór innych wartości odczytu w przód z łaty niwelacyjnej wynika z różnych nieporozumień dotyczących sposobu obliczeń związanych z niwelacją. Na przykład, przy odpowiedzi p = 3000 mm, można zauważyć, że ignoruje się wpływ pochylenia na przemieszczenie wysokościowe, co prowadzi do zaniżenia rzeczywistego wyniku. Kolejna nieprawidłowa odpowiedź, p = 3390 mm, również nie uwzględnia poprawnie spadku, co sugeruje, że osoba odpowiadająca mogła dodać spadek zamiast go odjąć od odczytu wstecz. W przypadku p = 1800 mm, wartość ta jest nie tylko zaniżona, ale również nie ma żadnego uzasadnienia w kontekście podanych danych: odczyt nie powinien być mniejszy niż odczyt wstecz, co jest fundamentalną zasadą w pomiarach. Kluczowym błędem myślowym jest zaniedbanie wpływu pochylenia na rzeczywistą wysokość punktu docelowego, co może prowadzić do poważnych błędów w obliczeniach inżynieryjnych. Zrozumienie tego procesu wymaga znajomości podstaw niwelacji oraz umiejętności analizy danych pomiarowych w kontekście zastosowania norm i dobrych praktyk inżynieryjnych.

Pytanie 23

Jakiego urządzenia należy użyć do określenia wysokości punktów osnowy realizacyjnej?

A. Taśmy i tyczki
B. Niwelatora i łaty
C. Dalmierza i łaty
D. Teodolitu i tyczki
Niwelator i łata to podstawowe narzędzia wykorzystywane do pomiaru wysokości punktów osnowy realizacyjnej, które są kluczowe w pracach geodezyjnych. Niwelator, jako instrument optyczny, pozwala na precyzyjne określenie różnic wysokości między różnymi punktami terenu. Użycie łaty, która jest długą, prostą miarą, umożliwia odczytanie wysokości w miejscach, gdzie niwelator jest ustawiony. W praktyce, aby zmierzyć wysokość danego punktu, geodeta ustawia niwelator na stabilnym statywie, a następnie mierzy wysokość za pomocą łaty, która jest umieszczana w odpowiednich miejscach. Zastosowanie tej metody jest zgodne z normami i najlepszymi praktykami w dziedzinie geodezji, co zapewnia wysoką precyzję pomiarów. Warto również podkreślić, że niwelacja jest używana w wielu dziedzinach, od budownictwa po inżynierię lądową, co czyni te narzędzia niezwykle uniwersalnymi.

Pytanie 24

Który z poniższych obiektów wymaga obowiązkowego wytyczenia geodezyjnego oraz inwentaryzacji powykonawczej?

A. Plac zabaw.
B. Sygnał drogowy.
C. Ogrodzenie stałe.
D. Przyłącze wodociągowe
Przyłącze wodociągowe podlega obowiązkowemu wytyczeniu geodezyjnemu oraz inwentaryzacji powykonawczej, ponieważ jest to element infrastruktury technicznej, który ma istotne znaczenie dla organizacji przestrzennej oraz funkcjonowania sieci wodociągowej. Wytyczenie geodezyjne pozwala na precyzyjne określenie jego lokalizacji w terenie, co jest kluczowe dla uniknięcia kolizji z innymi instalacjami, co może prowadzić do kosztownych napraw i zakłóceń w dostawie wody. Inwentaryzacja powykonawcza ma na celu dokumentację stanu przyłącza po zakończeniu prac budowlanych, co jest istotne z punktu widzenia zarządzania infrastrukturą oraz jej późniejszej eksploatacji. Przykładem może być sytuacja, w której inwestor budowlany zleca wykonanie przyłącza wodociągowego, a następnie po zakończeniu prac geodeta przeprowadza inwentaryzację, aby potwierdzić zgodność wykonanego przyłącza z projektem. Zgodnie z obowiązującymi w Polsce przepisami prawa budowlanego oraz standardami geodezyjnymi, takie działania są niezbędne w celu zapewnienia bezpieczeństwa użytkowania oraz ochrony interesów publicznych.

Pytanie 25

Mapy związane z regulacją stanu prawnego nieruchomości to opracowania kartograficzne określane mianem

A. do celów projektowych
B. do celów prawnych
C. uzupełniających
D. katastralnych
Odpowiedź "do celów prawnych" jest poprawna, ponieważ mapy te mają kluczowe znaczenie w regulacji stanu prawnego nieruchomości. Służą one do przedstawiania granic działek, ich powierzchni oraz wszelkich obciążeń prawnych, takich jak hipoteki czy służebności. Mapy do celów prawnych są wykorzystywane w procesach notarialnych, a także w postępowaniach sądowych, gdzie ważne jest dokładne określenie stanu prawnego nieruchomości. Przykładem zastosowania takich map może być procedura podziału działki, gdzie precyzyjne ustalenie granic jest niezbędne do prawidłowego podziału. W praktyce wykorzystuje się je w dokumentacji związanej z obrotem nieruchomościami, co jest zgodne z normami i standardami, takimi jak Ustawa o geodezji i kartografii, która reguluje kwestie związane z tworzeniem i wykorzystywaniem map w obrocie nieruchomościami.

Pytanie 26

Długość odcinka na mapie w skali 1:2 000 wynosi 3 cm. Jaka jest rzeczywista długość tego odcinka w terenie?

A. 0,6 m
B. 60 m
C. 6 m
D. 600 m
Odpowiedź 60 m to dobry strzał! Tutaj skala 1:2000 mówi, że 1 cm na mapie to 2000 cm w rzeczywistości. Jak chcesz obliczyć rzeczywistą długość odcinka, to bierzemy długość na mapie, czyli 3 cm, i mnożymy przez tę wartość skali. Czyli 3 cm razy 2000 cm daje nam 6000 cm. Potem przeliczamy na metry, dzieląc przez 100, co daje 60 m. Takie obliczenia są całkiem standardowe w kartografii i geodezji, co jest ważne, bo precyzyjne pomiary mogą mieć duże znaczenie przy różnych projektach, jak budowy czy tworzenie map turystycznych. Zresztą, bez dokładnych danych ciężko podjąć dobre decyzje.

Pytanie 27

Jaką maksymalną długość mogą mieć linie pomiarowe na obszarach rolnych i leśnych?

A. 300 m
B. 500 m
C. 400 m
D. 600 m
Wybór długości linii pomiarowej, która jest niższa niż 400 m, jak 300 m czy 500 m, może wynikać z niepełnego zrozumienia zasad geodezyjnych. Ustalona maksymalna długość 400 m jest oparta na standardach, które uwzględniają zarówno dokładność pomiarów, jak i praktyczną wykonalność. Linie pomiarowe, które są zbyt krótkie, mogą prowadzić do nieefektywności w zakresie zbierania danych. Przykładowo, wybierając długość 300 m, można zmarnować zasoby i czas, ponieważ konieczne będzie wykonanie większej liczby pomiarów, co jest niepraktyczne w przypadku dużych obszarów. Z kolei nadmiernie długie linie, takie jak 600 m, wprowadzą dodatkowe ryzyko błędów związanych z warunkami terenowymi, co może skutkować niedokładnością wyników. Typowym błędem jest zatem mylenie długości z efektywnością, gdzie niektórzy mogą sądzić, że dłuższe linie zmniejszą liczbę pomiarów, podczas gdy w rzeczywistości mogą one zwiększyć margines błędu. Kluczowe jest zrozumienie, że maksymalna długość linii pomiarowej jest ustalona po dokładnej analizie czynników, które wpływają na precyzję pomiarów. Właściwe stosowanie tej normy przyczynia się do uzyskania dokładniejszych i bardziej wiarygodnych danych, co jest niezbędne w praktykach geodezyjnych oraz w kontekście planowania przestrzennego.

Pytanie 28

Jeśli bok kwadratu zmierzonego w terenie ma długość 10 m, to na mapie w skali 1:1000 jego pole powierzchni wyniesie

A. 0,1 cm2
B. 100,0 cm2
C. 10,0 cm2
D. 1,0 cm2
Wybór niewłaściwej odpowiedzi może wynikać z nieprawidłowego podejścia do obliczeń związanych z polem powierzchni na mapie w określonej skali. Na przykład, odpowiedzi takie jak 0,1 cm2 i 10,0 cm2 mogą sugerować błędne obliczenia w przeliczeniach jednostek lub zrozumienia, jak skala wpływa na rzeczywiste wymiary. W przypadku 0,1 cm2, nieprawidłowość polega na tym, że ktoś mógł błędnie zinterpretować przeliczenie, zakładając, że powierzchnia na mapie jest znacznie mniejsza, niż jest w rzeczywistości, co prowadzi do zaniżenia wartości. Z kolei 10,0 cm2 może wydawać się uzasadnione, gdyż można by pomyśleć o jednostkowym przeliczeniu, ale pomija to kluczowy krok w rozumieniu skali, który polega na prawidłowym przeliczeniu całkowitego obszaru. Kluczowym błędem wielu uczniów jest niepełne zrozumienie, że pole powierzchni na mapie jest funkcją kwadratu długości boku, a nie jedynie przeliczeniem liniowym. Prawidłowe zrozumienie geometrii oraz równań powierzchni jest istotne, a także znajomość tego, jak współczesne metody pomiarowe i kartograficzne wymagają precyzyjnych obliczeń, aby uniknąć błędów w planowaniu przestrzennym czy inżynieryjnym.

Pytanie 29

Godło mapy 6.115.27.25.3.4 w systemie współrzędnych PL-2000 reprezentuje mapę w skali

A. 1:2000
B. 1:1000
C. 1:5000
D. 1:500
Analizując inne skale, takie jak 1:1000, 1:2000 czy 1:500, warto zauważyć, że każda z nich odnosi się do różnych zakresów szczegółowości odwzorowania terenu. Skala 1:1000 jest znacznie bardziej szczegółowa i jest zazwyczaj stosowana w geodezji i projektowaniu budynków, jednak nie jest typowo używana w kontekście mapy o numerze 6.115.27.25.3.4. Z kolei skala 1:2000, mimo że również może być używana do przedstawiania terenów miejskich, nie odpowiada standardowi wskazanemu w godle. Skala 1:500 jest skrajnie szczegółowa, co czyni ją odpowiednią dla planów zagospodarowania terenu, lecz nie w kontekście ogólnych map topograficznych. Typowym błędem myślowym jest założenie, że im mniejsza liczba w skali, tym większa szczegółowość, co prowadzi do mylnej interpretacji. W rzeczywistości każda skala ma swoje zastosowanie w określonych kontekstach, dlatego kluczowe jest zrozumienie, jak poszczególne skale wpływają na przekazywaną informację. Standardy kartograficzne w Polsce wyraźnie definiują zastosowanie poszczególnych skal w zależności od ich celów i kontekstu, co podkreśla znaczenie znajomości tych zasad w pracy zawodowej.

Pytanie 30

Jaką wartość ma azymut przeciwny do azymutu wynoszącego 327g12c35cc?

A. 527g12c35cc
B. 27g12c35cc
C. 227g12c35cc
D. 127g12c35cc
Zrozumienie koncepcji azymutu oraz jego odwrotności jest kluczowe w nawigacji i geodezji. Błędne odpowiedzi zazwyczaj wynikają z niepoprawnych obliczeń lub zrozumienia zasady konwersji azymutów. Na przykład, odpowiedź 27°12'35'' mogłaby sugerować, że osoba myli zakres azymutów lub nie dodaje 180° odpowiednio. W rzeczywistości, 27° byłoby znacznie poniżej połowy okręgu, a tym samym niewłaściwą interpretacją azymutu odwrotnego. Kolejny błąd, który możemy zauważyć, to odpowiedź 527°12'35''. Wartości azymutów nie mogą przekraczać 360°, dlatego takie podejście jest niewłaściwe. Podobnie, odpowiedź 227°12'35'' wskazuje na błędne zrozumienie dodawania 180° do azymutu, co skutkuje rozwiązaniem, które nie jest zgodne z zasadami obliczeń nawigacyjnych. Główne błędy myślowe związane z tymi odpowiedziami to nieprawidłowe dodawanie składników azymutu lub ignorowanie zasad konwersji w zakresie 0°-360°. Aby prawidłowo obliczyć azymut odwrotny, należy zawsze dodać 180° do pierwotnego azymutu i, jeśli to konieczne, dostosować wynik w taki sposób, aby pozostał w dozwolonym zakresie. W praktyce, umiejętność ta jest wykorzystywana nie tylko w nawigacji, ale i w geodezji, gdzie precyzyjne określenie kierunku jest niezbędne do pomiarów i planowania przestrzennego.

Pytanie 31

Zbiór danych o skrócie BDOT500, który służy do tworzenia mapy zasadniczej, oznacza bazę danych

A. ewidencji gruntów i budynków
B. szczegółowych osnów geodezyjnych
C. geodezyjnej ewidencji sieci uzbrojenia terenu
D. obiektów topograficznych
Niepoprawne odpowiedzi dotyczą różnych zbiorów danych, które mają inne cele i zastosowania w obszarze geodezji i kartografii. Ewidencja gruntów i budynków, na przykład, koncentruje się na rejestracji praw własności do nieruchomości oraz ich użytkowaniu, co nie jest bezpośrednio związane z obiektami topograficznymi. Z kolei szczegółowe osnowy geodezyjne zorientowane są na precyzyjne ustalanie położenia punktów w przestrzeni, co jest kluczowe dla prac inżynieryjnych, ale nie obejmuje zbioru danych dotyczących obiektów topograficznych. Geodezyjna ewidencja sieci uzbrojenia terenu skupia się na infrastrukturze technicznej, takiej jak wodociągi, kanalizacja czy energetyka, co również jest odrębne od BDOT500. Typowe błędy myślowe prowadzące do tych niepoprawnych odpowiedzi mogą wynikać z mylenia różnych systemów ewidencyjnych lub zbiorów danych geograficznych, co podkreśla konieczność znajomości struktury i celu zbiorów danych, a także ich zastosowań w praktyce. Zrozumienie właściwego kontekstu zbiorów danych jest kluczowe dla efektywnego ich wykorzystania w projektach związanych z gospodarką przestrzenną.

Pytanie 32

Czym jest metoda wcięcia kątowego w geodezji?

A. Metodą wyznaczania powierzchni terenu, co jest realizowane innymi technikami, takimi jak metoda poligonizacji.
B. Metodą określania pozycji punktu poprzez pomiary kątów z dwóch znanych punktów.
C. Metodą pomiaru długości za pomocą taśmy mierniczej, co jest stosowane w mniej precyzyjnych pomiarach terenowych.
D. Metodą określania nachylenia terenu, co odbywa się najczęściej przy użyciu niwelatora.
Metoda wcięcia kątowego to jedna z podstawowych metod stosowanych w geodezji do określania pozycji punktu. Polega ona na wyznaczeniu położenia nieznanego punktu na podstawie pomiaru kątów z dwóch znanych punktów. Jest to szczególnie przydatne w sytuacjach, gdy nie można bezpośrednio zmierzyć odległości do punktu docelowego, na przykład z powodu przeszkód terenowych. W praktyce metoda ta stosowana jest często w terenach trudno dostępnych, gdzie klasyczne metody pomiarowe, takie jak wcięcie liniowe, są trudne do zastosowania. Wcięcie kątowe znajduje zastosowanie w tworzeniu sieci geodezyjnych i jest kluczowe w pracach inżynierskich, zwłaszcza tam, gdzie wymagana jest wysoka precyzja pomiaru. Z mojego doświadczenia, stosowanie tej metody jest nie tylko efektywne, ale również pozwala na uzyskanie precyzyjnych wyników przy minimalnym nakładzie pracy w terenie. Warto zaznaczyć, że dokładność uzyskanych wyników zależy od jakości instrumentów pomiarowych oraz precyzji wykonania pomiarów kątowych, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 33

Kontrolę numeracji pikiet na szkicu oraz w dzienniku pomiarowym wykonuje się podczas pomiarów terenowych, aby zapewnić

A. poprawność prowadzenia dziennika pomiarowego
B. zgodność prowadzenia szkicu polowego i dziennika pomiarowego
C. poprawność przy kartowaniu pikiet na mapę
D. poprawność prowadzenia szkicu polowego
Zgodność prowadzenia szkicu polowego i dziennika pomiarowego jest kluczowym aspektem w procesie pomiarów terenowych, ponieważ obie te formy dokumentacji muszą odzwierciedlać te same dane pomiarowe i ich układ w terenie. Utrzymanie spójności między szkicem a dziennikiem pomiarowym pozwala na skuteczne śledzenie postępu prac oraz zapewnia, że późniejsza analiza danych będzie oparta na rzetelnych informacjach. Przykładowo, w przypadku wykrycia błędów w jednej z form dokumentacji, ich identyfikacja i korekta będą znacznie łatwiejsze, gdy obie dokumentacje będą ze sobą zgodne. W branży geodezyjnej istnieją ustalone standardy, które nakładają obowiązek prowadzenia takich dokumentów w sposób ułatwiający ich wzajemne weryfikowanie. W praktyce, podczas realizacji pomiarów, geodeta powinien regularnie sprawdzać, czy numery pikiet w szkicu odpowiadają tym wpisanym w dzienniku, co minimalizuje ryzyko błędów oraz ułatwia dalsze etapy pracy, takie jak kartowanie czy przygotowanie mapy. Właściwe utrzymanie zgodności dokumentacji jest nie tylko kwestią organizacyjną, ale również wpływa na jakość końcowych rezultatów pracy geodezyjnej.

Pytanie 34

Przeprowadzono dwa różne pomiary długości odcinka L1 oraz L2, które charakteryzują się odmienną precyzją. Każdemu z tych pomiarów nadano inną wagę p:

L1 = 20,000 m, p1 = 3
L2 = 20,050 m, p2 = 2

Jaką długość można uznać za najbardziej prawdopodobną dla tego odcinka?

A. 20,020 m
B. 20,010 m
C. 20,025 m
D. 20,000 m
Analizując podane odpowiedzi, warto zwrócić uwagę na przyczyny, dla których inne opcje są niepoprawne. Odpowiedzi 20,010 m oraz 20,000 m ignorują wagi przypisane do pomiarów L1 i L2, co jest kluczowe w procesie wyznaczania najbardziej prawdopodobnej wartości. Przyjmowanie wartości średnich bez uwzględnienia dokładności pomiarów prowadzi do zniekształcenia wyników. Na przykład, 20,000 m to wartość jednego z pomiarów, ale nie bierze pod uwagę, że pomiar L2, mimo że mniej dokładny, jest bliższy rzeczywistej długości odcinka. Z kolei 20,010 m jest bliskie wartości średniej, jednak nie uwzględnia proporcji wag, co jeszcze bardziej oddala tę wartość od dokładnej odpowiedzi. Użytkownicy często popełniają błąd polegający na traktowaniu wszystkich pomiarów jako równoważnych, co jest błędne w kontekście metod statystycznych. Ważenie pomiarów jest fundamentalne dla uzyskania rzetelnych wyników, a w praktyce powinno się zawsze dążyć do uwzględnienia różnorodności w dokładności pomiarów. Ostatecznie, błędne podejścia do analizy danych pomiarowych mogą prowadzić do podejmowania decyzji, które opierają się na nieprzemyślanych lub zniekształconych informacjach, co w kontekście inżynieryjnym może mieć poważne skutki. Dlatego tak istotne jest, aby przy wyznaczaniu wartości średnich stosować metody, które uwzględniają wagi oraz dokładność pomiarów.

Pytanie 35

Który krok nie jest częścią procesu konwersji mapy analogowej na cyfrową?

A. kalibracja
B. generalizacja
C. skanowanie
D. wektoryzacja
Generalizacja to nie etap przerabiania mapy analogowej na cyfrową. Raczej chodzi o późniejsze działania związane z tworzeniem i ulepszaniem map. W sumie, generalizacja to sposób, żeby uprościć i zmniejszyć szczegóły danych przestrzennych, tak żeby były bardziej zrozumiałe dla ludzi. Na przykład, jak robimy mapę turystyczną, to możemy pominąć mało ważne drogi czy jakieś szczegóły terenu, przez co mapa staje się bardziej czytelna. W kontekście danych geoprzestrzennych, generalizacja pomaga dostosować mapy do różnych skal i potrzeb. Ważne według mnie, żeby to robić z zachowaniem niezbędnych informacji, bo inaczej możemy zniekształcić rzeczywisty obraz terenu. Zrozumienie tego etapu jest naprawdę istotne, jeżeli chcemy przygotować mapy, które będą odpowiadały na potrzeby odbiorców.

Pytanie 36

Jak powinny zostać zapisane na szkicu tyczenia wyniki pomiarów kontrolnych?

A. Kolorem czarnym, kursywą
B. Kolorem czerwonym, w nawiasie
C. Kolorem czerwonym, kursywą
D. Kolorem czarnym, w nawiasie
Wpisywanie wyników pomiarów kontrolnych kolorem czerwonym, w nawiasie lub kursywą, może wydawać się atrakcyjną alternatywą, jednakże takie podejście wprowadza zamieszanie i niezgodność z ustalonymi standardami. Kolor czerwony często stosowany jest w dokumentacji technicznej do oznaczania błędów, problemów lub uwag, co może prowadzić do mylnego odczytu informacji. Użycie kursywy również nie jest zalecane, ponieważ może utrudniać czytelność, zwłaszcza w kontekście precyzyjnych danych pomiarowych, gdzie każdy szczegół ma znaczenie. W dokumentacji technicznej kluczowe jest, aby wszystkie informacje były jasne i zrozumiałe dla innych użytkowników, dlatego zaleca się stosowanie jednolitych i uznawanych konwencji. W praktyce, brak stosowania odpowiednich kolorów i formatowania może prowadzić do błędnych interpretacji wyników, co w geodezji ma poważne konsekwencje, takie jak błędne przyjęcia w procesach projektowych. Warto zwrócić uwagę na standardy ISO oraz lokalne regulacje prawne dotyczące dokumentacji geodezyjnej, które podkreślają znaczenie przejrzystości i spójności w prezentacji danych.

Pytanie 37

Do trwałych metod stabilizacji punktów osnowy poziomej nie zaliczają się

A. trzpienie metalowe
B. słupy betonowe
C. rurki stalowe
D. paliki drewniane
Paliki drewniane nie są odpowiednie do trwałego sposobu stabilizacji punktów osnowy poziomej z kilku powodów. Przede wszystkim, drewno jako materiał jest podatne na degradację, zwłaszcza w warunkach atmosferycznych, co prowadzi do utraty stabilności i dokładności pomiarów geodezyjnych. Z czasem paliki mogą gnić, ulegać deformacji lub przesuwać się w wyniku zmian wilgotności i temperatury. W praktyce geodezyjnej preferuje się materiały o wysokiej trwałości i odporności na czynniki zewnętrzne, takie jak metale i beton, które zapewniają długoterminową stabilność punktów osnowy. Na przykład, trzpienie metalowe i rurki stalowe, wykorzystywane w stabilizacji punktów, są odporne na korozję i mechaniczne uszkodzenia, co czyni je bardziej niezawodnymi w długim okresie. Zgodnie z normami geodezyjnymi, zastosowanie stałych punktów o wysokiej trwałości jest niezbędne do zapewnienia dokładności pomiarów i ich powtarzalności w czasie, co jest kluczowe w projektowaniu i realizacji inwestycji budowlanych oraz infrastrukturalnych.

Pytanie 38

W jakich okolicznościach materiały z publicznego zasobu geodezyjnego i kartograficznego mogą być usunięte z tego zbioru?

A. Kiedy nie były używane przez pięć lat
B. Po upływie dwóch lat od dodania do zasobu
C. Kiedy stracą wartość użytkową
D. Kiedy zostaną zniszczone
Wyłączenie materiałów z państwowego zasobu geodezyjnego i kartograficznego nie jest związane z czasem ich nieużywania, ani z ich fizycznym zniszczeniem. Twierdzenie, że materiały mogą zostać wyłączone z zasobu, gdy nie były wykorzystywane przez pięć lat, opiera się na błędnym założeniu, że brak użycia oznacza brak wartości. W rzeczywistości materiały mogą pozostawać w zasobie, nawet jeśli nie były aktywnie wykorzystywane, gdyż mogą wciąż mieć potencjalną wartość dla przyszłych projektów, badań czy planowania. Zniszczenie materiałów, choć może prowadzić do potrzeby ich wyłączenia, nie jest kluczowe w kontekście zarządzania zasobami geodezyjnymi. Istotniejsze jest, aby ocenić ich aktualność i przydatność użytkową. W momencie, gdy materiały przestają spełniać wymagania użytkowników, niezależnie od ich stanu fizycznego, powinny być wyłączone. Warto także zauważyć, że zasady dotyczące wyłączenia materiałów nie opierają się na określonym czasie, takim jak dwa lata od ich włączenia do zasobu. To podejście ignoruje dynamiczny charakter użytkowania danych geodezyjnych, które mogą być wielokrotnie aktualizowane w miarę zmieniających się potrzeb użytkowników oraz rozwoju technologii. Dlatego tak ważne jest, aby zarządzanie zasobami geodezyjnymi opierało się na regularnych ocenach ich wartości i przydatności, a nie na sztywnych ramach czasowych.

Pytanie 39

Oś stanowiąca południki w odwzorowaniu Gaussa-Krugera w systemie współrzędnych PL-1992 to południk

A. 15o
B. 17o
C. 19o
D. 21o
Wybór innych południków, jak 15o, 17o czy 21o, jest niestety błędny. Każdy z tych południków przydzielony jest do innej strefy w układzie Gaussa-Krugera, co mocno wpływa na to, jak dokładnie odwzorowujemy dane geograficzne w danym miejscu. Jeśli nie zrozumiesz podziału na strefy, łatwo o błędne obliczenia i interpretacje w geodezji. W systemie PL-1992 każda strefa ma przypisany swój południk centralny. Jak wybierasz zły południk, to masz zniekształcenia w odwzorowaniach przestrzennych. Poza tym, brak znajomości standardów geodezyjnych i technik analizy przestrzennej to dość powszechny błąd, który może prowadzić do poważnych problemów w planowaniu i realizacji projektów budowlanych. Źle wybrany południk to niepoprawne ustawienie systemu współrzędnych, co potem wpływa na lokalizację obiektów, ich wzajemne relacje i dokładność pomiarów. Zrozumienie, dlaczego wybór odpowiedniego południka w geodezji i planowaniu jest tak kluczowe, pomoże zapewnić rzetelność i precyzję wszelkich działań dotyczących przestrzeni.

Pytanie 40

Wykonano pomiary niwelacyjne w celu utworzenia punktu szczegółowego osnowy wysokościowej. Jaka jest maksymalna długość tego ciągu, jeśli składa się z 4 stanowisk i nie zostały przekroczone dozwolone długości celowych?

A. 400 m
B. 150 m
C. 600 m
D. 250 m
Wybór długości 250 m, 600 m lub 150 m nie uwzględnia kluczowych zasad dotyczących niwelacji oraz akceptowalnych standardów pomiarowych. W przypadku niwelacji, każdy pomiar powinien być dostosowany do konkretnych warunków, takich jak teren, używany sprzęt oraz wymagania dotyczące dokładności. Odpowiedzi 250 m oraz 150 m są zbyt krótkie, aby optymalnie wykorzystać dostępny sprzęt, co może prowadzić do nieefektywności w procesie pomiarowym. Krótsze ciągi zazwyczaj nie umożliwiają pełnego wykorzystania możliwości niwelacji, co jest kluczowe w kontekście projektów budowlanych czy geodezyjnych. Z kolei odpowiedź 600 m przekracza dopuszczalne limity długości stanowisk, co może prowadzić do znacznego wzrostu błędów pomiarowych, szczególnie w trudnych warunkach terenowych, takich jak nierówności czy zmienne warunki atmosferyczne. Przekroczenie maksymalnej długości stanowiska wymagałoby stosowania dodatkowych technik kompensacyjnych, co zwiększa złożoność pomiaru oraz może wpłynąć na jego dokładność. Dlatego ważne jest, aby przy planowaniu ciągów niwelacyjnych korzystać z uznawanych norm i standardów, które pomagają w zapewnieniu precyzyjnych i wiarygodnych wyników.