Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 15 maja 2025 20:40
  • Data zakończenia: 15 maja 2025 21:06

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Urządzenie ADSL wykorzystuje się do nawiązania połączenia

A. cyfrowego symetrycznego
B. radiowego
C. satelitarnego
D. cyfrowego asymetrycznego
Urządzenie ADSL (Asymmetric Digital Subscriber Line) służy do uzyskania cyfrowego asymetrycznego połączenia internetowego, co oznacza, że prędkość pobierania danych jest wyższa niż prędkość ich wysyłania. Jest to szczególnie korzystne w zastosowaniach domowych i biurowych, gdzie użytkownicy często pobierają więcej danych (np. strumieniowanie wideo, przeglądanie stron internetowych) niż wysyłają. ADSL wykorzystuje istniejącą infrastrukturę telefoniczną, co sprawia, że jest stosunkowo łatwe do wdrożenia i ekonomiczne. Dzięki technologii ADSL, użytkownicy mogą jednocześnie korzystać z telefonu i internetu, co jest możliwe dzięki zastosowaniu filtrów, które oddzielają sygnał telefoniczny od internetowego. ADSL spełnia standardy ITU-T G.992.1 oraz G.992.3, co zapewnia zgodność z międzynarodowymi normami. W praktyce, ADSL jest szeroko stosowane w domach oraz małych i średnich przedsiębiorstwach, ponieważ oferuje wystarczającą prędkość dla wielu aplikacji bez konieczności dużych inwestycji w infrastrukturę.

Pytanie 2

Jaki program powinien zostać zainstalowany na serwerze internetowym opartym na Linuxie, aby umożliwić korzystanie z baz danych?

A. MySqld
B. sshd
C. vsftpd
D. httpd
MySql d to silnik bazy danych, który jest wykorzystywany do przechowywania, zarządzania i przetwarzania danych w aplikacjach webowych. Jako oprogramowanie typu open-source, MySql d jest szeroko stosowane w środowiskach serwerowych opartych na systemie Linux. Dzięki swojej elastyczności i wydajności, MySql d jest idealnym rozwiązaniem dla aplikacji, które wymagają szybkiego dostępu do danych. Działa w modelu klient-serwer, co pozwala na zdalny dostęp do baz danych. W praktyce, jeśli tworzysz stronę internetową, która korzysta z systemu zarządzania treścią (CMS) lub aplikacji webowych, takich jak WordPress czy Joomla, MySql d będzie absolutnie niezbędny do przechowywania informacji o użytkownikach, postach i innych danych. Standardy branżowe zalecają stosowanie MySql d w połączeniu z językiem PHP, co skutkuje popularnym stosowaniem LAMP (Linux, Apache, MySql d, PHP) w wielu projektach webowych. To połączenie zapewnia stabilność, bezpieczeństwo i wysoką wydajność, co jest kluczowe w nowoczesnym rozwoju aplikacji webowych.

Pytanie 3

Który zakres adresów IPv4 jest poprawnie przypisany do danej klasy?

Zakres adresów IPv4Klasa adresu IPv4
A.1.0.0.0 ÷ 127.255.255.255A
B.128.0.0.0 ÷ 191.255.255.255B
C.192.0.0.0 ÷ 232.255.255.255C
D.233.0.0.0 ÷ 239.255.255.255D

A. D
B. C
C. B
D. A
Klasa B adresów IPv4 obejmuje zakres od 128.0.0.0 do 191.255.255.255. Adresy w tej klasie są często używane w średnich i dużych sieciach, ponieważ oferują większą liczbę dostępnych adresów hostów w porównaniu z klasą C. Każdy adres klasy B ma pierwszy oktet w zakresie od 128 do 191, a następne dwa oktety są używane do identyfikacji sieci, co daje możliwość utworzenia 16 384 sieci, każda z maksymalnie 65 534 hostami. W praktyce, oznacza to, że klasa B jest idealna dla organizacji z dużym zapotrzebowaniem na liczby hostów. Współczesne sieci korzystają z maski podsieci, aby elastyczniej zarządzać adresacją, jednak klasyczne podejście jest nadal istotne w kontekście zrozumienia podstaw działania protokołu IPv4. Standardy takie jak RFC 791 i późniejsze uaktualnienia precyzują sposób użycia tej klasy adresów, co jest ważne dla administratorów sieciowych, którzy muszą projektować wydajne i niezawodne struktury sieciowe.

Pytanie 4

Wysyłanie żetonu (ang. token) występuje w sieci o fizycznej strukturze

A. siatki
B. gwiazdy
C. pierścienia
D. magistrali
Przekazywanie żetonu w sieci pierścieniowej to naprawdę ważna sprawa. W takim układzie każdy węzeł łączy się z dwoma innymi i tworzy zamkniętą pętlę. Dzięki temu dane mogą płynąć w określonym kierunku, co redukuje ryzyko kolizji i pozwala na sprawniejszą transmisję. Na przykład, w sieciach lokalnych (LAN) używa się protokołów jak Token Ring, gdzie żeton krąży między węzłami. Tylko ten, kto ma żeton, może wysłać dane, co fajnie zwiększa kontrolę nad dostępem do medium. Plus, taka architektura pozwala lepiej zarządzać pasmem i zmniejszać opóźnienia w przesyłaniu danych. Moim zdaniem, to podejście jest zgodne z najlepszymi praktykami w budowaniu złożonych sieci komputerowych, gdzie liczy się stabilność i efektywność.

Pytanie 5

Przerywając działalność na komputerze, możemy szybko wrócić do pracy, wybierając w systemie Windows opcję:

A. ponownego uruchomienia
B. zamknięcia systemu
C. wylogowania
D. stanu wstrzymania
Wybór opcji stanu wstrzymania jest prawidłowy, ponieważ pozwala na szybkie wznowienie pracy na komputerze bez potrzeby uruchamiania systemu od nowa. Stan wstrzymania, znany również jako tryb uśpienia, przechowuje aktualny stan systemu oraz otwarte aplikacje w pamięci RAM, co umożliwia natychmiastowy powrót do pracy po wznowieniu. Przykładem zastosowania stanu wstrzymania jest sytuacja, gdy użytkownik wykonuje kilka zadań i musi na chwilę odejść od komputera; zamiast wyłączać system, co zajmie więcej czasu, może po prostu wprowadzić go w stan wstrzymania. Z perspektywy dobrych praktyk zarządzania energią, przejście w stan wstrzymania jest bardziej efektywne energetycznie niż pełne wyłączenie komputera, a także przeciwdziała nadmiernemu zużyciu podzespołów. Warto również zauważyć, że wiele nowoczesnych systemów operacyjnych wspiera automatyczne przejście w stan wstrzymania po określonym czasie bezczynności, co jest korzystne zarówno dla wydajności, jak i oszczędności energii.

Pytanie 6

Na ilustracji przedstawiona jest konfiguracja

Ilustracja do pytania
A. sieci bezprzewodowej
B. przekierowania portów
C. rezerwacji adresów MAC
D. wirtualnych sieci
Konfiguracja przedstawiona na rysunku dotyczy wirtualnych sieci lokalnych (VLAN) co potwierdza sekcja zarządzania VLAN. VLAN to technologia umożliwiająca tworzenie wirtualnych segmentów sieci w ramach jednego fizycznego przełącznika lub zestawu przełączników. Dzięki temu można poprawić wydajność i bezpieczeństwo sieci logicznie izolując ruch pomiędzy różnymi segmentami. Na przykład dział sprzedaży może być oddzielony od działu IT nie wpływając na fizyczną topologię sieci. Standard IEEE 802.1Q definiuje sposób w jaki ramki Ethernet są oznaczane identyfikatorami VLAN pozwalając na ich rozróżnienie. Dzięki tej technologii można wprowadzić polityki bezpieczeństwa ograniczające dostęp do poszczególnych zasobów sieciowych co jest kluczowe w większych organizacjach. VLANy są szeroko stosowane w centrach danych oraz sieciach korporacyjnych gdzie zarządzanie ruchem i bezpieczeństwem jest szczególnie istotne. Stosując VLANy można również optymalizować ruch sieciowy eliminując nadmiarowe rozgłaszanie ramek co zwiększa efektywność działania całej infrastruktury sieciowej

Pytanie 7

Jakie urządzenie jest używane do pomiaru wartości rezystancji?

A. amperomierz
B. woltomierz
C. watomierz
D. omomierz
Omomierz to przyrząd elektroniczny lub analogowy, który służy do pomiaru rezystancji elektrycznej. Wykorzystuje prawo Ohma, które stanowi, że napięcie (U) jest równe iloczynowi natężenia prądu (I) i rezystancji (R). Omomierz umożliwia szybkie i precyzyjne mierzenie oporu elektrycznego, co jest istotne w diagnostyce i konserwacji układów elektronicznych oraz elektrycznych. Przykładowo, w trakcie naprawy urządzeń, takich jak komputery czy sprzęt AGD, technicy stosują omomierze do sprawdzania ciągłości obwodów oraz identyfikowania uszkodzonych komponentów. W przemysłowych zastosowaniach, pomiar rezystancji izolacji jest kluczowy dla zapewnienia bezpieczeństwa urządzeń elektrycznych. Standardy takie jak IEC 61010 określają wymagania dotyczące bezpieczeństwa przyrządów pomiarowych, co czyni omomierz nieodłącznym narzędziem w pracy inżynierów i techników.

Pytanie 8

Na rysunku przedstawiono ustawienia karty sieciowej urządzenia z adresem IP 10.15.89.104/25. Co z tego wynika?

Ilustracja do pytania
A. adres IP jest błędny
B. adres domyślnej bramy pochodzi z innej podsieci niż adres hosta
C. serwer DNS znajduje się w tej samej podsieci co urządzenie
D. adres maski jest błędny
Odpowiedź jest poprawna, ponieważ adres domyślnej bramy jest z innej podsieci niż adres hosta. Kluczowym elementem jest zrozumienie, jak działają podsieci w sieciach komputerowych. Adres IP 10.15.89.104 z maską 255.255.255.128 oznacza, że sieć obejmuje adresy od 10.15.89.0 do 10.15.89.127. Adres bramy 10.15.89.129 jest poza tym zakresem, co oznacza, że należy do innej podsieci. To jest ważne, ponieważ brama domyślna musi być w tej samej podsieci co host, aby komunikacja wychodząca z lokalnej sieci mogła być prawidłowo przekierowana. W praktyce konfiguracje tego typu są istotne dla administratorów sieci, którzy muszą zapewnić, że urządzenia sieciowe są prawidłowo skonfigurowane. Zgodność adresacji IP z maską podsieci oraz prawidłowe przypisanie bramy są kluczowe dla unikania problemów z łącznością sieciową. Standardowe praktyki branżowe zalecają dokładną weryfikację konfiguracji, aby upewnić się, że wszystkie urządzenia mogą komunikować się efektywnie i bez zakłóceń. Prawidłowa konfiguracja wspiera stabilność sieci i minimalizuje ryzyko wystąpienia problemów związanych z routingiem danych.

Pytanie 9

Jakie oprogramowanie nie jest przeznaczone do diagnozowania komponentów komputera?

A. CPU-Z
B. Cryptic Disk
C. Everest
D. HD Tune
Wybór programów takich jak Everest, CPU-Z czy HD Tune wskazuje na niezrozumienie funkcji, jakie pełnią te aplikacje. Everest, znany również jako AIDA64, to narzędzie do szczegółowej diagnostyki sprzętu, które dostarcza informacji o wszystkich podzespołach komputera, takich jak procesor, karta graficzna, pamięć RAM, a także parametry systemowe, temperatury i napięcia. Jego główną funkcjonalnością jest monitorowanie stanu urządzeń, co pozwala użytkownikom na szybką identyfikację problemów związanych ze sprzętem. CPU-Z jest kolejnym narzędziem, które koncentruje się na analizie procesora i pamięci RAM, dostarczając szczegółowe dane dotyczące ich parametrów technicznych. HD Tune natomiast zajmuje się diagnostyką dysków twardych, oferując informacje o ich stanie technicznym, prędkości transferu, a także możliwościach naprawy. Wybierając te programy jako alternatywy dla Cryptic Disk, można nieświadomie zignorować znaczenie diagnostyki sprzętu w kontekście utrzymania stabilności i wydajności systemu komputerowego. Powszechnym błędem jest mylenie narzędzi do ochrony danych z narzędziami diagnostycznymi, co może prowadzić do niewłaściwych decyzji podczas zarządzania zasobami IT.

Pytanie 10

Tryb działania portu równoległego, oparty na magistrali ISA, który umożliwia transfer danych do 2,4 MB/s, przeznaczony dla skanerów oraz urządzeń wielofunkcyjnych, to

A. ECP
B. Bi-directional
C. SPP
D. Nibble Mode
Wybór trybu SPP (Standard Parallel Port) jest częstym błędem w rozumieniu różnorodności portów równoległych. SPP ogranicza transfer do 150 KB/s, co zdecydowanie nie spełnia wymagań nowoczesnych urządzeń, takich jak skanery czy wielofunkcyjne drukarki, które potrzebują szybszego transferu danych. Nibble Mode, z kolei, to metoda, która pozwala przesyłać dane w blokach po 4 bity, co również jest mało efektywne w kontekście nowoczesnych aplikacji. Zastosowanie tej metody może prowadzić do znacznych opóźnień oraz obniżonej wydajności, co jest nieakceptowalne w środowiskach wymagających wysokiej przepustowości. Bi-directional oznacza komunikację w obu kierunkach, co teoretycznie zwiększa możliwości interakcji z urządzeniami, jednak nie jest on dedykowany do osiągnięcia tak wysokich prędkości transferu danych jak ECP. Zrozumienie różnic między tymi trybami jest kluczowe dla efektywnej konfiguracji sprzętu. Użytkownicy często myślą, że różnice są marginalne, podczas gdy w praktyce mogą one znacznie wpłynąć na wydajność systemu oraz czas realizacji zadań. Tego rodzaju błędy w ocenie mogą prowadzić do wyboru niewłaściwego sprzętu, co w dłuższej perspektywie skutkuje dużymi stratami czasowymi i finansowymi.

Pytanie 11

W sieciach komputerowych miarą prędkości przesyłu danych jest

A. ips
B. dpi
C. bps
D. byte
Odpowiedź 'bps' (bits per second) jest poprawna, ponieważ jest to jednostka używana do pomiaru szybkości transmisji danych w sieciach komputerowych. W kontekście sieci komputerowych, szybkość ta odnosi się do liczby bitów, które są przesyłane w ciągu jednej sekundy. Jest to kluczowy parametr, który pozwala ocenić wydajność sieci, a także porównywać różne technologie transmisji, takie jak Ethernet, Wi-Fi czy łączność mobilna. Na przykład, szybkie połączenia optyczne mogą osiągać prędkości rzędu kilku gigabitów na sekundę (Gbps), co jest istotne w zastosowaniach wymagających dużej przepustowości, jak strumieniowanie wideo w wysokiej rozdzielczości czy przesyłanie dużych plików. Warto także zaznaczyć, że standardy sieciowe, takie jak IEEE 802.3 dla Ethernetu, definiują minimalne i maksymalne wartości dla bps, co pozwala na standaryzację i zapewnienie interoperacyjności między urządzeniami.

Pytanie 12

Jaki program został wykorzystany w systemie Linux do szybkiego skanowania sieci?

Ilustracja do pytania
A. webmin
B. nmap
C. ttcp
D. iptraf
nmap to naprawdę fajne narzędzie do skanowania sieci, które działa w systemie Linux. Wykrywa hosty i usługi, które są na nich uruchomione. Jest całkiem wszechstronne i daje sporo możliwości, zwłaszcza jeśli chodzi o rozpoznawanie topologii sieci. Administracja i specjaliści od bezpieczeństwa często po nie sięgają. nmap ma różne funkcje, jak chociażby wykrywanie systemu operacyjnego czy wersji aplikacji, co jest mega ważne, gdy robimy audyty bezpieczeństwa. Możliwość skanowania portów sprawia, że możemy łatwo zidentyfikować dostępne usługi, a to jest kluczowe, żeby chronić nasze systemy przed nieautoryzowanym dostępem. W praktyce używa się go do szukania potencjalnych luk w zabezpieczeniach i do monitorowania, co się zmienia w konfiguracji sieci. Dobrze, że jest zgodny z różnymi standardami branżowymi, bo to czyni go niezastąpionym w kontekście zgodności z normami bezpieczeństwa. nmap ma również tryb cichy, więc można go używać bez zbytniego wzbudzania podejrzeń w trakcie testów penetracyjnych. Tak naprawdę, dla każdego, kto zajmuje się bezpieczeństwem IT i zarządzaniem siecią, nmap to podstawa.

Pytanie 13

Aby móc zakładać konta użytkowników, komputerów oraz innych obiektów i przechowywać o nich informacje w centralnym miejscu, konieczne jest zainstalowanie na serwerze Windows roli

A. Usługi Domenowe Active Directory
B. Active Directory Federation Service
C. Usługi LDS w usłudze Active Directory
D. Usługi certyfikatów Active Directory
Usługi Domenowe Active Directory (AD DS) są kluczowym elementem infrastruktury serwerowej w systemach Windows, umożliwiającym centralne zarządzanie kontami użytkowników, komputerów oraz innymi obiektami w sieci. Dzięki AD DS można tworzyć i zarządzać strukturą hierarchiczną domen, co ułatwia kontrolę dostępu i administrację zasobami. AD DS przechowuje informacje o obiektach w formie bazy danych, co pozwala na szybką i efektywną obsługę zapytań związanych z autoryzacją oraz uwierzytelnianiem. Przykładowo, w organizacji z wieloma użytkownikami, administratorzy mogą w łatwy sposób nadawać prawa dostępu do zasobów, takich jak pliki czy aplikacje, na podstawie przynależności do grup. Dobrą praktyką jest również regularne monitorowanie i aktualizowanie polityk bezpieczeństwa w AD DS, co pozwala na minimalizację ryzyka naruszenia bezpieczeństwa danych. Z perspektywy branżowej, znajomość AD DS jest niezbędna dla każdego specjalisty IT, ponieważ wiele organizacji wykorzystuje tę technologię jako podstawę swojej infrastruktury IT.

Pytanie 14

Zamieszczony poniżej diagram ilustruje zasadę działania skanera

Ilustracja do pytania
A. 3D
B. płaskiego
C. bębnowego
D. ręcznego
Podczas rozważania różnych typów skanerów, kluczowe jest zrozumienie ich specyficznego zastosowania i zasady działania. Skanery bębnowe, choć kiedyś popularne w przemyśle graficznym, używają fotopowielaczy i bębnów do precyzyjnego odczytywania obrazów z wysoką rozdzielczością, ale nie są przeznaczone do tworzenia obrazów trójwymiarowych. Ich konstrukcja jest skomplikowana, a koszt utrzymania wysoki, co czyni je mniej praktycznymi w codziennych zastosowaniach. Skanery płaskie są powszechnie używane do digitalizacji dokumentów oraz zdjęć, gdzie ich działanie polega na przesuwaniu głowicy skanującej pod szkłem, co pozwala na uzyskanie obrazów dwuwymiarowych. Są one świetne do użytku biurowego, ale nie nadają się do skanowania obiektów 3D. Skanery ręczne, które działają poprzez przesuwanie urządzenia nad obiektem, są bardziej mobilne i wszechstronne, ale ich dokładność może być ograniczona w porównaniu do stacjonarnych skanerów 3D. Często wymagają one stabilnej ręki i umiejętności w celu uzyskania dokładnych wyników, co może stanowić wyzwanie w przypadku skanowania bardziej złożonych obiektów. Kluczowym błędem przy wyborze nieodpowiedniego typu skanera jest brak analizy konkretnych potrzeb i wymagań technicznych, co może prowadzić do nieoptymalnych rezultatów w danym zastosowaniu. Zrozumienie różnic między technologiami i ich praktycznymi implikacjami jest fundamentalne dla właściwego ich wykorzystania w różnych branżach i zastosowaniach profesjonalnych.

Pytanie 15

W dokumentacji płyty głównej zapisano „Wsparcie dla S/PDIF Out”. Co to oznacza w kontekście tego modelu płyty głównej?

A. cyfrowe złącze sygnału video
B. analogowe złącze sygnału wejścia video
C. cyfrowe złącze sygnału audio
D. analogowe złącze sygnału wyjścia video
Odpowiedź wskazująca na "cyfrowe złącze sygnału audio" jest poprawna, ponieważ S/PDIF (Sony/Philips Digital Interface) to standard cyfrowego przesyłania sygnału audio, który pozwala na przesyłanie dźwięku w formie nieskompresowanej lub skompresowanej. Złącze S/PDIF może mieć formę optyczną lub elektryczną, co umożliwia podłączenie różnych urządzeń audio, takich jak dekodery, amplitunery, czy zestawy głośników. Zastosowanie S/PDIF w systemach audio jest szerokie – na przykład, wiele komputerów i płyt głównych ma wyjścia S/PDIF, co pozwala na wydobycie wysokiej jakości dźwięku do zewnętrznych systemów audio. W praktyce, korzystanie z S/PDIF zapewnia lepszą jakość dźwięku w porównaniu do analogowych rozwiązań, ponieważ eliminuje potencjalne zakłócenia związane z sygnałami analogowymi i umożliwia przesyłanie sygnału stereo lub wielokanałowego bezstratnie, zgodnie z najnowszymi standardami audio.

Pytanie 16

Czym jest dziedziczenie uprawnień?

A. przeniesieniem uprawnień z obiektu podrzędnego do obiektu nadrzędnego
B. przyznawaniem uprawnień użytkownikowi przez administratora
C. przeniesieniem uprawnień z obiektu nadrzędnego do obiektu podrzędnego
D. przekazywaniem uprawnień od jednego użytkownika do innego
Dziedziczenie uprawnień to kluczowy mechanizm w zarządzaniu dostępem w systemach informatycznych, który polega na przenoszeniu uprawnień z obiektu nadrzędnego na obiekt podrzędny. Dzięki temu, gdy administrator przydziela uprawnienia do folderu głównego (nadrzędnego), wszystkie podfoldery (obiekty podrzędne) automatycznie dziedziczą te same uprawnienia. Działa to na zasadzie propagacji uprawnień, co znacznie upraszcza zarządzanie dostępem i minimalizuje ryzyko błędów wynikających z ręcznego przydzielania uprawnień do każdego obiektu z osobna. Na przykład, w systemach opartych na modelu RBAC (Role-Based Access Control), gdy rola użytkownika ma przypisane określone uprawnienia do folderu, wszystkie pliki oraz podfoldery w tym folderze będą miały te same uprawnienia, co ułatwia zarządzanie i zapewnia spójność polityki bezpieczeństwa. Dobre praktyki zalecają stosowanie dziedziczenia uprawnień w organizacjach, aby zredukować złożoność administracyjną oraz zwiększyć efektywność zarządzania dostępem.

Pytanie 17

W systemie Linux do śledzenia wykorzystania procesora, pamięci, procesów oraz obciążenia systemu wykorzystuje się polecenie

A. rev
B. grep
C. top
D. ifconfig
Wybór poleceń takich jak 'rev', 'grep' czy 'ifconfig' wskazuje na pewne nieporozumienia dotyczące ich funkcji w systemie Linux. 'rev' służy do odwracania znaków w każdym wierszu tekstu, co nie ma żadnego związku z monitorowaniem wydajności systemu. Jest to narzędzie typowo używane w przetwarzaniu tekstu, a nie do analizy zasobów systemowych. Drugą nieprawidłową odpowiedzią jest 'grep', które jest potężnym narzędziem do wyszukiwania wzorców w plikach tekstowych lub strumieniach danych, ale również nie wykazuje możliwości monitorowania wydajności systemu. Ostatnie z wymienionych poleceń, 'ifconfig', zajmuje się konfiguracją interfejsów sieciowych, co jest całkowicie odmiennym zagadnieniem i nie odpowiada na potrzeby związane z analityką zasobów systemowych. Kluczowym błędem jest mylenie narzędzi, które mają różne funkcje. W kontekście monitorowania systemu, ważne jest rozpoznawanie odpowiednich narzędzi i ich zastosowań. Do efektywnego zarządzania systemem, administratorzy muszą znać narzędzia, które dostarczają informacji o stanie systemu, a nie tylko o konfiguracji lub przetwarzaniu tekstu.

Pytanie 18

Z jakim protokołem związane są terminy 'sequence number' oraz 'acknowledgment number'?

Ilustracja do pytania
A. TCP (Transmission Control Protocol)
B. HTTP (Hypertext Transfer Protocol)
C. UDP (User Datagram Protocol)
D. IP (Internet Protocol)
Protokół TCP (Transmission Control Protocol) jest jednym z fundamentów komunikacji w sieciach komputerowych i służy do zapewniania niezawodnego przesyłu danych. Kluczowymi elementami tego protokołu są numery sekwencyjne (sequence numbers) i numery potwierdzeń (acknowledgment numbers). Numer sekwencyjny pozwala na numerowanie bajtów przesyłanych danych co umożliwia odbiorcy uporządkowanie ich w prawidłowej kolejności a także identyfikację brakujących segmentów. Protokół TCP dzięki temu mechanizmowi zapewnia tzw. transmisję ze zorientowaniem na połączenie co oznacza iż nadawca i odbiorca ustanawiają sesję komunikacyjną przed rozpoczęciem wymiany danych. Numer potwierdzenia jest używany przez odbiorcę do informowania nadawcy które bajty zostały poprawnie odebrane i które należy ponownie wysłać w przypadku ich utraty. Dzięki tym mechanizmom TCP zapewnia niezawodność i kontrolę przepływu danych co jest kluczowe w aplikacjach takich jak przeglądanie stron WWW czy przesyłanie plików gdzie utrata danych mogłaby prowadzić do niepoprawnego działania aplikacji.

Pytanie 19

Jaki adres IP w formacie dziesiętnym odpowiada adresowi IP 10101010.00001111.10100000.11111100 zapisanym w formacie binarnym?

A. 171.15.159.252
B. 171.14.159.252
C. 170.14.160.252
D. 170.15.160.252
Adres IP zapisany w systemie binarnym 10101010.00001111.10100000.11111100 można przekształcić na system dziesiętny poprzez konwersję każdej z czterech oktetów. W pierwszym oktetach mamy 10101010, co odpowiada 128 + 32 + 8 + 2 = 170. Drugi oktet, 00001111, to 0 + 0 + 0 + 8 + 4 + 2 + 1 = 15. Trzeci oktet, 10100000, daje 128 + 0 + 0 + 0 = 160. Ostatni oktet, 11111100, to 128 + 64 + 32 + 16 + 8 + 4 = 252. Zatem pełny adres IP w systemie dziesiętnym to 170.15.160.252. Adresy IP są kluczowe w komunikacji sieciowej, a ich poprawna konwersja jest niezbędna w zarządzaniu sieciami. W praktyce, w sytuacjach takich jak konfiguracja routerów czy firewalli, znajomość konwersji adresów IP pozwala na skuteczniejsze zarządzanie, lepsze zabezpieczenie sieci oraz efektywniejsze planowanie zasobów.

Pytanie 20

Jaką funkcję pełni punkt dostępowy, aby zabezpieczyć sieć bezprzewodową w taki sposób, aby jedynie urządzenia z wybranymi adresami MAC mogły się do niej łączyć?

A. Filtrowanie adresów MAC
B. Przydzielenie SSID
C. Radius (Remote Authentication Dial In User Service)
D. Autoryzacja
Nadanie SSID, uwierzytelnianie oraz usługa RADIUS to techniki, które mają różne funkcje w zakresie zarządzania dostępem do sieci, lecz nie odpowiadają bezpośrednio na pytanie dotyczące zabezpieczania sieci poprzez ograniczenie dostępu tylko do określonych adresów MAC. SSID, czyli Service Set Identifier, jest jedynie nazwą sieci bezprzewodowej, która jest widoczna dla użytkowników i umożliwia im jej lokalizację, ale sama w sobie nie zabezpiecza dostępu. Uwierzytelnianie, z kolei, obejmuje proces potwierdzania tożsamości użytkowników lub urządzeń, ale może dotyczyć różnych metod, takich jak hasła czy certyfikaty, i nie odnosi się bezpośrednio do filtrowania fizycznych adresów MAC. Usługa RADIUS jest systemem, który pozwala na centralne zarządzanie uwierzytelnianiem, autoryzacją oraz rozliczaniem dostępu w sieciach komputerowych, ale również nie jest tożsama z mechanizmem filtrowania adresów MAC. Wiele osób może mylić te różne metody, myśląc, że umieszczają one dodatkowe zabezpieczenia w sieci, podczas gdy nie są one bezpośrednio związane z ograniczaniem dostępu na podstawie adresów MAC. Warto zrozumieć, że skuteczne zabezpieczenie sieci bezprzewodowej polega na wielowarstwowym podejściu, które integruje różne techniki zabezpieczeń, a nie tylko na jednej metodzie. Bezpieczne środowisko sieciowe wymaga zrozumienia i zastosowania odpowiednich praktyk w zakresie bezpieczeństwa, takich jak regularne aktualizacje oprogramowania, silne hasła, a także monitoring ruchu sieciowego.

Pytanie 21

Która z poniższych opcji nie jest wykorzystywana do zdalnego zarządzania stacjami roboczymi?

A. program UltraVNC
B. program TeamViewer
C. program Wireshark
D. pulpit zdalny
Program Wireshark jest narzędziem do analizy ruchu sieciowego, które pozwala na monitorowanie i analizowanie danych przesyłanych przez sieci komputerowe. Używany jest głównie do diagnostyki problemów z siecią, analizy bezpieczeństwa oraz do nauki o protokołach komunikacyjnych. Wireshark działa na zasadzie przechwytywania pakietów, co pozwala na szczegółową analizę ruchu w czasie rzeczywistym. W kontekście zdalnego zarządzania stacjami roboczymi, Wireshark nie pełni funkcji umożliwiającej zdalną kontrolę nad komputerami. Zamiast tego, programy takie jak TeamViewer, pulpit zdalny czy UltraVNC są przeznaczone do tego celu, umożliwiając użytkownikom zdalny dostęp oraz interakcję z desktopem innego komputera. Warto podkreślić, że korzystając z Wiresharka, administratorzy sieci mogą identyfikować nieautoryzowane połączenia, co jest kluczowe dla utrzymania bezpieczeństwa infrastruktury IT.

Pytanie 22

Jakie urządzenie umożliwia testowanie strukturalnego okablowania światłowodowego?

A. stacja lutownicza
B. reflektometr optyczny
C. odsysacz próżniowy
D. sonda logiczna
Sonda logiczna, stacja lutownicza oraz odsysacz próżniowy to narzędzia, które nie są przeznaczone do testowania okablowania strukturalnego światłowodowego. Sonda logiczna służy do analizy sygnałów elektrycznych i nie ma zastosowania w kontekście światłowodów, które przesyłają dane w postaci impulsów świetlnych, a nie elektrycznych. Użycie takiego narzędzia w testowaniu okablowania światłowodowego prowadzi do błędnych wniosków, ponieważ nie dostarcza informacji o integralności włókien optycznych. Stacja lutownicza jest używana do lutowania elementów elektronicznych, a nie do oceny jakości połączeń światłowodowych. Choć jest to istotne narzędzie w ogólnych pracach elektronicznych, nie ma zastosowania w kontekście testowania światłowodów, które wymagają precyzyjnej analizy optycznej. Odsysacz próżniowy, który służy do usuwania zanieczyszczeń lub materiałów, również nie ma związku z testowaniem jakości sygnału w instalacjach światłowodowych. Błędne przekonanie o możliwości użycia tych narzędzi do testowania okablowania strukturalnego światłowodowego wynika z braku zrozumienia specyfiki technologii optycznych oraz ich wymagań w zakresie diagnostyki. Aby efektywnie testować systemy światłowodowe, niezbędne jest stosowanie odpowiednich narzędzi, takich jak reflektometry optyczne, które są w stanie dokładnie ocenić parametry optyczne włókien.

Pytanie 23

Prawo majątkowe przysługujące twórcy programu komputerowego

A. nie ma ograniczeń czasowych
B. obowiązuje przez 25 lat od daty pierwszej publikacji
C. można przekazać innej osobie
D. nie jest prawem, które można przekazać
Prawo autorskie w Polsce dotyczy twórczości intelektualnej, w tym programów komputerowych, i niektóre odpowiedzi pokazują, że nie wszystko jest do końca jasne. Na przykład mówienie, że autorskie prawo majątkowe trwa 25 lat od pierwszej publikacji, to błąd. Tak naprawdę, według Ustawy o prawie autorskim, ochrona trwa przez całe życie autora plus 70 lat po jego śmierci. Kolejna sprawa to to, że prawo autorskie do programu komputerowego nie jest zbywalne - to też nie jest prawda. Prawa majątkowe można przenosić, co jest ważne, jeśli mówimy o biznesie z oprogramowaniem. I opinia, że autorskie prawo majątkowe nie ma ograniczeń czasowych, to też nieporozumienie, bo te prawa mają swój czas trwania, po którym dzieło przechodzi do domeny publicznej. Często myśli się, że twórcy mogą korzystać ze swoich dzieł bez końca, nie przenosząc praw, ale to nie tak działa. Dobrze jest zrozumieć te zasady, bo pomagają one w uzyskaniu odpowiedniego wynagrodzenia dla twórców i ochronie ich interesów na rynku kreatywnym.

Pytanie 24

CommView oraz WireShark to aplikacje wykorzystywane do

A. ochrony przesyłania danych w sieci
B. badania zasięgu sieci bezprzewodowej
C. analizowania pakietów przesyłanych w sieci
D. określania wartości tłumienia w kanale transmisyjnym
CommView i WireShark to narzędzia wykorzystywane do analizy ruchu sieciowego, umożliwiające monitorowanie pakietów transmitowanych w sieci w czasie rzeczywistym. Dzięki tym programom można dokładnie zobaczyć, jakie dane są przesyłane, co jest kluczowe przy diagnozowaniu problemów z wydajnością sieci, monitorowaniu bezpieczeństwa, czy optymalizacji usług sieciowych. Przykładowo, WireShark pozwala na filtrowanie pakietów według różnych kryteriów, co może być niezwykle przydatne w przypadku identyfikacji niepożądanych połączeń lub analizowania ruchu do i z określonych adresów IP. Zastosowanie tych narzędzi znajduje się w standardach branżowych, takich jak ITIL czy ISO/IEC 27001, gdzie monitoring i analiza ruchu sieciowego są kluczowymi elementami zarządzania bezpieczeństwem informacji oraz zapewnienia jakości usług.

Pytanie 25

Jakie polecenie w systemie Linux pozwala na wyświetlenie oraz edytowanie tablicy trasowania pakietów sieciowych?

A. nslookup
B. route
C. netstat
D. ifconfig
Polecenie 'route' jest kluczowym narzędziem w systemie Linux, które pozwala na wyświetlanie i modyfikowanie tablicy trasowania pakietów sieciowych. Ta tablica jest niezbędna dla systemu operacyjnego, aby wiedział, jak kierować ruch sieciowy do odpowiednich adresów IP. Używając 'route', administratorzy mogą dodawać, usuwać lub modyfikować trasy, co jest szczególnie przydatne w sytuacjach, gdy konfiguracja sieci jest dynamiczna lub wymaga optymalizacji. Na przykład, aby dodać nową trasę do sieci 192.168.1.0 przez bramę 192.168.0.1, używamy polecenia 'route add -net 192.168.1.0 netmask 255.255.255.0 gw 192.168.0.1'. Ta elastyczność i kontrola są zgodne z najlepszymi praktykami w zarządzaniu siecią, co czyni 'route' niezastąpionym narzędziem dla każdego specjalisty od sieci. Warto również pamiętać, że w nowszych dystrybucjach Linuxa polecenie 'ip route' staje się preferowanym sposobem zarządzania trasami, ponieważ dostarcza bardziej rozbudowanych opcji i lepsze wsparcie dla nowoczesnych funkcji sieciowych.

Pytanie 26

Jaka jest prędkość przesyłania danych w standardzie 1000Base-T?

A. 1 Mbit/s
B. 1 GB/s
C. 1 Gbit/s
D. 1 MB/s
Odpowiedzi 1 Mbit/s, 1 MB/s oraz 1 GB/s są nieprawidłowe i wynikają z nieporozumień dotyczących jednostek miary oraz standardów transmisji danych. Odpowiedź 1 Mbit/s jest znacznie poniżej rzeczywistej prędkości oferowanej przez standard 1000Base-T. 1 Mbit/s oznacza prędkość transmisji wynoszącą jedynie 1 milion bitów na sekundę, co jest typowe dla starszych technologii, jak np. 56k modem. Z kolei 1 MB/s odnosi się do prędkości 1 megabajta na sekundę, co w jednostkach bitowych daje równowartość 8 Mbit/s. Ta wartość również znacząco odbiega od rzeczywistej prędkości standardu 1000Base-T. W przypadku odpowiedzi 1 GB/s, choć zbliżona do prawidłowej wartości, wprowadza w błąd ponieważ 1 GB/s to równowartość 8 Gbit/s, co przewyższa możliwości technologiczne przyjęte w standardzie 1000Base-T. Takie nieprecyzyjne interpretacje jednostek mogą prowadzić do błędnych wyborów przy projektowaniu sieci, co w efekcie wpływa na wydajność i koszty. Ważne jest, aby w kontekście technologii sieciowych znać różnice między jednostkami miary (bit, bajt) oraz zrozumieć ich zastosowanie w praktyce. Zrozumienie tych koncepcji jest kluczowe nie tylko dla inżynierów sieci, ale również dla menedżerów IT, którzy odpowiedzialni są za wdrażanie efektywnych rozwiązań w obszarze infrastruktury sieciowej.

Pytanie 27

Podczas próby zapisania danych na karcie SD wyświetla się komunikat „usuń ochronę przed zapisem lub skorzystaj z innego nośnika”. Najczęstszą przyczyną takiego komunikatu jest

A. Ustawienie mechanicznego przełącznika blokady zapisu na karcie w pozycji ON
B. Zbyt duży rozmiar pliku, który ma być zapisany
C. Posiadanie uprawnień 'tylko do odczytu' dla plików na karcie SD
D. Brak wolnego miejsca na karcie pamięci
Jak coś poszło nie tak z innymi odpowiedziami, to warto zrozumieć, czemu te problemy nie są przyczyną komunikatu o ochronie przed zapisem. Brak miejsca na karcie pamięci może powodować problemy z zapisem, ale nie daje komunikatu o ochronie przed zapisem. Zazwyczaj, jak brakuje miejsca, system operacyjny informuje w inny sposób, mówiąc, że nie można dodać plików przez ich niedobór. Jeśli masz uprawnienia tylko do odczytu do pliku na karcie SD, to dotyczy głównie plików, a nie samej karty. Nawet jak karta nie jest zablokowana, można zapisywać nowe pliki, mimo że niektóre mogą być tylko do odczytu. I jeszcze, za duży rozmiar pliku, który próbujesz zapisać, też nie jest powodem tego błędu. Systemy plików, takie jak FAT32, mają swoje limity, ale wtedy zazwyczaj dostajesz inny komunikat, który mówi o przekroczeniu maksymalnego rozmiaru pliku. Jak to zrozumiesz, unikniesz mylnych wniosków i lepiej zarządzisz danymi na swoich kartach SD.

Pytanie 28

Ramka danych przesyłanych z komputera PC1 do serwera www znajduje się pomiędzy ruterem R1 a ruterem R2 (punkt A). Jakie adresy są w niej zawarte?

Ilustracja do pytania
A. Źródłowy adres IP komputera PC1, docelowy adres IP serwera, adres źródłowy MAC komputera PC1, adres docelowy MAC serwera
B. Źródłowy adres IP komputera PC1, docelowy adres IP serwera, adres źródłowy MAC rutera R1, adres docelowy MAC rutera R2
C. Źródłowy adres IP komputera PC1, docelowy adres rutera R2, adres źródłowy MAC komputera PC1, adres docelowy MAC serwera
D. Źródłowy adres IP rutera R1, docelowy adres IP rutera R2, adres źródłowy MAC komputera PC1, adres docelowy MAC serwera
Niektóre niepoprawne odpowiedzi sugerują, że adresy MAC urządzeń końcowych, takich jak komputer PC1 lub serwer, są używane bezpośrednio w komunikacji między ruterami. To nieporozumienie wynika z braku zrozumienia, jak protokoły sieciowe działają na różnych poziomach modelu OSI. Adresy MAC są używane do komunikacji w obrębie tej samej sieci lokalnej i zmieniają się przy każdym przejściu przez ruter. Dlatego gdy ramka danych przemieszcza się od jednego rutera do drugiego, to adresy MAC tych ruterów służą do prawidłowego dostarczenia danych w obrębie tego segmentu sieci. Inne błędne odpowiedzi mogą wskazywać na niepoprawne przypisanie adresów IP, na przykład do routingu urządzeń pośrednich jak rutery, co jest mylące ponieważ adresy IP pozostają stałe dla urządzeń końcowych w trakcie całej sesji komunikacyjnej w sieci rozległej. Zrozumienie, że IP i MAC pełnią różne role, jest kluczowe: IP umożliwia identyfikację celowego urządzenia w sieci globalnej, a MAC zapewnia dostarczenie danych w obrębie segmentu sieciowego. Taki podział ról jest podstawą efektywnego działania protokołów routingu i przesyłania danych w nowoczesnych sieciach komputerowych. Typowym błędem jest także zakładanie, że adres MAC komputera PC1 lub serwera jest wykorzystywany na całej długości trasy, co nie jest możliwe z technicznego punktu widzenia, ze względu na ograniczenia w zakresie działania protokołu Ethernet oraz wymagań dotyczących wydajności sieci. Praktyka sieciowa wymaga zrozumienia, że każdy segment sieci ma swoje własne warunki routingu, co jest niezwykle istotne dla optymalizacji działania sieci i unikania potencjalnych problemów z wydajnością lub bezpieczeństwem transmisji danych. Zrozumienie tego jest kluczowe dla każdego specjalisty zajmującego się zarządzaniem i konfiguracją sieci komputerowych.

Pytanie 29

Jakie złącze powinna mieć karta graficzna, aby mogła być bezpośrednio podłączona do telewizora LCD, który ma tylko analogowe złącze do komputera?

A. DP
B. HDMI
C. DE-15F
D. DVI-D
Wybór jakiegokolwiek innego złącza niż DE-15F w kontekście podłączenia telewizora LCD wyłącznie z analogowym złączem do komputera prowadzi do nieporozumień dotyczących sygnałów i kompatybilności. Złącze DVI-D, mimo że jest popularnym standardem w nowoczesnych kartach graficznych, obsługuje jedynie sygnał cyfrowy, co oznacza, że nie może być użyte do bezpośredniego połączenia z telewizorem analogowym. Brak odpowiednich adapterów sprawia, że przy braku konwersji sygnału użytkownik nie uzyska obrazu na telewizorze. Podobnie, HDMI jest złączem, które również przesyła sygnał cyfrowy, co czyni go niekompatybilnym z telewizorami, które nie posiadają złącza HDMI. Co więcej, złącze DisplayPort (DP) jest dedykowane głównie dla nowoczesnych monitorów i kart graficznych, co w praktyce oznacza, że nie ma możliwości podłączenia go bezpośrednio do starego telewizora LCD. Wybór DVI-D, HDMI lub DP może wydawać się kuszący ze względu na ich zaawansowaną technologię i wyższą jakość obrazu, lecz w rzeczywistości są one nieprzydatne w kontekście podłączania urządzeń, które nie obsługują sygnału cyfrowego. Zrozumienie różnic pomiędzy analogowymi i cyfrowymi sygnałami jest kluczowe w wyborze odpowiednich złącz, a w przypadku telewizora LCD z analogowym złączem, DE-15F jest jedynym racjonalnym wyborem.

Pytanie 30

Protokół, który umożliwia po połączeniu z serwerem pocztowym przesyłanie na komputer tylko nagłówków wiadomości, a wysyłanie treści oraz załączników następuje dopiero po otwarciu konkretnego e-maila, to

A. IMAP
B. SMTP
C. MIME
D. POP3
MIME (Multipurpose Internet Mail Extensions) jest standardem, który pozwala na przesyłanie różnych typów danych w wiadomościach e-mail, takich jak obrazy, pliki audio czy dokumenty. Jednak MIME nie jest protokołem do zarządzania połączeniem z serwerem pocztowym. Nie ma funkcjonalności do pobierania danych, a jedynie rozszerza możliwości przesyłania wiadomości, co czyni go nieodpowiednim wyborem w kontekście opisanego pytania. Podobnie SMTP (Simple Mail Transfer Protocol) jest protokołem wykorzystywanym do wysyłania wiadomości e-mail do serwerów pocztowych, ale nie zajmuje się ich odbieraniem ani zarządzaniem. Jego rolą jest przesyłanie wiadomości od nadawcy do odbiorcy, co nie ma nic wspólnego z pobieraniem nagłówków czy zarządzaniem treścią wiadomości. Z kolei POP3 (Post Office Protocol) działa na zupełnie innej zasadzie; pobiera wiadomości całkowicie na lokalne urządzenie, co oznacza, że użytkownik musi pobrać wszystkie wiadomości, nawet te, które nie są mu potrzebne. To podejście jest mniej efektywne w zarządzaniu pocztą, zwłaszcza w sytuacji, gdy użytkownik korzysta z wielu urządzeń. Typowym błędem jest mylenie tych protokołów i ich funkcji, co prowadzi do nieporozumień związanych z obsługą poczty elektronicznej.

Pytanie 31

Jakie jest odpowiednik maski 255.255.252.0 w postaci prefiksu?

A. /22
B. /24
C. /25
D. /23
Odpowiednik maski 255.255.252.0 to prefiks /22, co oznacza, że pierwsze 22 bity adresów IP są używane do identyfikacji sieci, a pozostałe bity są przeznaczone dla hostów w tej sieci. Maskę sieciową można zrozumieć jako sposób na podział większej przestrzeni adresowej na mniejsze podsieci, co jest kluczowe w zarządzaniu adresowaniem IP i efektywnym wykorzystaniu dostępnych adresów. Maska 255.255.252.0 pozwala na utworzenie 4 096 adresów IP w danej podsieci (2^(32-22)), z czego 4 094 mogą być używane dla hostów, co czyni ją bardzo użyteczną w dużych sieciach. W praktyce, taka maska może być stosowana w organizacjach, które potrzebują większej liczby adresów w ramach jednej sieci, na przykład w firmach z dużymi działami IT. Standardy, takie jak RFC 4632, podkreślają znaczenie używania odpowiednich masek podsieci dla optymalizacji routingu oraz zarządzania adresami w sieci. Zrozumienie tego zagadnienia jest kluczowe dla każdego specjalisty zajmującego się sieciami komputerowymi.

Pytanie 32

Jakie informacje o wykorzystywaniu pamięci wirtualnej można uzyskać, analizując zawartość pliku w systemie Linux?

A. /proc/vmstat
B. /etc/inittab
C. xload
D. pagefile.sys
Plik /proc/vmstat jest kluczowym źródłem informacji dotyczących pamięci wirtualnej w systemie Linux. Zawiera dane o aktualnym stanie pamięci, w tym statystyki dotyczące wirtualnej pamięci, takich jak ilość pamięci swap, liczba stron wymienianych, czy też liczba stron w pamięci fizycznej. Analizowanie zawartości tego pliku pozwala na głębsze zrozumienie zarządzania pamięcią przez system, co jest niezbędne w kontekście optymalizacji wydajności i monitorowania zasobów. Na przykład, jeśli zauważysz, że liczba stron wymienianych na dysk jest wysoka, może to wskazywać na zbyt małą ilość pamięci RAM, co prowadzi do spowolnienia systemu. Dlatego umiejętność interpretacji danych z /proc/vmstat jest niezwykle ważna dla administratorów systemów oraz programistów zajmujących się wydajnością aplikacji. Dobrymi praktykami są regularne monitorowanie tego pliku oraz konfigurowanie systemu tak, aby optymalizować użycie pamięci, co jest kluczowe dla stabilności i wydajności systemu.

Pytanie 33

Rodzaje ataków mających na celu zakłócenie funkcjonowania aplikacji oraz procesów w urządzeniach sieciowych to ataki klasy

A. DoS
B. smurf
C. zero-day
D. spoofing
Ataki typu DoS (Denial of Service) mają na celu zakłócenie normalnego działania usług, aplikacji i procesów w sieciach komputerowych. Celem tych ataków jest uniemożliwienie użytkownikom dostępu do systemu poprzez przeciążenie serwera lub infrastruktury sieciowej. W praktyce, atakujący wysyła ogromne ilości ruchu do docelowego serwera, co prowadzi do jego przeciążenia. Przykładem może być atak SYN flood, który eksploitując proces nawiązywania połączenia TCP, generuje wiele niekompletnych połączeń, co finalnie prowadzi do wyczerpania zasobów serwera. Standardy i najlepsze praktyki w zakresie zabezpieczeń sieciowych zalecają stosowanie mechanizmów ochrony, takich jak firewall, systemy wykrywania i zapobiegania włamaniom (IDS/IPS) oraz usługi DDoS mitigation, które mogą pomóc w minimalizacji skutków takiego ataku. Wiedza na temat ataków DoS jest kluczowa dla specjalistów z zakresu bezpieczeństwa IT, aby opracować skuteczne strategie obronne i zapewnić ciągłość działania usług.

Pytanie 34

Najwyższą prędkość transmisji danych w sieciach bezprzewodowych zapewnia standard

A. 802.11 a
B. 802.11 n
C. 802.11 g
D. 802.11 b
Standardy 802.11 a, b i g, mimo że odgrywają ważną rolę w historii sieci bezprzewodowych, mają istotne ograniczenia w kontekście prędkości transmisji danych i technologii, które oferują. Standard 802.11 a, wprowadzony w 1999 roku, działa w paśmie 5 GHz i umożliwia osiąganie prędkości do 54 Mb/s. Choć jego wyższa częstotliwość pozwala na mniejsze zakłócenia, ogranicza zasięg i przebijalność sygnału przez przeszkody. Z kolei standard 802.11 b, również z 1999 roku, działa w paśmie 2,4 GHz i oferuje prędkości do 11 Mb/s, co czyni go znacznie wolniejszym. Jest także bardziej podatny na zakłócenia od innych urządzeń, takich jak mikrofalówki czy telefony bezprzewodowe. Standard 802.11 g, wprowadzony w 2003 roku, poprawił sytuację, osiągając prędkości do 54 Mb/s, ale nadal korzystał z pasma 2,4 GHz, co wiązało się z tymi samymi problemami zakłóceń. Użytkownicy, którzy wybierają te starsze standardy, mogą spotkać się z ograniczeniami w wydajności sieci, szczególnie w środowiskach, gdzie wiele urządzeń korzysta z pasma 2,4 GHz, co zwiększa ryzyko kolizji oraz spadku prędkości. Zrozumienie różnic między tymi standardami jest kluczowe dla efektywnego projektowania i wdrażania sieci bezprzewodowych, aby zaspokoić rosnące potrzeby użytkowników w zakresie prędkości i stabilności połączeń.

Pytanie 35

Osobom pracującym zdalnie, dostęp do serwera znajdującego się w prywatnej sieci za pośrednictwem publicznej infrastruktury, jaką jest Internet, umożliwia

A. FTP
B. SSH
C. Telnet
D. VPN
Wybór FTP, SSH czy Telnet jako odpowiedzi na pytanie o zdalny dostęp do serwera w sieci prywatnej nie jest właściwy, ponieważ te technologie mają różne zastosowania i ograniczenia. FTP, czyli File Transfer Protocol, służy głównie do przesyłania plików, ale nie zapewnia szyfrowania, co czyni go nieodpowiednim do bezpiecznego dostępu do zasobów sieciowych. W przypadku przesyłania danych wrażliwych, stosowanie FTP może prowadzić do poważnych naruszeń bezpieczeństwa. SSH (Secure Shell) to protokół, który umożliwia bezpieczne logowanie do zdalnych systemów i zarządzanie nimi. Chociaż SSH oferuje silne szyfrowanie, jego podstawowym celem jest zdalne wykonywanie poleceń, a nie zapewnienie pełnego dostępu do sieci prywatnej. Telnet, z kolei, jest protokołem znanym z braku zabezpieczeń – dane przesyłane przez Telnet są przesyłane w postaci niezaszyfrowanej, co czyni go nieodpowiednim do pracy w środowiskach, gdzie bezpieczeństwo danych ma kluczowe znaczenie. Błędem jest zakładanie, że te protokoły mogą pełnić rolę zabezpieczenia dostępu do sieci prywatnej w sposób, w jaki robi to VPN, co skutkuje narażeniem danych na ataki i utratę poufności.

Pytanie 36

Jaką topologię fizyczną sieci komputerowej przedstawia rysunek?

Ilustracja do pytania
A. Podwójnego pierścienia
B. Siatki
C. Magistrali
D. Gwiazdy rozszerzonej
Topologia podwójnego pierścienia jest zaawansowaną formą sieci pierścieniowej w której dwa pierścienie pozwalają na redundancję i większą niezawodność przesyłania danych. W tej topologii każde urządzenie jest połączone z dwoma sąsiadującymi, co zapewnia alternatywną ścieżkę w przypadku awarii jednego z połączeń. Stosowana jest w środowiskach krytycznych gdzie nieprzerwana komunikacja ma kluczowe znaczenie na przykład w systemach komunikacyjnych miast lub dużych przedsiębiorstwach. Jest to zgodne ze standardami takimi jak SONET i FDDI które zapewniają wysoką przepustowość i bezpieczeństwo danych. W praktyce topologia ta minimalizuje ryzyko przestojów i utraty danych dzięki czemu jest idealnym rozwiązaniem dla infrastruktury IT gdzie niezawodność jest priorytetem. Dzięki podwójnej ścieżce możliwe jest szybkie przełączenie w razie awarii co czyni ją efektywną opcją dla rozległych sieci korporacyjnych i przemysłowych.

Pytanie 37

Komputer prawdopodobnie jest zainfekowany wirusem typu boot. Jakie działanie umożliwi usunięcie wirusa w najbardziej nieinwazyjny sposób dla systemu operacyjnego?

A. Uruchomienie systemu w trybie awaryjnym
B. Przeskanowanie programem antywirusowym z bootowalnego nośnika
C. Ponowne zainstalowanie systemu operacyjnego
D. Restart systemu
Przeskanowanie systemu operacyjnego programem antywirusowym z bootowalnego nośnika jest najskuteczniejszym i najmniej inwazyjnym sposobem na usunięcie boot wirusa. Taki proces polega na uruchomieniu komputera z nośnika, takiego jak USB lub płyta CD/DVD, na którym zainstalowane jest oprogramowanie antywirusowe. Dzięki temu system operacyjny nie jest w pełni załadowany, co ogranicza działania wirusa i umożliwia przeprowadzenie skutecznego skanowania. W praktyce, wiele renomowanych programów antywirusowych oferuje bootowalne wersje, które pozwalają na przeprowadzenie dokładnego skanowania dysków twardych w celu wykrycia i usunięcia infekcji. Warto również dodać, że takie skanowanie powinno być regularnie wykonywane, aby minimalizować ryzyko ponownej infekcji. W kontekście standardów branżowych, wiele organizacji zaleca wykorzystanie bootowalnych narzędzi do diagnostyki systemów, co jest zgodne z najlepszymi praktykami w zakresie zarządzania bezpieczeństwem IT.

Pytanie 38

Strategia zapisywania kopii zapasowych ukazana na diagramie określana jest mianem

Ilustracja do pytania
A. wieża Hanoi
B. uproszczony GFS
C. dziadek-ojciec-syn
D. round-robin
Round-robin jest popularnym podejściem stosowanym w rozdzielaniu zasobów w systemach komputerowych, jednak jego zastosowanie w kontekście kopii zapasowych może prowadzić do problemów związanych z brakiem odpowiedniej retencji danych. Round-robin nie zapewnia długoterminowego przechowywania kopii w sposób, który umożliwiałby odzyskanie danych z różnych punktów w czasie. Z kolei uproszczony GFS (Grandfather-Father-Son) jest strategią, która zakłada rotację nośników w cyklach dziennych, tygodniowych i miesięcznych, co jest bardziej skomplikowane niż metoda wieży Hanoi, ale nie oferuje tej samej efektywności w kontekście optymalizacji użycia nośników i różnorodności w punktach przywracania. Najbardziej znaną i często myloną strategią jest jednak dziadek-ojciec-syn, która również opiera się na rotacji nośników, ale w bardziej hierarchicznej strukturze. Chociaż ta metoda zapewnia solidną retencję, nie jest tak matematycznie elegancka i wydajna jak wieża Hanoi, która minimalizuje liczbę wymaganych nośników przy jednoczesnym maksymalizowaniu punktów przywracania. Błędne przypisanie strategii round-robin do przechowywania danych jest typowym błędem wynikającym z niepełnego zrozumienia różnic między optymalizacją zasobów a retencją danych. Ważne jest, aby wybierając strategię kopii zapasowych, dokładnie rozważyć specyficzne potrzeby organizacji pod kątem retencji i efektywności, co pozwala uniknąć pomyłek i zapewnia zgodność z najlepszymi praktykami branżowymi w ochronie danych.

Pytanie 39

Na którym obrazku przedstawiono panel krosowniczy?

Ilustracja do pytania
A. rys. A
B. rys. C
C. rys. B
D. rys. D
Rysunek A przedstawia organizator kabli, który służy do porządkowania przewodów i utrzymywania porządku w szafach serwerowych. Choć jest istotny dla estetyki i porządku, nie pełni funkcji panelu krosowniczego, czyli nie zarządza połączeniami sieciowymi. Rysunek C ukazuje przełącznik sieciowy, który jest aktywnym elementem sieciowym używanym do przełączania sygnałów między różnymi urządzeniami w sieci. Jego funkcja różni się znacząco od panelu krosowniczego, gdyż przełącznik aktywnie zarządza ruchem sieciowym, podczas gdy panel krosowniczy jedynie organizuje połączenia fizyczne. Rysunek D prezentuje router, kluczowy dla kierowania ruchem w sieci i zapewniania łączności pomiędzy różnymi sieciami. Routery mają zaawansowane funkcje związane z analizą i zarządzaniem pakietami danych, co nie jest celem panelu krosowniczego. Wybór niewłaściwego elementu jako panelu krosowniczego może wynikać z braku zrozumienia ich specyficznych ról w infrastrukturze sieciowej. Panel krosowniczy jest urządzeniem pasywnym i służy przede wszystkim do uporządkowania i łatwej rekonfiguracji połączeń kablowych, podczas gdy pozostałe urządzenia pełnią funkcje związane z aktywnym zarządzaniem siecią i przesyłem danych. Zrozumienie tych różnic jest kluczowe w projektowaniu oraz utrzymaniu nowoczesnych, wydajnych systemów IT.

Pytanie 40

Użytkownik systemu Windows doświadcza komunikatów o niewystarczającej pamięci wirtualnej. Jak można rozwiązać ten problem?

A. zwiększenie pamięci RAM
B. powiększenie rozmiaru pliku virtualfile.sys
C. rozbudowa pamięci cache procesora
D. dodanie kolejnego dysku
Zwiększenie rozmiaru pliku virtualfile.sys może się wydawać mądrym pomysłem, ale tak naprawdę to tylko częściowo pomoże z pamięcią wirtualną, a na fizyczną pamięć RAM to nie ma większego wpływu. Powiększenie pliku wymiany może pomóc, gdy RAM-u brakuje, ale to nie rozwiązuje całego problemu. Windows korzysta z pliku wymiany, jak RAM jest pełen, ale prace na dysku twardym są dużo wolniejsze, co przecież obniża wydajność. Poza tym, jak podłączysz dodatkowy dysk, to może i zwiększysz miejsce na plik wymiany, ale na fizyczną pamięć RAM to nie wpłynie. Nawet dodatkowa pamięć cache procesora nie załatwi sprawy z pamięcią wirtualną, bo cache jest do trzymania danych blisko CPU, a to nie przyspiesza samej pamięci. Myślę, że zwiększenie RAM-u to najważniejszy krok przy zarządzaniu pamięcią systemu, a inne metody mogą tylko ukrywać objawy problemu, ale go nie rozwiążą. Często ludzie mylą RAM z pamięcią wirtualną, co prowadzi do złych decyzji o powiększaniu plików wymiany czy dokupowaniu dysków, nie rozumiejąc, że kluczowa jest sama fizyczna pamięć operacyjna.