Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 7 maja 2025 13:15
  • Data zakończenia: 7 maja 2025 13:36

Egzamin zdany!

Wynik: 36/40 punktów (90,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Oznaczenie rur miedzianych symbolem R 290 wskazuje na ich stan

A. miękki
B. półtwardy
C. twardy
D. rekrystalizowany
Odpowiedź "twardy" jest poprawna, ponieważ oznaczenie rur miedzianych R 290 wskazuje na ich stan po procesie obróbki cieplnej, który prowadzi do uzyskania twardości. Rury miedziane twarde są powszechnie używane w instalacjach hydraulicznych i chłodniczych, gdzie wymagana jest wysoka wytrzymałość na ciśnienie oraz odporność na deformacje mechaniczne. Przykłady zastosowań obejmują systemy klimatyzacyjne oraz instalacje gazowe, gdzie niezawodność i trwałość są kluczowe. W standardach branżowych, takich jak PN-EN 1057, klasyfikacja rur miedzianych dzieli je na różne stany, w tym twardy, co pozwala na dobór odpowiedniego materiału do specyficznych zastosowań. Dodatkowo, twarde rury miedziane można łączyć z innymi elementami instalacji za pomocą lutowania, co zapewnia hermetyczność połączeń oraz długotrwałą eksploatację.

Pytanie 2

W porowatych skałach o niskiej wilgotności znajdują się zasoby zmagazynowanej energii

A. petrotermalnej
B. nieodnawialnej
C. hydrotermalnej
D. konwencjonalnie nieodnawialnej
Odpowiedź 'petrotermicznej' jest jak najbardziej trafna, bo chodzi o energię, która jest przechowywana w suchych skałach z porami, a te często mają złoża węglowodorów, takich jak ropa czy gaz. W petrofizyce bada się, jakie właściwości mają te skały, a ich porowatość i przepuszczalność to kluczowe rzeczy, które wpływają na wydobycie tych surowców. Jeśli mówimy o wydobyciu, to istotne jest, żeby rozumieć, jakie są warunki geologiczne i właściwości skał, bo to pomaga w projektowaniu odwiertów i systemów wydobywczych. Dobrym przykładem może być szczelinowanie hydrauliczne, które znacznie zwiększa możliwości wydobycia ropy i gazu z miejsc, gdzie jest ciężej dotrzeć. Standardy jak te od SPE (Society of Petroleum Engineers) podkreślają, jak ważne są badania geologiczne i technologia w ocenie tego, co możemy wydobyć, co w pełni potwierdza sens tej odpowiedzi o energii petrotermicznej.

Pytanie 3

Który z przewodów ma oznaczenie ALY?

A. Miedziany, z żyłą wielodrutową i izolacją polietylenową
B. Aluminiowy, z żyłą wielodrutową i izolacją polwinitową
C. Miedziany, z żyłą jednodrutową i izolacją polwinitową
D. Aluminiowy, z żyłą jednodrutową i izolacją polietylenową
Odpowiedź 'Aluminiowy, o żyle wielodrutowej i izolacji polwinitowej' jest prawidłowa, ponieważ przewody oznaczone jako ALY są wykonane z aluminium i charakteryzują się konstrukcją wielodrutową, co zapewnia lepszą elastyczność oraz wytrzymałość mechaniczną. Przewody aluminiowe, w porównaniu do miedzianych, są lżejsze i tańsze, co sprawia, że są często wykorzystywane w instalacjach elektrycznych, zwłaszcza w energetyce oraz w dużych obiektach przemysłowych. Izolacja polwinitowa (PVC) zapewnia dobrą odporność na wilgoć i czynniki chemiczne, co jest kluczowe w zastosowaniach zewnętrznych. Przewody ALY są powszechnie stosowane w instalacjach przesyłowych i rozdzielczych, gdzie wymagana jest wysoka wydajność przy jednoczesnym ograniczeniu kosztów. Warto również zwrócić uwagę na normy, takie jak PN-EN 50525, które regulują wymagania dla przewodów elektrycznych, w tym dla przewodów aluminiowych. Dzięki swoim właściwościom, przewody ALY są idealnym wyborem w wielu aplikacjach elektrycznych, co potwierdzają liczne praktyki branżowe.

Pytanie 4

W jaki sposób zmienia się efektywność (współczynnik efektywności) pompy ciepła w miarę podnoszenia się temperatury dolnego źródła?

A. Maleje
B. Pozostaje taka sama
C. Na początku rośnie, a potem maleje
D. Rośnie
Wzrost temperatury dolnego źródła w pompie ciepła prowadzi do zwiększenia jej sprawności, co jest określane współczynnikiem wydajności (COP). Gdy dolne źródło, takie jak grunt czy woda, osiąga wyższą temperaturę, różnica temperatur pomiędzy dolnym a górnym źródłem ciepła maleje, co sprawia, że proces wymiany ciepła staje się bardziej efektywny. Przykładowo, w systemach ogrzewania opartych na pompach ciepła, efektywność urządzenia wzrasta, gdy zewnętrzna temperatura wody gruntowej wzrasta, co może być szczególnie istotne w chłodniejszych miesiącach. W praktyce, dla optymalizacji działania pomp ciepła, zaleca się stosowanie systemów gruntowych, które mogą utrzymać stałą temperaturę, a tym samym zapewnić wyższą sprawność. Dobrą praktyką w branży jest regularne monitorowanie i dostosowywanie parametrów pracy pompy ciepła, aby maksymalizować jej wydajność oraz oszczędności energetyczne.

Pytanie 5

W instalacji grzewczej, jaki element kontroluje pracę sterownik solarny?

A. pompy obiegowej ciepłej wody użytkowej
B. pompy solarnej
C. pompy obiegowej centralnego ogrzewania
D. zaworu zabezpieczającego
Sterownik solarny w instalacji grzewczej ma za zadanie zarządzać pracą pompy solarnej, co jest kluczowe dla efektywnego wykorzystywania energii słonecznej. Jego głównym celem jest optymalne wykorzystanie ciepła generowanego przez kolektory słoneczne. Gdy temperatura czynnika grzewczego w kolektorach przekracza określoną wartość, sterownik uruchamia pompę solarną, co pozwala na przesyłanie ciepła do zbiornika buforowego lub do instalacji grzewczej budynku. Przykładem praktycznego zastosowania może być system ogrzewania wody użytkowej, gdzie ciepło ze słońca jest efektywnie wykorzystane do podgrzewania wody, co redukuje koszty energii oraz wpływ na środowisko. Zgodnie z dobrymi praktykami branżowymi, zastosowanie automatyki w instalacjach solarnych znacząco zwiększa ich wydajność, minimalizując straty energii oraz maksymalizując korzyści ekonomiczne i ekologiczne.

Pytanie 6

Podczas dłuższej nieobecności mieszkańców budynku jednorodzinnego występuje brak odbioru energii cieplnej z kolektora słonecznego, zatem na sterowniku systemu solarnego należy ustawić funkcję trybu

A. chłodzenia pasywnego
B. monowalentnego
C. urlopowego
D. grzewczego
Ustawienie trybu urlopowego na sterowniku solarnym jest kluczowe w sytuacji, gdy użytkownicy budynku jednorodzinnego są nieobecni przez dłuższy czas. Tryb urlopowy ma na celu minimalizację strat energetycznych oraz ochronę systemu przed ewentualnymi uszkodzeniami. W tym trybie system solarny ogranicza pracę pomp i innych komponentów, co pozwala zaoszczędzić energię, a jednocześnie chronić instalację przed przegrzaniem, gdy odbiór ciepła z zasobnika jest niewystarczający. Przykładem zastosowania trybu urlopowego może być sytuacja, gdy właściciele domu wyjeżdżają na wakacje; w tym czasie, aby uniknąć przegrzania lub zamarznięcia instalacji, ustawienie trybu urlopowego zapewnia, że system działa w trybie oszczędzania energii. Dobrą praktyką jest zapoznać się z instrukcją obsługi urządzenia oraz regularnie kontrolować, czy tryby pracy są odpowiednio ustawione w zależności od aktualnej sytuacji. W kontekście standardów, wiele producentów rekomenduje użycie trybu urlopowego, aby efektywnie zarządzać energią i minimalizować ryzyko awarii.

Pytanie 7

Jaką wartość ma 1 roboczogodzina przy montażu 1 szt. kolektora słonecznego, jeśli koszt robocizny za zamontowanie 10 kolektorów słonecznych wynosi 5 000,00 zł, a ustalona stawka za roboczogodzinę to 25,00 zł?

A. 20 r-g/szt.
B. 1000 r-g/szt.
C. 500 r-g/szt.
D. 100 r-g/szt.
To jest 20 roboczogodzin na montaż jednego kolektora słonecznego. Żeby to obliczyć, musimy na początku ustalić, ile czasu zajmie nam montaż 10 kolektorów. Mamy koszt robocizny na poziomie 5000 zł, a stawka za roboczogodzinę to 25 zł. Jak podzielimy te 5000 zł przez 25 zł za godzinę, dostajemy 200 roboczogodzin. Potem dzielimy te 200 roboczogodzin przez 10 kolektorów, co daje nam 20 roboczogodzin na jeden kolektor. Ważne, żeby zrozumieć, jak to działa, bo w zarządzaniu projektami budowlanymi i tworzeniu kosztorysów precyzyjne obliczenia naprawdę mają znaczenie. Dzięki nim lepiej planujemy zasoby i harmonogramy pracy, co jest naprawdę istotne w tej branży.

Pytanie 8

Co oznacza przewód o symbolu YDY 2×1,5?

A. okrągły o średnicy żyły 3,0 mm², każda żyła miedziana w formie drutu jednożyłowego
B. okrągły dwużyłowy o średnicy żyły 1,5 mm², przy czym każda żyła jest miedziana i ma postać drutu jednożyłowego
C. płaski trójżyłowy o średnicy żyły 1,0 mm², gdzie każda żyła jest miedziana i ma formę drutu jednożyłowego
D. o średnicy żyły 1,5 mm² w postaci linek złożonych z wielu cienkich drucików miedzianych
Odpowiedź "okrągły dwużyłowy o przekroju żyły 1,5 mm², każda żyła miedziana w postaci drutu jednożyłowego" jest poprawna, ponieważ oznaczenie "YDY 2×1,5" dokładnie opisuje specyfikę przewodu. W tym przypadku, litera "Y" informuje o rodzaju izolacji, która jest wykonana z PVC, co jest powszechnie stosowane w przewodach elektrycznych ze względu na swoje właściwości dielektryczne oraz odporność na działanie różnych czynników atmosferycznych. Element "D" w oznaczeniu wskazuje na przewód dwużyłowy, co oznacza, że zawiera dwie żyły, co jest standardowym rozwiązaniem w instalacjach elektrycznych jedno- i trójfazowych. Przekrój "1,5 mm²" oznacza, że każda żyła ma przekrój 1,5 mm², co jest powszechnie stosowane w instalacjach o średnim obciążeniu, takich jak oświetlenie czy gniazda elektryczne. Użycie drutu jednożyłowego zamiast linki ma swoje uzasadnienie w łatwości instalacji i wygodzie w wielu zastosowaniach. W praktyce przewody YDY 2×1,5 są szeroko stosowane w budownictwie, co czyni je kluczowym elementem w projektowaniu instalacji elektrycznych według norm PN-IEC 60364.

Pytanie 9

Jakie jest zadanie krat wlotowych w hydroelektrowni?

A. zabezpieczenie turbiny przed zanieczyszczeniami
B. kontrola strumienia wody wpływającego do turbiny
C. zatrzymanie przepływu wody do turbiny
D. obniżenie poziomu wody w turbinie
Kraty wlotowe w elektrowni wodnej pełnią kluczową rolę w ochronie turbiny przed zanieczyszczeniami, które mogą wpływać na jej wydajność i trwałość. Te urządzenia filtracyjne zatrzymują różnego rodzaju zanieczyszczenia, takie jak piasek, liście czy inne obiekty, które mogłyby uszkodzić wirnik turbiny lub obniżyć jej efektywność. Ochrona turbiny przed zanieczyszczeniami jest zgodna z najlepszymi praktykami w branży hydroenergetycznej, gdzie dbałość o komponenty systemów energetycznych ma kluczowe znaczenie dla ich długowieczności. W praktyce, skuteczna filtracja wlotowa pozwala na minimalizację kosztów konserwacji oraz zwiększenie niezawodności operacyjnej elektrowni. Warto zauważyć, że stosowanie krat wlotowych jest standardem w projektowaniu elektrowni, co jest podkreślone w dokumentach technicznych i normach branżowych, takich jak normy ISO dotyczące efektywności energetycznej oraz ochrony środowiska. Dzięki odpowiednim kratkom wlotowym, elektrownie są w stanie działać z maksymalną wydajnością, co przekłada się na wyższą produkcję energii oraz mniejsze straty eksploatacyjne.

Pytanie 10

System centralnego ogrzewania z pompą ciepła, która wykorzystuje ciepło z gruntu jako jedyne źródło ciepła, określa się mianem układu

A. kombinowanym
B. biwalentnym
C. monowalentnym
D. ambiwalentnym
Instalacja centralnego ogrzewania z pompą ciepła, która korzysta wyłącznie z energii geotermalnej, nazywana jest układem monowalentnym. Oznacza to, że system ten jako jedyne źródło ciepła zaspokaja potrzeby grzewcze budynku, co jest szczególnie korzystne w kontekście efektywności energetycznej. W takich systemach pompa ciepła pozyskuje ciepło z gruntu, co pozwala na wykorzystanie odnawialnych źródeł energii. Przykłady zastosowania to domy jednorodzinne, które mogą korzystać z gruntowych wymienników ciepła, jak kolektory poziome czy pionowe sondy geotermalne. Warto zaznaczyć, że projektowanie i instalacja takich systemów powinny opierać się na normach, takich jak PN-EN 14511, które regulują klasyfikację pomp ciepła oraz ich wydajność. W praktyce, układy monowalentne mogą wykazywać wysoką efektywność i przyczyniać się do znacznych oszczędności energii oraz redukcji emisji CO2, co jest zgodne z nowoczesnymi trendami w budownictwie ekologicznym.

Pytanie 11

Do podłączenia paneli fotowoltaicznych o mocy 135 W do regulatora ładowania powinno się zastosować przewód elektryczny

A. YAKY 3x4 mm2
B. LgY 4 mm2
C. OMY 3x1,5 mm2
D. DYt 2x4 mm2
Wybór przewodu LgY 4 mm2 do połączenia paneli fotowoltaicznych o mocy 135 W z regulatorem ładowania jest zasługujący na uwagę ze względu na jego właściwości elektryczne i mechaniczne. Przewód LgY charakteryzuje się wysoką elastycznością i odpornością na działanie różnych czynników atmosferycznych, co czyni go idealnym wyborem do zastosowań zewnętrznych, takich jak instalacje fotowoltaiczne. Dzięki średnicy 4 mm2, przewód ten jest w stanie zapewnić odpowiedni przepływ prądu, co jest kluczowe dla efektywności systemu. W praktyce, przewody o większym przekroju, jak LgY 4 mm2, są w stanie zredukować straty energii oraz zwiększyć niezawodność połączeń. Użycie przewodu zgodnego z normami, takimi jak PN-EN 60228, jest niezbędne, aby zapewnić bezpieczeństwo i długotrwałe działanie instalacji. Ponadto, zastosowanie przewodów o odpowiedniej klasie ochrony IP zwiększa bezpieczeństwo całego systemu, co jest kluczowe w kontekście instalacji w zmiennych warunkach atmosferycznych i zapewnienia długotrwałej wydajności.

Pytanie 12

Jaką wartość odpowiada 3,3 MPa?

A. 33 kPa
B. 33 000 Pa
C. 33 bar
D. 3,3 bar
Wartość 3,3 MPa rzeczywiście odpowiada 33 barom, ponieważ przeliczenie między tymi jednostkami opiera się na standardowym przeliczniku, w którym 1 MPa jest równy 10 barom. Dlatego aby uzyskać wartość w barach, należy pomnożyć ilość megapaskali przez 10. W praktyce, znajomość tych jednostek jest niezbędna w różnych dziedzinach inżynierii, szczególnie w hydraulice i pneumatyce, gdzie ciśnienie odgrywa kluczową rolę. W zastosowaniach przemysłowych, takich jak systemy hydrauliczne, ważne jest, aby być w stanie szybko i precyzyjnie przeliczać wartości ciśnienia. Wartości ciśnienia mogą być wyrażane w różnych jednostkach, a ich poprawne konwertowanie jest istotne dla utrzymania bezpieczeństwa i efektywności systemów. Ponadto, zgodność z normami międzynarodowymi oraz zrozumienie jednostek SI (Systemu Jednostek Międzynarodowych) jest kluczowe w każdej dziedzinie techniki, co podkreśla znaczenie znajomości jednostek ciśnienia.

Pytanie 13

Jaka jest sprawność ogniwa fotowoltaicznego z krzemu monokrystalicznego, które jest produkowane masowo?

A. 27 do 32%
B. 14 do 17%
C. 23 do 27%
D. 5 do 9%
Wartości sprawności ogniw fotowoltaicznych z krzemu monokrystalicznego, które wskazują na zakresy 27 do 32% lub 23 do 27%, są w rzeczywistości nierealistyczne w kontekście masowej produkcji. Tego rodzaju efektywność jest osiągalna jedynie w warunkach laboratoryjnych, gdzie ogniwa mogą być optymalizowane w sposób, który nie jest praktycznie możliwy w standardowych procesach produkcyjnych. Z kolei przedziały 5 do 9% oraz 14 do 17% nie uwzględniają rzeczywistych osiągnięć technologicznych w produkcji ogniw. Ogniwa o sprawności 5 do 9% są typowe dla technologii amorficznego krzemu, które charakteryzują się znacznie niższą efektywnością i są stosowane w specyficznych zastosowaniach, takich jak zasilanie małych urządzeń elektronicznych. Pomijając często stosowane normy branżowe oraz rzeczywiste wyniki naniesione w badaniach naukowych, takie rozumowanie prowadzi do błędnych wniosków. Aby prawidłowo ocenić efektywność ogniw, kluczowe jest zrozumienie różnic pomiędzy różnymi typami ogniw, ich strukturą oraz zastosowaniem. Błąd w postrzeganiu sprawności ogniw fotowoltaicznych często wynika z nieznajomości technologii oraz innowacji, które w ostatnich latach znacząco wpłynęły na rozwój branży energii odnawialnej. W rzeczywistości, standardowe ogniwa krzemowe, zwłaszcza monokrystaliczne, osiągają sprawność w przedziale do 20% w zastosowaniach komercyjnych, a osiągające więcej niż 20% efektywności należy traktować jako wyjątek, często związany z bardzo zaawansowanymi technologiami produkcji oraz wysokimi kosztami.

Pytanie 14

Dla zapewnienia maksymalnej rocznej wydajności instalacji c.w.u. w Polsce, kąt nachylenia kolektorów słonecznych powinien znajdować się w zakresie

A. 30° ÷ 50°
B. 10° ÷ 30°
C. 70° ÷ 90°
D. 50° ÷ 70°
Odpowiedź 30° ÷ 50° jest prawidłowa, ponieważ optymalne nachylenie kolektorów słonecznych w Polsce powinno być dostosowane do średniej szerokości geograficznej kraju, co sprzyja maksymalnej efektywności całorocznej instalacji ciepłej wody użytkowej (c.w.u.). W tym zakresie nachylenia kolektory mogą najlepiej zbierać energię słoneczną, przede wszystkim w miesiącach zimowych, kiedy słońce znajduje się nisko na niebie. Praktyczne przykłady zastosowania tego nachylenia można zaobserwować w standardowych instalacjach solarnych, które są projektowane zgodnie z normą PN-EN 12975 dotyczącą kolektorów słonecznych. Przy zastosowaniu nachylenia w tym zakresie, użytkownicy mogą osiągnąć znaczne oszczędności na kosztach energii, co jest zgodne z zasadami zrównoważonego rozwoju oraz efektywności energetycznej, promowanymi przez wiele organizacji zajmujących się odnawialnymi źródłami energii. Warto również zaznaczyć, że eksperci zalecają regularne monitorowanie wydajności instalacji oraz dostosowywanie nachylenia w zależności od lokalnych warunków klimatycznych oraz zmieniających się pór roku.

Pytanie 15

Jakie cechy posiada słoma jako biopaliwo?

A. niska kaloryczność wynosząca około 15 MJ/kg
B. znaczna emisja CO2 do atmosfery podczas spalania
C. wysoka odporność na wilgoć
D. duża kaloryczność wynosząca około 25 MJ/kg
Słoma jako biopaliwo wykazuje niską kaloryczność, oscylującą wokół 15 MJ/kg, co czyni ją mniej efektywnym źródłem energii w porównaniu do innych biopaliw, takich jak drewno czy pelet, które mogą osiągać wartość do 25 MJ/kg. To ograniczenie kaloryczności sprawia, że jej użycie w instalacjach energetycznych wymaga dostosowania technologii spalania oraz efektywnego zarządzania surowcem. Przykładowo, w piecach przemysłowych z odpowiednimi systemami odzysku ciepła, słoma może być wykorzystana w procesach produkcyjnych, takich jak suszenie czy ogrzewanie w zakładach przetwórstwa rolno-spożywczego. Zgodnie z normami dotyczącymi biopaliw, kluczowe jest także uwzględnienie aspektów ekologicznych, takich jak zmniejszenie emisji CO2 w porównaniu do paliw kopalnych, co czyni słomę atrakcyjnym rozwiązaniem w kontekście zrównoważonego rozwoju i ochrony środowiska. W praktyce, wybór słomy jako paliwa powinien być poprzedzony szczegółową analizą lokalnych warunków oraz dostępności surowca, co jest zgodne z dobrą praktyką branżową.

Pytanie 16

Na placu budowy nie można przenosić kolektorów słonecznych

A. w układzie poziomym
B. za króćce przyłączeniowe
C. w układzie pionowym
D. łapiąc za obudowę kolektora
Odpowiedź "za króćce przyłączeniowe" jest poprawna, ponieważ zapewnia najbezpieczniejszy sposób transportu kolektorów słonecznych, minimalizując ryzyko ich uszkodzenia. Króćce przyłączeniowe to miejsca, w których kolektory są podłączane do systemu hydraulicznego, a ich chwytanie w trakcie przenoszenia pozwala na utrzymanie stabilności oraz uniknięcie nadmiernego obciążenia na delikatne elementy strukturalne. W praktyce, stosując tę metodę, operatorzy mogą uniknąć uszkodzenia paneli słonecznych, które mogą być wrażliwe na nacisk i uderzenia. Dobrą praktyką jest także korzystanie z odpowiednich sprzętów transportowych, takich jak wózki o regulowanej wysokości, które umożliwiają przenoszenie kolektorów w kontrolowanych warunkach. Warto również pamiętać, że podczas przenoszenia kolektorów nie powinno się ich obracać ani przechylać, co mogłoby prowadzić do uszkodzenia wewnętrznych komponentów. Rekomendacje te są zgodne z normami branżowymi, które stawiają na bezpieczeństwo i skuteczność w pracy z urządzeniami solarnymi.

Pytanie 17

W pompach ciepła z bezpośrednim odparowaniem, jakie zadanie pełni wymiennik gruntowy?

A. skraplacza
B. parownika
C. zaworu rozprężnego
D. zaworu odcinającego
W pompach ciepła z bezpośrednim odparowaniem, wymiennik gruntowy pełni rolę parownika, co oznacza, że absorbuje ciepło z gruntu, które następnie jest wykorzystywane do odparowania czynnika chłodniczego. Proces ten umożliwia efektywne ogrzewanie budynków w zimie oraz chłodzenie latem. W praktyce, wymienniki gruntowe mogą być wykonane w różnych konfiguracjach, takich jak pionowe lub poziome kolektory, w zależności od warunków geologicznych i potrzeb energetycznych obiektu. Zastosowanie technologii gruntowych pozwala na wykorzystanie stabilnej temperatury gruntu, co znacząco zwiększa efektywność energetyczną systemu. Standardy branżowe, takie jak normy EN 14511 dotyczące pomp ciepła, podkreślają znaczenie optymalizacji wymienników ciepła, co wpisuje się w działania mające na celu zwiększenie efektywności energetycznej budynków oraz redukcję emisji CO2. W praktycznych zastosowaniach, właściwie zaprojektowany i zainstalowany wymiennik gruntowy może zapewnić znaczące oszczędności w kosztach ogrzewania i chłodzenia, a także przyczynić się do zrównoważonego rozwoju poprzez wykorzystanie odnawialnych źródeł energii.

Pytanie 18

Montaż stelaża pod panel fotowoltaiczny na betonowej nawierzchni wykonuje się przy pomocy młota udarowo-obrotowego z wiertłami oraz

A. klucza płaskiego i nastawnego
B. zaciskarki do profili metalowych
C. zgrzewarki punktowej
D. spawarki elektrycznej
Klucz płaski i nastawny to podstawowe narzędzia, które są niezbędne przy montażu stelaża pod panele fotowoltaiczne na betonowej powierzchni. Użycie klucza płaskiego pozwala na skuteczne dokręcanie nakrętek i śrub, co jest kluczowe dla zapewnienia stabilności stelaża. Klucz nastawny, z kolei, umożliwia łatwe dopasowanie do różnych rozmiarów elementów złącznych, co pozwala na szybszą i bardziej efektywną pracę. W praktyce, podczas montażu stelaża, po wcześniejszym wywierceniu otworów w betonie za pomocą młota udarowo-obrotowego, klucz płaski i nastawny są używane do mocowania konstrukcji, co zapewnia odpowiednią trwałość i bezpieczeństwo całego systemu. Warto zaznaczyć, że zgodnie z najlepszymi praktykami branżowymi, wszystkie elementy nośne powinny być regularnie kontrolowane pod kątem ich stanu, a także, w miarę możliwości, stosowane powinny być odpowiednie smary, co zwiększa żywotność połączeń.

Pytanie 19

Czym jest mostek termiczny?

A. częścią przegrody budowlanej, w której instalowane jest ogrzewanie ścienne
B. otworem w przegrodzie budowlanej, który prowadzi rury do kolektora
C. przepustem w przegrodzie budowlanej, którym prowadzi się rury do dolnego źródła ciepła
D. elementem przegrody budowlanej, przez który dochodzi do utraty ciepła
Mostek termiczny jest istotnym elementem w konstrukcji przegrody budowlanej, który prowadzi do niepożądanej utraty ciepła. W praktyce oznacza to, że w miejscach, gdzie materiał budowlany ma różne właściwości termiczne, może dojść do powstania mostków, które obniżają efektywność energetyczną budynku. Na przykład, mostki termiczne często występują w miejscach, gdzie materiale budowlanym przechodzą rury, w narożnikach lub na styku różnych materiałów. Zgodnie z normami budowlanymi, takich jak PN-EN ISO 10077, projektanci muszą identyfikować te miejsca i stosować odpowiednie materiały izolacyjne, aby zminimalizować straty ciepła. W praktyce, zastosowanie zaawansowanych technik budowlanych, takich jak termografia, pozwala na lokalizację mostków termicznych, co z kolei umożliwia ich usunięcie lub zredukowanie. Właściwe zarządzanie mostkami termicznymi jest kluczowe dla osiągnięcia wysokiej efektywności energetycznej obiektów budowlanych oraz spełnienia wymogów dotyczących oszczędzania energii.

Pytanie 20

Jakie rodzaje diod chronią przed termicznym uszkodzeniem paneli fotowoltaicznych podłączonych szeregowo?

A. Bocznikujące
B. Blokujące
C. Tunelowe
D. Impulsowe
Diody bocznikujące, znane także jako diody bypass, są kluczowym elementem w systemach fotowoltaicznych, które zapobiegają termicznemu zniszczeniu paneli słonecznych połączonych szeregowo. W przypadku, gdy jeden z paneli jest zacieniony lub uszkodzony, może to prowadzić do efektu hot-spot, gdzie uszkodzony panel generuje ciepło, które może prowadzić do jego degradacji lub całkowitego zniszczenia. Diody bocznikujące działają poprzez 'bypasowanie' prądu wokół uszkodzonego panelu, co pozwala pozostałym panelom na kontynuowanie pracy i generowanie energii. Przykładowo, w typowych instalacjach, diody te są umieszczane równolegle do ogniw w module fotowoltaicznym, co pozwala na efektywne zarządzanie problemami związanymi z różnymi poziomami wydajności ogniw. Zgodnie z najlepszymi praktykami branżowymi, stosowanie diod bocznikujących zwiększa niezawodność systemów PV oraz ich ogólną wydajność, minimalizując ryzyko uszkodzeń termicznych i finansowych strat związanych z koniecznością wymiany uszkodzonych paneli.

Pytanie 21

Jakie ogniwo fotowoltaiczne wykazuje najwyższą efektywność?

A. Monokrystaliczne
B. Hybrydowe
C. Polikrystaliczne
D. Amorficzne
Monokrystaliczne ogniwa fotowoltaiczne, chociaż charakteryzują się wysoką efektywnością, nie osiągają najwyższych sprawności w porównaniu do hybrydowych odpowiedników. Ich budowa polega na wykorzystaniu jednego kryształu krzemu, co ogranicza ich zdolność do absorpcji światła w niekorzystnych warunkach, takich jak chmury czy cień. Z drugiej strony, ogniwa amorficzne zdobijają uznanie za swoją elastyczność i możliwość wielowarstwowych zastosowań, ale ich sprawność w konwersji energii jest znacznie niższa, nie przekraczająca zazwyczaj 10-12%. Polikrystaliczne ogniwa, mimo że są tańsze w produkcji, także nie dorównują sprawnością ogniw hybrydowych. Wiele osób błędnie myśli, że wybór ogniw monokrystalicznych lub polikrystalicznych jest najlepszym rozwiązaniem ze względu na ich popularność, jednakże nie uwzględniają przy tym postępu technologicznego oraz badań nad ogniwami hybrydowymi. W rzeczywistości, wybór odpowiedniego typu ogniwa powinien opierać się na specyficznych potrzebach projektu oraz na warunkach, w jakich będą one używane. Ważne jest, aby przy podejmowaniu decyzji o wyborze technologii fotowoltaicznej, konsultować się z ekspertami oraz kierować się obowiązującymi standardami branżowymi, takimi jak IEC 61730, które opisują wymagania dotyczące bezpieczeństwa i wydajności modułów fotowoltaicznych.

Pytanie 22

Jakie urządzenie jest używane do pomiaru natężenia przepływu czynnika roboczego w słonecznej instalacji grzewczej?

A. rotametr
B. refraktometr
C. manometr
D. higrometr
Rotametr jest przyrządem pomiarowym, który służy do określenia natężenia przepływu cieczy lub gazów w instalacjach przemysłowych, w tym w słonecznych systemach grzewczych. Działa na zasadzie pomiaru przepływu w odpowiednio ukształtowanej rurze, w której porusza się pływak. Wraz ze wzrostem natężenia przepływu pływak unosi się wyżej w rurze, co jest wskaźnikiem przepływu. Rotametry są szeroko stosowane w różnych branżach, w tym w energetyce odnawialnej, gdzie precyzyjny pomiar przepływu czynnika roboczego jest kluczowy dla efektywności systemu. W kontekście instalacji solarnych, rotametry mogą pomóc w optymalizacji wydajności, zapewniając, że odpowiednia ilość medium roboczego przepływa przez kolektory słoneczne, co ma bezpośredni wpływ na efektywność konwersji energii słonecznej na ciepło. Dobrą praktyką jest regularne kalibrowanie rotametrów oraz monitorowanie ich stanu technicznego, aby zapewnić dokładne pomiary i zapobiec ewentualnym awariom systemu.

Pytanie 23

Aby prawidłowo rozliczyć wykonane prace montażowe instalacji CWU w budynku jednorodzinnym, w sytuacji gdy w trakcie ich realizacji nastąpiła zmiana trasy jej przebiegu, konieczne jest przeprowadzenie

A. odbioru międzyoperacyjnego
B. obmiaru projektowanych robót
C. obmiaru powykonawczego
D. geodezyjnej inwentaryzacji powykonawczej
Wybór odbioru międzyoperacyjnego, geodezyjnej inwentaryzacji powykonawczej czy obmiaru projektowanych robót w kontekście montażu instalacji CWU w budynku jednorodzinnym nie jest odpowiedni. Odbiór międzyoperacyjny odnosi się do etapu w procesie budowlanym, w którym kontrolowane są poszczególne etapy prac, ale nie obejmuje szczegółowego pomiaru rzeczywiście wykonanych elementów. Jest to bardziej formalny proces, który nie dostarcza dokładnych danych o zmianach, jakie mogły zajść podczas montażu. Geodezyjna inwentaryzacja powykonawcza, choć również ważna, zazwyczaj dotyczy pomiarów gruntów oraz lokalizacji budynków, a nie precyzyjnego obmiaru instalacji wewnętrznych. Obmiar projektowanych robót koncentruje się na planowanych wymiarach, a nie na rzeczywistych, co w przypadku zmiany trasy instalacji jest niewłaściwe. W praktyce, błędne podejście do obmiaru może prowadzić do pomyłek w ustaleniu kosztów, co jest szczególnie niekorzystne w kontekście budowy, gdzie każde odchylenie od projektu powinno być dokładnie dokumentowane. Wiedza o tym, jakie pomiary są kluczowe na różnych etapach budowy, jest niezbędna dla efektywnego zarządzania projektem oraz jego ostatecznego rozliczenia. Dlatego ważne jest, aby wykonawcy mieli świadomość, jakie podejście jest właściwe w danym kontekście i nie mylić różnych rodzajów obmiarów oraz ich zastosowania.

Pytanie 24

Do struktur piętrzących należy zaliczyć

A. ujęcia wody
B. zapory
C. śluzy
D. przepławki dla ryb
Zapory są kluczowymi budowlami piętrzącymi, które służą do gromadzenia wody w zbiornikach, co umożliwia jej efektywne wykorzystanie w różnych zastosowaniach, takich jak produkcja energii elektrycznej, nawadnianie pól uprawnych oraz regulacja przepływu wód w rzekach. Budowle te są projektowane zgodnie z rygorystycznymi normami inżynieryjnymi, aby zapewnić ich stabilność i bezpieczeństwo. Przykładowo, w Polsce wiele zapór, takich jak zapora w Solinie, odgrywa istotną rolę w zarządzaniu wodami oraz w ochronie przed powodziami. Dobrze zaprojektowane zapory są również istotne dla ochrony ekosystemów wodnych, ponieważ mogą tworzyć siedliska dla wielu gatunków ryb i innych organizmów wodnych. W procesie projektowania zapór uwzględnia się także aspekty związane z ochroną środowiska oraz zrównoważonym rozwojem, co czyni je nie tylko funkcjonalnymi, ale i odpowiedzialnymi ekologicznie obiektami.

Pytanie 25

Jakie elementy należy wykorzystać do montażu panelu fotowoltaicznego na płaskim dachu?

A. stelaż z ram trójkątnych
B. profil wielorowkowy i kołki rozporowe
C. śruby rzymskie
D. profil wielorowkowy oraz kotwy krokwiowe
Stelaż z ram trójkątnych to najodpowiedniejsze rozwiązanie do montażu paneli fotowoltaicznych na dachu płaskim, ponieważ zapewnia stabilność oraz optymalne nachylenie paneli, co ma kluczowe znaczenie dla efektywności ich pracy. Taki system montażowy pozwala na dostosowanie orientacji paneli do kierunku słońca oraz ułatwia odprowadzanie wody deszczowej, co jest istotne w kontekście długoterminowej trwałości instalacji. W praktyce, stelaż z ram trójkątnych można łatwo dostosować do różnych rodzajów dachów, co czyni go uniwersalnym rozwiązaniem. W standardach branżowych, takich jak normy IEC dla systemów fotowoltaicznych, stelaże trójkątne są często rekomendowane ze względu na ich zdolność do minimalizowania obciążeń wiatrowych oraz śniegowych. Dodatkowo, prawidłowy montaż stelaża zapewnia, że panele nie ulegną uszkodzeniu w wyniku ekstremalnych warunków atmosferycznych. Stosując to rozwiązanie, można również skutecznie zmniejszyć ryzyko powstawania podcieków i innych problemów związanych z instalacją.

Pytanie 26

Na podstawie danych zawartych w tabeli dobierz średnicę rury, jeżeli w instalacji solarnej przewidziano montaż 16 kolektorów.

Średnica rury
[mm]
Ilość czynnika w 1 mb rury
[dm³/mb]
Liczba podłączonych
kolektorów
15 x 1,00,131 – 3
18 x 1,00,24 – 6
22 x 1,00,317 – 9
28 x 1,50,4910 – 20
35 x 1,50,821 – 30
42 x 1,51,231 – 40

A. 28 x 1,5
B. 42 x 1,5
C. 35 x 1,5
D. 22 x 1,0
Wybór średnicy rury 28 x 1,5 jest uzasadniony, ponieważ w tabeli przedstawiono zakresy średnic rur, które są odpowiednie dla określonej liczby kolektorów. W przypadku instalacji solarnej z 16 kolektorami, średnica 28 x 1,5 mieści się w przedziale od 10 do 20 kolektorów, co jest zgodne z zaleceniami branżowymi. Użycie rury o tej średnicy zapewnia optymalne przepływy cieczy w systemie, co przekłada się na efektywność całej instalacji. Dobrze dobrana średnica rury jest kluczowa dla minimalizacji strat ciśnienia oraz zapewnienia odpowiedniego transportu ciepła z kolektorów do zbiorników magazynowych. Ponadto, w praktyce, zastosowanie rur o właściwych średnicach pozwala na uniknięcie problemów z hałasem czy drganiami, które mogą wystąpić przy niewłaściwym doborze. Zgodnie z normami branżowymi, dobór średnicy powinien być także oparty na przepływach cieczy oraz ich prędkości, co w tym przypadku zostało spełnione. Dlatego odpowiedź 28 x 1,5 jest nie tylko poprawna, ale również zgodna z najlepszymi praktykami w tej dziedzinie.

Pytanie 27

Jakie są możliwości magazynowania biogazu?

A. zbiorniku niskociśnieniowym
B. zbiorniku wzbiorczym przepływowym
C. zbiorniku pod wysokim ciśnieniem
D. wymienniku ciepła
Zbiorniki niskociśnieniowe są odpowiednim miejscem do magazynowania biogazu, ponieważ są zaprojektowane do przechowywania gazów w warunkach niskiego ciśnienia, co zapewnia ich bezpieczeństwo i efektywność. Biogaz, składający się głównie z metanu i dwutlenku węgla, jest gazem, który podczas przechowywania pod niskim ciśnieniem nie stwarza ryzyka eksplozji, co jest istotne w kontekście bezpieczeństwa. Praktyczne zastosowanie tego typu zbiorników można zauważyć w biogazowniach, gdzie biogaz jest produkowany z odpadów organicznych i następnie gromadzony w zbiornikach niskociśnieniowych, aby mógł być wykorzystany do produkcji energii lub jako surowiec do dalszej obróbki. Ponadto, zgodnie z najlepszymi praktykami, zbiorniki te są często wyposażone w systemy pomiarowe, które umożliwiają monitorowanie ciśnienia i jakości gazu, co jest kluczowe dla efektywnego zarządzania procesami technologii biogazowej. W związku z tym, stosowanie zbiorników niskociśnieniowych w kontekście biogazu jest szeroko rekomendowane przez specjalistów branżowych oraz normy dotyczące magazynowania gazów.

Pytanie 28

Na jakim dokumencie oferent przetargu na montaż instalacji fotowoltaicznej w budynku szkoły opiera swoją propozycję?

A. Plan zagospodarowania przestrzennego
B. Rachunki za energię elektryczną szkoły
C. Specyfikacja istotnych warunków zamówienia
D. Projekt budowlany szkoły
Zrozumienie roli różnych dokumentów w postępowaniu przetargowym jest kluczowe dla prawidłowego przygotowania oferty. Plan zagospodarowania przestrzennego, mimo że jest istotnym dokumentem w kontekście lokalizacji inwestycji, nie jest bezpośrednio związany z wymaganiami technicznymi i organizacyjnymi konkretnego zamówienia. Jego zadaniem jest określenie przeznaczenia terenów oraz zasad ich zagospodarowania, co może być ważne na etapie projektowania, ale nie powinno stanowić podstawy do tworzenia oferty przetargowej. Rachunki za energię elektryczną szkoły mogą dostarczyć informacji o zużyciu energii, lecz nie zawierają one specyfikacji technicznych wymaganych do realizacji montażu instalacji fotowoltaicznej. Projekt budowlany szkoły, choć istotny dla realizacji inwestycji, jest jedynie jednym z wielu dokumentów, które powinny być brane pod uwagę w kontekście wykonania prac. Jest to dokument zawierający plany i rysunki budowlane, ale nie określa szczegółowych warunków zamówienia, które są kluczowe dla oferentów. Najczęstszym błędem myślowym jest przekonanie, że wystarczy posługiwać się jedynie dokumentami związanymi z istniejącą infrastrukturą, zamiast zwrócić uwagę na szczegółowe wymagania zamawiającego, które są jasno określone w SIWZ.

Pytanie 29

W trakcie lutowania rur i złączek miedzianych wykorzystywane jest zjawisko

A. kapilarne
B. kohezji
C. grawitacji
D. kawitacji
Lutowanie złączek i rur miedzianych to całkiem ciekawa sprawa! Używamy tutaj zjawiska kapilarnego, co oznacza, że ciecz potrafi wciągać się w wąskie szczeliny między elementami. Kiedy lutujemy, topnik i stop lutowniczy wypełniają te przerwy, dzięki czemu wszystko mocno się trzyma. To naprawdę ważne, bo dobrze wykonane lutowanie ma wpływ na jakość połączeń i ich wytrzymałość. Przykładem może być sytuacja, gdy zakładamy system wodociągowy – jeżeli lutowanie jest zrobione porządnie, to unikniemy nieprzyjemnych wycieków. Warto pamiętać, żeby starannie przygotować wszystkie powierzchnie, używać odpowiednich topników i dbać o właściwą temperaturę. Takie szczegóły pokazują, jak ważne jest to zjawisko kapilarne w praktyce. W naszej branży, zwłaszcza w budownictwie, standardy jak ISO 9001 podkreślają, jak istotna jest jakość lutowania dla bezpieczeństwa i niezawodności systemów.

Pytanie 30

Które z wymienionych typów ogniw fotowoltaicznych wyróżnia się najwyższą sprawnością?

A. Polikrystaliczne
B. Monokrystaliczne
C. CdTe
D. a-Si
Ogniwa fotowoltaiczne monokrystaliczne rzeczywiście charakteryzują się najwyższą sprawnością w porównaniu do innych typów ogniw. Ich struktura krystaliczna, składająca się z jednego, ciągłego kryształu krzemu, umożliwia lepsze przewodzenie prądu, co bezpośrednio przekłada się na większą efektywność konwersji energii słonecznej na energię elektryczną. Monokrystaliczne ogniwa są w stanie osiągać sprawności rzędu 20-25%, co czyni je najbardziej popularnym wyborem w instalacjach fotowoltaicznych, szczególnie tam, gdzie przestrzeń na panele jest ograniczona. W praktyce, zastosowanie ogniw monokrystalicznych znajduje się w wielu projektach, od domów jednorodzinnych po duże farmy słoneczne, co wskazuje na ich uniwersalność i efektywność. Dodatkowo, z uwagi na ich trwałość, która może wynosić ponad 25 lat, inwestycja w te ogniwa zapewnia długoterminowe korzyści oraz zwrot kosztów. W branży energii odnawialnej monokrystaliczne ogniwa są często rekomendowane jako optymalne rozwiązanie, co potwierdzają standardy jakościowe i certyfikaty produkcyjne.

Pytanie 31

Zestaw solarny składa się z: panelu słonecznego, kontrolera ładowania oraz dwóch akumulatorów połączonych w szereg. Napięcie nominalne każdego akumulatora wynosi 12 V. Aby użyć tego zestawu do zasilania urządzeń w jednofazowej sieci elektrycznej o napięciu 230 V, należy połączyć wyjście akumulatorów z

A. prostownikiem dwupołówkowym 230 V
B. przetwornicą 12 V DC/230 V AC
C. instalacją w budynku o napięciu 230 V
D. przetwornicą 24 V DC/230 V AC
Przetwornica 24 V DC/230 V AC to odpowiednie urządzenie do konwersji napięcia z akumulatorów na poziom wymagany do zasilania urządzeń w sieci jednofazowej. W opisanym przypadku, dwa akumulatory o napięciu 12 V połączone szeregowo tworzą system o napięciu 24 V. Przetwornica umożliwia przekształcenie tego napięcia stałego (DC) na napięcie zmienne (AC) o standardowej wartości 230 V, co jest niezbędne do zasilania większości typowych urządzeń elektrycznych. Przykładowe zastosowanie to zasilanie sprzętu AGD, oświetlenia czy elektroniki w domach, które nie są podłączone do sieci elektroenergetycznej. Dobrą praktyką jest stosowanie przetwornic o odpowiedniej mocy, co zapewnia stabilność pracy i efektywność energetyczną. Warto również zaznaczyć, że nowoczesne przetwornice często posiadają dodatkowe funkcje, takie jak monitoring stanu akumulatora, co pozwala na lepsze zarządzanie energią i wydłużenie żywotności systemu.

Pytanie 32

Jeśli całkowity opór cieplny przegrody wynosi 4,00 (m2-K)/W, to jaką wartość ma współczynnik przenikania ciepła?

A. 0,10 W/(m2-K)
B. 0,35 W/(m2-K)
C. 0,25 W/(m2-K)
D. 0,50 W/(m2K)
Współczynnik przenikania ciepła, oznaczany jako U, jest odwrotnością całkowitego oporu cieplnego R przegrody. Całkowity opór cieplny to suma oporów poszczególnych warstw materiałów budowlanych. Wzór na obliczenie współczynnika przenikania ciepła przedstawia się jako U = 1/R. W tym przypadku, mając całkowity opór cieplny R równy 4,00 (m2-K)/W, obliczamy U jako U = 1/4,00 = 0,25 W/(m2-K). W praktyce oznacza to, że przez każdy metr kwadratowy przegrody o tym oporze cieplnym przepływa 0,25 wata ciepła przy różnicy temperatur wynoszącej 1 K. Wartość współczynnika U ma istotne znaczenie w kontekście projektowania budynków, ponieważ pozwala ocenić efektywność energetyczną przegrody. Zgodnie z normami budowlanymi, niższe wartości U są pożądane, co wskazuje na lepsze właściwości izolacyjne. Przykładowo, w budynkach pasywnych współczynnik U dla ścian zewnętrznych nie powinien przekraczać 0,15 W/(m2-K).

Pytanie 33

Jakie informacje mają kluczowe znaczenie przy przygotowywaniu oferty na instalację pompy ciepła w budynku jednorodzinnym?

A. Lokalizacja instalacji, koszt zakupu sprzętu i materiałów
B. Rodzaje instalowanych urządzeń, stawka za montaż oraz ilości potrzebnych materiałów
C. Ilość i wynagrodzenie zatrudnionych pracowników, wydatki wykonawcy i planowany zysk oraz termin realizacji
D. Czas potrzebny na montaż, liczba roboczogodzin pracowników
Wiesz, najważniejsze w ofercie na montaż pompy ciepła to te rzeczy, które mówią o tym, jakie urządzenia będą montowane, ich ceny i ilości materiałów. To tak jak fundamenty w budowie – bez nich nic się nie uda. Znając nazwy urządzeń, masz lepszy obraz tego, co dokładnie będzie użyte i jak to wpłynie na całą instalację. Klient musi wiedzieć, co dostaje, a także co do wydajności. Właściwa cena montażu to też ważny temat – precyzyjne określenie kosztów zapobiega nieporozumieniom na każdym kroku. No i nie zapominajmy o materiałach – ich ilości są kluczowe, żeby dobrze zaplanować zakupy i nie przepłacać. Prawdziwe profesjonalne podejście to przejrzystość i rzetelność, bo klient chce wiedzieć, co się dzieje. Niezły trik to też wspomnieć o normach, jak PN-EN 14511, bo to dodaje wiarygodności. Po prostu warto o tym pamiętać!

Pytanie 34

Przy realizacji zadań związanych z instalacją systemu rekuperacji, konieczne jest przygotowanie projektu, który obejmuje

A. kanalizację
B. instalację ciepłej wody użytkowej
C. instalację elektryczną
D. wentylację
Odpowiedź "wentylacją" jest poprawna, ponieważ system rekuperacji jest nierozerwalnie związany z procesem wentylacji budynku. Rekuperacja służy do odzyskiwania ciepła z powietrza wywiewanego, co pozwala na ogrzewanie świeżego powietrza nawiewanego. Aby projekt systemu rekuperacji był skuteczny, musi zawierać dokładny projekt wentylacji. W praktyce, projekt wentylacji powinien uwzględniać przepływy powietrza, wielkość kanałów wentylacyjnych oraz lokalizację rekuperatora. Ważnym standardem w tym zakresie jest normatyw EN 13779, który odnosi się do jakości powietrza w budynkach. Dobrze zaprojektowany system wentylacji zapewnia komfort użytkowników oraz efektywność energetyczną budynku, a także przyczynia się do obniżenia kosztów ogrzewania. Zastosowanie nowoczesnych rekuperatorów, które są w stanie odzyskać do 90% ciepła, jest szczególnie zalecane w budynkach energooszczędnych i pasywnych, gdzie wentylacja mechaniczna jest kluczowym elementem.

Pytanie 35

Producent zapewnia, że wyrób spełnia normy unijne poprzez umieszczenie na nim symbolu

A. TM
B. EMC
C. CE
D. ISO
Znak CE jest oznaczeniem, które świadczy o zgodności wyrobu z przepisami Unii Europejskiej, co oznacza, że produkt spełnia określone wymagania dotyczące zdrowia, bezpieczeństwa oraz ochrony środowiska. Oznaczenie to jest wymagane dla wielu grup produktów, takich jak urządzenia elektroniczne, zabawki, czy maszyny, i jest kluczowe dla zapewnienia, że wyroby te mogą być swobodnie wprowadzane na rynek krajów członkowskich UE. Przykładem zastosowania znaku CE jest wprowadzenie na rynek nowych sprzętów elektrycznych, które muszą przejść odpowiednie testy oraz certyfikacje, aby upewnić się, że nie emitują nadmiernych zakłóceń elektromagnetycznych oraz są bezpieczne w użytkowaniu. Znak CE jest również istotnym elementem, który zwiększa konkurencyjność produktów, ponieważ świadczy o przestrzeganiu europejskich norm i standardów. Właściwe oznakowanie CE jest zatem nie tylko regulacją prawną, ale także elementem budowania zaufania konsumentów do produktów pochodzących z UE, co przekłada się na ich lepszą sprzedaż i akceptację na rynku.

Pytanie 36

Do kotła na biogaz nie można zainstalować centralnego ogrzewania z rur

A. z czarnej stali ze szwem.
B. z twardej miedzi.
C. z czarnej stali przewodowej.
D. z ocynkowanej stali.
Odpowiedź stalowych rur ocynkowanych jako nieodpowiednich do instalacji centralnego ogrzewania w systemach z kotłami na biogaz wynika z faktu, że ocynkowane rury, ze względu na swoją powłokę, mogą nadmiernie reagować z substancjami chemicznymi obecnymi w biogazie, co prowadzi do korozji wewnętrznej. W praktyce, najlepszym rozwiązaniem są rury wykonane z materiałów odpornych na korozję, takich jak stal nierdzewna czy rury z tworzyw sztucznych. W kontekście systemów grzewczych, ważne jest, aby materiały były zgodne z normami i zaleceniami branżowymi, jak PN-EN 12828, które wskazują na konieczność stosowania rozwiązań odpornych na działanie mediów agresywnych. Użycie rur ocynkowanych w systemach z biogazem może prowadzić do problemów z wydajnością oraz koniecznością kosztownych napraw w przyszłości.

Pytanie 37

Wyznacz wartość promieniowania bezpośredniego, mając na uwadze, że promieniowanie rozproszone wynosi 300 W/m², a promieniowanie całkowite 1000 W/m²?

A. 1000 W/m²
B. 800 W/m²
C. 700 W/m²
D. 1300 W/m²
Odpowiedź 700 W/m² jest poprawna, ponieważ obliczamy wartość promieniowania bezpośredniego, odejmując promieniowanie rozproszone od promieniowania całkowitego. W tym przypadku, promieniowanie całkowite wynosi 1000 W/m², a promieniowanie rozproszone to 300 W/m². Proces ten jest kluczowy w dziedzinie inżynierii energetycznej oraz architektury, gdzie właściwe zrozumienie składników promieniowania słonecznego jest istotne dla efektywności energetycznej budynków. W praktyce, znajomość tych wartości pozwala na optymalizację projektów systemów fotowoltaicznych oraz oceny wpływu zacienienia na wydajność instalacji. Zgodnie z dobrą praktyką branżową, przy planowaniu systemów odnawialnych źródeł energii, inżynierowie często korzystają z narzędzi symulacyjnych, które uwzględniają zarówno promieniowanie bezpośrednie, jak i rozproszone. Pozwala to na dokładniejsze prognozowanie wydajności systemów i efektywności wykorzystania energii słonecznej w określonych lokalizacjach.

Pytanie 38

Za montaż urządzeń z zakresu energetyki odnawialnej oraz realizację dostaw zgodnych z projektem odpowiada

A. projektant
B. kierownik budowy
C. użytkownik
D. inwestor
Kierownik budowy odgrywa kluczową rolę w procesie montażu urządzeń energetyki odnawialnej, ponieważ to on odpowiada za koordynację wszystkich działań na placu budowy. Dobrze zorganizowane i zgodne z projektem dostawy są niezbędne do prawidłowego przebiegu robót. Kierownik budowy ma za zadanie nadzorować realizację prac montażowych, zapewniając, że wszelkie urządzenia są instalowane zgodnie z obowiązującymi normami oraz wytycznymi projektowymi. Na przykład, w przypadku instalacji paneli fotowoltaicznych, kierownik budowy musi zadbać o odpowiednie przygotowanie miejsca montażu, sprawdzenie zgodności z projektem oraz zapewnienie, że wszystkie niezbędne materiały i urządzenia dotrą na czas. Przykłady dobrych praktyk obejmują regularne spotkania z zespołem projektowym oraz dostawcami, co pozwala na bieżąco monitorować postęp prac i ewentualnie wprowadzać niezbędne korekty. Dzięki takim działaniom kierownik budowy minimalizuje ryzyko opóźnień oraz błędów, które mogą wpłynąć na efektywność instalacji.

Pytanie 39

Jakie urządzenie służy do pomiaru temperatury zamarzania mieszanki glikolowej w systemie solarnym?

A. refraktometr.
B. glukometr.
C. decibelometr.
D. higrometr.
Refraktometr to naprawdę ważne narzędzie, zwłaszcza przy analizie stężenia roztworów. W kontekście systemów solarnych, gdzie korzystamy z glikolu, to jest niezbędne, bo te mieszanki zapobiegają zamarzaniu. Działa to tak, że mierzy współczynnik załamania światła, co pozwala dokładnie określić, jak mocny jest roztwór. Im więcej glikolu w mieszance, tym niższa temperatura zamarzania, a to ma spore znaczenie w chłodniejszych warunkach. Z mojego doświadczenia wynika, że inżynierowie regularnie używają refraktometrów, żeby monitorować i dostosowywać stężenie roztworu. Dzięki temu wszystko działa lepiej i dłużej. Fajnie jest, gdy takie pomiary stają się rutyną, bo można szybko wychwycić potencjalne problemy z zamarzaniem płynu, co w efekcie zmniejsza ryzyko awarii.

Pytanie 40

Aby transportować elementy siłowni wiatrowych w Polsce, konieczne jest uzyskanie zgody od GDDKiA. Jaki jest maksymalny dozwolony nacisk na jedną oś napędową pojazdu przewożącego ładunek?

A. 10,5 t
B. 9,5 t
C. 12,5 t
D. 11,5 t
Odpowiedź 11,5 t jest prawidłowa, ponieważ maksymalny dopuszczalny nacisk na pojedynczą oś napędową pojazdu przewożącego ładunki wielkogabarytowe, w tym elementy siłowni wiatrowych, jest określany przez przepisy prawa drogowego i standardy techniczne. W Polsce, zgodnie z wytycznymi Głównego Inspektoratu Transportu Drogowego oraz Generalnej Dyrekcji Dróg Krajowych i Autostrad, dopuszczalne obciążenie osi dla pojazdów transportujących ładunki o nietypowych wymiarach i masie wynosi 11,5 t. W praktyce, znajomość tych norm jest kluczowa dla efektywnego planowania transportu, ponieważ przekroczenie dozwolonego nacisku może prowadzić do poważnych konsekwencji, takich jak uszkodzenia infrastruktury drogowej, nałożenie kar finansowych, a także zwiększenie ryzyka wypadków. Przygotowując transport elementów siłowni wiatrowych, ważne jest również zorganizowanie odpowiednich zezwoleń oraz współpraca z lokalnymi władzami drogowymi, co pozwala na bezpieczne i zgodne z przepisami przemieszczanie się po drogach.