Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 18 maja 2025 23:00
  • Data zakończenia: 18 maja 2025 23:41

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas rocznego przeglądu zaleca się przeprowadzanie inspekcji stanu płynu solarnego. Który z parametrów płynu solarnego nie podlega ocenie?

A. Gęstość
B. Zapach
C. Barwa
D. Ilość
Zapach płynu solarnego nie jest standardowym parametrem, który podlega ocenie podczas corocznego przeglądu. Kluczowe aspekty, które są monitorowane, to barwa, gęstość oraz ilość płynu, ponieważ mają one bezpośredni wpływ na wydajność systemu solarnego. Barwa płynu może wskazywać na jego czystość, natomiast gęstość jest istotna dla oceny jego właściwości termicznych. Ilość płynu jest również kluczowa, ponieważ niewłaściwy poziom może prowadzić do nieprawidłowego działania systemu. Regularne sprawdzanie tych parametrów jest zgodne z praktykami branżowymi, które zalecają również wymianę płynu co kilka lat, w zależności od jego jakości. Wiedza na temat tych parametrów pozwala na bieżąco monitorować stan systemu solarnego, co przyczynia się do jego dłuższej żywotności i efektywności energetycznej.

Pytanie 2

Grupę pompową w systemie solarnym należy zainstalować na rurze

A. zbiornika wzbiorczego
B. zasilającym
C. instalacji podłogowej
D. powrotnym
Grupa pompową w instalacji solarnej należy montować na przewodzie powrotnym, ponieważ to w tym miejscu następuje transport schłodzonego czynnika grzewczego z powrotem do kolektorów słonecznych. Umiejscowienie pompy na przewodzie powrotnym zapewnia optymalne warunki do pracy, umożliwiając efektywne przekazywanie ciepła z kolektorów do systemu grzewczego. W praktyce, gdy pompa znajduje się na powrocie, może ona efektywnie regulować przepływ czynnika, co sprzyja lepszemu zarządzaniu temperaturą i ciśnieniem w systemie. Dodatkowo zgodnie z zasadami dobrej praktyki instalacji solarnych, umiejscowienie pompy na powrocie minimalizuje ryzyko zjawiska kawitacji, które może wystąpić, jeśli pompa byłaby zainstalowana na przewodzie zasilającym. Warto również zauważyć, że takie położenie sprzyja łatwiejszemu serwisowaniu i konserwacji systemu, co przekłada się na dłuższą żywotność instalacji.

Pytanie 3

Na podstawie danych zawartych w tabeli określ koszty pośrednie Kp montażu instalacji kolektorów słonecznych przy założeniu Kp: 75% od (R+S).

Koszty bezpośrednie montażu instalacji kolektorów słonecznychWartość
Robocizna R2200
Materiały M5800
Sprzęt S1200

A. 5 250 zł
B. 900 zł
C. 2 550 zł
D. 1 650 zł
Zanim zaczniemy liczyć koszty pośrednie przy montażu instalacji kolektorów słonecznych, musimy najpierw zsumować wydatki na robociznę i sprzęt. To taki kluczowy krok. Jeśli na przykład mamy koszty robocizny na poziomie 3 000 zł i sprzętu 1 000 zł, to łączna suma to 4 000 zł. Potem musimy policzyć 75% z tej wartości, co daje nam 3 000 zł. Warto też pamiętać, że w branży montażu instalacji solarnych koszty pośrednie mogą obejmować różne wydatki, jak transport czy ubezpieczenie. Dobrze określone koszty pośrednie to nie tylko dobra praktyka, ale też klucz do efektywnego zarządzania budżetem. Jak to dobrze policzymy, może to znacząco wpłynąć na rentowność całego projektu i decyzje inwestycyjne.

Pytanie 4

W trakcie transportu kolektory słoneczne powinny być chronione przed uszkodzeniami mechanicznymi?

A. obudową drewnianą i taśmą bitumiczną
B. obudową stalową i kołkami świadkami
C. folią ochronną i kołkami świadkami
D. folią ochronną i obudową drewnianą
Folia ochronna oraz drewniana obudowa to genialne rozwiązanie, żeby dobrze zabezpieczyć kolektory słoneczne podczas transportu. Folia świetnie chroni delikatne elementy przed różnymi rysami, kurzem i innymi brudami, które mogą się przydarzyć w drodze. Z kolei drewniana obudowa, to już coś solidniejszego, co świetnie ochroni kolektory przed mechanicznymi uderzeniami i zapewni stabilność w trakcie przewozu. Takie podejście jest zgodne z tym, co mówi branża, bo stosowanie odpowiednich materiałów ochronnych naprawdę zmniejsza ryzyko uszkodzenia sprzętu. W praktyce niektóre firmy zajmujące się instalacją kolektorów słonecznych korzystają z takich rozwiązań, co pozwala im utrzymać jakość i ograniczyć reklamacje. Dobrze zabezpieczone kolektory to też lepsza reputacja firmy w oczach klientów, a to w dłuższym czasie przekłada się na sukces biznesowy.

Pytanie 5

Jaką moc wygeneruje moduł fotowoltaiczny o parametrach znamionowych U = 30 V, I = 10 A, gdy zostanie zaciśnięty, a nasłonecznienie wyniesie Me = 1000 W/m2?

A. 30 W
B. 0 W
C. 300 W
D. 1 000 W
Odpowiedzi 30 W, 300 W i 1000 W są nietrafione, bo opierają się na błędnym rozumieniu działania paneli fotowoltaicznych. Zaczynając od 30 W, to niby rozsądne, ale ta moc zakłada, że wszystko działa jak należy - napięcie i prąd są w porządku. Ale w przypadku zwarcia napięcie spada do zera, więc nie ma mowy o jakiejkolwiek produkcji mocy. Jeśli chodzi o 300 W, to nie wygląda najgorzej przy 10 A i 30 V, ale znowu - w sytuacji zwarcia napięcia nie ma, więc moc znów wynosi 0 W. A co z 1000 W? To bardziej maksymalne osiągi przy dobrym nasłonecznieniu, a nie w przypadku zwarcia, które całkowicie blokuje produkcję energii. Kluczowe jest, by pamiętać, że moc elektryczna to wynik P = U * I, więc obie wartości muszą być obecne, żeby coś zaistniało. Inżynierowie, patrząc na problemy ze zwarciami, muszą też myśleć o temperaturze czy o tym, jak różne czynniki wpływają na systemy PV.

Pytanie 6

Paliwo uzyskane z kompresji trocin, które są generowane podczas obróbki drewna oraz innych procesów związanych z jego przetwarzaniem, to

A. zrębki
B. ziarno
C. pelet
D. ekogroszek
Zrozumienie różnicy między różnymi rodzajami paliw stałych jest kluczowe w kontekście zrównoważonego rozwoju i efektywnego wykorzystania zasobów naturalnych. Ziarno, często mylone z peletami, odnosi się do produktów rolnych, takich jak zboża, które mają zupełnie inną charakterystykę i zastosowanie. Ziarna nie są przetwarzane na paliwo w taki sposób, jak pelet, a ich użycie w kontekście obróbki drewna jest niewłaściwe. Również zrębki, które są większymi kawałkami drewna, różnią się od peletów pod względem struktury i zastosowania. Zrębki mogą być używane jako materiał opałowy, ale nie są sprasowane do formy o wysokiej gęstości, co sprawia, że ich efektywność energetyczna jest znacznie niższa. Ekogroszek, będący rodzajem węgla, jest paliwem kopalnym, które nie ma nic wspólnego z surowcami drzewnymi. Typowym błędem myślowym jest mylenie różnych form paliw opartych na biomasy i węgla, co prowadzi do nieporozumień w kontekście zrównoważonego rozwoju. Każde z tych paliw ma swoje unikalne właściwości i zastosowania, które należy dokładnie poznać, aby podejmować świadome decyzje dotyczące wyboru paliwa do systemów grzewczych.

Pytanie 7

Nieuruchomienie pompy obiegowej w obiegu solarnym może być spowodowane

A. zablokowanym wirnikiem pompy
B. zabrudzonym filtrem, który znajduje się przed pompą
C. zbyt niskim ciśnieniem w obiegu solarnym
D. zbyt wysokim ciśnieniem w obiegu solarnym
Chociaż zanieczyszczony filtr przed pompą, za niskie ciśnienie oraz za wysokie ciśnienie w obiegu solarnym mogą wpływać na pracę systemu, nie są bezpośrednimi przyczynami braku działania pompy obiegowej. Zanieczyszczony filtr może rzeczywiście ograniczać przepływ cieczy, co może skutkować obniżeniem wydajności pompy, jednakże nie prowadzi bezpośrednio do całkowitego wstrzymania jej pracy. W praktyce, jeśli filtr jest mocno zabrudzony, może to zmniejszyć efektywność pompy, ale nie zablokuje wirnika, co jest kluczowe dla jej działania. Podobnie, zbyt niskie ciśnienie w obiegu salarnym nie powinno powodować zatrzymania pompy, ponieważ wiele modeli pomp jest zaprojektowanych do pracy w szerokim zakresie ciśnienia. Z kolei zbyt wysokie ciśnienie może prowadzić do uszkodzenia instalacji, ale również nie wpłynie na natychmiastowe włączenie się pompy. Warto zauważyć, że pompy obiegowe wyposażone są w różne zabezpieczenia, które chronią je przed ekstremalnymi warunkami, dlatego skuteczne diagnozowanie problemów w systemie solarnym powinno być oparte na dokładnej analizie wszystkich jego elementów, a nie tylko na pojedynczych objawach. Właściwe zrozumienie mechanizmów działania pompy oraz całego systemu solarnego jest kluczowe do skutecznego zarządzania i utrzymania ich w dobrym stanie.

Pytanie 8

Aby ochronić kocioł na biomasę przed niską temperaturą czynnika powracającego z systemu c.o., należy zainstalować zawór

A. termostatyczny na powrocie z systemu c.o.
B. termostatyczny przed grzejnikami c.o.
C. mieszający na zasilaniu systemu.
D. mieszający na powrocie z systemu.
Zastosowanie zaworu mieszającego na powrocie z instalacji c.o. jest kluczowym rozwiązaniem w utrzymaniu odpowiednich temperatur w instalacji grzewczej. Zawór ten pozwala na mieszanie wody powracającej z instalacji c.o. z wodą zasilającą, co pozwala na podniesienie temperatury wody wracającej do kotła na biomasę. Dzięki temu zabezpieczamy kocioł przed niską temperaturą, która mogłaby doprowadzić do kondensacji i korozji, a tym samym wydłużyć jego żywotność. W praktyce, zastosowanie zaworu mieszającego w instalacjach grzewczych zwiększa efektywność energetyczną. W standardach branżowych, takich jak normy EN 12828 i EN 15316, podkreślono znaczenie stosowania takich rozwiązań dla optymalizacji pracy układów grzewczych. Przykładem zastosowania może być instalacja w budynku jednorodzinnym, gdzie po zainstalowaniu zaworu mieszającego użytkownik zauważył znaczne obniżenie kosztów ogrzewania oraz poprawę komfortu cieplnego.

Pytanie 9

Powietrzna pompa ciepła uzyskuje najwyższą efektywność

A. w ujemnych temperaturach
B. przy temperaturze 0°C
C. bez względu na temperaturę zewnętrzną
D. w dodatnich temperaturach
Wybór odpowiedzi, że powietrzne pompy ciepła osiągają największą sprawność w niezależności od temperatury zewnętrznej, jest błędny, ponieważ pompy te są ściśle uzależnione od otaczających warunków atmosferycznych. W rzeczywistości, gdy temperatura zewnętrzna spada, pompa musi zmagać się z większą różnicą temperatur między źródłem a miejscem docelowym, co znacząco obniża jej efektywność. Często mylnym myśleniem jest przekonanie, że pompy ciepła mogą pracować równie wydajnie w każdej temperaturze, podczas gdy w praktyce ich efektywność znacznie maleje w warunkach ujemnych. Kluczowym aspektem jest zrozumienie, że powietrzne pompy ciepła są mniej wydajne przy temperaturach poniżej 0°C, co wynika z konieczności użycia większej ilości energii do transportu ciepła. Odpowiedzi mówiące o sprawności w temperaturze 0°C czy w ujemnych temperaturach również są niewłaściwe; w tych warunkach pompy wymagają znacznie więcej energii do działania, co przyczynia się do wyższych kosztów eksploatacji oraz obniżenia ich żywotności. Dlatego kluczowe jest stosowanie powietrznych pomp ciepła w odpowiednich warunkach atmosferycznych, aby zapewnić ich maksymalną wydajność i ekonomiczność. Zastosowanie tych urządzeń najlepiej sprawdza się w dodatnich temperaturach, co potwierdzają liczne badania i analizy efektywności energetycznej.

Pytanie 10

Łopaty wirnika turbiny wiatrowej o mocy 3,5 MW powinny być wytwarzane

A. z aluminium
B. z miedzi
C. z włókien szklanych
D. ze stali
Łopaty wirników w turbinach wiatrowych z włókien szklanych to naprawdę dobry wybór. Mają świetne właściwości mechaniczne i aerodynamiczne. Włókna szklane są super lekkie, a mimo to bardzo wytrzymałe, co pozwala na zrobienie dużych łopat, które nie ważą zbyt dużo. To ważne, bo dzięki temu turbina mniej się obciąża i działa lepiej. Dodatkowo, te włókna są odporne na różne niekorzystne warunki, jak deszcz czy słońce, co sprawia, że łopaty są trwałe i niezawodne przez długi czas. Wiesz, normy IEC mówią, żeby stosować kompozyty, w tym włókna szklane, by osiągnąć najlepsze wyniki. Przykłady to nowoczesne turbiny, które muszą być zarówno wydajne, jak i bezpieczne w eksploatacji.

Pytanie 11

Który z typów kolektorów słonecznych, używany w systemie do wspierania ogrzewania wody użytkowej i ogrzewania obiektu, charakteryzuje się najwyższą efektywnością w czasie wspomagania ogrzewania obiektu?

A. Rurowy typu heat-pipe
B. Płaski gazowy
C. Płaski cieczowy
D. Rurowy próżniowy
Rurowe kolektory typu heat-pipe to naprawdę mocny wybór, zwłaszcza zimą. Ich sprawność wtedy jest na najwyższym poziomie, co czyni je świetnym wsparciem dla ogrzewania budynku. Działają tak, że ciecz w rurze paruje, gdy dostaje ciepło ze słońca, a potem skrapla się w wymienniku ciepła. Z mojego doświadczenia wynika, że to super rozwiązanie, bo nawet w niskich temperaturach potrafią skutecznie odbierać ciepło. Warto wspomnieć, że takie kolektory świetnie sprawdzają się w miejscach jak baseny czy hotele, gdzie zapotrzebowanie na ciepło jest spore. Jeśli chodzi o normy branżowe, to przy pomocy takich jak EN 12975 można sprawdzić ich skuteczność w różnych warunkach. No i coraz częściej pojawiają się w projektach ekologicznych, gdzie efektywność energetyczna to podstawa. Czyli, generalnie, bardzo dobry wybór na dziś.

Pytanie 12

Jakie materiały mogą być zastosowane do wykonania absorbera w panelach słonecznych?

A. plastiku lub stali
B. aluminium lub miedzi
C. aluminium lub mosiądzu
D. miedzi lub żeliwa
Absorber w kolektorach słonecznych jest kluczowym elementem, który odpowiada za przechwytywanie promieniowania słonecznego i przekształcanie go w ciepło. Materiały takie jak aluminium i miedź charakteryzują się doskonałymi właściwościami przewodzenia ciepła, co czyni je idealnymi do zastosowania w tych systemach. Aluminium jest lekkie, odporne na korozję oraz łatwe w obróbce, co sprawia, że jest powszechnie stosowane w budowie absorberów. Miedź, z kolei, ma jeszcze lepsze właściwości przewodzenia ciepła, co pozwala na szybsze i efektywniejsze przekazywanie energii cieplnej. Dobre praktyki branżowe zalecają używanie tych materiałów, aby zapewnić maksymalną efektywność kolektorów słonecznych, co jest kluczowe w kontekście odnawialnych źródeł energii i efektywności energetycznej budynków. Warto także zauważyć, że odpowiedni dobór materiałów wpływa na trwałość systemu oraz jego zdolność do pracy w zmiennych warunkach atmosferycznych.

Pytanie 13

Odbiór części robót, które zostają zakryte, należy zaliczyć do odbiorów

A. pogwarancyjnych
B. przejściowych
C. częściowych
D. końcowych
Odpowiedź częściowych jest poprawna, ponieważ odbiór fragmentu robót, które ulegają zakryciu, jest częścią procesu odbiorowego, który ma na celu potwierdzenie, że zrealizowane prace są zgodne z umową oraz obowiązującymi normami. Odbiór częściowy dotyczy fragmentów robót, które mogą być już wykonane, a ich zakrycie uniemożliwia późniejszą ocenę jakości wykonania. W praktyce, na przykład podczas budowy budynku, instalacje elektryczne czy hydrauliczne muszą być odebrane przed ich zasłonięciem przez ściany, co pozwala na zweryfikowanie ich zgodności z projektem oraz jakości wykonania. Taki odbiór jest zgodny z normami budowlanymi oraz dobrymi praktykami w zarządzaniu projektami budowlanymi, które zalecają regularne i etapowe sprawdzanie wykonania robót. W przypadku problemów stwierdzonych podczas odbioru częściowego, wykonawca ma możliwość ich naprawy przed przystąpieniem do dalszych etapów budowy, co chroni inwestora przed późniejszymi kosztami napraw.

Pytanie 14

Sonda lambda wykorzystywana w piecach na biomasę ma na celu pomiar

A. stężenia dwutlenku węgla w spalinach
B. stężenia tlenku węgla w spalinach
C. stężenia tlenu w spalinach
D. stężenia tlenków azotu w spalinach
Pomiar poziomu tlenków azotu, tlenku węgla i dwutlenku węgla w spalinach to istotne aspekty monitorowania jakości emisji z kotłów na biomasę, jednak nie jest to funkcja, którą realizuje sonda lambda. Tlenki azotu, będące wynikiem wysokotemperaturowego spalania, są mierzonymi zanieczyszczeniami, które wymagają użycia specjalistycznych czujników, takich jak analizatory NOx. Z kolei tlenek węgla, będący produktem niecałkowitego spalania, również nie jest wykrywany przez sondę lambda, lecz przez czujniki gazów CO. Dwutlenek węgla, będący produktem pełnego spalania, jest z kolei mierzony w procesach analitycznych, które oceniają wydajność energetyczną systemu, ale nie przez sondę lambda. Takie nieporozumienia mogą wynikać z mylnego założenia, że wszystkie związki gazowe w spalinach są monitorowane przez jeden czujnik. W rzeczywistości, każdy typ analizy gazów wymaga zastosowania odpowiednich technologii i czujników, które są dostosowane do specyficznych substancji. Właściwe zrozumienie roli sondy lambda oraz innych czujników jest kluczowe dla efektywnego zarządzania procesem spalania i spełnienia norm środowiskowych. Dlatego ważne jest, aby użytkownicy kotłów na biomasę byli dobrze poinformowani o funkcjach różnych urządzeń pomiarowych oraz ich zastosowaniach w monitorowaniu jakości spalin.

Pytanie 15

Aby chronić turbinę wodną przed większymi zanieczyszczeniami, które mogą wpływać z wodą na wlot ujęcia do komory turbiny, powinno się zastosować

A. kratę
B. piaskownik
C. sito
D. mikrosito
Kraty to naprawdę fajny sposób na zabezpieczenie turbiny wodnej. Ich główną rolą jest ochrona przed różnymi zanieczyszczeniami, które mogą do wody wpadać. Oczywiście, kraty są tak zaprojektowane, żeby zatrzymywać większe rzeczy, jak gałęzie czy liście, bo inaczej mogą zaszkodzić wydajności turbiny. Z moich obserwacji wynika, że dzięki kratam, woda jest skutecznie filtrowana, zanim trafi do turbiny, co jest zgodne z tym, co mówi się na temat dobrej praktyki w inżynierii wodnej. Fajnie, że kratki mogą być z różnych materiałów, na przykład ze stali nierdzewnej, dzięki czemu są trwalsze i odporniejsze na korozję. Regularne sprawdzanie i konserwacja tych krat to kluczowa sprawa, żeby wszystko działało jak należy i żeby nie było zatorów, które mogłyby zmniejszyć przepływ i wydajność systemu.

Pytanie 16

Na jakiej głębokości układa się rury gruntowego wymiennika ciepła w instalacji pompy cieplnej?

A. 2,2-2,8 m
B. 0,6-1,2 m
C. 1,0-1,6 m
D. 1,6-2,2 m
Wybór głębokości układania rur gruntowego wymiennika ciepła ma kluczowe znaczenie dla efektywności pracy pompy ciepła. Odpowiedzi sugerujące zbyt płytkie ułożenie rur, takie jak 0,6-1,2 m, mogą wynikać z błędnych założeń dotyczących stabilności temperatury gruntu w sezonie grzewczym. Na tak niewielkiej głębokości temperatury gruntu mogą ulegać większym wahaniom, co negatywnie wpływa na wydajność systemu. Ponadto, w okresach intensywnego użytkowania systemu, może dojść do przegrzania gruntu, co skutkuje obniżoną efektywnością wymiany ciepła. Podobnie, wybór głębokości 1,6-2,2 m, chociaż teoretycznie może wydawać się rozsądny, wiąże się z większymi kosztami związanymi z wykopami oraz ewentualnymi problemami z instalacją. Przy takich głębokościach konieczne jest również odpowiednie zabezpieczenie rur przed uszkodzeniami, co dodatkowo zwiększa nakłady finansowe. W efekcie, zbyt głęboki lub zbyt płytki układ rur prowadzi do nieoptymalnych warunków pracy systemu, co jest niezgodne z najlepszymi praktykami projektowania instalacji gruntowych wymienników ciepła, które rekomendują głębokość w granicach 1,0-1,6 m jako najbardziej efektywną.

Pytanie 17

W trakcie działania słonecznej instalacji grzewczej zauważono wyciek czynnika z zaworu bezpieczeństwa. Jakie mogą być przyczyny tego zjawiska?

A. nadmierne natężenie przepływu płynu solarnego
B. niskie natężenie przepływu płynu solarnego
C. niedostateczna pojemność naczynia przeponowego
D. niewystarczająca temperatura czynnika roboczego
Zawór bezpieczeństwa w instalacji grzewczej jest kluczowym elementem, który zapewnia ochronę układu przed nadmiernym ciśnieniem. W przypadku, gdy pojemność naczynia przeponowego jest niewystarczająca, może dojść do nadmiernego wzrostu ciśnienia w układzie, co skutkuje wypływem czynnika grzewczego z zaworu bezpieczeństwa. Naczynie przeponowe ma za zadanie kompensować zmiany objętości płynów w systemie w wyniku podgrzewania, a zbyt mała jego pojemność nie jest w stanie skutecznie zniwelować tych zmian, co prowadzi do niebezpiecznych sytuacji. Na przykład, w systemach słonecznych, gdzie ciepło generowane jest intensywnie, odpowiednia pojemność naczynia przeponowego jest niezbędna, aby zapobiec nadmiernemu wzrostowi ciśnienia. Standardy branżowe, takie jak normy PN EN 12828, podkreślają znaczenie prawidłowego wymiarowania naczynia przeponowego. Dlatego warto regularnie kontrolować pojemność naczynia oraz jego stan techniczny, aby zapewnić bezpieczeństwo i efektywność całego systemu grzewczego.

Pytanie 18

Jakie materiały wykorzystuje się w instalacji do ogrzewania wody w basenie, zrealizowanej w technologii klejonej?

A. PVC
B. PP
C. PEX
D. PE
PVC (polichlorek winylu) jest materiałem powszechnie stosowanym w instalacjach do podgrzewania wody basenowej, ze względu na swoje korzystne właściwości. PVC charakteryzuje się wysoką odpornością na korozję i chemikalia, co jest kluczowe w środowisku basenowym, gdzie woda może zawierać różne substancje chemiczne, takie jak środki dezynfekujące. Dodatkowo, PVC ma dobre właściwości izolacyjne, co przyczynia się do efektywności systemu grzewczego. W praktyce, rury PVC są często używane w instalacjach basenowych, zarówno w systemach cyrkulacyjnych, jak i grzewczych. Zgodnie z normami branżowymi, stosowanie PVC w tych zastosowaniach jest zgodne z zaleceniami, co sprawia, że jest to materiał rekomendowany przez specjalistów w dziedzinie budownictwa i hydrauliki. Warto również zauważyć, że PVC jest łatwy w montażu i oferuje długą żywotność, co czyni go ekonomicznym wyborem w dłuższej perspektywie czasowej.

Pytanie 19

Podaj sekwencję działań po zakończeniu montażu systemu solarnego?

A. Próba ciśnieniowa, odpowietrzenie, napełnienie czynnikiem, izolacja przewodów
B. Próba ciśnieniowa, napełnienie czynnikiem, odpowietrzenie, izolacja przewodów
C. Napełnienie czynnikiem, płukanie, izolacja przewodów, próba ciśnieniowa
D. Izolacja przewodów, napełnienie czynnikiem, odpowietrzenie, próba ciśnieniowa
Odpowiedzi, które wskazują inną kolejność czynności, zawierają błędy w rozumieniu procesów związanych z montażem instalacji solarnej. Na przykład, rozpoczęcie od napełnienia czynnikiem bez wcześniejszej próby ciśnieniowej jest niebezpieczne, ponieważ nieszczelności w układzie mogłyby prowadzić do wycieków, co zagrażałoby zarówno bezpieczeństwu instalacji, jak i jej wydajności. Wypełnione czynnikiem systemy, które nie przeszły testu szczelności, mogą być narażone na poważne uszkodzenia, a konsekwencje mogą ponieść nie tylko urządzenia, ale również użytkownicy. Dodatkowo, odpowietrzenie przed napełnieniem czynnikiem jest nieprawidłowe, ponieważ bez uprzedniego usunięcia potencjalnych nieszczelności nie ma sensu wprowadzać czynnika roboczego. Izolacja przewodów na początku procesu nie zapewnia ochrony, jeśli układ nie został wcześniej zweryfikowany pod kątem szczelności. Ważne jest, aby zrozumieć, że każde z tych działań jest oparte na zasadach inżynieryjnych i dobrych praktykach branżowych, które mają na celu zminimalizowanie ryzyka oraz maksymalizację efektywności systemu. Użytkownicy, którzy nie stosują się do tych zasad, mogą napotkać poważne problemy, które nie tylko wydłużą czas realizacji projektu, ale także zwiększą koszty eksploatacji instalacji.

Pytanie 20

Po zakończeniu robót, które są zakrywane, przeprowadza się odbiór

A. końcowy
B. ostateczny
C. częściowy
D. wstępny
Wybór odpowiedzi innych niż 'częściowy' wskazuje na brak zrozumienia zasadności odbioru robót budowlanych. Odbiór wstępny, końcowy lub ostateczny to etapy, które nie są stosowane w kontekście prac ulegających zakryciu. Odbiór wstępny odbywa się przed rozpoczęciem robót, natomiast odbiór końcowy ma miejsce po zakończeniu całego procesu budowlanego, co nie odnosi się do sytuacji, gdy część robót jest już zamknięta. Odbiór ostateczny z kolei, choć z pozoru mógłby wydawać się adekwatny, dotyczy całkowitego zakończenia budowy, czyli etapu, na który nie można sobie pozwolić, gdy prace są jeszcze ukryte za warstwami materiałów budowlanych. Te błędne odpowiedzi mogą wynikać z mylnego założenia, że każdy etap budowy powinien być odbierany wyłącznie po jej zakończeniu. W rzeczywistości, praktyki budowlane wymagają wcześniejszych odbiorów częściowych, aby nie dopuścić do poważnych błędów, które mogłyby ujawnić się dopiero po zakończeniu robót. Dlatego kluczowe jest zrozumienie roli odbioru częściowego, który jest nie tylko normą, ale również najlepszą praktyką w branży budowlanej, zapewniającą jakość i bezpieczeństwo całego procesu budowlanego.

Pytanie 21

Czerpnia oraz wyrzutnia to składniki instalacji

A. hydroelektrowni
B. wentylacji
C. gruntowej pompy ciepła
D. geotermalnej
Czerpnia i wyrzutnia to kluczowe elementy systemu wentylacji, które odpowiadają za wymianę powietrza w budynkach. Czerpnia, jako element pobierający świeże powietrze z otoczenia, pozwala na dostarczenie do wnętrza budynku powietrza, które jest niezbędne do utrzymania odpowiedniej jakości atmosfery wewnętrznej. W praktyce czerpnie często umieszcza się w lokalizacjach, gdzie powietrze jest mniej zanieczyszczone, co przekłada się na lepsze parametry jakościowe. Wyrzutnia natomiast odpowiada za odprowadzanie zużytego powietrza na zewnątrz, co jest kluczowe dla utrzymania poboru świeżego powietrza oraz zapobiegania gromadzeniu się zanieczyszczeń wewnątrz budynku. Standardy branżowe, takie jak PN-EN 13779, podkreślają znaczenie właściwego projektowania i rozmieszczenia tych elementów, aby zapewnić efektywność energetyczną oraz komfort użytkowników. W praktyce, przy projektowaniu systemów wentylacyjnych, istotne jest również uwzględnienie lokalnych przepisów budowlanych oraz zasady ekologicznego podejścia, co może obejmować wykorzystanie naturalnych źródeł wentylacji.

Pytanie 22

Montaż paneli słonecznych na płaskim dachu został zrealizowany przez jednego instalatora oraz dwóch asystentów. Wartość stawki instalatora wynosi 50,00 zł za każdą godzinę pracy, a stawka asystenta to 20,00 zł. Jaką łączną wartość robocizny można oszacować, jeśli całkowity czas pracy wynosi 8 godzin?

A. 90,00 zł
B. 960,00 zł
C. 560,00 zł
D. 720,00 zł
Kosztorysowa wartość robocizny wynosi 720,00 zł, co wynika z obliczenia całkowitych kosztów pracy instalatora i pomocników przy montażu kolektorów słonecznych. Instalator, którego stawka wynosi 50,00 zł za roboczogodzinę, pracował przez 8 godzin, co daje 400,00 zł (50,00 zł x 8 h). Dodatkowo, dwóch pomocników, zarabiających po 20,00 zł za roboczogodzinę, pracowało również przez 8 godzin. Każdy pomocnik zarobił 160,00 zł (20,00 zł x 8 h), więc dla dwóch pomocników łączny koszt wynosi 320,00 zł (160,00 zł x 2). Suma kosztów wynosi zatem 400,00 zł (instalator) + 320,00 zł (pomocnicy) = 720,00 zł. Taki sposób obliczania kosztów robocizny jest standardem w branży budowlanej i instalacyjnej, gdzie ważne jest uwzględnienie różnorodnych stawek wynagrodzenia oraz czasu pracy wszystkich zaangażowanych pracowników.

Pytanie 23

Jakiego rodzaju zgrzewarki używa się do łączenia rur z PP-R w systemach ciepłej wody użytkowej?

A. Elektrooporowej
B. Trzpieniowej
C. Doczołowej
D. Polifuzyjnej
Zgrzewarka polifuzyjna jest kluczowym narzędziem do łączenia rur z PP-R w instalacjach ciepłej wody użytkowej. Proces zgrzewania polifuzyjnego polega na podgrzewaniu końcówek rur oraz złączek, co umożliwia ich połączenie w sposób trwały i odporny na wysokie temperatury. Metoda ta zapewnia nie tylko wysoką jakość połączeń, ale również ich szczelność, co jest szczególnie istotne w kontekście instalacji wodociągowych. Przykładowo, w budownictwie mieszkalnym zgrzewanie polifuzyjne jest często stosowane do instalacji systemów grzewczych oraz ciepłej wody użytkowej, gdzie wymagane są połączenia odporne na ciśnienie i temperaturę. Ponadto, zgodnie z normami PN-EN 1555 oraz PN-EN ISO 15874, zgrzewanie polifuzyjne jest uznawane za metodę preferowaną do łączenia rur wykonanych z polipropylenu. Dzięki odpowiedniemu doborowi temperatury i czasu zgrzewania, można uzyskać połączenia, które są nie tylko mocne, ale także odporne na korozję, co przekłada się na długotrwałą eksploatację systemów wodociągowych.

Pytanie 24

Aby przygotować kosztorys powykonawczy, wielkości wydatków na robociznę, materiały oraz sprzęt ustala się na podstawie

A. o Polskie Normy - zharmonizowane
B. o Katalog Wyrobów Gotowych
C. o Katalog Nakładów Rzeczowych
D. o Plan Bezpieczeństwa i Ochrony Zdrowia
Katalog Nakładów Rzeczowych jest kluczowym dokumentem w procesie sporządzania kosztorysów powykonawczych, ponieważ zawiera szczegółowe dane dotyczące nakładów robocizny, materiałów i sprzętu, które są niezbędne do oszacowania kosztów realizacji projektu budowlanego. Dzięki tym informacjom, kosztorysant ma możliwość precyzyjnego określenia wydatków związanych z każdym etapem realizacji inwestycji. Katalog ten jest zgodny z obowiązującymi normami oraz standardami branżowymi, co zapewnia jego rzetelność i aktualność. Na przykład, w praktyce, jeśli wykonawca planuje budowę obiektu, korzysta z Katalogu Nakładów Rzeczowych, aby uwzględnić specyficzne koszty materiałów budowlanych oraz robocizny związanej z ich montażem. Warto również podkreślić, że właściwe posługiwanie się tym katalogiem przyczynia się do optymalizacji kosztów i zwiększenia efektywności projektów budowlanych, co jest niezbędne w konkurencyjnym środowisku rynku budowlanego.

Pytanie 25

Oznaczenie rur miedzianych symbolem R 290 wskazuje na ich stan

A. miękki
B. twardy
C. rekrystalizowany
D. półtwardy
Odpowiedź "twardy" jest poprawna, ponieważ oznaczenie rur miedzianych R 290 wskazuje na ich stan po procesie obróbki cieplnej, który prowadzi do uzyskania twardości. Rury miedziane twarde są powszechnie używane w instalacjach hydraulicznych i chłodniczych, gdzie wymagana jest wysoka wytrzymałość na ciśnienie oraz odporność na deformacje mechaniczne. Przykłady zastosowań obejmują systemy klimatyzacyjne oraz instalacje gazowe, gdzie niezawodność i trwałość są kluczowe. W standardach branżowych, takich jak PN-EN 1057, klasyfikacja rur miedzianych dzieli je na różne stany, w tym twardy, co pozwala na dobór odpowiedniego materiału do specyficznych zastosowań. Dodatkowo, twarde rury miedziane można łączyć z innymi elementami instalacji za pomocą lutowania, co zapewnia hermetyczność połączeń oraz długotrwałą eksploatację.

Pytanie 26

Kolor izolacji przewodu łączącego regulator ładowania z dodatnim biegunem akumulatora powinien być

A. czarny
B. niebieski
C. czerwony
D. brązowy
Izolacja przewodu łączącego regulator ładowania z dodatnim zaciskiem akumulatora powinna być w kolorze czerwonym, co jest zgodne z szeroko przyjętymi standardami w branży motoryzacyjnej oraz elektroinstalacyjnej. Kolor czerwony zazwyczaj oznacza przewody zasilające lub dodatnie, co ma na celu ułatwienie identyfikacji i eliminację błędów podczas instalacji. Przykładem dobrych praktyk może być instalacja w systemach fotowoltaicznych, gdzie przewody dodatnie są również oznaczone kolorem czerwonym, co ułatwia ich odróżnienie od przewodów ujemnych, zazwyczaj czarnych. W ten sposób zwiększa się bezpieczeństwo użytkowania, minimalizując ryzyko zwarcia czy błędnego podłączenia. Warto również pamiętać, że zgodnie z normami IEC (International Electrotechnical Commission), stosowanie odpowiednich kolorów dla przewodów zasilających jest istotnym elementem nie tylko dla bezpieczeństwa, ale także dla ułatwienia diagnostyki i serwisowania systemów elektrycznych.

Pytanie 27

Jakie informacje mają kluczowe znaczenie przy przygotowywaniu oferty na instalację pompy ciepła w budynku jednorodzinnym?

A. Czas potrzebny na montaż, liczba roboczogodzin pracowników
B. Rodzaje instalowanych urządzeń, stawka za montaż oraz ilości potrzebnych materiałów
C. Ilość i wynagrodzenie zatrudnionych pracowników, wydatki wykonawcy i planowany zysk oraz termin realizacji
D. Lokalizacja instalacji, koszt zakupu sprzętu i materiałów
Wiesz, najważniejsze w ofercie na montaż pompy ciepła to te rzeczy, które mówią o tym, jakie urządzenia będą montowane, ich ceny i ilości materiałów. To tak jak fundamenty w budowie – bez nich nic się nie uda. Znając nazwy urządzeń, masz lepszy obraz tego, co dokładnie będzie użyte i jak to wpłynie na całą instalację. Klient musi wiedzieć, co dostaje, a także co do wydajności. Właściwa cena montażu to też ważny temat – precyzyjne określenie kosztów zapobiega nieporozumieniom na każdym kroku. No i nie zapominajmy o materiałach – ich ilości są kluczowe, żeby dobrze zaplanować zakupy i nie przepłacać. Prawdziwe profesjonalne podejście to przejrzystość i rzetelność, bo klient chce wiedzieć, co się dzieje. Niezły trik to też wspomnieć o normach, jak PN-EN 14511, bo to dodaje wiarygodności. Po prostu warto o tym pamiętać!

Pytanie 28

Czujnik termostatyczny systemu "strażak" używany do ochrony kotłów na biomasę powinien być zamontowany

A. w komorze paleniskowej
B. w czopuchu kotła
C. na obudowie podajnika
D. w podajniku ślimakowym
Montaż czujnika termostatycznego w podajniku ślimakowym może wydawać się sensownym rozwiązaniem, jednak wiąże się z kilkoma istotnymi zagrożeniami. Przede wszystkim, podajnik może być miejscem o zmiennym cieple, gdzie temperatura materiału opałowego nie jest jednolita. W praktyce, czujnik umieszczony w takim miejscu może nie dostarczać precyzyjnych danych o temperaturze, co w efekcie prowadzi do niewłaściwego działania systemu zabezpieczeń. Ponadto, umiejscowienie czujnika w czopuchu kotła, gdzie odpływają gazy spalinowe, jest błędne, ponieważ temperatury w tym obszarze mogą być znacznie wyższe, co może prowadzić do fałszywych alarmów lub uszkodzenia czujnika. Montaż czujnika w komorze paleniskowej również jest nieodpowiedni, ponieważ ekstremalne warunki panujące w tym miejscu mogą zdemolować czujnik, co z kolei grozi poważnymi skutkami dla bezpieczeństwa systemu. Typowym błędem w myśleniu jest założenie, że czujnik termostatyczny można umieścić w dowolnym miejscu, byle tylko był blisko źródła ciepła. Tego typu podejście ignoruje zasady działania i odpowiednie normy, które jasno wskazują, że lokalizacja czujnika powinna sprzyjać stabilności i dokładności pomiarów, co jest kluczowe dla efektywnego i bezpiecznego działania systemów grzewczych.

Pytanie 29

Który z poniższych rodzajów zbiorników nie powinien być używany do przechowywania biogazu?

A. Suchego tłokowego niskociśnieniowego
B. Suchego stalowego wysokociśnieniowego
C. Sferycznego membranowego
D. Membranowego dachowego
Wybór niewłaściwego zbiornika do magazynowania biogazu może prowadzić do wielu niebezpieczeństw oraz nieefektywności w zarządzaniu tym zasobem. Zbiorniki membranowe dachowe i sferyczne membranowe są projektowane z myślą o niskim ciśnieniu, co sprzyja bezpiecznemu przechowywaniu biogazu. Biogaz, ze względu na swoją specyfikę, wymaga odpowiednich warunków przechowywania, które uwzględniają nie tylko ciśnienie, ale także temperaturę i wilgotność. Zastosowanie zbiornika suchego stalowego wysokociśnieniowego może nie tylko prowadzić do ryzyka eksplozji, ale także generować dodatkowe koszty związane z utrzymywaniem takiego ciśnienia. Wielu użytkowników mylnie zakłada, że wysokie ciśnienie może zwiększyć efektywność przechowywania, podczas gdy w rzeczywistości może to prowadzić do destabilizacji systemu. Ponadto, stosowanie odpowiednich zbiorników jest zgodne z najlepszymi praktykami branżowymi, które zalecają wykorzystanie rozwiązań minimalizujących ryzyko. Warto zatem zwrócić uwagę na zalecenia dotyczące magazynowania biogazu, które jasno określają, że lepsze rezultaty uzyskuje się przy niskociśnieniowych systemach przechowywania, co pozwala na zabezpieczenie zarówno infrastruktury, jak i samego biogazu przed nieprzewidzianymi zdarzeniami.

Pytanie 30

Kotły biomasowe o mocy większej niż 2 MW powinny być montowane w obiekcie

A. mieszkalnym, w pomieszczeniach, które nie są przeznaczone na cele mieszkalne
B. wolnostojącym, które jest przeznaczone wyłącznie na kotłownię
C. mieszkalnym, w wydzielonych pomieszczeniach technicznych na poziomie podziemnym
D. mieszkalnym, w wydzielonych pomieszczeniach technicznych na parterze
Wybór wolnostojącego budynku przeznaczonego wyłącznie na kotłownię dla kotłów na biopaliwo o mocy powyżej 2 MW jest zgodny z najlepszymi praktykami branżowymi oraz wymogami bezpieczeństwa. Tego typu instalacje powinny znajdować się w odizolowanych pomieszczeniach, aby zminimalizować ryzyko pożarowe i zapewnić odpowiednią wentylację. Ponadto, wolnostojące budynki pozwalają na łatwiejsze spełnienie norm dotyczących emisji spalin oraz zapewniają dostęp do odpowiednich systemów chłodzenia i odprowadzania spalin. Przykładowo, w przypadku dużych instalacji, takich jak kotły na biomasę, konieczne jest przestrzeganie przepisów technicznych, takich jak PN-EN 303-5, które określają wymagania dotyczące konstrukcji i eksploatacji takich obiektów, co znacząco podnosi poziom bezpieczeństwa eksploatacyjnego oraz efektywności energetycznej systemu grzewczego.

Pytanie 31

Jakie ogniwo fotowoltaiczne wykazuje najwyższą efektywność?

A. Hybrydowe
B. Monokrystaliczne
C. Amorficzne
D. Polikrystaliczne
Monokrystaliczne ogniwa fotowoltaiczne, chociaż charakteryzują się wysoką efektywnością, nie osiągają najwyższych sprawności w porównaniu do hybrydowych odpowiedników. Ich budowa polega na wykorzystaniu jednego kryształu krzemu, co ogranicza ich zdolność do absorpcji światła w niekorzystnych warunkach, takich jak chmury czy cień. Z drugiej strony, ogniwa amorficzne zdobijają uznanie za swoją elastyczność i możliwość wielowarstwowych zastosowań, ale ich sprawność w konwersji energii jest znacznie niższa, nie przekraczająca zazwyczaj 10-12%. Polikrystaliczne ogniwa, mimo że są tańsze w produkcji, także nie dorównują sprawnością ogniw hybrydowych. Wiele osób błędnie myśli, że wybór ogniw monokrystalicznych lub polikrystalicznych jest najlepszym rozwiązaniem ze względu na ich popularność, jednakże nie uwzględniają przy tym postępu technologicznego oraz badań nad ogniwami hybrydowymi. W rzeczywistości, wybór odpowiedniego typu ogniwa powinien opierać się na specyficznych potrzebach projektu oraz na warunkach, w jakich będą one używane. Ważne jest, aby przy podejmowaniu decyzji o wyborze technologii fotowoltaicznej, konsultować się z ekspertami oraz kierować się obowiązującymi standardami branżowymi, takimi jak IEC 61730, które opisują wymagania dotyczące bezpieczeństwa i wydajności modułów fotowoltaicznych.

Pytanie 32

Gdzie powinien być zainstalowany zawór bezpieczeństwa w zamkniętej instalacji centralnego ogrzewania?

A. w dolnej części każdego pionu oraz przed naczyniem wzbiorczym
B. przed grzejnikami zarówno na gałęzi zasilającej, jak i powrotnej
C. bezpośrednio na kotłach lub wymiennikach ciepła w górnej części ich przestrzeni wodnej
D. na przyłączach pionów do przewodów rozprowadzających
Zawór bezpieczeństwa jest kluczowym elementem w instalacji centralnego ogrzewania, szczególnie w systemach zamkniętych. Montaż zaworu bezpieczeństwa bezpośrednio na kotłach lub wymiennikach ciepła w górnej części ich przestrzeni wodnej jest zgodny z zasadami inżynierii cieplnej oraz normami bezpieczeństwa. Głównym celem zaworu bezpieczeństwa jest ochrona instalacji przed nadmiernym ciśnieniem, które może prowadzić do uszkodzeń kotła, wymiennika ciepła oraz innych komponentów systemu. Przy odpowiednim umiejscowieniu zaworu, możliwe jest natychmiastowe uwolnienie nadmiaru ciśnienia, co minimalizuje ryzyko awarii. Przykładowo, w instalacjach, w których występują duże różnice temperatur, zawór ten jest niezbędny, aby zapobiec zjawisku przegrzewania i ewentualnemu wybuchowi. Dobrą praktyką jest regularne sprawdzanie stanu technicznego zaworu oraz jego funkcjonalności, aby zapewnić nieprzerwaną i bezpieczną pracę instalacji.

Pytanie 33

Gdy prędkość wiatru zwiększy się dwukrotnie, to energia wiatru wzrośnie

A. dwukrotnie
B. ośmiokrotnie
C. dziesięciokrotnie
D. czterokrotnie
Odpowiedź, że energia wiatru wzrasta ośmiokrotnie, jest poprawna, ponieważ energia kinetyczna ruchu wiatru jest proporcjonalna do kwadratu prędkości wiatru. Wzór na energię kinetyczną wyraża się jako E = 0,5 * m * v², gdzie 'E' to energia, 'm' to masa powietrza, a 'v' to prędkość. Gdy prędkość wiatru wzrasta dwukrotnie, to energia wzrasta zgodnie z równaniem: E' = 0,5 * m * (2v)² = 0,5 * m * 4v² = 4 * (0,5 * m * v²) = 4E. Jednakże, gdy bierzemy pod uwagę, że ruch powietrza ma nie tylko składową poziomą, ale również wpływa na siłę wiatru, która jest kluczowa w kontekście turbin wiatrowych, to w rzeczywistości wzrost ośmiokrotny jest związany z innymi parametrami, takimi jak gęstość powietrza i efektywność turbiny. Taka wiedza jest niezbędna w projektowaniu systemów energetycznych opartych na energii wiatrowej, co jest kluczowe w kontekście zrównoważonego rozwoju i osiągania celów odnawialnych źródeł energii.

Pytanie 34

Oblicz objętość pomieszczenia o wymiarach 4 x 3 m oraz wysokości 3 m?

A. 48 m3
B. 15 m3
C. 36 m3
D. 24 m3
Aby obliczyć kubaturę pomieszczenia, należy zastosować wzór: V = długość x szerokość x wysokość. W przypadku podanych wymiarów, mamy długość 4 m, szerokość 3 m oraz wysokość 3 m. Po podstawieniu wartości do wzoru otrzymujemy V = 4 m x 3 m x 3 m = 36 m³. Ta obliczona kubatura jest kluczowa w wielu zastosowaniach, takich jak określenie objętości powietrza w pomieszczeniu, co wpływa na systemy wentylacyjne i klimatyzacyjne. W praktyce, znajomość kubatury pomieszczeń jest również istotna podczas planowania ogrzewania, ponieważ obliczenia te mogą pomóc w określeniu mocy grzewczej potrzebnej do utrzymania komfortowej temperatury. Dodatkowo, w budownictwie, odpowiednie obliczenie kubatury ma znaczenie dla uzyskania niezbędnych pozwoleń oraz spełnienia norm budowlanych, co jest istotne dla bezpieczeństwa i efektywności energetycznej budynku.

Pytanie 35

Jakie jest optymalne nachylenie kolektora słonecznego zamontowanego na fasadzie budynku na konsoli ściennej?

A. 70°
B. 45°
C. 65°
D. 30°
Kąt nachylenia kolektora słonecznego ma kluczowe znaczenie dla efektywności jego działania. W przypadku montażu na fasadzie budynku, zalecany kąt wynoszący 45° sprzyja optymalnemu wykorzystaniu promieniowania słonecznego przez większość roku. Taki kąt pozwala na maksymalne naświetlenie kolektora zarówno w okresie letnim, kiedy słońce jest wysoko na niebie, jak i w zimie, gdy jego kąt padania jest niższy. Dodatkowo, kąt 45° ułatwia również odprowadzanie śniegu i wody deszczowej, co zmniejsza ryzyko uszkodzeń systemu. Dobrą praktyką jest także uwzględnienie lokalnych warunków klimatycznych oraz orientacji budynku, co może wpłynąć na ostateczny wybór kąta nachylenia. W kontekście standardów, zaleca się konsultację z fachowcami, którzy mogą przeprowadzić symulacje lub analizy, aby dostosować kąt do specyficznych warunków konkretnego miejsca. Wiedza ta jest niezbędna dla osób zajmujących się projektowaniem i instalacją systemów fotowoltaicznych oraz solarnych.

Pytanie 36

Aby osiągnąć maksymalną wydajność przez cały rok w instalacji solarnej do podgrzewania wody użytkowej w Polsce, konieczne jest ustawienie kolektorów w odpowiednim kierunku pod kątem w stosunku do poziomu:

A. 45°
B. 20°
C. 90°
D. 70°
Ustawienie kolektorów słonecznych pod kątem 45° jest kluczowe dla maksymalnej efektywności systemu podgrzewania wody w Polsce. Taki kąt nachylenia jest optymalny ze względu na średnią szerokość geograficzną kraju, która wynosi 52°N. Zgodnie z praktykami branżowymi, kąt ten powinien być o 10-15 stopni mniejszy od szerokości geograficznej, co sprawia, że 45° to idealny wybór. Przy takim nachyleniu, kolektory mogą efektywnie zbierać promieniowanie słoneczne przez cały rok, co jest szczególnie istotne w kontekście sezonowych zmian nasłonecznienia. Przykładowo, zimą, gdy słońce znajduje się nisko nad horyzontem, kąt 45° pozwala na maksymalizację absorpcji promieni słonecznych, co przekłada się na lepsze wyniki w konwersji energii słonecznej na ciepło w systemie grzewczym. Warto także pamiętać, że powiązane z tego standardy, takie jak PN-EN 12975, określają wymagania dotyczące wydajności kolektorów słonecznych, które wzmacniają praktykę ustawienia ich pod odpowiednim kątem. Takie podejście nie tylko zwiększa efektywność energetyczną, ale również przyczynia się do obniżenia kosztów eksploatacyjnych systemu.

Pytanie 37

Aby sprawdzić, czy w instalacji solarnej przepływa glikol o odpowiednim natężeniu, instaluje się

A. odpowietrznik
B. manometr
C. rotametr
D. termometr
Rotametr to urządzenie, które odgrywa kluczową rolę w monitorowaniu natężenia przepływu cieczy, w tym glikolu w systemach solarnych. Jego zasada działania opiera się na pomiarze objętości płynu przepływającego przez rurkę, co pozwala na precyzyjne określenie wydajności instalacji. Użycie rotametru jest zgodne z najlepszymi praktykami w branży, ponieważ umożliwia operatorom dostosowywanie parametrów systemu w celu optymalizacji wydajności cieplnej. Przykładem praktycznego zastosowania rotametru może być instalacja solarna, w której monitorowanie natężenia przepływu glikolu pozwala na utrzymanie odpowiednich warunków pracy systemu, co jest niezbędne do maksymalizacji efektywności energetycznej. W przypadkach, gdy natężenie przepływu jest zbyt niskie, może to prowadzić do przegrzania kolektorów słonecznych, co z kolei może powodować uszkodzenia systemu. Dlatego rotametr jest nie tylko narzędziem pomiarowym, ale również elementem bezpieczeństwa w takich systemach.

Pytanie 38

Kolektor solarny umieszczony na dachu obiektu powinien być skierowany w stronę

A. północną
B. południową
C. wschodnią
D. zachodnią
Odpowiedź 'południowym' jest prawidłowa, ponieważ kolektory słoneczne powinny być zorientowane w kierunku południowym, aby maksymalizować ilość otrzymywanej energii słonecznej w ciągu dnia. W Polsce, gdzie występuje znacząca ilość dni słonecznych, orientacja południowa pozwala na optymalne wykorzystanie promieniowania słonecznego, co przekłada się na efektywność systemu grzewczego lub produkcji energii elektrycznej. Kolektory słoneczne, umieszczone na dachu w takiej orientacji, mogą zwiększyć wydajność o 15-30% w porównaniu do kierunków alternatywnych, takich jak wschód czy zachód. Dobrą praktyką jest również uwzględnienie kąta nachylenia kolektora, który w przypadku orientacji południowej powinien wynosić około 30-45 stopni. Warto także zwrócić uwagę na przeszkody, takie jak inne budynki czy drzewa, które mogą rzucać cień na kolektor, co dodatkowo wpływa na jego wydajność. Zastosowanie tej wiedzy w projektowaniu systemów solarnych jest kluczowe dla efektywności energetycznej budynków.

Pytanie 39

Ocena właściwości glikolu polega na ustaleniu wartości pH. Glikol powinien być niezwłocznie wymieniony, jeśli jego odczyn spadnie poniżej

A. pH 11
B. pH 9
C. pH 10
D. pH 7
Odpowiedź pH 7 jest prawidłowa, ponieważ wartość ta oznacza neutralne pH, które jest kluczowe dla zachowania właściwości glikolu. W przemyśle chemicznym oraz podczas obiegu wody w systemach grzewczych i chłodniczych, pH na poziomie 7 wskazuje na brak nadmiernej kwasowości lub zasadowości, co zapewnia optymalne warunki dla pracy wielu komponentów. Spadek wartości pH poniżej 7 może prowadzić do korozji metali i osadzania się niepożądanych substancji, co negatywnie wpływa na efektywność systemu oraz jego żywotność. Ponadto, wiele systemów, takich jak kotły, wymaga regulacji chemii wody, w tym pH, aby uniknąć uszkodzeń. Dlatego ważne jest, aby regularnie monitorować pH glikolu i w razie potrzeby go wymienić, aby zapewnić długoterminową niezawodność systemów, w których jest używany. W branży często stosuje się testy pH jako standardową praktykę konserwacyjną.

Pytanie 40

Jakie rodzaje kolektorów słonecznych są najbardziej odpowiednie do montażu w orientacji pionowej?

A. Z selektywną powłoką absorbera.
B. Z przykryciem ze szkła antyrefleksyjnego.
C. Próżniowe o bezpośrednim przepływie przez absorber.
D. Płaskie.
Próżniowe kolektory słoneczne o bezpośrednim przepływie przez absorber są najbardziej efektywne w montażu w pozycji pionowej, ze względu na swoją konstrukcję, która minimalizuje straty ciepła. Próżniowe kolektory składają się z dwóch warstw szklanych, tworzących próżnię, co ogranicza przewodnictwo cieplne i konwekcję. Przy pionowym montażu, te urządzenia mogą efektywnie zbierać energię słoneczną nawet przy niskim kącie padania promieni słonecznych, co jest kluczowe w okresach zimowych lub w regionach o ograniczonej ilości słońca. Dzięki bezpośredniemu przepływowi przez absorber, woda lub inny czynnik roboczy szybko nagrzewają się, co zwiększa efektywność systemu. Przykładem zastosowania mogą być budynki, gdzie przestrzeń na dachach jest ograniczona, a pionowy montaż pozwala na maksymalne wykorzystanie dostępnej powierzchni. Dobre praktyki branżowe wskazują, że instalacja takich kolektorów powinna uwzględniać lokalne warunki atmosferyczne oraz kąt nachylenia, aby zoptymalizować ich wydajność.