Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 7 maja 2025 12:39
  • Data zakończenia: 7 maja 2025 13:03

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jaką rezystancję ma świecąca żarówka, której napięcie nominalne wynosi 230 V, a moc to 100 W?

A. 23 k?
B. 529 ?
C. 460 ?
D. 2,3 ?
Odpowiedź 529 Ω jest całkiem trafna. Użyliśmy wzoru Ohma, by połączyć moc (P), napięcie (U) i rezystancję (R). Jak to się zapisuje? Łatwo, P = U²/R i stąd mamy R = U²/P. Dla napięcia 230 V i mocy 100 W, jak to obliczyłeś, wychodzi nam 529 Ω. To mówi nam, że żarówka przy takim napięciu ma opór 529 Ω, co jest istotne przy układaniu obwodów elektrycznych. Z mojego doświadczenia, wiedza o rezystancji żarówek pozwala lepiej zaplanować cały obwód, zwłaszcza kiedy chodzi o dobór przewodów i zabezpieczeń. W oświetleniu ważne, żeby przewody były odpowiednio dostosowane do obciążenia, a te obliczenia są kluczowe dla bezpieczeństwa i efektywności energetycznej w instalacjach elektrycznych. W sumie, te standardy, jak IEC 60598, przypominają, jak ważne są te rzeczy w praktyce.

Pytanie 3

Proces oceny stanu technicznego elementu mechanicznego zaczyna się od

A. oględzin
B. pomiarów
C. montażu
D. obróbki
Oględziny są pierwszym krokiem w ocenie stanu technicznego podzespołów mechanicznych, ponieważ pozwalają na wstępną identyfikację ewentualnych uszkodzeń, zużycia czy nieprawidłowości. W trakcie oględzin należy zwrócić uwagę na widoczne oznaki uszkodzeń, takie jak pęknięcia, wgniecenia, korozja czy nieszczelności. Dobrą praktyką jest stosowanie standardów takich jak ISO 9001, które podkreślają znaczenie systematycznego podejścia do oceny stanu technicznego. W praktyce inżynierskiej, oględziny są często wspierane narzędziami wizualnymi, takimi jak mikroskopy, kamery inspekcyjne czy oświetlenie UV, co umożliwia dokładniejsze zidentyfikowanie problemów. Na przykład, w przypadku oceny stanu łożysk, oględziny mogą ujawnić wyciek smaru lub oznaki przegrzania, co jest kluczowe dla dalszych działań, takich jak pomiary czy planowanie konserwacji.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jakiego materiału powinno się użyć do ekranowania urządzeń pomiarowych, aby zredukować wpływ pól elektromagnetycznych na ich funkcjonowanie?

A. Preszpan
B. Szkło
C. Teflon
D. Aluminium
Teflon, szklano i preszpan to materiały, które z różnych powodów nie nadają się do ekranowania elektromagnetycznego. Teflon, chociaż ma dobre właściwości dielektryczne i jest odporny na wiele chemikaliów, nie ma ani wystarczającej przewodności elektrycznej, ani zdolności do odbicia fal elektromagnetycznych. Z tego powodu nie jest skutecznym materiałem do ochrony przed zakłóceniami elektromagnetycznymi. Podobnie szkło, które również charakteryzuje się niską przewodnością, nie ma zdolności do efektywnego blokowania pól elektromagnetycznych. W rzeczywistości szkło może nawet stwarzać problemy w aplikacjach wymagających ekranowania, ponieważ promieniowanie elektromagnetyczne może przechodzić przez nie, co skutkuje zakłóceniami w działaniu delikatnych urządzeń pomiarowych. Preszpan, z kolei, to materiał kompozytowy, który ma zastosowanie głównie w dziedzinie elektroniki ze względu na swoje właściwości izolacyjne, ale ponownie, jego brak przewodności elektrycznej czyni go nieodpowiednim do ekranowania. Nieporozumienia związane z tymi materiałami często wynikają z mylnego przekonania, że dobra izolacja wystarcza do ochrony przed zakłóceniami elektromagnetycznymi. Kluczowe jest rozumienie różnicy między materiałami dielektrycznymi a przewodzącymi w kontekście ekranowania, co prowadzi do bardziej efektywnego projektowania systemów odpornych na zakłócenia.

Pytanie 9

Jakie narzędzie jest wykorzystywane do zaciskania końcówek na przewodach elektrycznych?

A. kombinerki
B. ucinaczki boczne
C. pincety
D. praski ręcznej
Praska ręczna to narzędzie zaprojektowane specjalnie do zaciskania końcówek przewodów elektrycznych, co zapewnia solidne i trwałe połączenia. Dzięki mechanizmowi dźwigniowemu, praska umożliwia uzyskanie odpowiedniej siły zacisku, co jest kluczowe dla uniknięcia luzów w połączeniach oraz ich późniejszych awarii. Praski ręczne są dostosowane do różnych typów końcówek, takich jak złącza typu ring, fork czy blade, co czyni je uniwersalnym narzędziem w instalacjach elektrycznych. W praktyce, zaciskanie końcówek przy pomocy praski zapewnia nie tylko bezpieczeństwo, ale także efektywność pracy, ponieważ właściwie wykonane połączenia ograniczają straty energii oraz ryzyko przegrzewania się przewodów. Ponadto, stosując praski, można łatwo dostosować siłę zacisku do specyfiki zastosowania, co jest zgodne z najlepszymi praktykami branżowymi wynikającymi z norm IEC oraz PN-EN. Warto również zaznaczyć, że użycie praski jest zalecane w przypadku pracy z przewodami o różnych przekrojach, co zwiększa wszechstronność tego narzędzia.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Do kategorii chemicznych źródeł energii elektrycznej można zaliczyć ogniwa galwaniczne oraz

A. prądnice synchroniczne
B. akumulatory kwasowe
C. ogniwa fotowoltaiczne
D. elementy termoelektryczne
Akumulatory kwasowe to jeden z typów ogniw chemicznych, które przekształcają energię chemiczną w energię elektryczną. Działają na zasadzie reakcji chemicznych zachodzących pomiędzy elektrodami i elektrolitem, w tym przypadku kwasem siarkowym. Te ogniwa są powszechnie stosowane w różnych zastosowaniach, takich jak zasilanie pojazdów (akumulatory samochodowe), systemy zasilania awaryjnego oraz w energii odnawialnej, gdzie magazynują energię z paneli słonecznych lub turbin wiatrowych. W kontekście standardów branżowych, akumulatory kwasowe muszą spełniać określone normy dotyczące bezpieczeństwa i wydajności, takie jak normy ISO oraz IEC. Przykładowo, w zastosowaniach motoryzacyjnych akumulatory muszą być zdolne do dostarczenia dużych prądów rozruchowych, co jest krytyczne dla działania silnika. W związku z tym, akumulatory kwasowe są nie tylko kluczowym elementem nowoczesnych systemów energetycznych, ale także wymagają regularnej konserwacji i monitorowania, aby zapewnić ich długoterminową niezawodność.

Pytanie 12

Jedną z kluczowych funkcji oscyloskopu dwukanałowego jest dokonywanie pomiaru

A. natężenia pola elektrycznego
B. pojemności elektrycznej kondensatorów
C. przesunięcia fazowego napięciowych przebiegów sinusoidalnych
D. indukcyjności własnej cewki
Odpowiedź dotycząca pomiaru przesunięcia fazowego napięciowych przebiegów sinusoidalnych jest prawidłowa, ponieważ oscyloskop dwukanałowy jest narzędziem niezwykle przydatnym w analizie sygnałów elektrycznych. W kontekście pomiarów, przesunięcie fazowe jest kluczowym parametrem, który może mieć istotny wpływ na działanie układów elektronicznych, zwłaszcza w aplikacjach audio, telekomunikacyjnych oraz w systemach zasilania. Przykładowo, w układach synchronizacji sygnałów, dokładne ustawienie fazy jest niezbędne do optymalnej wydajności. Oscyloskop umożliwia pomiar różnicy fazy pomiędzy dwoma sygnałami, co może być kluczowe w ocenie stabilności systemów oraz w diagnostyce usterek. Ponadto, zgodnie z najlepszymi praktykami w inżynierii elektronicznej, pomiar fazy powinien być częścią rutynowych testów układów, aby zapewnić ich prawidłowe funkcjonowanie i minimalizować zakłócenia.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jakiego rodzaju środek ochrony indywidualnej powinien w szczególności wykorzystać pracownik podczas wymiany tranzystora CMOS?

A. Buty z izolującą podeszwą
B. Ochronne okulary
C. Opaskę uziemiającą
D. Fartuch ochronny z bawełny
Opaska uziemiająca to kluczowy element ochrony indywidualnej, szczególnie podczas pracy z wrażliwymi komponentami elektronicznymi, takimi jak tranzystory CMOS. Te elementy są szczególnie podatne na uszkodzenia spowodowane wyładowaniami elektrostatycznymi (ESD). Uziemienie pozwala na odprowadzenie ładunków elektrycznych, które mogłyby uszkodzić delikatne układy. W praktyce, noszenie opaski uziemiającej jest standardowym wymogiem w branży elektroniki, aby zapewnić, że operatorzy nie wprowadzą niepożądanych ładunków podczas manipulacji elementami. Przykładowo, w laboratoriach i zakładach produkcyjnych, gdzie pracuje się z urządzeniami wrażliwymi na ESD, stosowanie tych opasek jest obligatoryjne i często wymaga ich podłączenia do odpowiednich gniazd uziemiających. Warto również dodać, że zgodność z normami, takimi jak ANSI/ESD S20.20, podkreśla znaczenie stosowania środków ochrony ESD, w tym opasek uziemiających, w celu minimalizacji ryzyka uszkodzeń. Dzięki temu można znacznie zwiększyć niezawodność i żywotność urządzeń elektronicznych.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Aby ustalić wznios silnika indukcyjnego, należy wykonać pomiar

A. odległości między osią wału a podstawą uchwytów silnika
B. wysokości silnika
C. średnicy stojana
D. szerokości silnika oraz średnicy wirnika
Odległość między osią wału a podstawą łap silnika to naprawdę ważna sprawa, jeśli chodzi o wznios silnika indukcyjnego. W zasadzie pokazuje, jak ten silnik jest zamontowany w danym miejscu. Z tego wynika, na jakiej wysokości silnik jest w stosunku do jego osi obrotu, co ma spory wpływ na to, jak wszystko działa w całym układzie napędowym. Na przykład, jak wznios jest źle ustawiony, to może to spowodować, że silnik będzie dużo więcej zużywał energii i szybciej się psuł. W przemyśle, gdzie silniki indukcyjne są na porządku dziennym, na przykład w wentylacjach czy taśmach transportowych, dokładne pomiary wzniosu są niezbędne, żeby wszystko działało jak należy. Przydaje się też trzymanie się standardów, jak IEC 60034, bo to pomaga w montażu i eksploatacji silników elektrycznych.

Pytanie 18

Którego urządzenia nie wolno zasilać z źródła napięcia oznaczonego jako 400 V; 3/N/PE ~50 Hz?

A. Silnika trójfazowego klatkowego o napięciu międzyfazowym 400 V skojarzonego w Δ
B. Silnika prądu stałego o napięciu 400 V
C. Silnika jednofazowego o napięciu 230 V
D. Transformatora trójfazowego o napięciu górnym 400 V i skojarzeniu Dy5
Odpowiedzi wskazujące na inne urządzenia, takie jak silnik jednofazowy o napięciu 230 V, transformator trójfazowy o napięciu górnym 400 V, czy silnik trójfazowy klatkowy o napięciu międzyfazowym 400 V skojarzonego w Δ, sugerują pewne nieporozumienia dotyczące zasilania elektrycznego i charakterystyki tych urządzeń. Silnik jednofazowy o napięciu 230 V nie może być podłączony do systemu 400 V bez zastosowania transformatora obniżającego napięcie, ponieważ może to prowadzić do uszkodzenia silnika. Transformator trójfazowy, mimo że może być zasilany napięciem 400 V, wymaga poprawnego doboru napięcia, a jego skojarzenie Dy5 oznacza, że napięcie międzyfazowe wynosi 400 V, co czyni go odpowiednim do pracy w tym systemie. Silnik trójfazowy klatkowy o napięciu międzyfazowym 400 V jest zaprojektowany do pracy w systemach trójfazowych i bywa używany w wielu aplikacjach przemysłowych. Niezrozumienie tych podstawowych zasad zasilania prowadzi często do niebezpiecznych sytuacji w praktyce, takich jak niewłaściwe podłączenie urządzeń do źródeł energii, co może skutkować zarówno uszkodzeniem sprzętu, jak i zagrożeniem dla bezpieczeństwa operatorów. Każde urządzenie powinno być zasilane zgodnie z jego specyfikacją techniczną oraz odpowiednimi normami, aby uniknąć problemów eksploatacyjnych.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jaką kolejność powinny mieć poszczególne elementy zespołu przygotowania powietrza w instalacji pneumatycznej, zasilającej silnik pneumatyczny, patrząc od strony sprężarki?

A. Filtr powietrza, reduktor ciśnienia, układ smarowania, zawór sterujący
B. Reduktor ciśnienia, filtr powietrza, układ smarowania, zawór sterujący
C. Układ smarowania, filtr powietrza, zawór sterujący, reduktor ciśnienia
D. Zawór sterujący, reduktor ciśnienia, układ smarowania, filtr powietrza
Wszystkie podane odpowiedzi, które nie wskazują na właściwą kolejność elementów, wynikają z nieporozumień dotyczących funkcji poszczególnych składowych oraz ich wpływu na ogólne działanie układu pneumatycznego. W przypadku układu, w którym najpierw znajduje się zawór sterujący, reduktor ciśnienia lub układ smarowania, może to prowadzić do nieodpowiedniego ciśnienia lub zanieczyszczenia powietrza, co z kolei negatywnie wpływa na wydajność i trwałość silnika pneumatycznego. Przykładowo, zainstalowanie reduktora ciśnienia przed filtrem może skutkować zanieczyszczeniem mechanizmu redukcyjnego, co doprowadzi do jego uszkodzenia. Dodatkowo, umiejscowienie układu smarowania na początku, bez uprzedniego oczyszczenia powietrza, prowadzi do wprowadzenia do układu zanieczyszczeń, które mogą zatykać smarownice, a tym samym obniżać efektywność smarowania. Właściwa kolejność montażu nie tylko zwiększa bezpieczeństwo operacyjne, ale również jest zgodna z normami branżowymi, które podkreślają znaczenie odpowiedniego przygotowania mediów roboczych w systemach pneumatycznych. Typowym błędem myślowym jest założenie, że elementy te mogą być montowane w dowolnej kolejności, co jest sprzeczne z zasadami inżynierii pneumatycznej.

Pytanie 21

Który z elementów tyrystora ma funkcję sterowania?

A. Bramka
B. Katoda
C. Anoda
D. Źródło
W kontekście działania tyrystora, źródło, anoda i katoda pełnią fundamentalne role, jednak żadna z tych opcji nie jest odpowiedzialna za funkcję sterującą. Źródło, w którym podawane jest zasilanie, dostarcza energię do układu, ale nie ma wpływu na przełączanie stanu tyrystora. Anoda i katoda są terminalami, przez które przepływa prąd, jednak to brak sygnału sterującego z bramki decyduje o tym, czy tyrystor pozostaje w stanie nieprzewodzącym czy przewodzącym. Typowym błędem myślowym jest mylenie pojęcia przewodzenia prądu z jego inicjowaniem. Przewodzenie zaczyna się dopiero po zastosowaniu sygnału na bramkę, co czyni ją kluczowym elementem do kontrolowania pracy tyrystora. Zrozumienie roli bramki jest fundamentem dla projektowania układów elektronicznych wykorzystujących tyrystory, dlatego każdy inny element układu nie ma możliwości samodzielnego włączenia lub wyłączenia przewodzenia. Właściwa konfiguracja układów z tyrystorami wymaga znajomości ich charakterystyk oraz umiejętności stosowania ich w praktycznych aplikacjach, takich jak sterowanie silnikami czy regulacja napięcia.

Pytanie 22

Który z wymienionych symptomów wskazuje na zanieczyszczenie hydraulicznego filtra?

A. Wzrost ciśnienia oleju za filtrem
B. Spadek temperatury oleju za filtrem
C. Wzrost ciśnienia oleju przed filtrem
D. Spadek temperatury oleju przed filtrem
Zrozumienie objawów zanieczyszczenia filtra hydraulicznego wymaga analizy mechanizmów, które rządzą przepływem oleju w systemie. Wzrost ciśnienia oleju za filtrem nie świadczy o zanieczyszczeniu, ponieważ w zdrowym układzie ciśnienie za filtrem powinno być niższe niż przed filtrem, co wynika z oporu, jaki filtr stawia przepływającemu olejowi. Zjawisko to może być mylnie interpretowane jako wskaźnik problemu. Również spadek temperatury oleju przed filtrem nie jest związany z zanieczyszczeniem, ponieważ temperatura oleju może być wpływana przez inne czynniki, takie jak warunki atmosferyczne czy obciążenie pracy. Spadek temperatury za filtrem również nie jest wskaźnikiem zanieczyszczenia, ponieważ filtr działa jako element, który może obniżać temperaturę oleju, usuwając z niego zanieczyszczenia, które mogą prowadzić do wzrostu temperatury. Chociaż na pierwszy rzut oka te objawy mogą wydawać się logiczne, są one przykładem nieprawidłowego rozumienia procesów hydraulicznych, które wymaga gruntownej wiedzy na temat działania systemów hydraulicznych oraz ich komponentów. W praktyce, monitorowanie ciśnienia i temperatury oleju w systemie to kluczowe aspekty utrzymania sprawności hydrauliki, które powinny być ściśle powiązane z regularną konserwacją i kontrolą filtrów.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jakim przyrządem mierzy się czas trwania skoku siłownika elektrycznego?

A. miliwoltomierzem
B. stoperem
C. czujnikiem zegarowym
D. mikrometrem
Mikrometr, miliwoltomierz i czujnik zegarowy to narzędzia pomiarowe, które służą do różnych celów i nie są odpowiednie do bezpośredniego mierzenia czasu wykonania skoku siłownika elektrycznego. Mikrometr jest narzędziem do precyzyjnego pomiaru wymiarów liniowych, a jego zastosowanie w kontekście pomiaru czasu jest błędne, ponieważ nie ma on zdolności do rejestrowania upływu czasu ani do analizy dynamiki ruchu. Miliwoltomierz służy do pomiaru napięcia elektrycznego, co również nie ma związku z pomiarem czasu. Użycie miliwoltomierza do określenia wydajności siłownika mogłoby prowadzić do niepoprawnych wniosków, ponieważ nie dostarcza informacji o czasach reakcji. Czujnik zegarowy, chociaż może mierzyć czas, w kontekście skoków siłowników elektrycznych nie jest optymalnym rozwiązaniem ze względu na jego specyfikę stosowania. Czujniki te często wymagają manualnej obsługi i mogą nie być wystarczająco szybkie oraz dokładne w przypadku dynamicznych ruchów. W praktyce, aby uzyskać precyzyjne pomiary czasu reakcji siłowników elektrycznych, zaleca się użycie stopera, który oferuje automatyzację i większą dokładność, co jest istotne w kontekście wydajności i niezawodności systemów automatyzacji przemysłowej. Typowe błędy myślowe, które mogą prowadzić do wyboru niewłaściwego narzędzia, obejmują mylenie pomiarów fizycznych z czasem reakcji oraz brak zrozumienia specyfiki narzędzi pomiarowych.

Pytanie 25

W układzie zastosowano przetworniki ciśnienia o prądowych sygnałach wyjściowych. Na podstawie danych katalogowych przetworników oraz wyników przeprowadzonych pomiarów wskaż, który z przetworników nie działa prawidłowo.

PrzetwornikZakres sygnału
wejściowego
[MPa]
Zakres sygnału
wyjściowego [mA]
Wartość sygnału
wejściowego
[MPa]
Wartość sygnału
wyjściowego [mA]
10 ÷ 10 ÷ 200,5010
20 ÷ 20 ÷ 200,505
30 ÷ 14 ÷ 200,5012
40 ÷ 24 ÷ 200,505

A. Przetwornik 4
B. Przetwornik 2
C. Przetwornik 3
D. Przetwornik 1
Przetwornik 4 jest odpowiednią odpowiedzią, ponieważ jego działanie jest niezgodne z oczekiwaniami w kontekście standardów przetworników ciśnienia. Zgodnie z danymi katalogowymi, dla ciśnienia 0,50 MPa przetwornik ten powinien generować sygnał 8 mA. W przypadku braku prawidłowego sygnału, jak w tym przypadku 5 mA, wskazuje to na awarię urządzenia lub błędną kalibrację. Praktyczne zastosowanie przetworników ciśnienia wymaga ich niezawodności, ponieważ od ich działania zależy poprawność pomiarów w różnych procesach technologicznych. W związku z tym, regularne sprawdzanie i kalibracja tych urządzeń są kluczowe w utrzymaniu standardów jakości i bezpieczeństwa w przemyśle. Ponadto, w przypadku nieprawidłowego działania przetwornika, istotne jest przeprowadzenie diagnostyki w celu określenia przyczyn błędów, co może obejmować testy elektryczne oraz analizę warunków pracy. Warto również zaznaczyć, że odpowiednie monitorowanie sygnałów wyjściowych pozwala na wczesne wykrywanie problemów i minimalizowanie przestojów w procesie technologicznym.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Jakie wymiary biorą pod uwagę dopuszczalne odchylenia w realizacji elementu mechanicznego?

A. Rzeczywiste
B. Jednostronne
C. Graniczne
D. Nominalne
Odpowiedź "Graniczne" jest poprawna, ponieważ wymiary graniczne definiują maksymalne i minimalne wartości dopuszczalne dla wymiarów elementów mechanicznych. W praktyce inżynieryjnej, wymiary graniczne są kluczowe w procesie projektowania, produkcji oraz kontroli jakości, ponieważ określają, w jakim zakresie wymiaru elementu można tolerować błędy wykonania. W projektowaniu przyjmuje się nominalny wymiar, natomiast granice wymiarowe wyznaczają zakres, w którym element może być produkowany, co jest istotne dla zapewnienia odpowiednich właściwości funkcjonalnych oraz interoperacyjności z innymi komponentami. Na przykład, w przemyśle motoryzacyjnym, wymiary graniczne są istotne dla zapewnienia, że wszystkie części pasują ze sobą w pojazdach, co ma wpływ na bezpieczeństwo oraz wydajność. W praktyce, stosowanie norm takich jak ISO 286, które definiują systemy wymiarów granicznych, jest kluczowe dla efektywności procesów produkcyjnych oraz redukcji kosztów związanych z błędami wykonawczymi.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Do połączeń spoczynkowych trwałych nie wlicza się

A. klejenia
B. kołkowania
C. nitowania
D. spawania
Kołkowanie to technika łączenia elementów, która nie tworzy połączeń spoczynkowych nierozłącznych. W przeciwieństwie do spawania, klejenia czy nitowania, kołkowanie polega na wprowadzeniu kołków w otwory w elementach, co pozwala na ich łatwe zdemontowanie. To podejście jest często stosowane w konstrukcjach, gdzie wymagana jest możliwość demontażu w przyszłości, jak na przykład w budownictwie modułowym. W praktyce oznacza to, że kołkowane połączenia mogą być używane w miejscach, gdzie zachodzi potrzeba konserwacji lub wymiany komponentów bez konieczności uszkadzania całej struktury. Zgodnie z normami ISO oraz PN, kołkowanie odbywa się z zachowaniem odpowiednich tolerancji wymiarowych i materiałowych, co zapewnia ich niezawodność i bezpieczeństwo. Warto również zauważyć, że kołkowanie jest jedną z metod stosowanych w różnych branżach, w tym w motoryzacji i konstrukcjach stalowych, gdzie elastyczność w montażu jest kluczowa.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Jakie obwody elektroniczne gwarantują utrzymanie stałego napięcia na wyjściu, niezależnie od zmian obciążenia oraz fluktuacji napięcia zasilającego?

A. Generatory.
B. Stabilizatory.
C. Prostowniki.
D. Flip-flopy.
Stabilizatory to układy elektroniczne, które mają na celu zapewnienie stałej wartości napięcia na wyjściu, niezależnie od zmian w obciążeniu oraz fluktuacji napięcia zasilającego. Działają one na zasadzie automatycznego dostosowywania się, aby utrzymać wyjściowe napięcie w pożądanym zakresie. Przykładem są stabilizatory liniowe, które wykorzystują elementy regulacyjne, takie jak tranzystory, do kontrolowania napięcia. Zastosowania stabilizatorów można znaleźć w zasilaczach do urządzeń elektronicznych, gdzie stabilne napięcie jest kluczowe dla prawidłowego funkcjonowania komponentów, takich jak procesory i układy cyfrowe. W praktyce, stabilizatory są również stosowane w systemach zasilania krytycznych aplikacji, takich jak sprzęt medyczny czy telekomunikacyjny, gdzie wahania napięcia mogłyby prowadzić do awarii systemów. W branży przestrzega się standardów takich jak IEC 62368, które regulują bezpieczeństwo i wydajność układów zasilających, w tym stabilizatorów.

Pytanie 35

Komutatorowa prądnica tachometryczna podłączona do wału silnika wykonawczego, działającego w systemie mechatronicznym, stanowi przetwornik

A. prędkości obrotowej na impulsy elektryczne
B. kąta obrotu na regulowane napięcie stałe
C. kąta obrotu na impulsy elektryczne
D. prędkości obrotowej na napięcie stałe
Wybór odpowiedzi dotyczącej konwersji kąta obrotu na impulsy elektryczne jest niepoprawny, ponieważ komutatorowa prądnica tachometryczna nie działa na zasadzie pomiaru kąta obrotu. Kąt obrotu, choć istotny w kontekście niektórych urządzeń pomiarowych, takich jak enkodery, nie jest bezpośrednio związany z funkcjonalnością prądnic tachometrycznych, które koncentrują się na prędkości obrotowej. Kolejna błędna koncepcja dotyczy przekształcania prędkości obrotowej na impulsy elektryczne. Chociaż impulsy elektryczne mogą być generowane przez różne typy czujników, w przypadku prądnic tachometrycznych generowane napięcie stałe jest bardziej stabilnym i dokładnym sposobem przedstawienia prędkości obrotowej, co jest kluczowe w aplikacjach wymagających precyzyjnego pomiaru. Ostatnia nieprawidłowa koncepcja wiąże się z regulowanym napięciem stałym, które nie jest typowe dla działania prądnic tachometrycznych. Te urządzenia dostarczają napięcie stałe, które jest proporcjonalne do prędkości obrotowej, a nie napięcie regulowane. Zrozumienie tych różnic jest kluczowe dla efektywnego wykorzystania technologii w systemach mechatronicznych oraz dla prawidłowej interpretacji i analizy danych pochodzących z różnych czujników i przetworników. Właściwe podejście do wyboru urządzeń pomiarowych może znacząco wpłynąć na wydajność i jakość projektów inżynieryjnych.

Pytanie 36

Wskaż, który rodzaj siłownika można wykorzystać w układzie zasilanym sprężonym powietrzem o ciśnieniu p = 0,8 MPa, jeśli wymagana jest siła teoretyczna 50 daN oraz przemieszczenie 10 cm?

A. D32, pmax = 10 bar, skok standardowy: 25, 50, 80, 100,125, 160, 200
B. D25, pmax = 10 bar, skok standardowy: 16, 32, 50, 80, 125, 200
C. D32, pmax = 10 bar, skok standardowy: 16, 32, 50, 80, 125, 200
D. D12, pmax = 10 bar, skok standardowy: 25, 50, 80, 100,125, 160, 200
Wybrany siłownik D32 o maksymalnym ciśnieniu 10 bar (0,8 MPa) jest odpowiedni do zastosowania w opisanym układzie ze względu na wymagania dotyczące siły teoretycznej oraz skoku. Siła teoretyczna siłownika jest obliczana jako iloczyn ciśnienia roboczego i powierzchni tłoka. W przypadku siłownika D32, przy maksymalnym ciśnieniu 10 bar, można uzyskać wystarczającą siłę, która spełnia wymóg 50 daN. Dodatkowo, skok standardowy 25, 50, 80, 100, 125, 160, 200 mm zapewnia elastyczność w doborze odpowiedniego przemieszczenia, w tym przypadku 10 cm (100 mm). W praktyce, siłowniki pneumatyczne D32 znajdują zastosowanie w automatyzacji przemysłowej, w systemach transportowych oraz w maszynach roboczych, gdzie wymagana jest wysoka precyzja i niezawodność. Wybór odpowiedniego siłownika zgodnego z wymaganymi parametrami jest kluczowy dla efektywności całego układu, co potwierdzają standardy branżowe dotyczące doboru komponentów w pneumatyce.

Pytanie 37

Która z wymienionych właściwości komponentów systemów automatyki, stosowanych w liniach produkcyjnych, ma kluczowe znaczenie przy projektowaniu linii do konfekcjonowania rozcieńczalników do farb i lakierów?

A. Efektywność
B. Bezobsługowość
C. Niezawodność
D. Iskrobezpieczeństwo
Wydajność, niezawodność i bezobsługowość to istotne cechy w projektowaniu układów automatyki, ale ich znaczenie w kontekście konfekcjonowania łatwopalnych substancji chemicznych, jakimi są rozcieńczalniki do farb i lakierów, nie może przeważać nad kwestią iskrobezpieczeństwa. Wydajność może przyciągać uwagę jako znaczący wskaźnik efektywności produkcji, jednak w kontekście substancji niebezpiecznych, zbyt duża wydajność może prowadzić do zminimalizowania zabezpieczeń, co stwarza ryzyko. Niezawodność jest istotna dla zapewnienia ciągłości i stabilności produkcji, lecz w przypadku wystąpienia awarii w systemie bez odpowiednich zabezpieczeń przeciwiskrowych, skutki mogą być katastrofalne. Bezobsługowość, mimo że zwiększa wygodę użytkowania i zmniejsza konieczność interwencji ze strony operatorów, może prowadzić do sytuacji, w których nie podejmuje się wystarczających działań kontrolnych dla zapobiegania zagrożeniom. Najistotniejsze w tym przypadku jest zapewnienie podstawowego bezpieczeństwa, które nie jest możliwe bez uwzględnienia normiskrobezpieczeństwa, co powinno być priorytetem w każdym projekcie związanym z automatyzacją procesów przemysłowych w strefach ryzyka. Pomijając zagadnienia iskrobezpieczeństwa, projektant naraża nie tylko zdrowie pracowników, ale również generuje potencjalne straty finansowe związane z przerwami w produkcji oraz odpowiedzialnością prawną.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Dobierz minimalny zestaw sterownika S7-200 do realizacji sterowania windą w budynku trzykondygnacyjnym. Wykorzystaj w tym celu opis elementów wejściowych/wyjściowych podłączonych do sterownika.

Elementy
wejściowe
jeden czujnik na każdej kondygnacji informujący o stanie drzwi zewnętrznych (otwarte/zamknięte)
jeden czujnik na każdej kondygnacji informujący o położeniu windy
jeden przycisk na każdej kondygnacji przywołujący windę
3 przyciski wewnątrz windy służące do wyboru kondygnacji
jeden przycisk wewnątrz windy informujący o awarii (AWARIA)
Elementy
wyjściowe
dwa styczniki załączające otwieranie i zamykanie drzwi
dwa styczniki uruchamiające jazdę kabiny na dół i jazdę kabiny do góry

A. S7-200 o 6 wejściach i 4 wyjściach
B. S7-200 o 14 wejściach i 10 wyjściach
C. S7-200 o 8 wejściach i 6 wyjściach
D. S7-200 o 24 wejściach i 16 wyjściach
Niepoprawne odpowiedzi, takie jak S7-200 o 8 wejściach i 6 wyjściach, S7-200 o 24 wejściach i 16 wyjściach oraz S7-200 o 6 wejściach i 4 wyjściach, nie spełniają wymagań dla skutecznego sterowania windą w budynku trzykondygnacyjnym. Przede wszystkim, w przypadku 8 wejść i 6 wyjść, liczba wejść jest zdecydowanie zbyt mała, aby obsłużyć wszystkie niezbędne czujniki, takie jak te monitorujące położenie windy, sygnały przycisków oraz inne sensory. Podobnie, 6 wejść i 4 wyjścia również nie są wystarczające, co prowadzi do ryzyka awarii systemu. Z drugiej strony, odpowiedź z 24 wejściami i 16 wyjściami, mimo że teoretycznie przekracza wymagania, w praktyce może prowadzić do zbędnych kosztów oraz złożoności systemu, co jest nieefektywne. W projektowaniu systemów automatyki niezwykle ważne jest, aby dobierać komponenty w sposób przemyślany, co oznacza nie tylko spełnienie minimalnych wymagań, ale także optymalizację kosztów. Niezrozumienie tego aspektu może prowadzić do błędnych założeń i nieefektywnej pracy systemu, co w konsekwencji może wpłynąć na bezpieczeństwo użytkowników oraz niezawodność działania urządzeń. Warto pamiętać, że właściwy dobór komponentów jest fundamentem każdej dobrze zaprojektowanej instalacji automatyki.