Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 4 maja 2025 17:34
  • Data zakończenia: 4 maja 2025 17:50

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie polecenie w systemie Windows pozwala na wyświetlenie tabeli routingu hosta?

A. ipconfig /renew
B. netstat -n
C. netstat -r
D. ipconfig /release
Polecenie 'netstat -r' jest kluczowym narzędziem w systemie Windows, które umożliwia wyświetlenie tabeli routingu hosta. Tabela routingu zawiera informacje dotyczące tras, jakie pakiety danych muszą pokonać, aby dotrzeć do określonych adresów IP. Znajomość tej tabeli jest istotna dla administratorów sieci, ponieważ pozwala na analizę i diagnozowanie problemów z komunikacją między urządzeniami w sieci. 'netstat -r' pokazuje nie tylko aktywne trasy, ale również ich metryki, co może pomóc w optymalizacji trasowania w złożonych sieciach. W praktyce, narzędzie to jest często używane do monitorowania stanu sieci oraz do identyfikacji potencjalnych wąskich gardeł w trasowaniu. Rekomenduje się regularne korzystanie z tego polecenia w celu uzyskania informacji o bieżącej konfiguracji routingu oraz w sytuacjach awaryjnych, gdzie konieczne jest szybkie zdiagnozowanie problemów komunikacyjnych w infrastrukturze IT.

Pytanie 2

W komputerze o parametrach przedstawionych w tabeli konieczna jest wymiana karty graficznej na kartę GeForce GTX 1070 Ti Titanium 8G DDR5, PCI EX-x16 3.0, 256b, 1683 MHz/1607 MHz, Power consumption 180W, 3x DP, 2x HDMI, recommended power supply 500W, DirectX 12, OpenGL 4.5. W związku z tym należy również zaktualizować

PodzespółParametryPobór mocy [W]
Procesor Intel i5Cores: 6, Threads: 6, 2.8 GHz, Tryb Turbo: 4.0 GHz, s-115130
Moduł pamięci DDR3Taktowanie: 1600 MHz, 8 GB (1x8 GB), CL 96
Monitor LCDPowłoka: matowa, LED, VGA x1, HDMI x1, DP x140
Mysz i klawiaturaprzewodowa, interfejs: USB2
Płyta główna2x PCI Ex-x16 3.0, D-Sub x1, USB 2.0 x2, RJ-45 x1, USB 3.1 gen 1 x4, DP x1, PS/2 x1, DDR3, s-1151, 4xDDR4 (Max: 64 GB)35
Karta graficzna3x DP, 1x DVI-D, 1x HDMI, 2 GB GDDR3150
Dysk twardy 7200 obr/min1 TB, SATA III (6 Gb/s), 64 MB16
ZasilaczMoc: 300W---

A. zasilacza
B. procesora
C. karty sieciowej
D. płyty głównej
Wymieniając kartę graficzną na GeForce GTX 1070 Ti Titanium 8G DDR5, trzeba na pewno zwrócić uwagę na to, ile energii cała konfiguracja będzie potrzebować. Ta karta ma pobór mocy na poziomie 180W, co jest całkiem sporo. Jak policzymy inne sprzęty, które też potrzebują energii – procesor 30W, pamięć 6W, monitor 40W, mysz i klawiaturę razem 2W, płyta główna 35W oraz stara karta graficzna 150W – to wychodzi nam razem 403W. Po dodaniu nowej karty, zasilacz powinien mieć przynajmniej 583W mocy. Zasilacz 300W nie da rady, bo to za mało. Dobrze jest mieć zapas mocy, tak z 20%, więc najlepiej pomyśleć o zasilaczu co najmniej 700W. Musisz wymienić zasilacz, żeby wszystko działało stabilnie, a sprzęt się nie uszkodził. Warto dobierać zasilacz tak, żeby nie tylko spełniał obecne wymagania, ale też żeby dało się później rozbudować komputer.

Pytanie 3

Część płyty głównej, która odpowiada za transmisję danych pomiędzy mikroprocesorem a pamięcią operacyjną RAM oraz magistralą karty graficznej, jest oznaczona na rysunku numerem

Ilustracja do pytania
A. 4
B. 6
C. 3
D. 5
Układ oznaczony numerem 6 na schemacie to tzw. North Bridge (północny mostek) który jest kluczowym elementem płyty głównej odpowiedzialnym za komunikację między mikroprocesorem a pamięcią RAM oraz kartą graficzną. North Bridge pełni funkcję kontrolera magistrali systemowej (FSB) i pośredniczy w wymianie danych między procesorem a szybkimi komponentami systemu takimi jak pamięć operacyjna i magistrala AGP lub PCI Express używana przez kartę graficzną. North Bridge jest bezpośrednio połączony z procesorem i pamięcią RAM co umożliwia szybki dostęp do danych. W nowoczesnych systemach architektura ta została zintegrowana w procesorze w postaci kontrolera pamięci ale w tradycyjnych płytach głównych North Bridge odgrywał kluczową rolę. Dobre praktyki branżowe w projektowaniu płyt głównych uwzględniają optymalizację prędkości komunikacji między North Bridge a innymi komponentami co wpływa na ogólną wydajność systemu. Przykładowo w gamingowych komputerach wydajność North Bridge jest krytyczna dla płynnej grafiki i obsługi zaawansowanych gier.

Pytanie 4

Urządzenie komputerowe, które powinno być koniecznie podłączone do zasilania za pomocą UPS, to

A. dysk zewnętrzny
B. ploter
C. serwer sieciowy
D. drukarka atramentowa
Serwer sieciowy jest kluczowym elementem infrastruktury IT, odpowiedzialnym za przechowywanie i udostępnianie zasobów oraz usług w sieci. Z racji na swoją rolę, serwery muszą być nieprzerwanie dostępne, a ich nagłe wyłączenie z powodu przerwy w dostawie energii może prowadzić do poważnych problemów, takich jak utrata danych, przerwanie usług czy obniżenie wydajności całego systemu. Zastosowanie zasilacza awaryjnego (UPS) zapewnia dodatkowy czas na bezpieczne wyłączenie serwera oraz ochronę przed uszkodzeniami spowodowanymi przepięciami. W praktyce, standardy branżowe, takie jak Uptime Institute, zalecają stosowanie UPS dla serwerów, aby zwiększyć ich niezawodność i dostępność. Dodatkowo, odpowiednia konfiguracja UPS z monitoringiem stanu akumulatorów może zapobiegać sytuacjom awaryjnym i wspierać zarządzanie ryzykiem w infrastrukturze IT, co jest kluczowe dla organizacji operujących w oparciu o technologie informacyjne.

Pytanie 5

Co symbolizuje graficzny znak przedstawiony na ilustracji?

Ilustracja do pytania
A. zamknięty kanał kablowy
B. gniazd telekomunikacyjne
C. główny punkt dystrybucyjny
D. otwarty kanał kablowy
Symbol przedstawiony na rysunku jest powszechnie stosowany w dokumentacji technicznej związanej z instalacjami teletechnicznymi i odnosi się do gniazd telekomunikacyjnych. Gniazda te są kluczowymi elementami infrastruktury telekomunikacyjnej, umożliwiającymi podłączanie urządzeń takich jak telefony, modemy, czy komputery do sieci. W praktyce gniazda telekomunikacyjne są instalowane w ścianach budynków w miejscach dostosowanych do potrzeb użytkowników, zapewniając łatwy dostęp do sieci. Standardy branżowe, takie jak TIA/EIA-568, regulują specyfikacje dotyczące ich instalacji i oznaczeń, aby zapewnić kompatybilność i funkcjonalność w różnych środowiskach. Symboliczne przedstawienie gniazd telekomunikacyjnych w dokumentacji technicznej ułatwia projektantom i instalatorom szybkie identyfikowanie kluczowych punktów połączeń w planach budynku. Dzięki temu można zaplanować efektywne rozmieszczenie infrastruktury sieciowej, co jest szczególnie istotne w dużych obiektach komercyjnych lub biurowych, gdzie niezawodność sieci jest priorytetem. Właściwe rozpoznanie takich symboli pozwala na poprawne zrozumienie i realizację projektów teletechnicznych zgodnie z najlepszymi praktykami i standardami branżowymi.

Pytanie 6

Jakie polecenie w systemach operacyjnych Windows służy do prezentacji konfiguracji interfejsów sieciowych?

A. hold
B. ipconfig
C. ifconfig
D. tracert
Odpowiedź 'ipconfig' jest poprawna, ponieważ jest to narzędzie w systemach operacyjnych Windows, które służy do wyświetlania i konfiguracji ustawień interfejsów sieciowych. Umożliwia administratorom i użytkownikom łatwe sprawdzenie adresów IP, maski podsieci oraz bramy domyślnej dla wszystkich aktywnych interfejsów sieciowych. Przykładowo, użycie polecenia 'ipconfig /all' dostarcza szczegółowych informacji o każdym interfejsie, w tym o adresach MAC, statusie połączenia oraz konfiguracji DHCP. Jest to standardowe narzędzie w administracji sieciami, które często jest wykorzystywane w praktyce do diagnozowania problemów z połączeniami sieciowymi. Znajomość tego narzędzia jest kluczowa dla każdego, kto zajmuje się zarządzaniem sieciami komputerowymi, zarówno w środowisku lokalnym, jak i w większych infrastrukturach. Warto również dodać, że 'ipconfig' współpracuje z innymi poleceniami, takimi jak 'ping' lub 'tracert', co zwiększa jego użyteczność w diagnostyce sieci.

Pytanie 7

W sieci z maską 255.255.255.128 można przypisać adresy dla

A. 254 urządzenia
B. 126 urządzeń
C. 128 urządzeń
D. 127 urządzeń
Maska podsieci 255.255.255.128, której notacja CIDR to /25, pozwala na podział adresu IPv4 na dwie części: adres sieci oraz adres hosta. W przypadku maski /25, mamy 7 bitów przeznaczonych na adresy hostów (32 bity - 25 bity maski = 7 bity). Liczba dostępnych adresów hostów oblicza się za pomocą wzoru 2^n - 2, gdzie n to liczba bitów przeznaczonych dla hostów. W naszym przypadku to 2^7 - 2, co daje 128 - 2 = 126 adresów hostów. Odejmuje się 2 adresy: jeden dla adresu sieci (wszystkie bity hosta ustawione na 0) i jeden dla adresu rozgłoszeniowego (wszystkie bity hosta ustawione na 1). Przykładowo, w sieci 192.168.1.0/25, możliwe adresy hostów to od 192.168.1.1 do 192.168.1.126. Wiedza o adresowaniu i podsieciach jest kluczowa w zarządzaniu sieciami komputerowymi, a stosowanie odpowiednich masek sieciowych pozwala na efektywne wykorzystanie dostępnych adresów IP.

Pytanie 8

Program wirusowy, którego zasadniczym zamiarem jest samoistne rozprzestrzenianie się w sieci komputerowej, to:

A. trojan
B. backdoor
C. robak
D. keylogger
Robaki komputerowe to samodzielne programy, które mają zdolność do rozprzestrzeniania się w sieciach komputerowych, najczęściej bez interakcji użytkownika. Główną charakterystyką robaka jest to, że potrafi kopiować swoje własne instancje i przesyłać je do innych urządzeń, co czyni je szczególnie niebezpiecznymi w kontekście bezpieczeństwa sieci. W przeciwieństwie do trojanów, które udają legalne oprogramowanie i zależą od użytkowników, aby je uruchomić, robaki działają automatycznie. Przykładem robaka jest Blaster, który zainfekował tysiące komputerów w 2003 roku, wykorzystując lukę w zabezpieczeniach systemu Windows. Zrozumienie mechanizmów działania robaków jest kluczowe dla wdrażania skutecznych strategii obronnych, takich jak aktualizacje oprogramowania, instalacja zapór ogniowych oraz monitorowanie ruchu sieciowego, co jest zgodne z najlepszymi praktykami w zakresie zarządzania bezpieczeństwem IT.

Pytanie 9

Który z adresów protokołu IP w wersji 4 jest poprawny pod względem struktury?

A. 192.309.1.255
B. 192.0.FF.FF
C. 192.10.255.3A
D. 192.21.140.16
Adres IP w wersji 4 (IPv4) składa się z czterech oktetów oddzielonych kropkami, a każdy oktet jest liczbą całkowitą w zakresie od 0 do 255. Odpowiedź 192.21.140.16 spełnia te kryteria, gdyż wszystkie cztery oktety są w odpowiednich granicach. Przykład ten jest typowym adresem przypisanym do urządzeń w sieci i jest używany w wielu lokalnych oraz globalnych konfiguracjach sieciowych. W praktyce adresy IPv4 są wykorzystywane do routingu pakietów danych w Internecie oraz w sieciach lokalnych. Zgodnie z protokołem Internetowym (RFC 791), ważne jest, aby adresy IP były poprawnie skonstruowane, aby zapewnić ich poprawne przesyłanie i odbieranie w sieci. Dodatkowo, w kontekście bezpieczeństwa i zarządzania siecią, administrowanie adresami IP wymaga ich prawidłowej struktury, co pozwala na skuteczne zarządzanie ruchem sieciowym oraz unikanie konfliktów adresowych.

Pytanie 10

Jakie urządzenie powinno być użyte do łączenia komputerów w strukturze gwiazdy?

A. Repetytor
B. Switch
C. Transceiver
D. Bridge
Switch to urządzenie, które odgrywa kluczową rolę w topologii gwiazdy, ponieważ umożliwia efektywne zarządzanie ruchem danych między podłączonymi komputerami. W topologii gwiazdy wszystkie urządzenia są bezpośrednio połączone z centralnym punktem, którym w tym przypadku jest switch. Switch działa na poziomie warstwy drugiej modelu OSI, co oznacza, że przetwarza ramki danych na podstawie adresów MAC. Dzięki temu, gdy komputer wysyła dane, switch kieruje je bezpośrednio do odpowiedniego urządzenia, co minimalizuje kolizje i zwiększa wydajność sieci. Przykładem zastosowania switche'a w topologii gwiazdy może być biuro, gdzie wiele komputerów i urządzeń drukujących jest połączonych z jednym switchem, co pozwala na sprawne działanie oraz łatwe zarządzanie siecią. Dodatkowo, stosowanie switchy pozwala na implementację funkcji VLAN, co umożliwia segmentację ruchu sieciowego i zwiększa bezpieczeństwo oraz wydajność sieci. Zgodnie z dobrymi praktykami branżowymi, switche powinny być projektowane z myślą o skalowalności, co pozwala na łatwe dodawanie kolejnych urządzeń bez wpływu na istniejące połączenia.

Pytanie 11

Norma TIA/EIA-568-B.2 definiuje parametry specyfikacji transmisyjnej

A. kabli koncentrycznych
B. fal radiowych
C. kabli UTP
D. światłowodów
Zarówno kable koncentryczne, jak i światłowody oraz fale radiowe nie są objęte normą TIA/EIA-568-B.2, co wskazuje na fundamentalne nieporozumienia w kontekście standardów transmisyjnych. Kable koncentryczne, choć użyteczne w niektórych aplikacjach, takich jak telewizja kablowa czy niektóre rodzaje sieci komputerowych, są regulowane przez inne standardy, które koncentrują się na ich specyficznych właściwościach i zastosowaniach. Światłowody, z kolei, wymagają zupełnie innych norm (np. TIA/EIA-568-C), które dotyczą ich różnorodnych parametrów optycznych, takich jak tłumienie i przepustowość. Fale radiowe, wykorzystywane w technologii bezprzewodowej, również nie mają zastosowania w kontekście opisanym przez TIA/EIA-568-B.2, ponieważ dotyczą one zupełnie innych metod transmisji danych, które nie są oparte na przewodach, a na sygnałach elektromagnetycznych. Typowe błędy myślowe w tym przypadku mogą obejmować mylenie różnych technologii transmisji i standardów, co prowadzi do niewłaściwego doboru rozwiązań w projektach sieciowych. Zrozumienie, że różne rodzaje transmisji wymagają różnych standardów, jest kluczowe dla inżynierów i techników zajmujących się budową i utrzymaniem systemów komunikacyjnych.

Pytanie 12

Jakim akronimem oznacza się przenikanie bliskie skrętki teleinformatycznej?

A. FEXT
B. ANEXT
C. NEXT
D. AFEXT
NEXT, czyli Near-End Crosstalk, to termin używany w kontekście skrętek teleinformatycznych, który odnosi się do zjawiska zakłóceń sygnału w kablu, gdy sygnał z jednego toru przesyłowego przenika do innego toru, który znajduje się blisko źródła sygnału. Jest to istotny problem w systemach telekomunikacyjnych, szczególnie w sieciach lokalnych (LAN), gdzie skrętki są powszechnie stosowane. Zrozumienie NEXT jest kluczowe dla projektowania i wdrażania efektywnych i niezawodnych sieci, ponieważ jego poziom wpływa na jakość i stabilność przesyłanych danych. Przykładem zastosowania tej wiedzy jest dobór odpowiednich skrętek do instalacji w biurze, gdzie wymagana jest wysoka przepustowość i minimalizacja interakcji między torami. Standardy takie jak ANSI/TIA-568 oraz ISO/IEC 11801 definiują dopuszczalne poziomy NEXT dla różnych kategorii okablowania, co jest niezbędne w celu zapewnienia zgodności i wydajności infrastruktury telekomunikacyjnej.

Pytanie 13

Błąd typu STOP w systemie Windows (Blue Screen), który występuje w momencie, gdy system odwołuje się do niepoprawnych danych w pamięci RAM, to

A. UNEXPECTED_KERNEL_MODE_TRAP
B. PAGE_FAULT_IN_NONPAGE_AREA
C. UNMONTABLE_BOOT_VOLUME
D. NTFS_FILE_SYSTEM
Odpowiedź 'PAGE_FAULT_IN_NONPAGE_AREA' jest poprawna, ponieważ odnosi się do sytuacji, w której system operacyjny Windows napotyka problem podczas próby odwołania się do danych, które powinny znajdować się w pamięci operacyjnej, ale ich tam nie ma. Błąd ten jest często spowodowany uszkodzeniem pamięci RAM lub problemami z systemem plików. Niekiedy może to być wynikiem wadliwych sterowników lub niekompatybilnych aplikacji. W praktyce, aby zdiagnozować tego typu problem, administratorzy systemów mogą używać narzędzi diagnostycznych, takich jak Windows Memory Diagnostic, aby sprawdzić pamięć RAM, oraz CHKDSK do analizy i naprawy problemów z systemem plików. Zarządzanie pamięcią i zapewnienie integralności danych w systemie operacyjnym są kluczowymi aspektami wydajności i stabilności systemu, co podkreśla znaczenie monitorowania i konserwacji sprzętu oraz oprogramowania. Dbanie o regularne aktualizacje sterowników i systemu operacyjnego zgodnie z najlepszymi praktykami branżowymi może znacząco zredukować występowanie takich błędów.

Pytanie 14

W skanerach z systemem CIS źródłem światła oświetlającym dokument jest

A. zespół żarówek
B. lampa fluorescencyjna
C. grupa trójkolorowych diod LED
D. świetlówka
W skanerach wyposażonych w układy CIS (Contact Image Sensor) elementem oświetlającym skanowany dokument są diody LED, w tym przypadku grupa trójkolorowych diod LED. To nowoczesne rozwiązanie zapewnia lepszą jakość skanowania dzięki odpowiedniemu dostosowaniu temperatury barwowej i intensywności światła, co jest kluczowe dla dokładności odwzorowania kolorów w zeskanowanych dokumentach. Dioda LED charakteryzuje się długą żywotnością oraz niskim zużyciem energii w porównaniu do tradycyjnych źródeł światła, takich jak świetlówki czy żarówki. W zastosowaniach biurowych i archiwizacyjnych, gdzie jakość obrazu ma kluczowe znaczenie, wykorzystanie technologii LED przyczynia się do uzyskania wyraźniejszych i bardziej szczegółowych skanów, co jest zgodne z najlepszymi praktykami w branży skanowania. Ponadto, diody LED nie emitują promieniowania UV, co chroni dokumenty przed ewentualnym uszkodzeniem w procesie skanowania. W kontekście rosnącej dbałości o środowisko, wybór technologii LED jest zgodny z zasadami zrównoważonego rozwoju.

Pytanie 15

Na komputerze klienckim z systemem Windows XP plik "hosts" to plik tekstowy, który wykorzystywany jest do przypisywania

A. nazw hostów na adresy MAC
B. nazw hostów na adresy IP
C. dysków twardych
D. nazw hostów przez serwery DNS
Mapowanie nazw hostów w systemach komputerowych jest kluczowym procesem w komunikacji sieciowej, ale jest to realizowane w różny sposób, co może prowadzić do powszechnych nieporozumień dotyczących roli pliku 'hosts'. Plik ten nie służy do mapowania dysków twardych, co jest technicznie niemożliwe, gdyż funkcjonalność ta odnosi się do lokalnych systemów plików i nie ma związku z systemem nazw domen. Podobnie, nie można używać pliku 'hosts' do mapowania nazw hostów na adresy MAC; adresy MAC są unikalnymi identyfikatorami sprzętowymi i są używane w warstwie łącza danych, podczas gdy plik 'hosts' działa na wyższej warstwie, mapując nazwy na adresy IP, które funkcjonują na warstwie sieciowej. Z kolei odpowiedź dotycząca serwerów DNS również jest myląca, ponieważ 'hosts' działa lokalnie, zanim zapytanie trafi do serwera DNS. Ważne jest, aby zrozumieć, że plik 'hosts' jest często używany jako sposób na przyspieszenie procesu rozwiązywania nazw poprzez lokalne mapowanie, co może zmniejszyć obciążenie serwerów DNS i zwiększyć szybkość dostępu do często używanych zasobów. Te nieporozumienia mogą prowadzić do nieefektywnej konfiguracji sieci oraz problemów z dostępem do zasobów, dlatego istotne jest dokładne zrozumienie roli, jaką odgrywa plik 'hosts' w architekturze sieciowej.

Pytanie 16

W sieciach bezprzewodowych typu Ad-Hoc IBSS (Independent Basic Service Set) wykorzystywana jest topologia fizyczna

A. magistrali
B. gwiazdy
C. pierścienia
D. siatki
Wybór topologii gwiazdy, pierścienia lub magistrali w kontekście sieci Ad-Hoc IBSS jest nieprawidłowy, ponieważ każda z tych struktur ma swoje specyficzne ograniczenia i nie pasuje do natury Ad-Hoc. Topologia gwiazdy opiera się na centralnym punkcie dostępowym, co jest sprzeczne z decentralizowanym charakterem Ad-Hoc, gdzie każde urządzenie może pełnić rolę zarówno nadawcy, jak i odbiorcy. W przypadku topologii pierścienia, w której dane przemieszczają się w jednym kierunku przez wszystkie urządzenia, łatwo o zakłócenia i problemy z wydajnością, co w sieciach Ad-Hoc jest niepożądane. Z kolei magistrala, w której wszystkie urządzenia są podłączone do jednego przewodu, jest również nieodpowiednia, ponieważ wymaga stabilnej struktury, co nie jest możliwe w dynamicznym środowisku Ad-Hoc. Typowym błędem myślowym jest mylenie pojmowania struktury sieci z typowymi, stałymi instalacjami, podczas gdy Ad-Hoc ma na celu umożliwienie szybkiej i elastycznej komunikacji w zmieniających się warunkach. Te nieprawidłowe odpowiedzi nie uwzględniają również praktycznych aspektów rozwoju sieci bezprzewodowych, które opierają się na standardach takich jak IEEE 802.11, które promują elastyczność i decentralizację.

Pytanie 17

Ilustracja pokazuje schemat fizycznej topologii będącej kombinacją topologii

Ilustracja do pytania
A. siatki i magistrali
B. siatki i gwiazdy
C. magistrali i gwiazdy
D. pierścienia i gwiazdy
Topologia magistrali i gwiazdy to takie dwie popularne opcje w sieciach komputerowych, które mają swoje plusy i minusy. Topologia magistrali jest fajna, bo wszystkie urządzenia są podłączone do jednego kabla, co sprawia, że jest to tańsze i prostsze w zrobieniu. Ale z drugiej strony, jak ten kabel się uszkodzi, to cała sieć może leżeć. Dlatego teraz rzadziej się to stosuje. Z kolei topologia gwiazdy jest lepsza w tym względzie, bo każde urządzenie ma swoje połączenie z centralnym punktem, takim jak switch. To sprawia, że jak jeden kabel padnie, to reszta działa dalej, więc to bardziej niezawodne. Łącząc te dwie topologie, można stworzyć hybrydę, gdzie główne węzły są połączone magistralą, a segmenty urządzeń w gwiazdę. To daje większą elastyczność i lepszą skalowalność. Widziałem, że takie rozwiązania są popularne w firmach, gdzie ciągłość pracy i łatwość zarządzania są super ważne.

Pytanie 18

Uszkodzenie czego może być przyczyną awarii klawiatury?

Ilustracja do pytania
A. matrycy CCD
B. przełącznika membranowego
C. kontrolera DMA
D. czujnika elektromagnetycznego
Przełącznik membranowy jest kluczowym elementem w klawiaturach membranowych będących najczęściej spotykanym typem klawiatur. Składa się z trzech warstw gdzie środkowa zawiera ścieżki przewodzące a naciśnięcie klawisza powoduje zwarcie ścieżek i przesłanie sygnału do kontrolera. Takie klawiatury są popularne ze względu na niskie koszty produkcji i cichą pracę ale są bardziej podatne na uszkodzenia mechaniczne. Uszkodzenie przełącznika może wynikać z zużycia materiału pod wpływem częstego użytkowania lub działania czynników zewnętrznych jak kurz czy wilgoć. Regularne czyszczenie i unikanie narażania klawiatury na takie czynniki jest zgodne z dobrymi praktykami konserwacyjnymi i może przedłużyć żywotność urządzenia. W kontekście naprawy często wymaga to demontażu klawiatury i wymiany uszkodzonej membrany co jest operacją wymagającą precyzji i uwagi. Zrozumienie funkcjonowania przełączników membranowych pozwala nie tylko na efektywną diagnozę problemów ale również na wybór odpowiednich rozwiązań sprzętowych w przyszłości.

Pytanie 19

Co oznacza skrót 'RAID' w kontekście systemów komputerowych?

A. Rapid Application Integration Development
B. Remote Access Internet Dashboard
C. Redundant Array of Independent Disks
D. Random Access Identification Device
Skrót 'RAID' oznacza 'Redundant Array of Independent Disks'. Jest to technologia używana do zwiększenia niezawodności i wydajności przechowywania danych w systemach komputerowych poprzez łączenie wielu dysków twardych w jedną logiczną jednostkę magazynującą. RAID oferuje różne poziomy, takie jak RAID 0, RAID 1, RAID 5, które różnią się sposobem rozkładania danych i nadmiarowości. Na przykład, RAID 1 polega na mirroringu, czyli odbiciu danych na dwa lub więcej dysków, co zapewnia ochronę przed utratą danych w przypadku awarii jednego z nich. RAID 5, z kolei, wykorzystuje striping z parzystością, co oznacza, że dane są dzielone na bloki, a dodatkowe informacje parzystości są wykorzystywane do ich odtworzenia w razie awarii jednego dysku. RAID jest szeroko stosowany w serwerach, systemach NAS i innych profesjonalnych rozwiązaniach IT, gdzie niezawodność przechowywania danych jest kluczowa. Dobre praktyki branżowe zalecają stosowanie RAID w środowiskach, gdzie przerwy w dostępie do danych mogą prowadzić do znaczących strat.

Pytanie 20

Jaką usługę obsługuje port 3389?

A. DNS (DomainName System)
B. DHCP (Dynamic Host Configuration Protocol)
C. TFTP (Trivial File Transfer Protocol)
D. RDP (Remote Desktop Protocol)
RDP, czyli Remote Desktop Protocol, to protokół stworzony przez firmę Microsoft, który umożliwia zdalne połączenie z komputerem lub serwerem. Działa on na porcie TCP 3389, co czyni go standardowym portem dla usług zdalnego pulpitu. Dzięki RDP użytkownicy mogą uzyskać dostęp do zdalnych systemów operacyjnych oraz aplikacji, co jest szczególnie przydatne w środowiskach biznesowych, gdzie pracownicy mogą potrzebować dostępu do usług lub zasobów znajdujących się w biurze, nawet gdy pracują zdalnie. Przykładem zastosowania RDP jest praca zdalna, gdzie użytkownicy łączą się z komputerem stacjonarnym w biurze, aby wykonywać swoje zadania, korzystając z pełnej funkcjonalności swojego systemu operacyjnego. Ważne jest, aby podczas korzystania z RDP stosować odpowiednie środki bezpieczeństwa, takie jak silne hasła oraz zabezpieczenia sieciowe, aby chronić wrażliwe dane przed nieautoryzowanym dostępem. W branży IT RDP jest uznawany za jeden z podstawowych narzędzi do zarządzania serwerami oraz wsparcia technicznego.

Pytanie 21

Który z wymienionych składników zalicza się do elementów pasywnych sieci?

A. Switch.
B. Amplifier.
C. Patch panel.
D. Network card.
Panel krosowy to taki element sieci, który można uznać za pasywny, bo nie wymaga zasilania i nie przetwarza sygnałów. Jego główną rolą jest porządkowanie i zarządzanie kablami w infrastrukturze sieciowej. To bardzo przydatne, zwłaszcza w dużych sieciach, gdzie kable potrafią się plątać. W standardzie TIA/EIA-568, mówiąc krótko, normie dotyczącej okablowania, panele krosowe są kluczowe, by wszystko było uporządkowane i łatwe w zarządzaniu. Można je spotkać na przykład w biurach, gdzie komputery są podłączone do centralnych przełączników. Dzięki tym panelom administratorzy mogą szybko zmieniać połączenia bez potrzeby przerabiania całej instalacji kablowej, co daje dużą elastyczność i ułatwia późniejsze rozbudowy. Z mojego doświadczenia, to naprawdę pomaga w diagnozowaniu problemów w sieci, a to przekłada się na jej lepszą niezawodność.

Pytanie 22

W dokumentacji powykonawczej dotyczącej fizycznej oraz logicznej struktury sieci lokalnej powinny być zawarte

A. umowa pomiędzy zlecającym a wykonawcą
B. schemat sieci z wyróżnionymi punktami dystrybucji i gniazdami
C. plan prac realizacyjnych
D. wstępny kosztorys materiałów oraz robocizny
Dokumentacja powykonawcza sieci lokalnej powinna być kompleksowa i dokładna, jednak niektóre z wymienionych elementów są nieadekwatne w kontekście specyfikacji, które powinny znaleźć się w takim dokumencie. Harmonogram prac wykonawczych, mimo że istotny dla zarządzania projektem, nie jest elementem, który powinien być częścią dokumentacji powykonawczej sieci. Jego rolą jest wyłącznie planowanie i organizacja prac, a nie szczegółowe przedstawienie struktury sieci. Podobnie umowa zlecającego pracę z wykonawcą, choć ma znaczenie prawne i organizacyjne, nie dostarcza informacji niezbędnych do zrozumienia i zarządzania siecią. W kontekście sieci lokalnych, istotniejsze jest posiadanie precyzyjnych danych dotyczących samej infrastruktury. Wstępny kosztorys materiałów i robocizny jest również mało przydatnym elementem w dokumentacji powykonawczej, gdyż ma głównie charakter szacunkowy, a nie operacyjny. Kluczowe w dokumentacji powykonawczej jest zrozumienie, że schemat sieci z oznaczeniem punktów dystrybucyjnych i gniazd jest niezbędny do przyszłego zarządzania i konserwacji infrastruktury. Brak tego elementu może prowadzić do trudności w diagnozowaniu problemów, co w dłuższym czasie może generować znaczne koszty operacyjne dla organizacji. Użytkownicy często popełniają błąd, myląc dokumentację projektową z dokumentacją powykonawczą, co podkreśla znaczenie zrozumienia ich różnicy w kontekście zarządzania siecią.

Pytanie 23

W systemie Linux do bieżącego monitorowania aktywnych procesów wykorzystuje się polecenie

A. proc
B. sed
C. ps
D. sysinfo
'sed', 'proc' i 'sysinfo' to takie narzędzia, które raczej nie nadają się do monitorowania procesów w Linuxie. 'Sed' to bardziej do edytowania tekstu, coś jak korektor tekstów, a nie do śledzenia procesów. 'Proc' to z kolei taki wirtualny katalog, który trzyma różne info o systemie i procesach, ale to nie działa jak normalne polecenie monitorujące. No i 'sysinfo', cóż, podaje info o systemie, ale też nie ma nic wspólnego z konkretnym monitorowaniem procesów. Jak używasz tych narzędzi do takich celów, to możesz się mocno pogubić, bo są do czego innego. Dlatego ważne jest, żeby rozumieć, że polecenie 'ps' to jednak to, czego szukasz, gdy mówimy o śledzeniu procesów w Linuxie.

Pytanie 24

Sygnał kontrolny generowany przez procesor, umożliwiający zapis do urządzeń wejściowych i wyjściowych, został na diagramie oznaczony numerem

Ilustracja do pytania
A. 1
B. 2
C. 4
D. 3
Sygnał I/OW numer 4 na schemacie oznacza sygnał sterujący zapisem do urządzeń wejścia-wyjścia. Procesory komunikują się z urządzeniami zewnętrznymi poprzez porty I/O używając sygnałów sterujących takich jak I/OW (Input/Output Write) do zapisu danych. Sygnał ten jest kluczowy w operacjach wymagających przesłania danych do urządzeń zewnętrznych jak pamięci czy urządzenia peryferyjne np. drukarki czy dyski twarde. W systemach mikroprocesorowych sygnał I/OW jest częścią protokołu komunikacyjnego umożliwiającego sterowanie przepływem informacji pomiędzy procesorem a urządzeniami zewnętrznymi. Jest to standardowa praktyka w architekturach mikrokontrolerów i mikroprocesorów, gdzie separacja sygnałów odczytu i zapisu pozwala na precyzyjne zarządzanie operacjami wejścia-wyjścia. Zastosowanie sygnałów kontrolnych takich jak I/OW jest zgodne ze standardami przemysłowymi i pozwala na efektywne zarządzanie zasobami sprzętowymi w systemach komputerowych. Systemy oparte na mikroprocesorach wykorzystują architektury magistral z dedykowanymi sygnałami kontrolnymi co wspiera stabilną i niezawodną pracę urządzeń w różnych środowiskach przemysłowych i konsumenckich. Poprawne wykorzystanie tego sygnału jest kluczowe dla projektowania efektywnych systemów wbudowanych oraz aplikacji IoT. Inżynierowie projektujący takie systemy muszą rozumieć działanie sygnałów kontrolnych by zapewnić optymalną wydajność urządzeń.

Pytanie 25

Który z wymienionych adresów IP nie zalicza się do prywatnych?

A. 172.16.45.123
B. 192.168.199.223
C. 127.231.5.67
D. 10.0.105.12
Wybór adresów IP 172.16.45.123, 10.0.105.12 oraz 192.168.199.223 jako niepubliczne jest typowym błędem wynikającym z niepełnej znajomości klasyfikacji adresów IP. Adresy 172.16.45.123, 10.0.105.12 oraz 192.168.199.223 należą do zarezerwowanych zakresów adresów prywatnych, co oznacza, że są przeznaczone do użytku w sieciach lokalnych i nie mogą być używane do komunikacji w Internecie. Adres 172.16.0.0 do 172.31.255.255 to jeden z zakresów prywatnych według standardów RFC 1918, a adres 10.0.0.0 do 10.255.255.255 to kolejny. Warto zauważyć, że adresy prywatne nie są routowane w Internecie, co nie tylko zapewnia bezpieczeństwo, ale także pozwala na oszczędność dostępnych adresów publicznych. Powszechnym błędem przy interpretacji adresów IP jest mylenie ich z adresami zewnętrznymi, co może prowadzić do nieporozumień w zarządzaniu sieciami. Dlatego kluczowe jest zrozumienie, jakie adresy mogą być używane w sieciach lokalnych, a które są przeznaczone do routingu w Internecie, co ma istotne znaczenie w kontekście projektowania infrastruktury sieciowej oraz zapewnienia bezpieczeństwa danych.

Pytanie 26

Zjawisko, w którym pliki przechowywane na dysku twardym są zapisywane w klastrach, które nie sąsiadują ze sobą, określane jest mianem

A. fragmentacją danych
B. kodowaniem danych
C. konsolidacją danych
D. defragmentacją danych
Fragmentacja danych to proces, w wyniku którego pliki są przechowywane w niesąsiadujących ze sobą klastrach na dysku twardym. Może to prowadzić do obniżenia wydajności systemu, ponieważ dysk musi przeskakiwać między różnymi miejscami na nośniku w celu odczytu lub zapisu danych. Fragmentacja występuje naturalnie, gdy pliki są wielokrotnie edytowane, usuwane lub dodawane, co sprawia, że nowe fragmenty plików są zapisywane w dostępnych przestrzeniach, które niekoniecznie sąsiadują ze sobą. Aby zminimalizować skutki fragmentacji, zaleca się regularne przeprowadzanie defragmentacji, co jest praktyką polegającą na reorganizacji danych na dysku w taki sposób, by pliki były zapisane w sąsiadujących klastrach. Przykładem dobrych praktyk jest korzystanie z oprogramowania do defragmentacji, które automatycznie identyfikuje i eliminuje fragmentację, co w rezultacie poprawia wydajność systemu operacyjnego. Zrozumienie fragmentacji danych jest kluczowe, ponieważ wpływa na czas ładowania aplikacji i ogólną responsywność systemu, zwłaszcza w środowiskach o intensywnym dostępie do danych.

Pytanie 27

Narzędzie w systemie Windows umożliwiające monitorowanie prób logowania do systemu to dziennik

A. aplikacji
B. Setup
C. zabezpieczeń
D. System
Odpowiedź "zabezpieczeń" jest poprawna, ponieważ to właśnie dziennik zabezpieczeń w systemie Windows rejestruje wszystkie zdarzenia związane z bezpieczeństwem, w tym próby logowania. Dziennik ten zawiera informacje o skutecznych i nieudanych próbach logowania, co jest kluczowe dla monitorowania i analizy incydentów związanych z bezpieczeństwem. Administratorzy systemów mogą korzystać z tego dziennika do identyfikacji podejrzanych działań, takich jak wielokrotne nieudane próby logowania, które mogą wskazywać na próby włamania. Aby uzyskać dostęp do dziennika zabezpieczeń, można użyć narzędzia 'Podgląd zdarzeń', które pozwala na przeszukiwanie, filtrowanie i analizowanie zarejestrowanych zdarzeń. Dobrą praktyką jest regularne sprawdzanie tego dziennika, co w połączeniu z innymi metodami zabezpieczeń, takimi jak stosowanie silnych haseł i autoryzacji wieloskładnikowej, może znacząco zwiększyć poziom ochrony systemu.

Pytanie 28

Administrator systemu Windows zauważył znaczne spowolnienie działania komputera spowodowane niską ilością dostępnej pamięci RAM. W celu zidentyfikowania programu, który zużywa jej najwięcej, powinien skorzystać z narzędzia

A. tasklist
B. rem
C. top
D. schtsk
Odpowiedź "tasklist" jest poprawna, ponieważ jest to narzędzie dostępne w systemie Windows, które pozwala administratorom na przeglądanie listy aktywnych procesów oraz ich zużycia pamięci. Używając polecenia "tasklist" w wierszu poleceń, administrator może uzyskać szczegółowe informacje o każdym uruchomionym procesie, w tym jego identyfikatorze (PID), zużyciu pamięci oraz statusie. Przykładowo, aby wyświetlić listę procesów, wystarczy wpisać "tasklist" w wierszu poleceń. W przypadku gdy administrator zauważy, że któryś z procesów zużywa nadmierną ilość pamięci, może podjąć odpowiednie kroki, takie jak zakończenie procesu poprzez polecenie "taskkill". To narzędzie jest zgodne z najlepszymi praktykami zarządzania systemami operacyjnymi, umożliwiając efektywne monitorowanie i optymalizację wykorzystania zasobów systemowych.

Pytanie 29

Jaką cechę posiada przełącznik sieciowy?

A. Pracuje na porcjach danych zwanych segmentami
B. Z odebranych ramek odczytuje adresy MAC
C. Z przesyłanych pakietów odczytuje docelowe adresy IP
D. Wykorzystuje protokół EIGRP
Odpowiedzi, które wskazują na użycie protokołu EIGRP oraz odczytywanie adresów IP, są błędne, ponieważ te funkcje nie są związane z działaniem przełączników sieciowych. Protokół EIGRP (Enhanced Interior Gateway Routing Protocol) jest protokołem routingu, który działa na trzeciej warstwie modelu OSI, związanej z routingiem i adresowaniem IP. Przełączniki nie zajmują się routingiem, a ich głównym zadaniem jest przekazywanie ramek na podstawie adresów MAC, co różni się od funkcji routerów, które operują na adresach IP. Ponadto, operowanie na porcjach danych zwanych segmentami również jest mylącym stwierdzeniem, ponieważ segmenty to termin używany w kontekście transportu danych, a nie w kontekście działania przełączników. Warto zauważyć, że przełączniki operują na ramach Ethernet, które są strukturami danych używanymi w sieciach lokalnych. Typowym błędem myślowym jest utożsamianie funkcji przełącznika z funkcjami routera, co prowadzi do nieporozumień w zakresie ich zastosowań. Wiedza o tym, jak działają różne warstwy modelu OSI, jest kluczowa dla zrozumienia różnych urządzeń sieciowych i ich funkcji.

Pytanie 30

Jaką funkcję pełni punkt dostępowy, aby zabezpieczyć sieć bezprzewodową w taki sposób, aby jedynie urządzenia z wybranymi adresami MAC mogły się do niej łączyć?

A. Radius (Remote Authentication Dial In User Service)
B. Autoryzacja
C. Filtrowanie adresów MAC
D. Przydzielenie SSID
Filtrowanie adresów MAC to technika zabezpieczająca sieć bezprzewodową poprzez umożliwienie jedynie urządzeniom z określonymi adresami MAC na dostęp do sieci. Każde urządzenie sieciowe posiada unikalny adres MAC, który jest stosowany do identyfikacji i komunikacji w lokalnej sieci. Dzięki filtrowaniu adresów MAC administratorzy mogą tworzyć listy dozwolonych urządzeń, co znacząco zwiększa bezpieczeństwo sieci. W praktyce, użytkownik, którego urządzenie nie znajduje się na liście, nie będzie mógł się połączyć z siecią, nawet jeśli zna hasło. Ta metoda jest szczególnie skuteczna w małych środowiskach, takich jak biura czy domy, gdzie liczba urządzeń jest ograniczona. Należy jednak pamiętać, że filtrowanie adresów MAC nie jest niezawodne, ponieważ adresy MAC mogą być łatwo sklonowane przez nieautoryzowane urządzenia. Dlatego powinno być stosowane w połączeniu z innymi metodami bezpieczeństwa, takimi jak WPA3, aby zapewnić kompleksową ochronę. Dobrą praktyką jest regularne aktualizowanie listy dozwolonych adresów MAC, aby dostosować się do zmieniającego się środowiska sieciowego.

Pytanie 31

Urządzenie sieciowe działające w trzeciej warstwie modelu ISO/OSI, obsługujące adresy IP, to

A. bridge
B. hub
C. repeater
D. router
Router to urządzenie sieciowe działające na trzeciej warstwie modelu ISO/OSI, znanej jako warstwa sieci. Jego głównym zadaniem jest kierowanie ruchem danych pomiędzy różnymi sieciami, operując na adresach IP. Routery są kluczowe w realizacji komunikacji w Internecie, ponieważ umożliwiają wymianę informacji pomiędzy urządzeniami znajdującymi się w różnych podsieciach. W praktyce, routery potrafią analizować adresy IP pakietów danych, co pozwala na podejmowanie decyzji o ich dalszej trasie. Dzięki zastosowaniu protokołów, takich jak RIP, OSPF czy BGP, routery mogą dynamicznie aktualizować swoje tablice rutingu, co zwiększa efektywność komunikacji. W kontekście bezpieczeństwa, routery często pełnią funkcję zapory sieciowej, filtrując nieautoryzowany ruch. Przykładem zastosowania routerów są domowe sieci Wi-Fi, gdzie router łączy lokalne urządzenia z Internetem, kierując ruch danych w sposób efektywny i bezpieczny. Dobre praktyki obejmują regularne aktualizowanie oprogramowania routerów oraz konfigurowanie zabezpieczeń, takich jak WPA3, aby chronić przesyłane dane.

Pytanie 32

Interfejs SLI (ang. Scalable Link Interface) jest wykorzystywany do łączenia

A. czytnika kart z płytą główną
B. karty graficznej z odbiornikiem TV
C. napędu Blu-ray z kartą dźwiękową
D. dwóch kart graficznych
SLI, czyli Scalable Link Interface, to technologia stworzona przez NVIDIĘ, która umożliwia łączenie dwóch lub więcej kart graficznych w jednym komputerze. Dzięki temu można zwiększyć wydajność grafiki oraz obliczeń, co jest naprawdę pomocne, szczególnie w grach. Na przykład, w tytułach jak 'Call of Duty' czy 'Battlefield', aktywacja SLI może znacznie poprawić płynność rozgrywki, co jest super ważne, gdy gramy na wysokich ustawieniach. Zresztą, SLI jest zgodne z różnymi standardami, więc można go spotkać w wielu komputerach gamingowych i stacjach roboczych do renderowania grafiki czy obliczeń naukowych. Fajnie też wiedzieć, że żeby skonfigurować SLI, trzeba mieć odpowiedni zasilacz i płytę główną, które to wspierają, co ma kluczowe znaczenie przy budowie mocnych sprzętów.

Pytanie 33

Jeżeli rozmiar jednostki alokacji wynosi 1024 bajty, to ile klastrów zajmą pliki umieszczone w tabeli na dysku?

NazwaWielkość
Ala.exe50 B
Dom.bat1024 B
Wirus.exe2 kB
Domes.exr350 B

A. 3 klastry
B. 5 klastrów
C. 4 klastry
D. 6 klastrów
W przypadku alokacji przestrzeni dyskowej w systemach plików każdy plik zajmuje co najmniej jeden klaster niezależnie od rzeczywistej wielkości pliku. Gdy przeliczamy ilość klastrów potrzebnych do przechowywania zestawu plików musimy znać wielkości plików i jednostki alokacji. Jednym z typowych błędów jest nieuwzględnienie faktu że nawet najmniejszy plik zajmuje cały klaster co prowadzi do błędnych oszacowań. Ważne jest zrozumienie że przykładowo plik o wielkości 1 bajta zajmie cały klaster dlatego myślenie że zajmie mniej niż jeden klaster jest błędne. Drugi częsty błąd to pomijanie konwersji jednostek np. mylenie bajtów z kilobajtami co wprowadza w błąd w ocenie potrzebnej przestrzeni dyskowej. Pominięcie faktu że plik o wielkości 2048 B wymaga dwóch klastrów a nie jednego jest właśnie takim błędem myślowym wynikającym z nieprawidłowej analizy jednostek alokacji. Należy także pamiętać że zrozumienie działania klastrów jest istotne dla efektywnego zarządzania przestrzenią dyskową co jest krytyczne w kontekście wydajności systemów plików i długoterminowej strategii przechowywania danych. Precyzyjna wiedza o tym jak pliki są zapisywane i jak systemy plików alokują przestrzeń jest kluczowa w codziennych zadaniach związanych z administrowaniem systemami komputerowymi i planowaniem infrastruktury IT. Dlatego ważne jest by dokładnie analizować jak wielkość plików przekłada się na wykorzystanie przestrzeni w jednostkach alokacji aby uniknąć typowych błędów w praktyce zawodowej.

Pytanie 34

Graficzny symbol odnosi się do standardów sprzętowych

Ilustracja do pytania
A. FireWire
B. SCSI-12
C. LPT
D. USB
FireWire znany również jako IEEE 1394 to standard technologii komunikacyjnej opracowany przez Apple w latach 90 XX wieku FireWire oferuje szybki transfer danych na poziomie od 400 do 3200 Mb/s w zależności od wersji technologii Jest często stosowany w urządzeniach wymagających dużych przepustowości takich jak kamery wideo oraz zewnętrzne dyski twarde Technologia ta pozwala na podłączenie do 63 urządzeń w jednej sieci dzięki funkcji daisy-chaining co oznacza że urządzenia mogą być łączone szeregowo FireWire ma także możliwość przesyłania zasilania co oznacza że niektóre urządzenia mogą być zasilane bezpośrednio z portu co eliminuje potrzebę dodatkowego zasilacza W porównaniu do innych standardów takich jak USB FireWire oferuje szybszy transfer danych w trybach rzeczywistych co jest kluczowe dla profesjonalnych zastosowań w edycji wideo oraz audio FireWire był powszechnie stosowany w komputerach Apple oraz w urządzeniach audio-wideo chociaż jego popularność spadła na rzecz nowszych standardów takich jak USB 3.0 i Thunderbolt Mimo to FireWire wciąż jest ceniony w niektórych niszowych zastosowaniach ze względu na niezawodność i szybkość przesyłu danych

Pytanie 35

Liczba 10011001100 w systemie heksadecymalnym przedstawia się jako

A. 2E4
B. 4CC
C. EF4
D. 998
Odpowiedź 4CC nie jest dobra, ponieważ żeby przekonwertować liczbę z systemu binarnego na heksadecymalny, trzeba ją podzielić na grupy po cztery bity. W przypadku liczby 10011001100, najpierw dodajemy zera na początku, żeby otrzymać pełne grupy, co daje nam 0010 0110 0110. Teraz każdą grupę przekładamy na system heksadecymalny: 0010 to 2, 0110 to 6, więc wynik to 2B6, a nie 4CC. Widzę, że tu mogło być jakieś nieporozumienie przy przeliczaniu. Warto wiedzieć, jak te konwersje działają, bo są naprawdę ważne w programowaniu, na przykład przy adresowaniu pamięci czy w grafice komputerowej, gdzie heksadecymalny jest na porządku dziennym. Zrozumienie tych rzeczy pomoże ci lepiej radzić sobie z danymi technicznymi oraz przy pisaniu efektywnego kodu, zwłaszcza w kontekście mikrokontrolerów.

Pytanie 36

Na ilustracji przedstawiono symbol urządzenia cyfrowego

Ilustracja do pytania
A. multipleksera priorytetowego
B. dekodera priorytetowego
C. demultipleksera priorytetowego
D. kodera priorytetowego
Dekoder priorytetu, multiplekser priorytetu oraz demultiplekser priorytetu pełnią różne funkcje w systemach cyfrowych, które nie pasują do opisu kodera priorytetu. Dekoder priorytetu w rzeczywistości nie jest standardowym elementem układów cyfrowych. Dekoder ogólnie przekształca kod wejściowy na unikalny sygnał wyjściowy, ale nie jest stosowany do priorytetyzacji sygnałów. Multiplekser priorytetu łączy wiele wejść w jedno wyjście, wybierając jedno z wejść na podstawie sygnału sterującego, ale nie jest związany z hierarchią priorytetów. Jego funkcja to selekcja kanału, a nie ustalanie priorytetu. W przypadku demultipleksera priorytetu mamy do czynienia z procesem odwrotnym do multipleksera gdzie jeden sygnał wejściowy jest kierowany na jedno z wielu wyjść, ponownie bez uwzględnienia priorytetu. Błędne przypisanie funkcji może wynikać z braku zrozumienia, że priorytetyzacja jest specyficzna dla zastosowań, które wymagają rozstrzygania konfliktów między równoczesnymi żądaniami systemowymi co jest istotne w kontekście przerwań sprzętowych i zarządzania zasobami w systemach komputerowych. Zrozumienie różnic między tymi elementami jest kluczowe dla projektowania wydajnych układów cyfrowych zgodnie z najlepszymi praktykami inżynierskimi.

Pytanie 37

Jakie złącze powinna posiadać karta graficzna, aby umożliwić przesyłanie cyfrowego sygnału audio i wideo bez utraty jakości z komputera do zewnętrznego urządzenia, które jest podłączone do jej wyjścia?

A. D-Sub
B. VGA
C. HDMI
D. DVI-A
Wybór innych interfejsów, takich jak VGA, DVI-A i D-Sub, jest nieodpowiedni ze względu na ich ograniczenia w przesyłaniu sygnału audio-wideo. VGA (Video Graphics Array) to analogowy standard, który obsługuje jedynie przesył obrazu, a nie dźwięku, co sprawia, że nie nadaje się do nowoczesnych zastosowań wymagających transmisji multimedialnej. DVI-A (Digital Visual Interface - Analog) również koncentruje się na przesyłaniu sygnału wideo, nie oferując możliwości przekazywania dźwięku. Ostatecznie, D-Sub, jako starszy standard analogowy, również nie wspiera przesyłu audio i ma ograniczoną rozdzielczość w porównaniu do HDMI. Wybierając te interfejsy, można napotkać problemy związane z jakością sygnału, koniecznością stosowania dodatkowych kabli audio oraz ograniczoną kompatybilnością z nowoczesnymi urządzeniami. W praktyce, wiele osób korzysta z HDMI, nie zdając sobie sprawy z ograniczeń starszych technologii, co może skutkować frustracją przy podłączaniu urządzeń. Dlatego ważne jest, aby być świadomym różnic pomiędzy tymi interfejsami, aby uniknąć potencjalnych problemów związanych z jakością obrazu i dźwięku.

Pytanie 38

Adres IP 192.168.2.0/24 został podzielony na cztery mniejsze podsieci. Jaką maskę mają te nowe podsieci?

A. 255.255.255.192
B. 255.255.255.128
C. 225.225.225.240
D. 255.255.255.224
Odpowiedź 255.255.255.192 jest poprawna, ponieważ przy podziale sieci o adresie IP 192.168.2.0/24 na cztery podsieci, konieczne jest zwiększenie liczby bitów w masce podsieci. Maska /24 oznacza, że pierwsze 24 bity są używane do identyfikacji sieci, co pozostawia 8 bitów na identyfikację hostów. Podzielając tę sieć na cztery podsieci, potrzebujemy dodatkowych 2 bitów, aby uzyskać 4 (2^2 = 4) możliwe podsieci. Zmiana maski na /26 (255.255.255.192) daje nam 64 adresy w każdej podsieci, z czego 62 mogą być używane przez hosty (jeden adres zarezerwowany dla identyfikacji sieci, a jeden dla rozgłoszenia). Taki podział pozwala na efektywne zarządzanie zasobami sieciowymi, co jest zgodne z najlepszymi praktykami w projektowaniu sieci, szczególnie w środowiskach, gdzie istnieje potrzeba segmentacji ruchu w celu zwiększenia bezpieczeństwa i wydajności. Przykładem zastosowania może być sytuacja, w której firma dzieli swoją sieć na różne działy, co pozwala na niezależne zarządzanie i ograniczanie dostępu.

Pytanie 39

Jakie jest oprogramowanie serwerowe dla systemu Linux, które pozwala na współdziałanie z grupami roboczymi oraz domenami Windows?

A. NTP
B. Samba
C. CUPS
D. Apache
Samba to super narzędzie, które pozwala systemom Linux komunikować się z Windowsami. Moim zdaniem, to naprawdę przydatna opcja, bo możemy zrobić z Linuxa serwer plików czy drukarek dla użytkowników Windows. Samba wykorzystuje protokoły SMB i CIFS, co sprawia, że wymiana danych między tymi systemami jest naprawdę prosta. Na przykład, w firmie, gdzie są komputery z różnymi systemami, Samba umożliwia wspólne korzystanie z dokumentów czy drukarek, co na pewno zwiększa efektywność pracy. Zauważyłem, że Samba ma wiele przydatnych funkcji, jak kontrola dostępu czy autoryzacja użytkowników, więc jest to narzędzie, które warto mieć w swoim arsenale w dziedzinie IT.

Pytanie 40

W systemie oktalnym liczba heksadecymalna 1E2F16 ma zapis w postaci

A. 74274
B. 17057
C. 7277
D. 7727
Wybór niewłaściwych odpowiedzi na pytanie o konwersję liczby heksadecymalnej 1E2F16 na system oktalny może wynikać z kilku typowych błędów poznawczych. Często myli się kolejność konwersji, zakładając, że można bezpośrednio zamienić system heksadecymalny na oktalny bez pośredniego przeliczenia na system dziesiętny lub binarny. Tego rodzaju pomyłki prowadzą do zafałszowania wyników. Inne alternatywy, takie jak 7277 czy 7727, mogą wynikać z błędnego przeliczenia wartości heksadecymalnej na dziesiętną, gdzie użytkownik pomija istotne cyfry lub źle interpretuje ich wagę. Warto zwrócić uwagę, że przekształcanie liczb w różnych systemach liczbowych wymaga znajomości podstawowych zasad arytmetyki oraz reguł konwersji. W systemie heksadecymalnym każda cyfra reprezentuje wartość od 0 do 15, gdzie litery A-F odpowiadają wartościom 10-15. Dlatego, błędna interpretacja tych wartości prowadzi do nieprawidłowych wyników. Z kolei odpowiedzi takie jak 17057, mogą być wynikiem poprawnego zrozumienia konwersji, ale na etapie błędnego przeliczenia. W praktyce, aby uniknąć takich pomyłek, warto korzystać z dedykowanych narzędzi lub programów, które automatyzują ten proces konwersji, co pozwala na zachowanie dokładności i minimalizację ryzyka błędów.