Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 25 maja 2025 23:11
  • Data zakończenia: 25 maja 2025 23:24

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podaj sekwencję działań po zakończeniu montażu systemu solarnego?

A. Próba ciśnieniowa, napełnienie czynnikiem, odpowietrzenie, izolacja przewodów
B. Izolacja przewodów, napełnienie czynnikiem, odpowietrzenie, próba ciśnieniowa
C. Napełnienie czynnikiem, płukanie, izolacja przewodów, próba ciśnieniowa
D. Próba ciśnieniowa, odpowietrzenie, napełnienie czynnikiem, izolacja przewodów
Poprawna odpowiedź to próba ciśnieniowa, napełnianie czynnikiem, odpowietrzenie, izolacja przewodów. Właściwa kolejność tych czynności jest kluczowa dla zapewnienia bezpieczeństwa oraz wydajności instalacji solarnej. Próba ciśnieniowa jest pierwszym krokiem, który pozwala na weryfikację szczelności instalacji. Dzięki temu można wykryć ewentualne nieszczelności, które mogłyby prowadzić do wycieków czynnika roboczego. Kiedy instalacja przejdzie pomyślnie próbę ciśnieniową, można przystąpić do napełniania czynnikiem, co jest niezbędne dla prawidłowego funkcjonowania systemu solarnego. Po napełnieniu czynnikiem następuje odpowietrzenie, które ma na celu usunięcie wszelkich pęcherzyków powietrza z układu, co jest kluczowe dla zachowania efektywności wymiany ciepła. Ostatnim etapem jest izolacja przewodów, która zapewnia ich ochronę przed czynnikami zewnętrznymi oraz minimalizuje straty ciepła, co jest zgodne z najlepszymi praktykami w branży. Właściwie przeprowadzony montaż oraz kolejność czynności przyczynia się do długowieczności i efektywności systemu.

Pytanie 2

Na dokumentacji dotyczącej zapotrzebowania materiałowego do realizacji instalacji znajduje się symbol Cu-DHP 22x1 R220. Co to oznacza w kontekście rur?

A. o średnicy 22 mm i długości 1m, miękka
B. o promieniu 22 mm i grubości 1 mm, twarda
C. o średnicy 22 mm i grubości 1mm, miękka
D. o średnicy 22 mm i długości 1m, twarda
Odpowiedź wskazująca, że jest to rura miedziana o średnicy 22 mm i grubości 1 mm, miękka, jest poprawna ze względu na standardowe oznaczenia rur miedzianych. Symbol Cu-DHP oznacza miedź dekarbonizowaną, która jest szeroko stosowana w instalacjach wodnych i grzewczych. Średnica 22 mm to typowy rozmiar dla rur stosowanych w instalacjach domowych, co czyni je idealnymi do transportu wody oraz dla systemów grzewczych. Grubość 1 mm wskazuje na uniwersalność i łatwość w montażu, co jest korzystne w przypadku zastosowań, gdzie elastyczność materiału jest ważna. Rury miękkie są często wykorzystywane, gdyż łatwiej je formować i dopasowywać do istniejącej instalacji. Przykłady zastosowań obejmują instalacje hydrauliczne w budynkach mieszkalnych, gdzie miedź jest preferowana ze względu na swoją odporność na korozję oraz właściwości antybakteryjne. Dobrą praktyką jest stosowanie takich rur w miejscach, które wymagają częstych zmian kierunku lub w przypadku trudnego dostępu do instalacji.

Pytanie 3

Jakie urządzenie należy zastosować do określenia temperatury zamarzania cieczy solarnej?

A. refraktometr.
B. anemometr.
C. fluksometr.
D. wiskozymetr.
Refraktometr jest narzędziem pomiarowym, które służy do określenia współczynnika załamania światła cieczy, co jest kluczowe w kontekście pomiaru progu zamarzania cieczy solarnej. Ciecz solarna, zazwyczaj na bazie glikolu, musi spełniać określone parametry, aby zapewnić efektywne działanie systemów solarnych w zimie. Pomiar współczynnika załamania pozwala na ocenę stężenia roztworu i jego właściwości termicznych. Przy użyciu refraktometru można dokładnie ustalić, przy jakiej temperaturze ciecz zaczyna zamarzać, co ma istotne znaczenie dla prawidłowego funkcjonowania instalacji. Przykładem może być zastosowanie refraktometru w systemach grzewczych, gdzie monitorowanie właściwości cieczy chłodzącej pozwala na optymalizację wydajności systemu i zapobieganie uszkodzeniom spowodowanym zamarznięciem. Dobre praktyki branżowe zalecają regularne sprawdzanie stanu cieczy roboczych, co może przyczynić się do dłuższej żywotności systemów solarnych oraz ich efektywności. Wspieranie procesów decyzyjnych na podstawie dokładnych pomiarów jest kluczowe w kontekście zrównoważonego rozwoju technologii odnawialnych.

Pytanie 4

Materiał o najwyższym współczynniku absorpcji spośród wymienionych to

A. czarny chrom
B. blacha aluminiowa
C. czarna farba
D. blacha miedziana
Czarny chrom to naprawdę ciekawy materiał, bo ma super wysoką zdolność do pochłaniania światła. Dlatego świetnie sprawdza się wszędzie tam, gdzie potrzebujemy zminimalizować odbicie. Jak pomyślisz o optyce, to czarny chrom często trafia do filtrów optycznych czy różnych części aparatów fotograficznych. W porównaniu do czarnej farby, która też jest dobra, czarny chrom radzi sobie znacznie lepiej, jeśli chodzi o efektywność absorpcji. To dlatego w przemyśle często sięga się po czarny chrom, zwłaszcza w projektach, które wymagają precyzyjnego działania. W instrumentach naukowych i technologicznych jego jakość i działanie są naprawdę kluczowe.

Pytanie 5

Jakie jednostki należy wpisać do "Książki obmiaru" po zakończeniu prac związanych z instalacją sond wymiennika gruntowego?

A. m
B. m2
C. m3
D. m-g
Wybór jednostek takich jak m2, m-g czy m3 do opisu zakończonych prac związanych z ułożeniem sond wymiennika gruntowego jest nieprawidłowy z kilku kluczowych powodów. Przede wszystkim, m2 jest jednostką powierzchni, która nie odnosi się do długości sondy, a więc nie może być używana do opisu ich długości. Sondy gruntowe są instalowane w ziemi w formie cylindrycznych rur, a ich efektywność zależy w istotny sposób od długości, a nie powierzchni. Dodatkowo, jednostka m-g, choć może sugerować pomiar związany z gruntowymi wymiennikami ciepła, jest niejasna i nie znajduje zastosowania w standardowych praktykach budowlanych. Użycie m3, które odnosi się do objętości, również nie jest właściwe, ponieważ nie opisuje bezpośrednio długości sondy. W kontekście inżynierii, precyzyjne określenie jednostki miary jest kluczowe - wprowadzenie błędnych jednostek może prowadzić do znacznych pomyłek w obliczeniach, co w przypadku instalacji geotermalnych może skutkować nieefektywnym działaniem systemu grzewczego. Często spotykaną pomyłką jest mylenie długości i objętości, co może wynikać z braku zrozumienia, jak te parametry wpływają na wydajność energetyczną systemów grzewczych. Użycie jednostek niewłaściwych dla danej sytuacji jest typowym błędem, który może prowadzić do znacznych konsekwencji w praktyce inżynierskiej.

Pytanie 6

Jaką funkcję pełni inwerter w systemach fotowoltaicznych?

A. przekształcania prądu stałego na prąd przemienny
B. kontrolowania procesu ładowania akumulatorów
C. ochrony systemu przed przetężeniem
D. ochrony akumulatorów przed całkowitym wyładowaniem
Wybór odpowiedzi dotyczącej regulowania ładowania akumulatorów jest nieprawidłowy, ponieważ inwerter nie pełni roli kontrolera ładowania. Zamiast tego, specjalne urządzenia, takie jak regulator ładowania, są odpowiedzialne za zarządzanie procesem ładowania akumulatorów z wykorzystaniem energii słonecznej. Regulator ten zapobiega przeciążeniu akumulatorów oraz zapewnia ich efektywne ładowanie. Sugerowanie, że inwerter ma za zadanie zabezpieczać akumulatory przed całkowitym rozładowaniem również jest mylne, ponieważ zabezpieczenia te są realizowane przez odpowiednie układy, które monitorują napięcie akumulatorów. Z kolei zabezpieczenie instalacji przed przepięciem, chociaż ważne, również nie jest funkcją inwertera. Inwertery są projektowane z myślą o optymalizacji konwersji energii, a nie o zabezpieczeniach sieciowych. Rozumienie różnicy pomiędzy rolą inwertera a innymi komponentami systemu energetycznego jest kluczowe dla całkowitego zrozumienia działania instalacji PV. W efekcie, mylne jest przekonanie, że inwerter jest odpowiedzialny za wszystkie aspekty zarządzania energią w instalacji fotowoltaicznej; jego główną funkcją pozostaje konwersja prądu stałego na prąd przemienny.

Pytanie 7

W czasie zimowym można wykorzystać odwrócony cykl cieczy roboczej w systemie solarnym do eliminacji śniegu oraz rozmrażania lodu na powierzchni kolektorów słonecznych?

A. próżniowo-rurowych
B. rurowych heat-pipe
C. płaskich próżniowych
D. płaskich cieczowych
Odpowiedzi takie jak "rurowych heat-pipe", "płaskich próżniowych" oraz "próżniowo-rurowych" nie są odpowiednie w kontekście usuwania śniegu i rozmrażania lodu z powierzchni kolektorów słonecznych. Kolektory rurowe heat-pipe działają na zupełnie innej zasadzie; ich konstrukcja opiera się na wykorzystaniu rur wypełnionych cieczą, która odparowuje i skrapla się, ale nie zapewniają one możliwości aktywnego podgrzewania powierzchni w celu usunięcia zalegających zanieczyszczeń. Dodatkowo, kolektory płaskie próżniowe charakteryzują się izolacją, która może utrudniać transfer ciepła do środowiska zewnętrznego, co czyni je mniej efektywnymi w kontekście odśnieżania. Próżniowo-rurowe systemy, mimo że oferują wysoką efektywność w zbieraniu energii słonecznej, również nie są zaprojektowane do aktywnego podgrzewania powierzchni kolektorów, co ogranicza ich funkcjonalność w zimowych warunkach. Typowym błędem myślowym jest przypuszczenie, że wszystkie typy kolektorów mogą być używane w tych samych warunkach; wybór odpowiedniego rodzaju systemu słonecznego powinien być dostosowany do specyficznych potrzeb oraz warunków lokalnych, co jest kluczowe dla zapewnienia efektywności energetycznej i trwałości instalacji.

Pytanie 8

Jaki materiał jest najczęściej używany do wytwarzania ogniw fotowoltaicznych?

A. Stal
B. Aluminium
C. Miedź
D. Krzem
Krzem jest najczęściej wykorzystywanym materiałem do produkcji fotoogniw, co wynika z jego unikalnych właściwości półprzewodnikowych. W procesie fotowoltaicznym krzem absorbuje energię świetlną i przekształca ją w energię elektryczną dzięki zjawisku fotowoltaicznemu. Krzem krystaliczny, a także amorficzny, są powszechnie stosowane w ogniwach solarnych. W przypadku krzemu krystalicznego, jego struktura krystaliczna zapewnia wysoką wydajność konwersji energii, co czyni go preferowanym wyborem dla paneli solarnych stosowanych w instalacjach domowych oraz przemysłowych. Ponadto, produkcja ogniw krzemowych jest dobrze rozwinięta, co obniża koszty produkcji i umożliwia masową produkcję. W branży stosowane są standardy, takie jak IEC 61215 i IEC 61730, które dotyczą wydajności oraz bezpieczeństwa fotoogniw. Właściwości krzemu, takie jak łatwość w obróbce oraz stabilność chemiczna, sprawiają, że cały czas pozostaje on kluczowym materiałem w rozwijającym się sektorze energii odnawialnej.

Pytanie 9

Przed zainstalowaniem systemu solarnego dokonano pomiarów wewnątrz obiektu. Instalacji solarnych nie można realizować w technologii PEX/Al/PEX, ponieważ

A. warstwy polietylenowe mają słabe właściwości przewodzenia ciepła
B. brak jest odpowiednich złączek do połączenia z kolektorem
C. obecne w nich aluminium prowadzi do degradacji glikolu
D. nie są odporne na wysokie temperatury
Rury PEX/Al/PEX, składające się z warstw polietylenu i aluminium, nie są odpowiednie do zastosowań w systemach solarnych ze względu na ich niską odporność na wysokie temperatury. W instalacjach solarnych, zwłaszcza w kolektorach, mogą występować temperatury znacznie przekraczające 100°C, co prowadzi do degradacji materiałów takich jak polietylen. Wysoka temperatura może powodować osłabienie struktury rury, co skutkuje ryzykiem wycieków i awarii całego systemu. Przykładem alternatywnych materiałów, które są bardziej odpowiednie do takich instalacji, są rury miedziane lub stalowe, które charakteryzują się wysoką odpornością na temperaturę i ciśnienie. Wybór właściwych materiałów jest kluczowy dla zapewnienia efektywności energetycznej i trwałości systemu solarnego, co jest zgodne z najlepszymi praktykami w branży instalacji OZE. Warto pamiętać, że zgodność z normami PN-EN 12976 dotyczącymi systemów solarnych może pomóc w uniknięciu problemów związanych z niewłaściwym doborem materiałów.

Pytanie 10

Czynnik przenoszący ciepło z dolnego źródła do pompy oraz z pompy do instalacji o oznaczeniu A/A dotyczy pomp ciepła, w których dolnym źródłem ciepła jest

A. woda powierzchniowa lub głębinowa, a górnym powietrze wewnętrzne lub woda grzewcza; czynnikiem pośredniczącym jest woda
B. grunt, a górnym powietrze wewnętrzne lub woda grzewcza; w instalacji dolnego źródła krąży solanka, natomiast w instalacji grzewczej krąży woda
C. grunt, a górnym powietrze wewnętrzne; czynnikiem pośredniczącym między dolnym źródłem ciepła a pompą ciepła jest roztwór glikolu, natomiast między pompą ciepła a górnym źródłem ciepła powietrze
D. powietrze wywiewane, natomiast górnym powietrze wewnętrzne; czynnikiem pośredniczącym jest czynnik roboczy pompy ciepła
Odpowiedź wskazująca, że dolnym źródłem ciepła jest powietrze wywiewane, a górnym powietrze wewnętrzne, jest prawidłowa, ponieważ opisuje pracę pompy ciepła typu A/A. W takim systemie pompa ciepła wykorzystuje powietrze wywiewane z budynku jako źródło ciepła, co jest szczególnie efektywne w kontekście wentylacji mechanicznej. W praktyce, energia cieplna z powietrza wywiewanego jest przekazywana do czynnika roboczego pompy ciepła, który następnie przetwarza tę energię, aby ogrzewać powietrze wewnętrzne lub wodę grzewczą. Stosowanie tego typu rozwiązań jest zgodne z najnowszymi standardami efektywności energetycznej, takie jak normy EN 14511, które definiują testy i parametry dla pomp ciepła. Efektywność tego systemu podnosi również zastosowanie zaawansowanych filtrów, które poprawiają jakość powietrza wewnętrznego, co jest kluczowe w kontekście zdrowia użytkowników. Warto również zaznaczyć, że systemy te są coraz częściej wykorzystywane w budynkach pasywnych i niskoenergetycznych, gdzie efektywność energetyczna jest kluczowym czynnikiem. Zastosowanie takich rozwiązań przyczynia się do zmniejszenia kosztów eksploatacji oraz obniżenia emisji CO2.

Pytanie 11

Które z wymienionych typów ogniw fotowoltaicznych wyróżnia się najwyższą sprawnością?

A. CdTe
B. a-Si
C. Polikrystaliczne
D. Monokrystaliczne
Ogniwa fotowoltaiczne monokrystaliczne rzeczywiście charakteryzują się najwyższą sprawnością w porównaniu do innych typów ogniw. Ich struktura krystaliczna, składająca się z jednego, ciągłego kryształu krzemu, umożliwia lepsze przewodzenie prądu, co bezpośrednio przekłada się na większą efektywność konwersji energii słonecznej na energię elektryczną. Monokrystaliczne ogniwa są w stanie osiągać sprawności rzędu 20-25%, co czyni je najbardziej popularnym wyborem w instalacjach fotowoltaicznych, szczególnie tam, gdzie przestrzeń na panele jest ograniczona. W praktyce, zastosowanie ogniw monokrystalicznych znajduje się w wielu projektach, od domów jednorodzinnych po duże farmy słoneczne, co wskazuje na ich uniwersalność i efektywność. Dodatkowo, z uwagi na ich trwałość, która może wynosić ponad 25 lat, inwestycja w te ogniwa zapewnia długoterminowe korzyści oraz zwrot kosztów. W branży energii odnawialnej monokrystaliczne ogniwa są często rekomendowane jako optymalne rozwiązanie, co potwierdzają standardy jakościowe i certyfikaty produkcyjne.

Pytanie 12

Dokumentacja robót budowlanych nie obejmuje

A. cen jednostkowych.
B. strony tytułowej.
C. przypisów dokumentacji robót.
D. wykazów działów dokumentacji robót.
Przedmiar robót budowlanych jest kluczowym dokumentem w procesie realizacji projektów budowlanych, który służy do szczegółowego przedstawienia zakresu prac do wykonania. Wiele osób błędnie sądzi, że przedmiar powinien zawierać ceny jednostkowe, co jest nieścisłe. Ceny jednostkowe są elementem kosztorysu, który jest odrębnym dokumentem, mającym na celu oszacowanie całkowitych kosztów realizacji projektu. Przygotowanie przedmiaru robót powinno koncentrować się na zestawieniu i szczegółowym opisaniu robót, ich ilości oraz charakterystyki technicznej, co pozwala na precyzyjne zdefiniowanie zakresu projektu. Często mylone są również pojęcia karty tytułowej i tabeli przedmiaru. Karta tytułowa jest istotnym elementem, który identyfikuje projekt, natomiast tabela przedmiaru służy do zorganizowania poszczególnych pozycji robót. Zrozumienie, że przedmiar nie obejmuje cen jednostkowych, jest kluczowe dla skutecznego zarządzania projektem. Właściwe oddzielenie tych dwóch dokumentów wspiera precyzyjne planowanie oraz oszczędności związane z realizacją projektów budowlanych. W branży budowlanej stosowanie przedmiaru robót jako narzędzia komunikacji między inwestorem a wykonawcą jest normą, a niewłaściwe podejście do tego dokumentu może prowadzić do nieporozumień i problemów w trakcie realizacji inwestycji.

Pytanie 13

Jakim symbolem oznaczane są złączki fotowoltaiczne?

A. ZF1
B. MC4
C. PV3
D. IP54
Złączki fotowoltaiczne typu MC4 są powszechnie stosowane w instalacjach systemów energii odnawialnej, szczególnie w panelach słonecznych. Symbol MC4 oznacza 'Multi-Contact 4 mm', co odnosi się do konstrukcji złączki, która jest zaprojektowana do bezpiecznego i niezawodnego połączenia przewodów o średnicy 4 mm. Złącza te charakteryzują się wysoką odpornością na warunki atmosferyczne, co czyni je idealnym wyborem do zastosowań zewnętrznych, takich jak instalacje na dachach. Dzięki swojej budowie, złączki MC4 zapewniają wyjątkową szczelność i są w stanie wytrzymać wysokie napięcia oraz prądy, co jest kluczowe w systemach PV. Przykładowo, podczas montażu instalacji fotowoltaicznej, złącza te umożliwiają prostą i szybką konfigurację układów szeregowych oraz równoległych paneli, co znacząco przyspiesza czas pracy. Standardy branżowe, takie jak IEC 62852, dotyczące złączy w systemach fotowoltaicznych, podkreślają znaczenie MC4 jako normy dla efektywności i bezpieczeństwa. W praktyce, stosowanie złączek MC4 w instalacjach solarnych nie tylko maksymalizuje efektywność energetyczną, ale także zapewnia długoterminową niezawodność systemu.

Pytanie 14

Jakie narzędzie jest używane do pomiarów średnic rur, zaworów i kształtek, zarówno zewnętrznych, jak i wewnętrznych?

A. anemometr
B. kątomierz
C. dalmierz
D. suwmiarka
Wybór niewłaściwych narzędzi pomiarowych może prowadzić do znaczących błędów w realizacji projektów inżynieryjnych. Dalmierz, na przykład, jest przeznaczony do pomiarów odległości, co czyni go nieodpowiednim w kontekście pomiarów średnic. Narzędzia te działają zazwyczaj na zasadzie wykorzystania promieniowania podczerwonego lub ultradźwiękowego, co nie ma zastosowania przy pomiarach wymiarów wewnętrznych czy zewnętrznych obiektów o niewielkich rozmiarach. Kątomierz, jak sama nazwa wskazuje, jest narzędziem do pomiaru kątów, a jego zastosowanie ogranicza się jedynie do geometrii, co również nie odnosi się do tematu pomiarów średnic. Z kolei anemometr, który służy do pomiaru prędkości wiatru, jest narzędziem całkowicie nieodpowiednim w kontekście pomiarów średnic rur czy kształtek. Niezrozumienie funkcji i zastosowania poszczególnych narzędzi pomiarowych może prowadzić do niewłaściwych decyzji projektowych, a w konsekwencji do nieefektywności i błędów w realizacji zadań. Kluczowe jest, aby przed dokonaniem pomiaru właściwie zidentyfikować odpowiednie narzędzie, które spełni specyfikę zadania, co jest fundamentem skutecznej pracy w inżynierii i pokrewnych dziedzinach.

Pytanie 15

Którego rodzaju kosztorysu nie tworzy wykonawca prac?

A. Ofertowego
B. Inwestorskiego
C. Powykonawczego
D. Zamiennego
Wiesz, wykonawca nie zajmuje się robieniem kosztorysu inwestorskiego. To inwestor albo jego przedstawiciel powinien tym się zająć. Kosztorys inwestorski to taki dokument, który szacuje, ile będzie kosztować cały projekt budowlany. Przydaje się głównie do planowania finansowego i oceny, czy inwestycja się opłaca. Z mojego doświadczenia, taki kosztorys musi być zrobiony według norm, na przykład PN-ISO 9001, żeby był rzetelny i przejrzysty. Generalnie powinien zawierać szczegółowy opis robót, materiałów i przewidywanych kosztów, co pozwala inwestorowi podjąć świadomą decyzję przy wyborze wykonawcy. Oczywiście w czasie przetargów, wykonawcy też robią kosztorysy ofertowe i powykonawcze, ale i tak za kosztorys inwestorski odpowiada inwestor, co jest zgodne z najlepszymi praktykami w branży budowlanej.

Pytanie 16

Rury powinny być zabezpieczone przed działaniem promieni słonecznych podczas składowania

A. z miedzi
B. z tworzyw sztucznych
C. ze stali ocynkowanej
D. ze stali nierdzewnej
Rury z tworzyw sztucznych, takie jak PVC, PE czy PP, są dość wrażliwe na słońce. Ważne jest, żeby dobrze je przechowywać, bo inaczej mogą się zniszczyć. Jak będą długo wystawione na promieniowanie UV, mogą stracić swoje właściwości, co w efekcie skraca ich żywotność. Dlatego najlepiej trzymać je w cieniu lub przykrywać czymś, co chroni przed UV. W branży budowlanej i inżynieryjnej często używa się dodatków, które pomagają zwiększyć odporność tych rur na słońce. Przykładowo, takie rury idealnie nadają się do instalacji wodociągowych, ponieważ są odporne na korozję i lekkie. Zgadzam się, że warto też pamiętać o normach ISO i PN, które pokazują, że te materiały muszą mieć konkretne parametry wytrzymałościowe, co czyni je świetnym wyborem w wielu zastosowaniach.

Pytanie 17

Wskaż gaz, który powinien być wykorzystywany do przewozu biomasy w formie pyłu?

A. Ziemny
B. Inertny
C. Węglowy
D. Błotny
Wybór gazu do transportu biomasy w postaci pyłu jest kluczowy, a odpowiedzi "Węglowy", "Ziemny" oraz "Błotny" są nieprawidłowe z kilku powodów. Gaz węglowy, będący często synonymem dla gazu ziemnego, może zawierać związki chemiczne, które reagują z biomateriałami, co stwarza ryzyko zapłonu. W przypadku biomasy, która jest organicznym materiałem łatwopalnym, obecność gazu węglowego może być niebezpieczna, zwłaszcza w zamkniętych systemach transportowych. Z kolei gaz ziemny jest złożonym węglowodorem, który również może prowadzić do niekontrolowanych reakcji chemicznych. Odpowiedzi "Błotny" i "Ziemny" wydają się w ogóle nie odnosić do standardów transportowych w kontekście biomasy. Gazy te nie są zwykle używane w przemyśle i mogą pozostawać w sferze nieprecyzyjnych terminów. W rzeczywistości, dla efektywnego transportu biomasy w postaci pyłu, kluczowe jest zastosowanie gazów neutralnych, które nie wchodzą w reakcje chemiczne z transportowanym materiałem. W przeciwnym razie, istnieje ryzyko nieprzewidywalnych reakcji, które mogą prowadzić do poważnych zagrożeń, w tym do pożarów. W przemyśle energetycznym oraz chemicznym, wybór odpowiednich mediów transportowych powinien być oparty na solidnych podstawach naukowych oraz przemysłowych standardach bezpieczeństwa.

Pytanie 18

Jaki typ kotła powinien być użyty do spalania pelletu?

A. Z podajnikiem ślimakowym
B. Z podajnikiem tłokowym
C. Zgazowujący
D. Zasypowy
Kocioł z podajnikiem ślimakowym jest optymalnym rozwiązaniem do spalania pelletu, ponieważ umożliwia automatyczne i precyzyjne podawanie paliwa do komory spalania. Podajniki ślimakowe są zaprojektowane w taki sposób, aby zapewnić stały i kontrolowany przepływ pelletu, co przekłada się na efektywność energetyczną i minimalizację strat ciepła. W praktyce tego typu kotły mogą być stosowane zarówno w systemach grzewczych dla domów jednorodzinnych, jak i w większych instalacjach przemysłowych. Dzięki zastosowaniu podajników ślimakowych, użytkownicy mogą cieszyć się wygodą automatycznego załadunku paliwa oraz mniejszą ilością ręcznej obsługi. Dodatkowo, kotły te często wyposażane są w systemy sterowania, które monitorują temperaturę i ilość podawanego paliwa, co pozwala na dalsze zwiększenie wydajności i oszczędności paliwa. W wielu krajach, w tym w Polsce, tego typu kotły są zgodne z normami ekologicznymi i wydajnościowymi, co czyni je odpowiednim wyborem dla osób dbających o środowisko oraz chcących korzystać z odnawialnych źródeł energii.

Pytanie 19

Dokument, który definiuje przebieg działań w czasie oraz ich sekwencję, to

A. harmonogram wydarzeń
B. kosztorys dla inwestora
C. harmonogram robót
D. lista robót
Harmonogram robót to dokument, który precyzyjnie określa przebieg czynności oraz ich kolejność w ramach projektu budowlanego. Jest kluczowym narzędziem zarządzania projektami, ponieważ pozwala na efektywne planowanie, monitorowanie i kontrolowanie postępu prac. Harmonogram powinien zawierać wszystkie istotne informacje dotyczące poszczególnych etapów robót, w tym daty rozpoczęcia i zakończenia, a także czas trwania poszczególnych zadań. W praktyce, harmonogram robót jest często tworzony w formie wykresu Gantta, co ułatwia wizualizację i śledzenie postępu. Przygotowanie harmonogramu według standardów PMI (Project Management Institute) lub metodyki PRINCE2 (Projects in Controlled Environments) zapewnia, że wszystkie kluczowe aspekty zostaną uwzględnione. Poprawnie sporządzony harmonogram robót nie tylko ułatwia zarządzanie czasem, ale również pozwala na identyfikację potencjalnych opóźnień oraz problemów, co jest niezbędne do skutecznego podejmowania działań naprawczych oraz optymalizacji procesu budowlanego. Przykładem zastosowania harmonogramu robót może być budowa nowego obiektu, gdzie wszystkie etapy, od wykopów po wykończenia, są szczegółowo zaplanowane.

Pytanie 20

Wskaż źródło informacji cenowych, z którego można uzyskać najnowsze dane dotyczące czynników produkcji budowlanej na aktualny kwartał danego roku?

A. Infobud
B. Cenbud
C. Sekocenbud
D. Infoargbud
Sekocenbud jest uznawanym źródłem informacji o cenach materiałów budowlanych oraz kosztach robót budowlanych w Polsce. Oferuje aktualne dane, które są niezbędne dla profesjonalistów w branży budowlanej do planowania budżetów, przygotowania ofert oraz zarządzania projektami budowlanymi. Sekocenbud gromadzi i aktualizuje informacje na podstawie rzeczywistych transakcji rynkowych, co czyni je wiarygodnym źródłem dla inwestorów, wykonawców oraz architektów. Przykładowo, jeśli firma budowlana planuje realizację inwestycji, korzystając z Sekocenbudu, ma dostęp do bieżących stawek za materiały i usługi. To z kolei pozwala na precyzyjne oszacowanie kosztów, co jest kluczowe w procesie podejmowania decyzji. Dobre praktyki w zarządzaniu budową zalecają korzystanie z aktualnych danych rynkowych, co wspiera konkurencyjność oraz efektywność finansową projektów budowlanych.

Pytanie 21

Gdzie powinien być zainstalowany zawór bezpieczeństwa w zamkniętej instalacji centralnego ogrzewania?

A. przed grzejnikami zarówno na gałęzi zasilającej, jak i powrotnej
B. w dolnej części każdego pionu oraz przed naczyniem wzbiorczym
C. na przyłączach pionów do przewodów rozprowadzających
D. bezpośrednio na kotłach lub wymiennikach ciepła w górnej części ich przestrzeni wodnej
Montaż zaworu bezpieczeństwa w nieodpowiednich miejscach, takich jak przed grzejnikami, w dolnej części pionów czy na przyłączach pionów do przewodów rozprowadzających, nie spełnia podstawowych wymogów bezpieczeństwa i efektywności instalacji centralnego ogrzewania. Umieszczanie zaworu przed grzejnikami może prowadzić do zbyt późnego odcięcia nadmiaru ciśnienia, co naraża system na uszkodzenia. Ponadto, umiejscowienie zaworu w dolnej części pionów nie pozwala na efektywne usunięcie nadmiaru ciśnienia, gdyż gorąca woda ma tendencję do unikania dół, co może prowadzić do zjawisk przegrzewania w górnych częściach instalacji. Zawór bezpieczeństwa powinien być w odpowiedniej lokalizacji, aby działał w chwilach krytycznych, co jest kluczowe dla zapobiegania awariom i zagrożeniom. Montaż na przyłączach pionów również nie zapewnia wymaganego poziomu ochrony, gdyż zawór powinien być umiejscowiony jak najbliżej źródła ciepła. Standardy branżowe oraz przepisy budowlane jasno określają wymagania dotyczące lokalizacji zaworu bezpieczeństwa, podkreślając, że niewłaściwe umiejscowienie może prowadzić do katastrofalnych skutków, w tym do zniszczenia urządzeń oraz zagrożenia dla użytkowników instalacji.

Pytanie 22

Jaką funkcję pełni parownik w pompie ciepła?

A. wydziela ciepło do otoczenia
B. zamienia energię elektryczną na ciepło
C. pobiera ciepło z otoczenia
D. przekształca ciepło w energię elektryczną
Pompa ciepła to urządzenie, które wykorzystuje zasady termodynamiki do transportu ciepła z jednego miejsca do drugiego. W kontekście parownika, kluczowym błędem jest mylenie jego funkcji z innymi procesami energetycznymi. Odpowiedzi sugerujące, że parownik zamienia ciepło w energię elektryczną lub oddaje ciepło do środowiska są nieprawidłowe, ponieważ parownik jest elementem, który służy do absorpcji ciepła, a nie jego oddawania. Zamiana ciepła w energię elektryczną to funkcja innych urządzeń, takich jak ogniwa fotowoltaiczne czy elektrownie cieplne, które działają w oparciu o różne zasady fizyczne. Także funkcja oddawania ciepła do środowiska jest realizowana przez inny komponent pompy ciepła, a mianowicie skraplacz, który jest odpowiedzialny za oddawanie energii cieplnej do systemu grzewczego lub do atmosfery. Nieprawidłowe odpowiedzi mogą wynikać z nieporozumienia dotyczącego cyklu chłodniczego. Pompa ciepła działa w systemie cyklicznym, w którym ciepło jest transferowane z niższej do wyższej temperatury, a parownik jest pierwszym krokiem w tym procesie, a nie jego końcem. Zrozumienie funkcji każdego elementu pompy ciepła, w tym parownika, jest kluczowe dla prawidłowego wykorzystania i efektywności systemów grzewczych, a także dla podejmowania świadomych decyzji dotyczących ich projektowania i użytkowania.

Pytanie 23

W jakim dokumencie powinny być odnotowane wszystkie działania wykonane przez montera pompy ciepła w trakcie realizacji gwarancyjnych prac serwisowych?

A. Na fakturze za wykonaną pracę
B. W instrukcji serwisowej
C. W dokumentacji techniczno-ruchowej
D. W karcie gwarancyjnej
Zobaczmy, co się mówi o innych dokumentach, które raczej nie powinny mieć szczegółowych opisów działań montera. Na przykład dokumentacja techniczno-ruchowa, chociaż jest ważna w użytkowaniu i konserwacji, zazwyczaj skupia się na specyfikacjach technicznych i ogólnych zasadach działania, a nie na detalach serwisu. Instrukcja serwisowa dostarcza ogólnych informacji o konserwacji, ale nie powinna zawierać dokładnych zapisów tego, co było robione podczas serwisu. A faktura za wykonaną pracę to dokument finansowy potwierdzający transakcję, ale nie ma w sobie szczegółów o pracach serwisowych ani nie nadaje się do archiwizacji informacji technicznych. Także nie ma to nic wspólnego z przyszłą ochroną gwarancyjną. Dlatego mylenie tych dokumentów z kartą gwarancyjną może w przyszłości sprawić problemy w dochodzeniu praw gwarancyjnych i w kolejnych działaniach serwisowych. Ważne, żeby ogarnąć, że karta gwarancyjna służy do dokumentowania wykonanych prac i jest podstawą do ewentualnych roszczeń, a inne dokumenty mają swoje zupełnie inne funkcje.

Pytanie 24

W którym kosztorysie realizacji budowy elektrowni wiatrowej zawarte są przewidywane wydatki na materiały, wyposażenie oraz prace, a także narzuty?

A. Inwestorskim
B. Ślepym
C. Powykonawczym
D. Dodatkowym
Kosztorys inwestorski to mega ważny dokument w budowlance. Określa, ile wszystko będzie kosztować, zarówno materiały, jak i robocizna czy sprzęt. Dzięki niemu inwestor ma jasny obraz wydatków związanych z projektem, co jest super istotne, żeby dobrze zarządzać budżetem. Przed rozpoczęciem budowy, na etapie planowania, ten kosztorys jest sporządzany i stanowi bazę do dalszych działań. Na przykład, przy budowie elektrowni wiatrowej, taki kosztorys mógłby zawierać analizy wydatków na turbiny, instalację elektryczną i prace montażowe. Warto też pamiętać, że ceny materiałów mogą różnić się w czasie, dlatego dobrze jest to uwzględniać w kosztorysie. Z mojego doświadczenia, umiejętność tworzenia takich dokumentów jest kluczowa, bo może uratować projekt przed nieprzyjemnymi niespodziankami.

Pytanie 25

Z jakich materiałów produkowane są łopaty wirników dużych turbin wiatrowych?

A. Z aluminium
B. Ze stali
C. Z miedzi elektrolitycznej
D. Z włókna szklanego
Łopaty wirników dużych turbin wiatrowych są najczęściej wykonane z włókna szklanego, co wynika z jego korzystnych właściwości mechanicznych. Włókno szklane charakteryzuje się wysoką wytrzymałością na rozciąganie oraz niską gęstością, co przekłada się na lekkość konstrukcji. To istotne, ponieważ zmniejsza obciążenie strukturalne turbiny i pozwala na efektywniejsze wykorzystanie energii wiatru. Dodatkowo, materiał ten jest odporny na korozję i działanie niekorzystnych warunków atmosferycznych, co zapewnia długotrwałą żywotność łopat. W praktyce, zastosowanie włókna szklanego w budowie turbin wiatrowych jest zgodne z zaleceniami branżowymi, które promują wykorzystanie materiałów kompozytowych w celu zwiększenia efektywności energetycznej. To podejście jest również zgodne z nowoczesnymi trendami w inżynierii, które stawiają na zrównoważony rozwój i efektywność energetyczną.

Pytanie 26

Jakie ogniwo fotowoltaiczne wykazuje najwyższą efektywność?

A. Amorficzne
B. Polikrystaliczne
C. Hybrydowe
D. Monokrystaliczne
Monokrystaliczne ogniwa fotowoltaiczne, chociaż charakteryzują się wysoką efektywnością, nie osiągają najwyższych sprawności w porównaniu do hybrydowych odpowiedników. Ich budowa polega na wykorzystaniu jednego kryształu krzemu, co ogranicza ich zdolność do absorpcji światła w niekorzystnych warunkach, takich jak chmury czy cień. Z drugiej strony, ogniwa amorficzne zdobijają uznanie za swoją elastyczność i możliwość wielowarstwowych zastosowań, ale ich sprawność w konwersji energii jest znacznie niższa, nie przekraczająca zazwyczaj 10-12%. Polikrystaliczne ogniwa, mimo że są tańsze w produkcji, także nie dorównują sprawnością ogniw hybrydowych. Wiele osób błędnie myśli, że wybór ogniw monokrystalicznych lub polikrystalicznych jest najlepszym rozwiązaniem ze względu na ich popularność, jednakże nie uwzględniają przy tym postępu technologicznego oraz badań nad ogniwami hybrydowymi. W rzeczywistości, wybór odpowiedniego typu ogniwa powinien opierać się na specyficznych potrzebach projektu oraz na warunkach, w jakich będą one używane. Ważne jest, aby przy podejmowaniu decyzji o wyborze technologii fotowoltaicznej, konsultować się z ekspertami oraz kierować się obowiązującymi standardami branżowymi, takimi jak IEC 61730, które opisują wymagania dotyczące bezpieczeństwa i wydajności modułów fotowoltaicznych.

Pytanie 27

Jakie metody powinny być użyte do łączenia rur PEX w instalacji basenowej z wymiennikiem ciepła?

A. zaciskanie
B. zgrzewanie
C. klejenie
D. lutowanie
Lutowanie, klejenie i zgrzewanie jako metody w kontekście rur PEX nie są zbyt dobre i mogą powodować różne problemy. Lutowanie, które często stosuje się przy metalach, wymaga wysokich temperatur, co może uszkodzić PEX. Ta wysoka temperatura działa na polimer negatywnie, co może prowadzić do osłabienia połączeń i wycieków. Jeśli chodzi o klejenie, to nie jest to zalecane, bo wymagałoby specjalnych klejów chemicznych, które nie nadają się do PEX. W dłuższym czasie kleje mogą osłabiać połączenia, więc to może prowadzić do awarii, a to już nie jest bezpieczne. Zgrzewanie to technika, która dotyczy bardziej plastikowych rur, a nie PEX, gdzie zgrzewane połączenia są mniej efektywne i mogą spowodować przegrzewanie materiału, co też nie jest dobre. Jak widać, wybór metody łączenia jest bardzo ważny, a złe decyzje mogą prowadzić do poważnych problemów w całym systemie, co pokazuje, jak istotna jest wiedza techniczna i znajomość standardów.

Pytanie 28

W konstrukcji systemów solarnych należy wykorzystywać rury

A. stalowe
B. miedziane
C. polipropylenowe
D. polietylenowe
Miedziane rury to naprawdę najlepszy wybór, jeżeli chodzi o instalacje solarne. Ich właściwości przewodzenia ciepła są po prostu świetne, co sprawia, że energia słoneczna jest wykorzystana w 100%. Co więcej, miedź jest bardzo trwała i elastyczna, więc łatwo można ją formować i instalować. W praktyce, miedziane rury są wykorzystywane nie tylko w kolektorach słonecznych, ale także w ogrzewaniu podłogowym. Dzięki nim cały system działa o wiele lepiej. A wiadomo, że miedź spełnia normy, takie jak PN-EN 1057, co też jest sporym plusem, bo to znaczy, że możemy na niej polegać w instalacjach wodociągowych, a to się przekłada na bezpieczeństwo i efektywność systemu solarnych.

Pytanie 29

W systemie grzewczym opartym na energii słonecznej, przeznaczonym do podgrzewania wody użytkowej, gdzie powinien być zainstalowany zawór mieszający?

A. między przyłączem wody zimnej a systemem ciepłej wody użytkowej
B. pomiędzy obiegiem solarnym a obiegiem cyrkulacyjnym wody ciepłej
C. w między obiegiem solarnym a instalacją wody zimnej
D. między przyłączem wody zimnej a obiegiem cyrkulacyjnym wody ciepłej
Zawór mieszający w słonecznej instalacji grzewczej ma kluczowe znaczenie dla zapewnienia odpowiedniej temperatury wody użytkowej. Jego umiejscowienie pomiędzy przyłączem wody zimnej a instalacją ciepłej wody użytkowej pozwala na efektywne mieszanie wody gorącej z kolektorów słonecznych z wodą zimną, co zapewnia optymalne warunki dla użytkowników. Dzięki temu rozwiązaniu możliwe jest precyzyjne regulowanie temperatury, co jest istotne przy korzystaniu z wody, szczególnie w kontekście zapobiegania poparzeniom. W praktyce zastosowanie zaworu mieszającego pozwala na dostosowanie temperatury wody do indywidualnych potrzeb, co wpływa na komfort użytkowania oraz efektywność energetyczną całego systemu. Zgodnie z normami projektowania instalacji grzewczych, umiejscowienie zaworu w tym punkcie systemu jest najlepszą praktyką, ponieważ sprzyja redukcji strat ciepła oraz poprawia wydajność całego układu. Te aspekty są niezbędne dla osiągnięcia optymalnej efektywności energetycznej oraz komfortu w użytkowaniu.

Pytanie 30

W systemach pomp ciepła typu split czynnościom serwisowym nie podlega

A. tacka skroplin
B. obudowa pompy ciepła
C. filtr w układzie wodnym
D. parownik
Obudowa pompy ciepła jest elementem konstrukcyjnym, który nie wymaga regularnych czynności konserwacyjnych w takiej samej mierze jak inne komponenty systemu. Jej główną funkcją jest ochrona wewnętrznych mechanizmów przed niekorzystnymi warunkami atmosferycznymi oraz zapewnienie estetycznego wyglądu urządzenia. W praktyce, konserwacja obudowy pompy ciepła ogranicza się zazwyczaj do sporadycznego czyszczenia z zewnątrz oraz sprawdzania stanu ogólnego. W odróżnieniu od filtrów czy parownika, które wymagają cyklicznej wymiany lub czyszczenia, obudowa nie jest elementem, który ulega zużyciu w wyniku działania cieplno-chłodniczego. Implementacja regularnej konserwacji innych elementów, takich jak tacka skroplin, jest kluczowa dla zapewnienia efektywności energetycznej oraz prawidłowego działania całego systemu. Zgodnie z najlepszymi praktykami branżowymi, zaleca się dokumentowanie przeprowadzonych przeglądów i konserwacji, co przyczynia się do wydłużenia żywotności urządzenia.

Pytanie 31

W trakcie użytkowania systemu grzewczego opartego na energii słonecznej zauważono, że pompa solarna włącza się regularnie w porze nocnej. Możliwą przyczyną tego zjawiska może być

A. niski poziom cieczy solarnej
B. aktywowany tryb urlop na kontrolerze solarnym
C. uszkodzona pompa solarna
D. zbyt mała histereza na regulatorze
Ustawiony tryb urlop na sterowniku solarnym to najczęstsza przyczyna, dla której pompa solarna może włączać się w godzinach nocnych. Tryb urlopowy jest zaprojektowany w taki sposób, aby w razie nieobecności użytkownika system pozostawał aktywny, co może obejmować włączanie pompy, aby uniknąć zamarzania płynu solarnego w instalacji. W praktyce, podczas gdy pompa działa, system może nie być w stanie skutecznie utrzymać odpowiedniej temperatury, co prowadzi do niepotrzebnego zużycia energii. W celu minimalizacji takich sytuacji, zaleca się regularne sprawdzanie ustawień sterownika oraz zrozumienie jego funkcji. Nawet w trakcie dłuższej nieobecności użytkownik powinien rozważyć ustanowienie bardziej ekonomicznego trybu pracy, takiego jak tryb oszczędnościowy, jeśli jego system to umożliwia. Zrozumienie działania sterowników i ich ustawień jest kluczowe dla efektywności i oszczędności energetycznej systemów solarnych. Znajomość tych mechanizmów jest podstawą prawidłowej eksploatacji.

Pytanie 32

Dolnym źródłem zasilającym pompę ciepła nie może być

A. powietrze.
B. woda.
C. grunt.
D. słońce.
Pompy ciepła to ciekawe urządzenia, które potrafią wykorzystywać różne źródła ciepła do ogrzewania lub chłodzenia budynków. Możemy tu mówić o gruncie, wodzie czy powietrzu jako dolnych źródłach. Słońce to na pewno energia, ale nie da się powiedzieć, że jest bezpośrednim źródłem ciepła dla pomp ciepła. Jak to działa? Generalnie, pompy ciepła transferują ciepło z jednego medium do drugiego, a w przypadku energii słonecznej, najpierw musi być zgromadzone w innym medium, jak na przykład powietrze. To właśnie to powietrze może być potem użyte przez pompę. Więc chociaż słońce ma wpływ na temperaturę powietrza i wody, to jednak sama energia solarna nie jest wykorzystywana przez te pompy. Dlatego mówi się, że odpowiedź "słońce" jest jednak niepoprawna, bo nie spełnia kryteriów dolnego źródła zgodnie z tym, jak to jest przyjęte w inżynierii.

Pytanie 33

Pierwszym zadaniem po zakończeniu montażu instalacji solarnej do ogrzewania jest

A. jej odpowietrzenie
B. jej próba ciśnieniowa
C. napełnianie jej czynnikiem
D. izolacja jej przewodów
Izolacja przewodów, odpowietrzenie oraz napełnianie instalacji czynnikiem roboczym to ważne czynności, jednak nie są one odpowiednimi pierwszymi krokami po montażu instalacji grzewczej. Izolacja przewodów, choć istotna dla minimalizacji strat ciepła, nie może być przeprowadzona przed upewnieniem się, że system jest szczelny. Przed przystąpieniem do izolacji konieczne jest przeprowadzenie próby ciśnieniowej, która pozwala na weryfikację integralności systemu. Odpowietrzenie natomiast ma na celu usunięcie powietrza z układu, co jest kluczowe dla jego efektywnego działania, ale powinno być realizowane po potwierdzeniu, że instalacja nie ma wycieków. Napełnianie instalacji czynnikiem roboczym to ostatni krok po skutecznym przeprowadzeniu próby ciśnieniowej. Bez wcześniejszej weryfikacji szczelności, wprowadzenie czynnika może prowadzić do poważnych problemów, takich jak uszkodzenia elementów instalacji lub nieprawidłowe działanie systemu. Przyjęcie poprawnej procedury montażu i uruchamiania instalacji grzewczej jest zgodne z najlepszymi praktykami w branży oraz z respektowaniem standardów jakości, co zapewnia długotrwałą i bezproblemową eksploatację systemu.

Pytanie 34

Największa dozwolona wysokość hałd przy magazynowaniu materiału aktywnego biologicznie powinna wynosić

A. 3 m
B. 5m
C. 4m
D. 6m
Ustalanie maksymalnej wysokości hałd na poziomie 3 m, 5 m lub 6 m może prowadzić do szeregu problemów związanych z bezpieczeństwem oraz oddziaływaniem na środowisko. Przykładowo, 3 m może wydawać się odpowiednią wysokością, ale w praktyce może to ograniczać efektywność składowania oraz zwiększać ilość wymaganej przestrzeni. Wysokości przekraczające 4 m, takie jak 5 m czy 6 m, stwarzają ryzyko osuwania się materiału oraz mogą prowadzić do poważnych incydentów w przypadku silnych opadów deszczu, co może skutkować niekontrolowanym wypływem substancji bioaktywnych. Wysokie hałdy są trudniejsze do monitorowania i kontrolowania, co zwiększa ryzyko rozwoju szkodników oraz emisji nieprzyjemnych zapachów. Ponadto, przekroczenie norm wysokości może naruszać lokalne przepisy dotyczące ochrony środowiska, co wiąże się z sankcjami i kosztami. Z perspektywy zarządzania ryzykiem, składowanie materiałów bioaktywnych w sposób niezgodny z najlepszymi praktykami branżowymi może prowadzić do znacznych problemów zdrowotnych, zarówno dla pracowników, jak i mieszkańców okolicznych terenów. Niewłaściwe podejście do składowania może także negatywnie wpłynąć na wizerunek firmy oraz jej relacje z organami regulacyjnymi.

Pytanie 35

Jakie jest uboczne wytwarzanie podczas produkcji biodiesla?

A. metanol
B. glikol
C. etanol
D. gliceryna
Odpowiedzi etanol, glikol oraz metanol nie są poprawnymi odpowiedziami na pytanie dotyczące produktów ubocznych w produkcji biodiesla, gdyż nie odpowiadają one rzeczywistości procesu transestryfikacji. Etanol, jako jeden z najczęściej używanych alkoholi, stanowi reagent w procesie produkcji biodiesla, a nie produkt uboczny. Wykorzystanie etanolu w produkcji biodiesla jest zgodne z praktykami zrównoważonego rozwoju, ponieważ jest on wytwarzany z biomasy, co pozwala na redukcję emisji gazów cieplarnianych. Z kolei glikol, będący substancją chemiczną, jest używany w różnych procesach przemysłowych, ale nie w produkcji biodiesla. W wielu przypadkach glikol jest stosowany jako środek przeciw zamarzaniu lub w produkcji tworzyw sztucznych, co czyni go nieadekwatnym do kontekstu produkcji biodiesla. Metanol, podobnie jak etanol, jest reagentem w procesie produkcji biodiesla, a nie produktem ubocznym. Jest to substancja silnie toksyczna, co stawia dodatkowe wyzwania w zakresie bezpieczeństwa. Kluczowym błędem przy interpretacji tego pytania może być mylenie reagentów z produktami ubocznymi, co jest nie tylko technicznie niepoprawne, ale również może prowadzić do nieefektywnego zarządzania procesem produkcji biodiesla. Aby zrozumieć właściwe zastosowanie każdej z tych substancji, ważne jest, aby przeanalizować każdy etap procesu produkcji biodiesla oraz znać ich rolę w kontekście technologicznym.

Pytanie 36

Płynem, który ma wysoką temperaturę wrzenia w rurce cieplnej (heat-pipe) w systemie kolektora rurowego próżniowego nie jest

A. propan
B. woda
C. R410
D. butan
Woda nie jest płynem szybko wrzącym w rurce cieplnej (heat-pipe) w kolektorze rurowym próżniowym, ponieważ jej punkt wrzenia wynosi 100°C przy normalnym ciśnieniu atmosferycznym, co czyni ją niewłaściwym wyborem w kontekście systemów, które muszą działać w niskich temperaturach oraz w próżni. W kolektorach rurowych, takich jak heat-pipe, preferuje się czynniki robocze o niższym ciśnieniu wrzenia, co zapewnia bardziej efektywne transfery ciepła. Przykładowo, butan i propan, których temperatury wrzenia wynoszą odpowiednio około -0,5°C i -42°C, umożliwiają skuteczne odprowadzanie ciepła w warunkach, które są typowe dla systemów próżniowych. Dobre praktyki w projektowaniu takich systemów zalecają użycie płynów, które w odpowiednich warunkach mogą łatwo przechodzić między fazami, co maksymalizuje ich efektywność. W przypadku zastosowań w kolektorach słonecznych, odpowiedni dobór czynnika roboczego jest kluczowy dla optymalizacji wydajności energetycznej.

Pytanie 37

Z jakiego rodzaju materiału można zrealizować instalację łączącą kolektory słoneczne z zasobnikiem na ciepłą wodę użytkową?

A. Poliamid.
B. Stal stopowa.
C. Polietylen.
D. Polipropylen.
Wybór materiału do budowy instalacji łączącej kolektory słoneczne z zasobnikiem ciepłej wody użytkowej jest kluczowy dla efektywności i trwałości całego systemu. Polipropylen, polietylen oraz poliamid, pomimo że są popularnymi materiałami używanymi w różnych instalacjach, nie są odpowiednie do tego typu zastosowań. Polipropylen i polietylen, będąc tworzywami sztucznymi, mają ograniczoną odporność na wysokie temperatury. W systemach solarnych, gdzie temperatura wody może sięgać nawet 95 stopni Celsjusza, te materiały mogą ulegać deformacjom, co prowadzi do nieszczelności i utraty efektywności systemu. Poliamid, chociaż bardziej odporny na temperaturę niż polipropylen czy polietylen, ma problem z odpornością na działanie wody gorącej, co w dłuższym czasie może prowadzić do degradacji materiału. W kontekście instalacji słonecznych ważne jest, aby zastosowane materiały były zgodne z normami i wymaganiami, jak np. EN 10088 dla stali, które zapewniają odpowiednią jakość i trwałość. Często popełnianym błędem jest mylenie materiałów kompozytowych z metalowymi, co prowadzi do przekonania, że wszystkie tworzywa sztuczne mogą zastąpić stal w wymagających aplikacjach. Dlatego kluczowe jest, aby przy wyborze materiałów kierować się ich właściwościami fizycznymi oraz warunkami, w jakich będą stosowane, unikając pułapek wynikających z niedoinformowania o właściwościach materiałów.

Pytanie 38

Aby osiągnąć maksymalną wydajność przez cały rok w instalacji solarnej do podgrzewania wody użytkowej w Polsce, konieczne jest ustawienie kolektorów w odpowiednim kierunku pod kątem w stosunku do poziomu:

A. 20°
B. 90°
C. 70°
D. 45°
Ustawienie kolektorów słonecznych pod kątem 45° jest kluczowe dla maksymalnej efektywności systemu podgrzewania wody w Polsce. Taki kąt nachylenia jest optymalny ze względu na średnią szerokość geograficzną kraju, która wynosi 52°N. Zgodnie z praktykami branżowymi, kąt ten powinien być o 10-15 stopni mniejszy od szerokości geograficznej, co sprawia, że 45° to idealny wybór. Przy takim nachyleniu, kolektory mogą efektywnie zbierać promieniowanie słoneczne przez cały rok, co jest szczególnie istotne w kontekście sezonowych zmian nasłonecznienia. Przykładowo, zimą, gdy słońce znajduje się nisko nad horyzontem, kąt 45° pozwala na maksymalizację absorpcji promieni słonecznych, co przekłada się na lepsze wyniki w konwersji energii słonecznej na ciepło w systemie grzewczym. Warto także pamiętać, że powiązane z tego standardy, takie jak PN-EN 12975, określają wymagania dotyczące wydajności kolektorów słonecznych, które wzmacniają praktykę ustawienia ich pod odpowiednim kątem. Takie podejście nie tylko zwiększa efektywność energetyczną, ale również przyczynia się do obniżenia kosztów eksploatacyjnych systemu.

Pytanie 39

Ocena właściwości glikolu polega na ustaleniu wartości pH. Glikol powinien być niezwłocznie wymieniony, jeśli jego odczyn spadnie poniżej

A. pH 9
B. pH 11
C. pH 7
D. pH 10
Odpowiedź pH 7 jest prawidłowa, ponieważ wartość ta oznacza neutralne pH, które jest kluczowe dla zachowania właściwości glikolu. W przemyśle chemicznym oraz podczas obiegu wody w systemach grzewczych i chłodniczych, pH na poziomie 7 wskazuje na brak nadmiernej kwasowości lub zasadowości, co zapewnia optymalne warunki dla pracy wielu komponentów. Spadek wartości pH poniżej 7 może prowadzić do korozji metali i osadzania się niepożądanych substancji, co negatywnie wpływa na efektywność systemu oraz jego żywotność. Ponadto, wiele systemów, takich jak kotły, wymaga regulacji chemii wody, w tym pH, aby uniknąć uszkodzeń. Dlatego ważne jest, aby regularnie monitorować pH glikolu i w razie potrzeby go wymienić, aby zapewnić długoterminową niezawodność systemów, w których jest używany. W branży często stosuje się testy pH jako standardową praktykę konserwacyjną.

Pytanie 40

Podstawą do stworzenia kosztorysu szczegółowego są

A. harmonogramy robót
B. katalogi producentów
C. wytyczne organizacji budowy
D. katalogi nakładów rzeczowych
Katalogi nakładów rzeczowych stanowią fundamentalne źródło informacji w procesie opracowywania kosztorysów szczegółowych, ponieważ zawierają szczegółowe dane dotyczące kosztów materiałów, robocizny oraz innych nakładów związanych z realizacją projektu budowlanego. Dzięki tym katalogom wykonawcy mogą precyzyjnie ocenić, jakie zasoby będą potrzebne do realizacji zadania oraz jakie będą ich koszty. Na przykład, w przypadku budowy budynku mieszkalnego, katalogi te pozwalają na oszacowanie ilości i kosztów materiałów budowlanych, takich jak cegły, cement czy stal. W praktyce, korzystając z obowiązujących standardów kosztorysowania, takich jak KNR (Katalogi Nakładów Rzeczowych), wykonawcy mogą dokonać analizy kosztów na etapie planowania, co jest kluczowe dla efektywnego zarządzania budżetem projektu. Zastosowanie katalogów nakładów rzeczowych poprawia dokładność kosztorysów, co z kolei wpływa na lepsze zarządzanie ryzykiem finansowym związanym z realizacją inwestycji.