Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 3 maja 2025 17:38
  • Data zakończenia: 3 maja 2025 18:10

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W systemach pomp ciepła typu split czynnościom serwisowym nie podlega

A. obudowa pompy ciepła
B. tacka skroplin
C. parownik
D. filtr w układzie wodnym
Czynności konserwacyjne w pompach ciepła typu split są kluczowe dla zapewnienia ich efektywności oraz długowieczności. Filtr w układzie wodnym jest jednym z podstawowych elementów, który wymaga regularnej konserwacji, aby zapobiec zatykania układu i stratą wydajności. Zanieczyszczony filtr może prowadzić do zwiększonego zużycia energii, a także do uszkodzenia pompy, co w dłuższej perspektywie generuje dodatkowe koszty. Tacka skroplin, jako integralna część systemu, również wymaga regularnej kontroli, aby zapobiec gromadzeniu się wody, co może prowadzić do wycieków oraz rozwoju pleśni. Parownik, z kolei, jest kluczowym elementem odpowiedzialnym za wymianę ciepła, dlatego jego konserwacja jest niezbędna, by zapewnić optymalne działanie systemu. Zaniedbanie tego elementu może prowadzić do spadku wydajności i zwiększonego zużycia energii. Wiele osób błędnie zakłada, że obudowa nie wymaga uwagi, jednak to nieprawda, gdyż należy kontrolować, czy nie występują ślady korozji czy uszkodzenia mechaniczne, które mogą wpłynąć na działanie pompy. Dlatego też, nieprawidłowe podejście do konserwacji tych komponentów może prowadzić do poważnych problemów eksploatacyjnych oraz kosztów związanych z naprawami.

Pytanie 2

Jakie urządzenie wykorzystuje się do mierzenia przepływu płynu solarnego w systemie?

A. refraktometr
B. areometr
C. manometr
D. rotametr
Rotametr to urządzenie pomiarowe, które służy do określania przepływu płynów w instalacjach, w tym również w systemach solarnych. Jego działanie opiera się na zasadzie zmiany poziomu cieczy w stożkowym rurze, co pozwala na wizualne odczytanie przepływu. Rotametry charakteryzują się wysoką dokładnością oraz prostotą obsługi, co czyni je idealnym narzędziem w branży energetyki odnawialnej. Przykładowe zastosowanie rotametrów znajduje miejsce w monitorowaniu przepływu cieczy w układach chłodzenia, gdzie precyzyjne pomiary są kluczowe dla wydajności systemu. Dodatkowo, w kontekście instalacji solarnych, rotametry mogą być używane do kontroli przepływu cieczy solarnej, co bezpośrednio wpływa na efektywność wymiany ciepła i ogólną wydajność systemu. Warto zauważyć, że zgodnie z aktualnymi standardami branżowymi, rotametry powinny być regularnie kalibrowane, aby zapewnić ich dokładność i niezawodność w długoterminowym użytkowaniu.

Pytanie 3

Na liście materiałów potrzebnych do realizacji instalacji fotowoltaicznej znajduje się symbol YDYt 3×2,5. Co oznacza ten symbol w kontekście rodzaju przewodu?

A. wielodrutowym miedzianym do realizacji instalacji elektrycznej wewnątrz budynku w tynku
B. jednodrutowymi miedzianymi do realizacji instalacji elektrycznej wewnątrz budynku w tynku
C. jednodrutowymi aluminiowymi do połączenia w szereg akumulatorów
D. wielodrutowymi miedzianymi do podłączenia akumulatora z regulatorem ładowania
Wybór niepoprawnych odpowiedzi może wynikać z niepełnego zrozumienia symboliki dotyczącej przewodów elektrycznych. Odpowiedzi sugerujące, że przewód YDYt 3×2,5 ma żyły wielodrutowe, są błędne, ponieważ takie przewody, jak YDYt, są z reguły produkowane z żył jednodrutowych, co zapewnia lepsze parametry elektryczne. Zastosowanie żył aluminiowych w odpowiedziach także jest niewłaściwe, gdyż przewody YDYt są zasadniczo miedziane, co wpływa na ich przewodność oraz odporność na korozję. Użycie przewodów jednodrutowych miedzianych w instalacjach elektrycznych wewnątrz budynków jest zgodne z normami, które zalecają ich stosowanie tam, gdzie przewidywana jest niska obciążalność prądowa oraz gdzie przewody są osłonięte. Typowym błędem jest myślenie, że przewody aluminiowe mogą być z równym powodzeniem stosowane w warunkach domowych, co miedziane, co nie jest prawdą; przewody aluminiowe mają gorszą przewodność oraz wymagają specjalnych złączek. Konsekwencje niewłaściwego doboru przewodów mogą prowadzić do przegrzewania się instalacji, co z kolei zwiększa ryzyko pożaru. Z tego powodu ważne jest, aby przed podjęciem decyzji o wyborze przewodów, dobrze zrozumieć ich specyfikacje oraz wymogi dotyczące bezpieczeństwa.

Pytanie 4

W jaki sposób oraz w jakim miejscu powinno się zainstalować fotoogniwo, aby osiągnąć najlepszą wydajność przez cały rok?

A. W poziomie, na tarasie
B. Prostopadle, na południowej ścianie obiektu
C. Pod kątem 55 stopni do poziomu gruntu, na południowej części dachu
D. Pod kątem 45 stopni do poziomu gruntu, na wschodniej części dachu
Montaż fotoogniw pod kątem 55 stopni do powierzchni terenu na południowej połaci dachu jest optymalnym rozwiązaniem, które zapewnia maksymalną efektywność ich pracy przez cały rok. Pod kątem 55 stopni panel słoneczny jest w stanie lepiej wykorzystać promieniowanie słoneczne, szczególnie w miesiącach zimowych, kiedy Słońce znajduje się nisko na horyzoncie. Południowa ekspozycja dachu zapewnia, że panele będą miały największy dostęp do światła słonecznego w ciągu dnia, co przekłada się na wyższą produkcję energii. Warto również zauważyć, że taki kąt montażu minimalizuje ryzyko gromadzenia się śniegu i zanieczyszczeń na powierzchni paneli, co mogłoby wpłynąć na ich wydajność. Dodatkowo, stosowanie się do zaleceń branżowych dotyczących montażu, takich jak standardy IEC 61215 i IEC 61730, gwarantuje bezpieczeństwo i trwałość instalacji. Odpowiedni dobór kąta i miejsca montażu jest kluczowy dla długoterminowej efektywności systemów fotowoltaicznych oraz ich opłacalności ekonomicznej.

Pytanie 5

Do obróbki krawędzi rur miedzianych, które są stosowane w instalacjach ciepłej wody użytkowej i zostały przycięte na odpowiednią długość, należy zastosować

A. gradownicy
B. giętarki
C. zaginarki
D. gwinciarki
Gradownice to narzędzia wykorzystywane do obróbki końców rur, w tym rur miedzianych, w celu uzyskania gładkich i równych krawędzi. Ich zastosowanie jest kluczowe w montażu instalacji ciepłej wody użytkowej, ponieważ zgrubne lub nierówne krawędzie mogą prowadzić do problemów z uszczelnieniem połączeń, co z kolei może skutkować wyciekami i innymi awariami. Gradownice działają na zasadzie mechanicznego usuwania nadmiaru materiału, co pozwala na precyzyjne wygładzenie krawędzi. W praktyce, korzyści płynące z użycia gradownicy obejmują nie tylko poprawę estetyki połączeń, ale również wzrost ich trwałości oraz niezawodności. Zgodnie z obowiązującymi standardami w branży sanitarno-grzewczej, odpowiednio obrobione krawędzie rur miedzianych są kluczowe dla zapewnienia szczelności połączeń lutowanych czy też gwintowanych. Zastosowanie gradownicy jest szczególnie zalecane w sytuacjach, gdy rury są poddawane dużym obciążeniom termicznym i ciśnieniowym, co jest typowe dla instalacji ciepłej wody użytkowej.

Pytanie 6

Jak powinny być przechowywane rury miedziane?

A. pod zadaszeniem na drewnianym podeście
B. w pomieszczeniach bez dostępu do powietrza
C. na otwartym terenie budowy bez ochrony
D. w czystych i suchych pomieszczeniach
Magazynowanie rur miedzianych w pomieszczeniach czystych i suchych jest kluczowe dla ochrony ich właściwości fizycznych oraz chemicznych. Miedź, jako materiał, jest podatna na korozję, zwłaszcza w obecności wilgoci i zanieczyszczeń. Utrzymywanie rur w suchym środowisku zapobiega osadzaniu się wilgoci na ich powierzchni, co mogłoby prowadzić do korozji pittingowej. Ponadto, czyste pomieszczenia minimalizują ryzyko zanieczyszczenia rur pyłem, brudem czy substancjami chemicznymi, które mogą wpłynąć na ich trwałość i integralność. W praktyce, dla projektów budowlanych, zaleca się stosowanie specjalistycznych magazynek, które zapewniają odpowiednią wentylację i ochronę przed szkodliwymi czynnikami. Dobre praktyki branżowe również sugerują regularne kontrole stanu magazynowanych materiałów, aby w porę zauważyć i eliminować ewentualne zagrożenia dla ich jakości. Tego typu procedury są zgodne z normami ISO 9001, które podkreślają znaczenie zarządzania jakością w przechowywaniu materiałów budowlanych.

Pytanie 7

W trakcie działania systemu fotowoltaicznego na inwerterze zauważono kod błędu dotyczący zwarcia doziemnego. Jakie mogą być przyczyny tego zjawiska?

A. uszkodzony przewód
B. zacienienie modułów
C. niedostosowanie prądowe paneli
D. rozładowany akumulator
Niedopasowanie prądowe paneli, zacienienie paneli oraz rozładowany akumulator to sytuacje, które mogą wpływać na wydajność systemu fotowoltaicznego, jednak nie są bezpośrednio przyczyną zwarcia doziemnego. Niedopasowanie prądowe paneli odnosi się do różnic w parametrach elektrycznych, które mogą prowadzić do obniżonej efektywności, ale nie stwarzają zagrożenia zwarciowego. Zacienienie paneli wpływa na moc wyjściową systemu, co może powodować spadki wydajności, ale również nie prowadzi do zwarcia doziemnego. Z kolei rozładowany akumulator, choć może wpływać na działanie całego systemu, nie jest przyczyną zwarcia, lecz problemem z zasilaniem. Takie typowe błędy myślowe prowadzą do mylenia objawów z przyczynami. W rzeczywistości, zwarcie doziemne jest związane z uszkodzeniem przewodów, a nie z wydajnością poszczególnych komponentów. Właściwe zrozumienie działania instalacji fotowoltaicznej wymaga znajomości standardów bezpieczeństwa oraz zasad działania poszczególnych elementów, co pozwala na skuteczniejsze diagnozowanie problemów oraz podejmowanie właściwych działań naprawczych.

Pytanie 8

Stacja napełniająca zasilana energią słoneczną działa z prędkością 3 dm³/s. Jaką maksymalną objętość może napełnić w przeciągu dwóch godzin?

A. 32,40 m³
B. 10,80 m³
C. 21,60 m³
D. 6,00 m³
Stacja napełniająca o wydajności 3 dm³/s oznacza, że jest w stanie napełnić 3 decymetry sześcienne w każdą sekundę. Przez dwie godziny, co równa się 7200 sekund, całkowita objętość napełniona wynosi 3 dm³/s × 7200 s = 21600 dm³, co po przeliczeniu na metry sześcienne daje 21,6 m³. Zrozumienie przeliczeń jednostek objętości jest kluczowe w inżynierii i zarządzaniu projektami, gdzie precyzyjne obliczenia są niezbędne do efektywnego planowania. W praktyce, obliczenie przepływu cieczy i wydajności urządzeń jest stosowane w systemach hydraulicznych, instalacjach wodociągowych oraz wielu innych branżach, gdzie zarządzanie zasobami wodnymi jest priorytetem. Dobre praktyki inżynieryjne zalecają regularne monitorowanie wydajności systemów napełniających, aby zapewnić ich optymalną efektywność oraz zminimalizować straty. Warto również znać normy dotyczące zużycia wody i energii, co jest istotne w kontekście zrównoważonego rozwoju.

Pytanie 9

Kocioł na pellet w ciągu jednej doby wykorzystuje 20 kg paliwa. Jaki będzie całkowity koszt paliwa w przeciągu 30 dni, jeśli worek z 200 kg pelletu kosztuje 250 zł?

A. 5 000,00 zł
B. 12,50 zł
C. 750,00 zł
D. 37,50 zł
Obliczenie kosztu paliwa zużywanego przez kocioł na pellet wymaga zrozumienia kilku kluczowych aspektów. Kocioł zużywa 20 kg paliwa dziennie, co oznacza, że przez 30 dni zużyje 600 kg (20 kg/dzień * 30 dni). W celu przeliczenia kosztów, musimy najpierw ustalić, ile kosztuje 1 kg pelletu. Woreczek o wadze 200 kg kosztuje 250 zł, zatem koszt 1 kg to 250 zł / 200 kg = 1,25 zł. Następnie, mnożymy koszt 1 kg przez całkowite zużycie pelletu w ciągu miesiąca: 600 kg * 1,25 zł/kg = 750 zł. Taki proces obliczania kosztów pozwala na lepsze zarządzanie budżetem na ogrzewanie i planowanie zakupów paliwa, co jest szczególnie istotne w kontekście sezonowego użytkowania kotłów na pellet. Wiedza na temat kosztów eksploatacyjnych pozwala również na efektywniejsze podejmowanie decyzji zakupowych oraz optymalizację wydatków na energię. Stosowanie materiałów pomocniczych, jak wykresy lub kalkulatory kosztów, jest zalecane w celu łatwiejszego zrozumienia tego procesu.

Pytanie 10

W pompach ciepła z bezpośrednim odparowaniem, jakie zadanie pełni wymiennik gruntowy?

A. skraplacza
B. parownika
C. zaworu rozprężnego
D. zaworu odcinającego
W pompach ciepła z bezpośrednim odparowaniem, wymiennik gruntowy pełni rolę parownika, co oznacza, że absorbuje ciepło z gruntu, które następnie jest wykorzystywane do odparowania czynnika chłodniczego. Proces ten umożliwia efektywne ogrzewanie budynków w zimie oraz chłodzenie latem. W praktyce, wymienniki gruntowe mogą być wykonane w różnych konfiguracjach, takich jak pionowe lub poziome kolektory, w zależności od warunków geologicznych i potrzeb energetycznych obiektu. Zastosowanie technologii gruntowych pozwala na wykorzystanie stabilnej temperatury gruntu, co znacząco zwiększa efektywność energetyczną systemu. Standardy branżowe, takie jak normy EN 14511 dotyczące pomp ciepła, podkreślają znaczenie optymalizacji wymienników ciepła, co wpisuje się w działania mające na celu zwiększenie efektywności energetycznej budynków oraz redukcję emisji CO2. W praktycznych zastosowaniach, właściwie zaprojektowany i zainstalowany wymiennik gruntowy może zapewnić znaczące oszczędności w kosztach ogrzewania i chłodzenia, a także przyczynić się do zrównoważonego rozwoju poprzez wykorzystanie odnawialnych źródeł energii.

Pytanie 11

Czym charakteryzują się kolektory CPC?

A. posiadają podwójny absorber
B. mają dodatkowe zwierciadła skupiające promieniowanie
C. zawierają kanały do ogrzewania powietrza
D. są wyposażone w dodatkową izolację cieplną
Kolektory CPC (Compound Parabolic Concentrators) wykorzystują dodatkowe zwierciadła, które skupiają promieniowanie słoneczne na absorberach, co zwiększa efektywność konwersji energii słonecznej na ciepło. Dzięki zastosowaniu zwierciadeł, kolektory te mogą zbierać promieniowanie z szerszego kąta padania, co jest szczególnie korzystne w zmiennych warunkach atmosferycznych. Przykładem zastosowania kolektorów CPC jest ich użycie w instalacjach solarnych do podgrzewania wody użytkowej w budynkach mieszkalnych oraz w przemysłowych systemach grzewczych. W praktyce, zastosowanie tych kolektorów pozwala na zwiększenie wydajności energetycznej systemu grzewczego, co ma istotne znaczenie w kontekście zrównoważonego rozwoju i redukcji emisji CO2. Zgodnie z normami branżowymi, kolektory CPC są często wykorzystywane w połączeniu z innymi technologiami odnawialnymi, co sprzyja synergii i optymalizacji wydajności energetycznej.

Pytanie 12

Co oznacza symbol sprężarkowej pompy ciepła B/A?

A. dolne źródło solanka, gromadzenie energii powietrze
B. dolne źródło woda, gromadzenie energii woda
C. dolne źródło powietrze, gromadzenie energii woda
D. dolne źródło woda, gromadzenie energii powietrze
Odpowiedź 'źródło dolne solanka, odbiornik energii powietrze' jest prawidłowa, ponieważ w kontekście sprężarkowych pomp ciepła stosuje się różne źródła dolne oraz odbiorniki energii. W tym przypadku solanka stanowi medium, które pobiera ciepło z gruntu, co jest typowe dla systemów gruntowych, a powietrze jako odbiornik energii wskazuje, że system wykorzystuje powietrze do ogrzewania budynku. Tego rodzaju rozwiązania są szczególnie efektywne w klimatach o umiarkowanych temperaturach, gdzie grunt utrzymuje względnie stałą temperaturę. Przykłady zastosowania obejmują systemy ogrzewania budynków jednorodzinnych oraz obiektów przemysłowych, gdzie nie ma możliwości zastosowania gruntowych wymienników ciepła. Ponadto, zgodnie z normami branżowymi, takie systemy wymagają odpowiedniego projektowania i dostosowania do specyficznych warunków lokalnych. Warto również zaznaczyć, że pompy ciepła oparte na solance mają wysoką efektywność energetyczną, co przekłada się na niższe koszty eksploatacji oraz mniejszy wpływ na środowisko, jeśli porównamy je do tradycyjnych systemów grzewczych.

Pytanie 13

Tworząc harmonogram prac związanych z montażem instalacji do usuwania pyłów z gazów spalinowych, wybrano cyklon, którego rolą jest zatrzymywanie zanieczyszczeń powietrza pod wpływem działania

A. filtracji
B. siły odśrodkowej
C. grawitacji
D. pola elektromagnetycznego
Siła odśrodkowa odgrywa kluczową rolę w działaniu cyklonów, które są powszechnie stosowane w instalacjach do usuwania pyłów ze strumienia spalin. Gdy gaz zanieczyszczony cząstkami stałymi wchodzi do cyklonu, jest zmuszany do krążenia w wirze, co generuje siłę odśrodkową. Ta siła powoduje, że cięższe cząstki zanieczyszczeń są wypychane na zewnątrz cyklonu, gdzie osiadają na ściankach. W ten sposób cząstki te są oddzielane od gazu, co znacząco poprawia jakość powietrza opuszczającego instalację. Przykładem zastosowania cyklonów jest przemysł energetyczny, gdzie wykorzystywane są do oczyszczania spalin powstających w procesie spalania węgla. Standardy takie jak ISO 14001 promują efektywność takich rozwiązań w kontekście ochrony środowiska, wskazując na ich znaczenie w redukcji emisji zanieczyszczeń. Użycie cyklonów jest zgodne z najlepszymi praktykami w branży, które zalecają wykorzystanie technologii redukujących emisję pyłów.

Pytanie 14

Uziemienie wewnętrzne systemu fotowoltaicznego powinno być zrealizowane z

A. przewodu miedzianego
B. taśmy stalowej ocynkowanej
C. pręta stalowego ocynkowanego
D. przewodu aluminiowego
Przewód miedziany jest najlepszym materiałem do wykonania uziemienia wewnętrznego instalacji fotowoltaicznej ze względu na jego doskonałe przewodnictwo elektryczne oraz odporność na korozję. Miedź ma niską rezystancję, co oznacza, że skutecznie odprowadza prąd w przypadku awarii systemu, minimalizując ryzyko porażenia prądem oraz uszkodzeń urządzeń. Zgodnie z normami PN-EN 62305, które regulują kwestie ochrony odgromowej oraz instalacji elektrycznych, zastosowanie przewodów miedzianych do uziemienia jest preferowane, a w wielu przypadkach wręcz obligatoryjne. Praktyczne przykłady zastosowania przewodów miedzianych obejmują zarówno domowe instalacje fotowoltaiczne, jak i większe systemy komercyjne, gdzie ich niezawodność i trwałość mają kluczowe znaczenie. Dodatkowo, miedź nie ulega degradacji w wyniku działania czynników atmosferycznych, co czyni ją idealnym wyborem do zastosowań zewnętrznych, gdzie kontakt z wilgocią i zmiennymi temperaturami może powodować awarie. Warto także zauważyć, że przewody miedziane są łatwe w montażu i zapewniają trwałość oraz efektywność przez długie lata eksploatacji.

Pytanie 15

Za jakość realizacji prac montażowych oraz użytych materiałów przy instalacji systemu grzewczego z zastosowaniem pompy ciepła odpowiada

A. wykonawca
B. majster budowlany
C. inwestor
D. inspektor nadzoru
Wykonawca jest odpowiedzialny za jakość robót montażowych oraz zastosowanych materiałów w instalacjach grzewczych, w tym przy użyciu pomp ciepła. To on musi zapewnić, że wszystkie elementy systemu są zgodne z projektem oraz obowiązującymi normami, co jest kluczowe dla prawidłowego funkcjonowania całej instalacji. Przykładem może być prawidłowe zamontowanie jednostek wewnętrznych i zewnętrznych pompy ciepła, które muszą być umiejscowione w odpowiednich warunkach technicznych, aby zapewnić ich efektywność energetyczną. Dobre praktyki wskazują na konieczność wykorzystania materiałów wysokiej jakości, które są certyfikowane i spełniają standardy branżowe, co przekłada się na długotrwałość i niezawodność systemu. Odpowiedzialność wykonawcy obejmuje również przeprowadzenie stosownych testów oraz kontroli jakości, co jest zgodne z normami PN-EN 14511 dla pomp ciepła. Właściwe podejście wykonawcy do jakości robót przekłada się na zadowolenie inwestora oraz efektywność energetyczną obiektu.

Pytanie 16

Jakie materiały mogą być zastosowane do wykonania absorbera w panelach słonecznych?

A. miedzi lub żeliwa
B. aluminium lub miedzi
C. aluminium lub mosiądzu
D. plastiku lub stali
Absorber w kolektorach słonecznych jest kluczowym elementem, który odpowiada za przechwytywanie promieniowania słonecznego i przekształcanie go w ciepło. Materiały takie jak aluminium i miedź charakteryzują się doskonałymi właściwościami przewodzenia ciepła, co czyni je idealnymi do zastosowania w tych systemach. Aluminium jest lekkie, odporne na korozję oraz łatwe w obróbce, co sprawia, że jest powszechnie stosowane w budowie absorberów. Miedź, z kolei, ma jeszcze lepsze właściwości przewodzenia ciepła, co pozwala na szybsze i efektywniejsze przekazywanie energii cieplnej. Dobre praktyki branżowe zalecają używanie tych materiałów, aby zapewnić maksymalną efektywność kolektorów słonecznych, co jest kluczowe w kontekście odnawialnych źródeł energii i efektywności energetycznej budynków. Warto także zauważyć, że odpowiedni dobór materiałów wpływa na trwałość systemu oraz jego zdolność do pracy w zmiennych warunkach atmosferycznych.

Pytanie 17

Jaką funkcję pełni inwerter w systemach fotowoltaicznych?

A. przekształcania prądu stałego na prąd przemienny
B. ochrony akumulatorów przed całkowitym wyładowaniem
C. ochrony systemu przed przetężeniem
D. kontrolowania procesu ładowania akumulatorów
Inwerter w instalacjach fotowoltaicznych odgrywa kluczową rolę w konwersji prądu stałego (DC) generowanego przez panele słoneczne na prąd przemienny (AC), który jest standardem w sieciach energetycznych. Bez inwertera, energia produkowana przez system PV nie mogłaby być używana w typowych urządzeniach domowych ani wprowadzana do sieci energetycznej. Wysokiej jakości inwertery są projektowane z myślą o maksymalnej wydajności, co pozwala na optymalne wykorzystanie energii słonecznej. Na przykład, inwertery typu string są najczęściej stosowane w domowych instalacjach PV, gdzie łączą kilka paneli w jeden ciąg, zapewniając efektywną konwersję energii. Z kolei inwertery mikro, montowane bezpośrednio na panelach, mogą zwiększyć wydajność w przypadku zacienienia pojedynczych modułów. Zgodnie z normami IEC, inwertery muszą spełniać określone kryteria dotyczące wydajności i bezpieczeństwa, co zapewnia ich niezawodność w długoterminowej eksploatacji.

Pytanie 18

Jaką obudowę o oznaczeniu stopnia ochrony należy zastosować w przypadku urządzenia elektrycznego działającego w zapylonym środowisku?

A. IP 46
B. IP 2X
C. IP 65
D. IP 45
Obudowy elektryczne o stopniu ochrony IP 65 zapewniają wysoki poziom ochrony przed pyłem oraz wodą. Wartym podkreślenia jest, że pierwsza cyfra (6) oznacza całkowitą ochronę przed wnikaniem pyłu, co jest kluczowe w środowiskach zapylonych, gdzie obecność cząstek stałych może prowadzić do uszkodzeń urządzeń. Druga cyfra (5) natomiast wskazuje na ochronę przed strumieniami wody, co czyni je odpowiednimi do stosowania w trudnych warunkach atmosferycznych. Przykładowo, urządzenia takie jak czujniki, napędy czy skrzynki rozdzielcze wykorzystywane w przemyśle budowlanym lub w produkcji mogą być narażone na działanie pyłu oraz wilgoci, stąd zastosowanie obudowy IP 65 jest nie tylko zalecane, ale wręcz wymagane w celu zapewnienia ich niezawodności i wydajności operacyjnej. Takie rozwiązania są zgodne z normami IEC 60529, które określają wymagania dla stopni ochrony obudów.

Pytanie 19

Gdy prędkość wiatru zwiększy się dwukrotnie, to energia wiatru wzrośnie

A. ośmiokrotnie
B. dwukrotnie
C. czterokrotnie
D. dziesięciokrotnie
Odpowiedź, że energia wiatru wzrasta ośmiokrotnie, jest poprawna, ponieważ energia kinetyczna ruchu wiatru jest proporcjonalna do kwadratu prędkości wiatru. Wzór na energię kinetyczną wyraża się jako E = 0,5 * m * v², gdzie 'E' to energia, 'm' to masa powietrza, a 'v' to prędkość. Gdy prędkość wiatru wzrasta dwukrotnie, to energia wzrasta zgodnie z równaniem: E' = 0,5 * m * (2v)² = 0,5 * m * 4v² = 4 * (0,5 * m * v²) = 4E. Jednakże, gdy bierzemy pod uwagę, że ruch powietrza ma nie tylko składową poziomą, ale również wpływa na siłę wiatru, która jest kluczowa w kontekście turbin wiatrowych, to w rzeczywistości wzrost ośmiokrotny jest związany z innymi parametrami, takimi jak gęstość powietrza i efektywność turbiny. Taka wiedza jest niezbędna w projektowaniu systemów energetycznych opartych na energii wiatrowej, co jest kluczowe w kontekście zrównoważonego rozwoju i osiągania celów odnawialnych źródeł energii.

Pytanie 20

Podczas dłuższej nieobecności mieszkańców budynku jednorodzinnego występuje brak odbioru energii cieplnej z kolektora słonecznego, zatem na sterowniku systemu solarnego należy ustawić funkcję trybu

A. urlopowego
B. chłodzenia pasywnego
C. grzewczego
D. monowalentnego
Ustawienie trybu urlopowego na sterowniku solarnym jest kluczowe w sytuacji, gdy użytkownicy budynku jednorodzinnego są nieobecni przez dłuższy czas. Tryb urlopowy ma na celu minimalizację strat energetycznych oraz ochronę systemu przed ewentualnymi uszkodzeniami. W tym trybie system solarny ogranicza pracę pomp i innych komponentów, co pozwala zaoszczędzić energię, a jednocześnie chronić instalację przed przegrzaniem, gdy odbiór ciepła z zasobnika jest niewystarczający. Przykładem zastosowania trybu urlopowego może być sytuacja, gdy właściciele domu wyjeżdżają na wakacje; w tym czasie, aby uniknąć przegrzania lub zamarznięcia instalacji, ustawienie trybu urlopowego zapewnia, że system działa w trybie oszczędzania energii. Dobrą praktyką jest zapoznać się z instrukcją obsługi urządzenia oraz regularnie kontrolować, czy tryby pracy są odpowiednio ustawione w zależności od aktualnej sytuacji. W kontekście standardów, wiele producentów rekomenduje użycie trybu urlopowego, aby efektywnie zarządzać energią i minimalizować ryzyko awarii.

Pytanie 21

Możliwość ogrzewania oraz chłodzenia przy użyciu jednego urządzenia jest efektem zastosowania

A. próżniowego kolektora słonecznego
B. ogniwa fotowoltaicznego typu CIGS
C. ogniwa wodorowego
D. rewersyjnej pompy ciepła
Rewersyjna pompa ciepła to urządzenie, które w zależności od potrzeb użytkownika może zarówno ogrzewać, jak i chłodzić pomieszczenia. Działa na zasadzie wymiany ciepła z otoczeniem, wykorzystując cykl termodynamiczny, który pozwala na odwrócenie kierunku przepływu czynnika chłodniczego. W trybie ogrzewania, pompa ciepła pobiera ciepło z zewnątrz (nawet przy niskich temperaturach) i przekształca je, aby podnieść temperaturę w budynku. Natomiast w trybie chłodzenia, proces jest odwrotny, co pozwala na usuwanie ciepła z wnętrza budynku. Dzięki tej uniwersalności, rewersyjne pompy ciepła znajdują szerokie zastosowanie w nowoczesnym budownictwie, w tym w domach jednorodzinnych, biurach oraz obiektach przemysłowych. Standardy dotyczące efektywności energetycznej, takie jak SEER i HSPF, mają na celu oceny wydajności systemów HVAC, w tym pomp ciepła, co potwierdza ich znaczenie w zrównoważonym rozwoju. W praktyce, instalacja pompy ciepła może prowadzić do znacznego obniżenia kosztów ogrzewania i chłodzenia, a także redukcji emisji CO2, co jest zgodne z globalnymi trendami proekologicznymi.

Pytanie 22

Kiedy odbywa się odbiór instalacji solarnej?

A. po pierwszym uruchomieniu systemu.
B. przed pierwszym uruchomieniem systemu.
C. po napełnieniu zbiornika i przed ustawieniem mocy pompy.
D. po wykonaniu próby ciśnieniowej i przed ustawieniem regulatora.
Odbiór instalacji solarnej po pierwszym uruchomieniu jest kluczowym etapem w zapewnieniu, że system działa zgodnie z wymaganiami projektowymi oraz spełnia normy bezpieczeństwa. Po pierwszym uruchomieniu można ocenić, jak instalacja reaguje na różne warunki operacyjne, takie jak wydajność paneli słonecznych, efektywność wymiany ciepła oraz ogólne zachowanie systemu. Warto zwrócić uwagę na monitorowanie parametrów, takich jak ciśnienie i temperatura, które powinny mieścić się w przyjętych normach. Przykładem zastosowania tego procesu może być sprawdzenie, czy pompa obiegowa działa z odpowiednią mocą, co ma kluczowe znaczenie dla efektywności całej instalacji. Praktyki te są zgodne z wytycznymi branżowymi, takimi jak normy ISO oraz lokalne regulacje dotyczące odnawialnych źródeł energii, które podkreślają znaczenie starannego odbioru technicznego w celu zapewnienia długotrwałej i niezawodnej pracy systemu.

Pytanie 23

Jakiego rodzaju złączkę powinno się zastosować do łączenia paneli słonecznych?

A. UDW2
B. URI
C. MC4
D. WAGO
Złączki MC4 są standardem w branży fotowoltaicznej, a ich zastosowanie w łączeniu paneli słonecznych jest powszechnie uznawane za najlepszą praktykę. Wyróżniają się one wysoką odpornością na warunki atmosferyczne oraz łatwością montażu, co czyni je idealnym rozwiązaniem dla instalacji PV. Złączki te są zaprojektowane tak, aby zapewnić szczelne i bezpieczne połączenia, co minimalizuje ryzyko korozji i utraty wydajności systemu. Dzięki zastosowaniu złączek MC4, można osiągnąć wysoką wydajność energetyczną oraz długoterminową niezawodność instalacji. Przykładem ich zastosowania jest łączenie modułów w systemach grid-tied, gdzie istotne jest, aby połączenia były stabilne i odporne na działanie promieni UV oraz niskich temperatur. Dodatkowo, złącza MC4 są kompatybilne z szeroką gamą produktów na rynku, co zwiększa ich uniwersalność i ułatwia integrację z innymi komponentami systemu fotowoltaicznego. Używanie złączek MC4 jest zgodne z normami międzynarodowymi, takimi jak IEC 62852, co dodatkowo potwierdza ich wysoką jakość i bezpieczeństwo.

Pytanie 24

W rozwinięciu systemu grzewczego na energię słoneczną w skali 1:50, długość odcinka pionowego z miedzi wynosi 100 mm. Jaką długość przewodu miedzianego trzeba nabyć do zainstalowania tego pionu?

A. 50,0 m
B. 5,0 m
C. 0,5 m
D. 500,0 m
Odpowiedź 5,0 m jest poprawna, ponieważ skala 1:50 oznacza, że każdy 1 mm na rysunku odpowiada 50 mm w rzeczywistości. Dlatego długość pionu miedzianego wynosząca 100 mm na planie należy przeliczyć na metry, co daje 0,1 m. Następnie, aby uzyskać rzeczywistą długość, musimy pomnożyć tę wartość przez 50. W rezultacie 0,1 m x 50 = 5,0 m. W praktyce, taka umiejętność przeliczania wymiarów jest niezbędna przy projektowaniu instalacji grzewczych, aby zapewnić odpowiednią ilość materiałów do montażu. Ponadto, znajomość skali jest kluczowa w kontekście standardów branżowych, takich jak PN-EN 12831, które dotyczą obliczeń zapotrzebowania na ciepło budynków. Wiedza ta pozwala na precyzyjne oszacowanie potrzebnych materiałów i zminimalizowanie strat materiałowych, co jest istotne z perspektywy efektywności kosztowej i środowiskowej.

Pytanie 25

Na podstawie danych zawartych w tabeli określ, jakiego typu palenisko należy zastosować do spalania zrębków o dużej wilgotności.

UwagiTypZakres mocyPaliwaPopiółWilgoć
Dozowanie paliwa manualnePiece2÷10 kWPolana drzewne< 25÷20%
Kotły5÷50 kWPolana, szczapy< 25÷30%
GranulatyPiece i kotły2÷25 kWGranulaty< 28÷10%
Dozowanie paliwa automatycznePaleniska podsuwowe20 kW÷2,5 MWZrębki, odpady drzewne< 25÷50%
Paleniska z rusztem mechanicznym150 kW÷15 MWWszystkie rodzaje biomasy< 5%5÷60%
Przedpalenisko20 kW÷1,5 MWDrewno, trociny< 5%5÷35%
Palenisko obrotowe podsuwowe2÷5 MWZrębki< 5%40÷65%
Palenisko cygarowe3÷5 MWBaloty słomy< 5%20%
Palenisko do spalania całych balotów3÷5 MWBaloty słomy< 5%20%

A. Z rusztem mechanicznym.
B. Obrotowe podsuwowe.
C. Cygarowe.
D. Podsuwowe.
Palenisko obrotowe podsuwowe jest idealnym wyborem do spalania zrębków o dużej wilgotności, ponieważ jego konstrukcja pozwala na efektywne zarządzanie paliwem, które charakteryzuje się wilgotnością w przedziale 40%-65%. Dzięki temu, możliwe jest osiągnięcie optymalnej temperatury spalania oraz minimalizacja emisji szkodliwych substancji. W praktyce, zastosowanie tego typu paleniska zapewnia lepsze spalanie, co prowadzi do uzyskania większej ilości energii z danego paliwa. W branży energetycznej, obrotowe podsuwowe paleniska są szeroko stosowane w instalacjach przemysłowych, gdzie efektywność energetyczna i redukcja emisji są kluczowe. Ponadto, zgodnie z normami europejskimi, odpowiednia wilgotność paliwa jest istotnym czynnikiem wpływającym na sprawność procesów spalania. Dlatego wybór paleniska obrotowego podsuwowego przyczynia się do realizacji standardów dotyczących ochrony środowiska oraz efektywności energetycznej.

Pytanie 26

Aby poprawnie połączyć instalację z rur miedzianych w technologii lutowania miękkiego, należy wykorzystać zestaw narzędzi, który zawiera:

A. obcinak krążkowy do rur, kalibrator, czyścik do rur, szczotka do rur miedzianych, lutownica transformatorowa
B. nożyce do rur, kalibrator, czyścik do rur, szczotka do rur miedzianych, palnik gazowy z butlą
C. obcinak krążkowy do rur, gratownik, czyścik do rur, szczotka do rur miedzianych, palnik gazowy z butlą
D. nożyce do rur, kalibrator, czyścik do rur, szczotka do rur miedzianych, lutownica transformatorowa
Wybór zestawu narzędzi składającego się z obcinaka krążkowego do rur, gratownika, czyścika do rur, szczotki do rur miedzianych oraz palnika gazowego z butlą jest kluczowy dla prawidłowego wykonania połączenia instalacji z rur miedzianych w technologii lutowania miękkiego. Obcinak krążkowy jest niezbędny do precyzyjnego cięcia rur miedzianych, co zapewnia ich idealne dopasowanie. Gratownik służy do usuwania zadziorów powstałych podczas cięcia, co zapobiega uszkodzeniom uszczelek i zwiększa trwałość połączeń. Czyścik do rur oraz szczotka do rur miedzianych pozwalają na dokładne oczyszczenie powierzchni, co jest niezbędne dla uzyskania dobrego połączenia lutowniczego. Palnik gazowy z butlą umożliwia dostarczenie odpowiedniej temperatury do lutowania, co jest kluczowe dla uzyskania solidnych i trwałych połączeń. Stosowanie się do tych zasad oraz wybór odpowiednich narzędzi jest zgodne z normami branżowymi, które zalecają zachowanie prawidłowych procedur montażowych, co znacząco wpływa na bezpieczeństwo i efektywność instalacji.

Pytanie 27

Pompa ciepła jest wyposażona w sprężarkę o mocy elektrycznej P = 3 kW. Jaką ilość energii z sieci pobierze sprężarka w ciągu roku (365 dni), jeśli codziennie, systematycznie, pompa pracuje przez 4 godziny?

A. 1095 kWh
B. 1460 kWh
C. 3650 kWh
D. 4380 kWh
Wybrana odpowiedź 4380 kWh jest poprawna, ponieważ obliczamy roczne zużycie energii przez sprężarkę, uwzględniając zarówno moc urządzenia, jak i czas jego pracy. Sprężarka o mocy elektrycznej 3 kW działa przez 4 godziny dziennie, co daje dzienne zużycie energii wynoszące 3 kW * 4 h = 12 kWh. Następnie, mnożąc to przez liczbę dni w roku (365), otrzymujemy 12 kWh * 365 = 4380 kWh. Tego rodzaju kalkulacje są kluczowe w branży HVAC, gdzie efektywność energetyczna jest priorytetem. Znajomość zużycia energii pozwala na optymalizację kosztów eksploatacyjnych oraz wprowadzenie środków oszczędnościowych, co jest szczególnie ważne w kontekście rosnących cen energii. W praktyce, dobrą praktyką jest monitorowanie zużycia energii urządzeń takich jak pompy ciepła, co można osiągnąć za pomocą systemów zarządzania energią, które umożliwiają wykrywanie nieefektywności i wprowadzanie ulepszeń.

Pytanie 28

Jak należy podłączyć instalację solarną do wymiennika ciepła?

A. równolegle do górnej i dolnej wężownicy wymiennika
B. szeregowo do górnej i dolnej wężownicy wymiennika
C. do dolnej wężownicy wymiennika
D. do górnej wężownicy wymiennika
Podłączenie instalacji solarnej do górnej wężownicy wymiennika ciepła to zły pomysł, bo może prowadzić do wielu problemów z efektywnością systemu. Górna wężownica zazwyczaj odbiera już podgrzaną wodę z dolnej części, więc woda w górnej ma wyższą temperaturę, co sprawia, że ciepła woda z kolektorów może mieć trudności z jej dogrzaniem. Jeśli jeszcze równolegle podłączysz dwa węże, to może być bałagan z rozdzielaniem strumienia ciepła. Poza tym, taka konfiguracja może powodować stagnację ciepłej wody w górnej części wymiennika. Z mojego doświadczenia wynika, że niechciane straty energii to coś, czego można uniknąć, dlatego warto wiedzieć, jak prawidłowo podłączyć te wężownice, aby móc maksymalnie wykorzystać energię słoneczną.

Pytanie 29

Podstawą do stworzenia szczegółowego kosztorysu instalacji pompy ciepła są

A. katalogi nakładów rzeczowych
B. atestacje higieniczne
C. harmonogramy prac
D. aprobacje techniczne
Podstawą opracowania kosztorysu szczegółowego instalacji pompy ciepła są katalogi nakładów rzeczowych, które stanowią kluczowe narzędzie dla inżynierów i kosztorysantów. Katalogi te zawierają szczegółowe informacje na temat kosztów materiałów, robocizny i innych nakładów, co pozwala na precyzyjne oszacowanie całkowitego kosztu inwestycji. Przykładowo, przy instalacji pompy ciepła ważne jest uwzględnienie kosztów nie tylko samej pompy, ale także materiałów niezbędnych do montażu, takich jak rury, izolacje, czy armatura. Korzystanie z aktualnych katalogów, takich jak KNR (Katalogi Nakładów Rzeczowych) lub ZK (Zbiory Kosztorysowe), zapewnia, że kosztorys będzie zgodny z rynkowymi standardami i rzeczywistymi cenami, co jest niezbędne dla efektywnego zarządzania budżetem projektu. Dobre praktyki w tej dziedzinie obejmują również regularne aktualizowanie danych w kosztorysach oraz analizowanie cen rynkowych, co umożliwia dostosowanie kosztorysu do zmieniających się warunków rynkowych.

Pytanie 30

Jakie jednostki należy wpisać do "Książki obmiaru" po zakończeniu prac związanych z instalacją sond wymiennika gruntowego?

A. m3
B. m2
C. m-g
D. m
Wybór jednostek takich jak m2, m-g czy m3 do opisu zakończonych prac związanych z ułożeniem sond wymiennika gruntowego jest nieprawidłowy z kilku kluczowych powodów. Przede wszystkim, m2 jest jednostką powierzchni, która nie odnosi się do długości sondy, a więc nie może być używana do opisu ich długości. Sondy gruntowe są instalowane w ziemi w formie cylindrycznych rur, a ich efektywność zależy w istotny sposób od długości, a nie powierzchni. Dodatkowo, jednostka m-g, choć może sugerować pomiar związany z gruntowymi wymiennikami ciepła, jest niejasna i nie znajduje zastosowania w standardowych praktykach budowlanych. Użycie m3, które odnosi się do objętości, również nie jest właściwe, ponieważ nie opisuje bezpośrednio długości sondy. W kontekście inżynierii, precyzyjne określenie jednostki miary jest kluczowe - wprowadzenie błędnych jednostek może prowadzić do znacznych pomyłek w obliczeniach, co w przypadku instalacji geotermalnych może skutkować nieefektywnym działaniem systemu grzewczego. Często spotykaną pomyłką jest mylenie długości i objętości, co może wynikać z braku zrozumienia, jak te parametry wpływają na wydajność energetyczną systemów grzewczych. Użycie jednostek niewłaściwych dla danej sytuacji jest typowym błędem, który może prowadzić do znacznych konsekwencji w praktyce inżynierskiej.

Pytanie 31

Czujnik pływakowy, który powinien być zamontowany, stanowi zabezpieczenie przed zbyt niskim poziomem wody w kotłach na biomasę?

A. na zasilaniu instalacji c.o. 10 cm poniżej najwyższego punktu kotła
B. na powrocie z instalacji c.o. 10 cm poniżej najwyższego punktu kotła
C. na powrocie z instalacji c.o. 10 cm powyżej najwyższego punktu kotła
D. na zasilaniu instalacji c.o. 10 cm powyżej najwyższego punktu kotła
Wszystkie błędne odpowiedzi wskazują na niewłaściwe umiejscowienie czujnika pływakowego, co może prowadzić do poważnych konsekwencji w eksploatacji kotłów na biomasę. Montaż czujnika na powrocie z instalacji c.o. 10 cm powyżej lub poniżej najwyższej części kotła nie jest skuteczny, ponieważ czujnik umieszczony w tym miejscu może nie reagować na rzeczywisty poziom wody w kotle. Tego rodzaju instalacja może prowadzić do sytuacji, w których kotłownia będzie działać z niewystarczającą ilością wody, co stwarza ryzyko przegrzania i uszkodzenia urządzeń. Z kolei zamontowanie czujnika na zasilaniu c.o. 10 cm poniżej najwyższej części kotła także jest niewłaściwe, ponieważ czujnik nie będzie w stanie zareagować na spadek poziomu wody na czas, co z kolei może skutkować przegrzaniem kotła oraz niebezpieczeństwem związanym z jego działaniem. Tego rodzaju błędy są często wynikiem braku zrozumienia zasady działania systemów grzewczych oraz ich interakcji. Kluczowym aspektem bezpieczeństwa w instalacjach grzewczych jest zapewnienie odpowiedniego poziomu wody w kotle, co powinno być realizowane poprzez umiejętne umiejscowienie czujników oraz korzystanie z automatyzacji, która może monitorować i regulować poziom wody w czasie rzeczywistym.

Pytanie 32

Głównym celem instalacji fotowoltaicznej typu on-grid jest produkcja energii elektrycznej

A. do przechowywania w akumulatorach
B. na potrzeby własne oraz do sieci elektrycznej
C. wyłącznie na potrzeby własne, bez podłączenia do sieci
D. w lokalizacjach, gdzie nie ma dostępu do sieci elektrycznych
Instalacja fotowoltaiczna typu on-grid jest zaprojektowana przede wszystkim do wytwarzania energii elektrycznej, która może być wykorzystywana zarówno do zaspokajania własnych potrzeb energetycznych użytkownika, jak i do zasilania sieci elektrycznej. W przypadku tego systemu energię elektryczną wytwarza się na podstawie promieniowania słonecznego, a nadmiar wyprodukowanej energii jest przesyłany do lokalnej sieci energetycznej. Dzięki temu użytkownik może korzystać z energii z paneli słonecznych, a jednocześnie wygenerować dodatkowy zysk poprzez sprzedaż nadwyżki energii. Wiele krajów stosuje systemy net meteringu, które pozwalają na rozliczanie energii, co sprawia, że instalacje on-grid stają się ekonomicznie opłacalne. Dodatkowo, te instalacje są zgodne z aktualnymi standardami branżowymi, co zapewnia ich efektywność oraz bezpieczeństwo. Przykładem może być instalacja domowa, gdzie energia z paneli zasila urządzenia elektryczne, a nadmiar energii jest oddawany do sieci, co przyczynia się do zmniejszenia rachunków za energię i korzystania z odnawialnych źródeł energii.

Pytanie 33

Montaż paneli słonecznych na płaskim dachu został zrealizowany przez jednego instalatora oraz dwóch asystentów. Wartość stawki instalatora wynosi 50,00 zł za każdą godzinę pracy, a stawka asystenta to 20,00 zł. Jaką łączną wartość robocizny można oszacować, jeśli całkowity czas pracy wynosi 8 godzin?

A. 90,00 zł
B. 720,00 zł
C. 560,00 zł
D. 960,00 zł
Kosztorysowa wartość robocizny wynosi 720,00 zł, co wynika z obliczenia całkowitych kosztów pracy instalatora i pomocników przy montażu kolektorów słonecznych. Instalator, którego stawka wynosi 50,00 zł za roboczogodzinę, pracował przez 8 godzin, co daje 400,00 zł (50,00 zł x 8 h). Dodatkowo, dwóch pomocników, zarabiających po 20,00 zł za roboczogodzinę, pracowało również przez 8 godzin. Każdy pomocnik zarobił 160,00 zł (20,00 zł x 8 h), więc dla dwóch pomocników łączny koszt wynosi 320,00 zł (160,00 zł x 2). Suma kosztów wynosi zatem 400,00 zł (instalator) + 320,00 zł (pomocnicy) = 720,00 zł. Taki sposób obliczania kosztów robocizny jest standardem w branży budowlanej i instalacyjnej, gdzie ważne jest uwzględnienie różnorodnych stawek wynagrodzenia oraz czasu pracy wszystkich zaangażowanych pracowników.

Pytanie 34

Rozmieszczenie podłączeń urządzeń oraz armatury w instalacji ilustrują rysunki

A. lokalnych
B. dokładnych
C. schematycznych
D. przybliżonych
Odpowiedź "schematycznych" jest prawidłowa, ponieważ schematy instalacji przedstawiają ogólny układ i połączenia pomiędzy urządzeniami w instalacjach budowlanych, takich jak instalacje elektryczne, wodociągowe czy grzewcze. Schematy te są kluczowe dla inżynierów i techników, ponieważ ułatwiają zrozumienie zasady działania systemu oraz kolejności podłączeń. W praktyce, schematyczne rysunki stosowane są podczas projektowania i instalacji, co pozwala na szybsze lokalizowanie problemów oraz planowanie serwisów. W branży budowlanej istnieją standardy, takie jak normy ISO i PN, które regulują sposób tworzenia takich schematów, co zapewnia ich jednolitość i zrozumiałość dla wszystkich użytkowników. Przykładem może być schemat instalacji elektrycznej, który ilustruje rozmieszczenie gniazdek, włączników oraz źródeł światła, co jest niezbędne do poprawnego wykonania instalacji oraz późniejszego jej użytkowania.

Pytanie 35

Kolektory słoneczne umieszczone na gruncie, w przeciwieństwie do tych instalowanych na dachach, są bardziej podatne na

A. większe pokrycie śniegiem.
B. gorsze warunki nasłonecznienia.
C. większe straty ciepła.
D. częstsze uszkodzenia mechaniczne.
Kolektory słoneczne montowane na powierzchni terenu rzeczywiście są bardziej narażone na uszkodzenia mechaniczne. W porównaniu z instalacjami dachowymi, które korzystają z naturalnej ochrony budynku, kolektory na gruncie mogą być narażone na różnorodne zagrożenia. Przykładowo, mogą być łatwym celem dla zwierząt, które mogą próbować zniszczyć instalację w poszukiwaniu schronienia lub pożywienia. Dodatkowo, na poziomie terenu, kolektory mogą być uszkodzone przez ruch ludzi czy pojazdów, zwłaszcza w miejscach publicznych. Ekstremalne warunki atmosferyczne, takie jak silny wiatr i grad, również mogą prowadzić do uszkodzeń, ponieważ kolektory są bezpośrednio wystawione na te czynniki. W praktyce, aby zminimalizować ryzyko uszkodzeń mechanicznych, zaleca się stosowanie osłon lub lokalizowanie kolektorów w obszarach, gdzie są mniej narażone na takie zagrożenia. Dobre praktyki instalacyjne uwzględniają również analizę lokalnych warunków środowiskowych, co może pomóc w wyborze odpowiedniej lokalizacji dla kolektorów.

Pytanie 36

Zgodnie z obowiązującymi regulacjami, jaka powinna być minimalna odległość między budynkiem mieszkalnym a elektrownią wiatrową, której maksymalna wysokość wieży razem z promieniem skrzydeł wynosi 150 m?

A. 1000 m
B. 500 m
C. 1500 m
D. 2000 m
Wybór krótszych odległości, jak 500 m, 1000 m czy 2000 m, nie jest dobrym pomysłem, bo opiera się na błędnych założeniach o wpływie elektrowni wiatrowych na ich otoczenie. Odpowiedzi te nie biorą pod uwagę, że wyższe wieże i dłuższe skrzydła generują hałas, a do tego mogą powodować cień, co naprawdę wpływa na ludzi w pobliskich budynkach. Ustawienie elektrowni za blisko, jak 500 m, może spowodować dużo skarg na hałas i inne problemy w codziennym życiu. 1000 m też nie wystarcza, bo nie uwzględnia lokalnych warunków, które mogą nasilać dźwięki. Choć 2000 m może się wydawać lepsze, to z kolei może być niepraktyczne dla rozwoju przestrzeni i ekonomiki inwestycji. Ważne, żeby zrozumieć, że regulacje dotyczące minimalnych odległości opierają się na badaniach i doświadczeniach z całego świata, a nieprawidłowe podejście do tych spraw może prowadzić do konfliktów i spowolnienia rozwoju odnawialnych źródeł energii.

Pytanie 37

Za zaworem rozprężnym w układzie pompy ciepła obserwuje się następujące wartości termodynamiczne:

A. wysokie ciśnienie – niska temperatura
B. niskie ciśnienie – niska temperatura
C. niskie ciśnienie – wysoka temperatura
D. wysokie ciśnienie – wysoka temperatura
Wybór odpowiedzi nieprawidłowych wskazuje na pewne nieporozumienia dotyczące działania zaworu rozprężnego. W przypadku sytuacji, gdzie opisane jest "wysokie ciśnienie – niska temperatura", należy zauważyć, że przy wysokim ciśnieniu temperatura czynnika chłodniczego byłaby odpowiednio wyższa, zgodnie z zasadą, że dla danego stanu agregacyjnego, wyższe ciśnienie prowadzi do wyższej temperatury. Zatem taka konfiguracja nie jest zgodna z rzeczywistością działania pompy ciepła. Podobnie, opcja "niskie ciśnienie – wysoka temperatura" jest w zasadzie sprzeczna z podstawowymi zasadami termodynamiki, ponieważ niskociśnieniowy czynnik chłodniczy nie mógłby efektywnie przekazywać ciepła, a jego temperatura nie mogłaby być wyższa. Odpowiedzi "niskie ciśnienie – niska temperatura" i "wysokie ciśnienie – wysoka temperatura" również nie oddają rzeczywistego zachowania czynnika po przejściu przez zawór, co może prowadzić do błędnych wniosków w pracy z pompami ciepła. Kluczowe jest zrozumienie mechanizmów zachodzących w układzie, aby zapobiegać typowym błędom w projektowaniu i eksploatacji systemów HVAC, szczególnie w kontekście optymalizacji wydajności energetycznej oraz minimalizacji kosztów eksploatacji.

Pytanie 38

Podczas wymiany separatora powietrza w grupie solarnej należy go zamontować na

A. zasilaniu kolektora przed pompą
B. powrocie z kolektora przed zaworem odcinającym
C. powrocie z kolektora za zaworem odcinającym
D. zasilaniu kolektora za pompą
Separator powietrza powinien być zamontowany na powrocie z kolektora za zaworem odcinającym, ponieważ jego zadaniem jest usuwanie powietrza z instalacji, co jest kluczowe dla prawidłowego funkcjonowania systemu grzewczego. Umiejscowienie separatora na powrocie zapewnia, że powietrze, które może gromadzić się w systemie, zostanie usunięte przed ponownym wprowadzeniem wody do kolektora słonecznego. Położenie za zaworem odcinającym jest również istotne, ponieważ w sytuacji, gdy system wymaga konserwacji lub naprawy, można odciąć przepływ wody, co umożliwia bezpieczne i efektywne serwisowanie separatora. Dodatkowo, praktyka montażu separatora powietrza w tym miejscu jest zgodna z normami branżowymi, które zalecają dbałość o skuteczną cyrkulację wody oraz minimalizację ryzyka wystąpienia zjawiska kawitacji, które może prowadzić do uszkodzenia pompy. Właściwe umiejscowienie separatora wpływa również na poprawę efektywności energetycznej całego systemu, co jest istotne w kontekście oszczędności oraz zrównoważonego rozwoju.

Pytanie 39

Oblicz objętość pomieszczenia o wymiarach 4 x 3 m oraz wysokości 3 m?

A. 36 m3
B. 15 m3
C. 24 m3
D. 48 m3
Aby obliczyć kubaturę pomieszczenia, należy zastosować wzór: V = długość x szerokość x wysokość. W przypadku podanych wymiarów, mamy długość 4 m, szerokość 3 m oraz wysokość 3 m. Po podstawieniu wartości do wzoru otrzymujemy V = 4 m x 3 m x 3 m = 36 m³. Ta obliczona kubatura jest kluczowa w wielu zastosowaniach, takich jak określenie objętości powietrza w pomieszczeniu, co wpływa na systemy wentylacyjne i klimatyzacyjne. W praktyce, znajomość kubatury pomieszczeń jest również istotna podczas planowania ogrzewania, ponieważ obliczenia te mogą pomóc w określeniu mocy grzewczej potrzebnej do utrzymania komfortowej temperatury. Dodatkowo, w budownictwie, odpowiednie obliczenie kubatury ma znaczenie dla uzyskania niezbędnych pozwoleń oraz spełnienia norm budowlanych, co jest istotne dla bezpieczeństwa i efektywności energetycznej budynku.

Pytanie 40

Który rodzaj kosztorysu tworzony na podstawie przedmiaru robót, jest wykorzystywany do określenia kosztów całej planowanej inwestycji przez ustalenie cen materiałów budowlanych oraz wynagrodzenia za pracę sprzętu i ludzi?

A. Inwestorski
B. Powykonawczy
C. Ślepy
D. Dodatkowy
Odpowiedzi 'Powykonawczy', 'Ślepy' oraz 'Dodatkowy' nie są właściwe w kontekście pytania dotyczącego kosztorysu sporządzanego na bazie przedmiaru robót dla ustalania kosztów całej inwestycji. Kosztorys powykonawczy, na przykład, jest dokumentem tworzonym po zakończeniu robót budowlanych, który służy do udokumentowania rzeczywistych kosztów poniesionych podczas realizacji projektu. Jego rola jest bardziej związana z kontrolą kosztów i rozliczeniem inwestycji, a nie z planowaniem budżetu przed rozpoczęciem prac. Kosztorys ślepy, z kolei, jest stosowany, gdy nie ma pełnych danych dotyczących zakresu robót, co czyni go mało użytecznym w rzetelnym oszacowaniu kosztów całej inwestycji. Taki kosztorys często opiera się na założeniach i szacunkach, co zwiększa ryzyko nieprzewidzianych wydatków. Kosztorys dodatkowy może dotyczyć prac, które nie były uwzględnione w pierwotnym kosztorysie, jednak jego zastosowanie jest ograniczone do przypadków, gdy już istniejące prace wymagają dodatkowych nakładów finansowych, a nie do całościowego ustalania kosztów inwestycji. Warto zauważyć, że błędne podejście do klasyfikacji kosztorysów prowadzi do mylnych wniosków i może skutkować niewłaściwym zarządzaniem budżetem oraz nieefektywnym planowaniem projektu.