Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 14 maja 2025 12:26
  • Data zakończenia: 14 maja 2025 12:39

Egzamin zdany!

Wynik: 27/40 punktów (67,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Do jakiej kategorii pomiarów można zakwalifikować pomiar długości gwintowanego fragmentu śruby przy użyciu przymiaru kreskowego?

A. Uwikłanych
B. Pośrednich
C. Bezpośrednich
D. Złożonych
Pomiar długości nagwintowanego odcinka śruby nie może być klasyfikowany jako złożony, uwikłany ani pośredni. Pojęcia te odnoszą się do różnych metod pomiarowych, które obejmują bardziej skomplikowane procesy lub obliczenia. Złożone pomiary wymagają zastosowania kilku różnych narzędzi lub metod do uzyskania końcowego wyniku, co w przypadku bezpośredniego pomiaru długości nie ma miejsca. Uwikłane pomiary odnoszą się do sytuacji, gdzie wyniki są zależne od wielu czynników, co nie ma zastosowania w prostym pomiarze długości. Natomiast pomiary pośrednie polegają na obliczaniu jednego wymiaru na podstawie innych wymiarów, co również nie dotyczy pomiaru bezpośredniego, gdzie mierzona wartość uzyskiwana jest natychmiast. Osiągając niewłaściwą odpowiedź, można wpaść w pułapkę myślową, zakładając, że każdy pomiar, który wymaga użycia narzędzi, musi być złożony lub pośredni. W rzeczywistości prostota pomiaru bezpośredniego w kontekście narzędzi i metod jest kluczowa dla zapewnienia efektywności i dokładności w procesach inżynieryjnych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Przed ponownym połączeniem silnika elektrycznego z napędzaną maszyną konieczne jest przeprowadzenie

A. pomiary obrotów wirnika
B. pomiary napięcia zasilającego
C. kontroli temperatury uzwojenia
D. kontroli kierunku obrotu wirnika
Sprawdzanie, w którą stronę obraca się wirnik przed ponownym połączeniem silnika elektrycznego z maszyną, to bardzo ważny krok, żeby wszystko działało bezpiecznie i efektywnie. Kierunek obrotów ma ogromne znaczenie, bo gdyby wirnik kręcił się w złą stronę, może to prowadzić do poważnych uszkodzeń sprzętu lub nawet zablokowania wirnika. W praktyce, zanim podłączysz silnik, dobrze jest upewnić się, że wirnik obraca się w odpowiednią stronę. Na przykład w wentylatorach, pompach czy systemach transportowych, błędny kierunek mógłby spowodować, że przepływ cieczy lub powietrza byłby niewłaściwy, co może prowadzić do przeciążenia i zniszczenia urządzenia. Dlatego warto przed każdą operacją zrobić szybki przegląd, a także użyć narzędzi, jak wskaźniki kierunku obrotów, aby sprawdzić, czy wszystko działa jak należy. Taki sposób działania nie tylko zwiększa bezpieczeństwo, ale też może wydłużyć żywotność maszyn. Warto pamiętać, że zgodnie z normami bezpieczeństwa, sprawdzenie kierunku obrotów wirnika jest jednym z podstawowych kroków, które należy wykonać przed uruchomieniem maszyny.

Pytanie 6

Jaką funkcję spełnia urządzenie, którego dane techniczne przedstawiono w tabeli?

Ciecz roboczaJednostkaOlej mineralny
Wydajnośćdm³/min47 przy n = 1450 min⁻¹, p = 1 MPa
Ciśnienie na wlocieMPa- 0,02 (podciśnienie) do 0,5 (nadciśnienie)
Ciśnienie na wylocieMPamaks 10
Ciśnienie przeciekówMPamaks 0,2
Moment obrotowyNmmaks. 2,5
Prędkość obrotowaobr/min1000 do 1800
Optymalna temperatura pracy (cieczy w zbiorniku)K313-328
Filtracjaμm16

A. Utrzymuje stałe ciśnienie niezależnie od kierunku przepływu cieczy.
B. Wytwarza strumień oleju w układach i urządzeniach hydraulicznych.
C. Otwiera i zamyka przepływ cieczy roboczej.
D. Steruje kierunkiem przepływu cieczy.
Wybór odpowiedzi sugerującej, że urządzenie utrzymuje stałe ciśnienie niezależnie od kierunku przepływu cieczy, nie uwzględnia podstawowych zasad działania pomp hydraulicznych. Pompy nie pełnią funkcji stabilizowania ciśnienia, a ich głównym zadaniem jest generowanie przepływu oleju. Utrzymywanie stałego ciśnienia w systemie hydrauliczny jest osiągane przez zastosowanie innych komponentów, takich jak zawory ciśnieniowe czy regulatory. Kolejna nieprawidłowa koncepcja sugeruje, że urządzenie steruje kierunkiem przepływu cieczy. Choć dostęp do określonych kierunków przepływu może być istotny w układach hydraulicznych, zadanie to leży w gestii zaworów kierunkowych, a nie pomp. Ostatnia błędna odpowiedź, dotycząca otwierania i zamykania przepływu cieczy roboczej, również jest mylna, ponieważ te funkcje realizowane są przez zawory sterujące. Typowe błędy myślowe prowadzące do tego rodzaju mylnych wniosków obejmują pomieszanie funkcji różnych elementów systemu hydraulicznego, co jest częstym problemem wśród osób uczących się o hydraulice. Ważne jest zrozumienie, że każdy komponent w układzie hydraulicznym odgrywa specyficzną rolę, a pompy są dedykowane do generowania przepływu, a nie do regulacji ciśnienia czy kierunku przepływu.

Pytanie 7

W układzie zastosowano przetworniki ciśnienia o prądowych sygnałach wyjściowych. Na podstawie danych katalogowych przetworników oraz wyników przeprowadzonych pomiarów wskaż, który z przetworników nie działa prawidłowo.

PrzetwornikZakres sygnału
wejściowego
[MPa]
Zakres sygnału
wyjściowego [mA]
Wartość sygnału
wejściowego
[MPa]
Wartość sygnału
wyjściowego [mA]
10 ÷ 10 ÷ 200,5010
20 ÷ 20 ÷ 200,505
30 ÷ 14 ÷ 200,5012
40 ÷ 24 ÷ 200,505

A. Przetwornik 3
B. Przetwornik 1
C. Przetwornik 2
D. Przetwornik 4
Decyzja o wyborze innych przetworników, jak Przetwornik 1, 2 lub 3, wskazuje na błędne zrozumienie podstawowych zasad działania tych urządzeń. Każdy przetwornik ciśnienia ma swoje specyfikacje i charakterystyki wyjściowe, które muszą być zgodne z wartościami ciśnienia, jakie są mierzone. Nieprawidłowe przypisanie funkcji lub wartości sygnałów wyjściowych prowadzi do redukcji efektywności systemu pomiarowego oraz może wprowadzać niepewności w dalszych analizach danych. Problemy te mogą wynikać z niepełnej interpretacji danych katalogowych lub nieuwagi przy analizie wyników pomiarów. W praktyce, przetworniki ciśnienia powinny zawsze działać w określonych granicach tolerancji, a ich sygnały powinny być ściśle monitorowane, aby zapewnić dokładność. Ponadto, nieprawidłowe założenia dotyczące działania przetworników mogą prowadzić do sytuacji, w których błędne decyzje operacyjne są podejmowane na podstawie niedokładnych danych. Warto zwrócić uwagę na standardy branżowe, takie jak normy ISO, które podkreślają znaczenie kalibracji i weryfikacji urządzeń pomiarowych. Niezrozumienie tych zasad może prowadzić do błędnych konkluzji i obniżenia jakości całego procesu technologicznego.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Analogowy czujnik ultradźwiękowy umożliwia bezdotykowy pomiar odległości przeszkody od samego czujnika. Zjawisko, które jest tu wykorzystywane, polega na tym, że fala o wysokiej częstotliwości, napotykając przeszkodę, ulega

A. odbiciu
B. pochłonięciu
C. wzmocnieniu
D. rozproszeniu
Ultradźwiękowy czujnik analogowy działa na fajnej zasadzie odbicia fal dźwiękowych, które są praktycznie niesłyszalne dla nas, ale doskonale sprawdzają się w pomiarze odległości. Kiedy czujnik wysyła impuls ultradźwiękowy w stronę jakiejś przeszkody, to ta fala odbija się od niej i wraca. Mierzymy czas, jaki upływa od momentu wysłania sygnału do powrotu i na tej podstawie obliczamy, jak daleko jest ta przeszkoda. Tego typu czujniki wykorzystujemy w różnych dziedzinach, na przykład w robotyce, automatyce czy w systemach parkowania. Dobrym przykładem może być monitorowanie poziomu cieczy w zbiornikach – czujnik świetnie określa poziom wody, mierząc czas, który falę zajmuje na pokonanie drogi tam i z powrotem. W motoryzacji też są popularne, bo pomagają kierowcom parkować, informując ich o odległości do przeszkód. Ogólnie, użycie ultradźwiękowych czujników jest zgodne z normami jakości i bezpieczeństwa, jak na przykład ISO 9001, co gwarantuje, że są one naprawdę niezawodne.

Pytanie 10

Jakie jest moment obrotowy na wale silnika synchronicznego o mocy 3,14 kW przy prędkości obrotowej 3000 obr/min?

A. 10 Nm
B. 1 Nm
C. 9 420 Nm
D. 986 Nm
W przypadku momentu obrotowego na wale silnika synchronicznego, istnieje kilka kluczowych koncepcji, które mogą prowadzić do błędnych odpowiedzi. Moment obrotowy jest miarą siły, która powoduje obrót ciała wokół osi. Odpowiedzi takie jak 986 Nm, 1 Nm, czy 9 420 Nm nie uwzględniają prawidłowego przeliczenia mocy na moment obrotowy. Często mylnie przyjmuje się, że moc silnika bezpośrednio przekłada się na moment obrotowy, co jest nieprawidłowe. Prawidłowe obliczenie wymaga uwzględnienia zarówno mocy, jak i prędkości obrotowej. Typowym błędem jest także mylenie jednostek, zwłaszcza przy konwersji mocy z kilowatów na waty, co może prowadzić do znacznych niedoszacowań lub przeszacowań momentu obrotowego. Przykładowo, odpowiedź 986 Nm sugeruje, że silnik jest znacznie bardziej mocny niż to wynika z podanych danych. Z drugiej strony, odpowiedzi takie jak 1 Nm czy 10 Nm również nie oddają rzeczywistej wartości momentu, co może wpłynąć na niewłaściwy dobór napędu w praktycznych zastosowaniach przemysłowych. Dokładne zrozumienie tych zasad jest kluczowe dla inżynierów i techników, aby unikać potencjalnych problemów w projektowaniu układów napędowych.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Układy cyfrowe realizowane w technologii TTL potrzebują zasilania napięciem stałym o wartości

A. 10 V
B. 25 V
C. 15 V
D. 5 V
Zasilanie scalonych układów cyfrowych wykonanych w technologii TTL nie powinno przekraczać 5 V, ponieważ wyższe napięcia, takie jak 10 V, 15 V czy 25 V, mogą prowadzić do uszkodzenia tych układów. Wysokie napięcia mogą przekraczać maksymalne wartości tolerancyjne dla tranzystorów stosowanych w TTL, co skutkuje ich nienormalnym działaniem, a w skrajnych przypadkach - całkowitym zniszczeniem. Niezrozumienie zasad działania technologii TTL oraz ich wymagań dotyczących zasilania może prowadzić do typowych błędów w projektowaniu. Na przykład, użytkownicy mogą mylnie zakładać, że wyższe napięcia zwiększają wydajność układów, co jest nieprawda. TTL działa w zakresie niskich napięć, co zapewnia odpowiednie poziomy sygnałów logicznych, a ich stabilność jest kluczowa dla poprawnego działania. Ponadto, użycie niewłaściwego napięcia zasilania może prowadzić do powstawania zakłóceń elektromagnetycznych, co negatywnie wpływa na inne komponenty systemu. Dlatego ważne jest, aby projektując obwody cyfrowe oparte na TTL, przestrzegać ściśle zalecanych parametrów zasilania, co przyczyni się do ich niezawodności oraz trwałości w dłuższym okresie. Kluczowym elementem każdej aplikacji elektronicznej jest zapewnienie zgodności z dokumentacją techniczną oraz standardami branżowymi, które wskazują na konieczność używania odpowiednich wartości napięcia dla różnych technologii.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Tyrystor, w którym anoda ma dodatni potencjał, a katoda i bramka mają potencjał ujemny, znajduje się w stanie

A. przewodzenia
B. zaporowym
C. blokowania
D. nasycenia
Tyrystor, kiedy anoda ma dodatni potencjał, a bramka i katoda mają potencjał ujemny, jest w stanie blokowania. To znaczy, że nie przewodzi prądu, mimo że teoretycznie mógłby. Takie blokowanie jest naprawdę ważne w sytuacjach, gdzie trzeba kontrolować przepływ prądu, jak na przykład w prostownikach czy w różnych układach regulacji mocy. Żeby tyrystor zaczął przewodzić, trzeba najpierw podać impuls napięcia na bramkę, co zmienia jego stan na przewodzenie. W praktyce blokowanie tyrystora pomaga unikać niechcianych przepływów prądu, co jest istotne dla bezpieczeństwa obwodów i zasilaczy. Dzięki temu, że tyrystory są tak często używane w elektronice, szczególnie w zarządzaniu energią, warto wiedzieć, jak działają w stanie blokowania, bo to naprawdę ma ogromne znaczenie.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Który z komponentów powinien zostać wymieniony w podnośniku hydraulicznym, gdy tłoczysko siłownika unosi się, ale po pewnym czasie samoistnie opada?

A. Sprężynę zaworu zwrotnego
B. Zawór bezpieczeństwa
C. Tłokowy pierścień uszczelniający
D. Filtr oleju
Wymiana zaworu bezpieczeństwa, sprężyny zaworu zwrotnego czy filtra oleju nie rozwiązuje problemu samoczynnego opadania tłoczyska siłownika, ponieważ każde z tych komponentów pełni inną funkcję w systemie hydraulicznym. Zawór bezpieczeństwa jest zaprojektowany do ochrony systemu przed nadmiernym ciśnieniem, co w przypadku awarii mogłoby prowadzić do uszkodzenia podnośnika. Jeśli tłoczysko opada, problem nie jest związany z nadciśnieniem, lecz z utratą ciśnienia spowodowaną wyciekiem oleju. Sprężyna zaworu zwrotnego odpowiada za zatrzymywanie przepływu oleju, co ma znaczenie przy ustalaniu kierunku przepływu cieczy, jednak nie wpływa ona na zdolność podnośnika do utrzymywania pozycji. Filtr oleju ma na celu usuwanie zanieczyszczeń z oleju hydraulicznego, ale jego zanieczyszczenie nie prowadzi bezpośrednio do opadania tłoczyska, a raczej może wpływać na efektywność całego systemu. W szczególności, niewłaściwe spojrzenie na te elementy może prowadzić do niepotrzebnych kosztów związanych z ich wymianą, podczas gdy rzeczywistą przyczyną problemu jest zużyty lub uszkodzony tłokowy pierścień uszczelniający. W związku z tym, ważne jest, aby prawidłowo diagnozować usterki, co pozwala na skuteczne i ekonomiczne utrzymanie systemów hydraulicznych, zgodnie z wytycznymi standardów jakości i bezpieczeństwa w przemyśle.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Jaką liczbę stopni swobody posiada manipulator przedstawiony na diagramie?

A. 5 stopni swobody
B. 4 stopnie swobody
C. 3 stopnie swobody
D. 6 stopni swobody
Manipulator z pięcioma stopniami swobody to świetna rzecz, bo potrafi ruszać się w trzech osiach oraz obracać wokół trzech osi. Dzięki temu może zarówno przesuwać się, jak i kręcić w przestrzeni, co jest naprawdę ważne w różnych zastosowaniach – mówimy tu o przemyśle czy robotyce. Z mojego doświadczenia, pięć stopni swobody to super rozwiązanie, bo daje większą precyzję i elastyczność, co przydaje się na przykład przy montażu części, przenoszeniu materiałów lub nawet bardziej skomplikowanych zadaniach. Widziałem, jak roboty na liniach montażowych wykorzystują to, bo dzięki temu mogą dostosowywać się do różnych zadań i warunków. W inżynierii robotów, te manipulatory są właściwie standardem, bo balansują między złożonością a tym, co mogą zrobić. Warto też wspomnieć, że według norm ISO dotyczących robotyki, projektując manipulatory, trzeba brać pod uwagę stopnie swobody, bo to ma wpływ na ich efektywność i bezpieczeństwo. Te wszystkie cechy sprawiają, że manipulator to naprawdę świetny wybór w nowoczesnych zastosowaniach przemysłowych.

Pytanie 31

Aby zatrzymać tłoczysko siłownika pneumatycznego o działaniu dwustronnym w dowolnym miejscu, wykorzystuje się zawór

A. trójdrogowy trójpołożeniowy (3/3)
B. pięciodrogowy trójpołożeniowy (5/3)
C. pięciodrogowy dwupołożeniowy (5/2)
D. trójdrogowy dwupołożeniowy (3/2)
Zawór pięciodrogowy trójpołożeniowy (5/3) to właściwy wybór, bo pozwala na pełną kontrolę nad ruchem tłoczyska w siłowniku pneumatycznym. Można go zatrzymać w dowolnej pozycji, co jest super ważne w różnych zastosowaniach. Ten zawór ma pięć portów i trzy położenia robocze, co oznacza, że możemy zasilać siłownik z jednej strony (położenie 1), z drugiej (położenie 2) lub zatrzymać go w neutralnej pozycji (położenie 3). Dzięki temu wszystko działa precyzyjnie, co jest kluczowe np. w automatyce produkcyjnej czy robotyce. Używanie takich standardowych komponentów, jak zawory 5/3, to naprawdę dobry pomysł, bo zapewniają one niezawodność i łatwość w podłączeniu do innych części systemu. Przykładem mogą być linie montażowe, gdzie dokładne pozycjonowanie elementów jest mega istotne dla efektywności.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Dobierz minimalny zestaw sterownika S7-200 do realizacji sterowania windą w budynku trzykondygnacyjnym. Wykorzystaj w tym celu opis elementów wejściowych/wyjściowych podłączonych do sterownika.

Elementy
wejściowe
jeden czujnik na każdej kondygnacji informujący o stanie drzwi zewnętrznych (otwarte/zamknięte)
jeden czujnik na każdej kondygnacji informujący o położeniu windy
jeden przycisk na każdej kondygnacji przywołujący windę
3 przyciski wewnątrz windy służące do wyboru kondygnacji
jeden przycisk wewnątrz windy informujący o awarii (AWARIA)
Elementy
wyjściowe
dwa styczniki załączające otwieranie i zamykanie drzwi
dwa styczniki uruchamiające jazdę kabiny na dół i jazdę kabiny do góry

A. S7-200 o 8 wejściach i 6 wyjściach
B. S7-200 o 24 wejściach i 16 wyjściach
C. S7-200 o 6 wejściach i 4 wyjściach
D. S7-200 o 14 wejściach i 10 wyjściach
Odpowiedź "S7-200 o 14 wejściach i 10 wyjściach" jest poprawna, ponieważ aby skutecznie zrealizować system sterowania windą w budynku trzykondygnacyjnym, należy uwzględnić liczbę niezbędnych wejść i wyjść. W przypadku takiego systemu potrzeba przynajmniej 13 wejść do monitorowania różnych czujników oraz 4 wyjścia do kontroli silników i sygnalizacji świetlnej. Sterownik S7-200 o 14 wejściach i 10 wyjściach zapewnia wystarczające zasoby, aby nie tylko zrealizować podstawowe funkcje, ale także pozostawia pewien zapas na przyszłe rozszerzenia lub dodatkowe czujniki. Praktyczne zastosowanie tego typu sterownika w budynkach wielokondygnacyjnych jest zgodne z normami automatyki budynkowej, które zalecają przy projektowaniu systemów zwracanie uwagi na elastyczność i możliwość rozbudowy. Warto również wspomnieć, że dobór odpowiednich komponentów jest kluczowy dla zapewnienia bezpieczeństwa użytkowników, co podkreśla znaczenie przestrzegania dobrych praktyk inżynieryjnych w projektowaniu systemów automatyki.

Pytanie 35

Który z wymienionych symptomów wskazuje na zanieczyszczenie hydraulicznego filtra?

A. Spadek temperatury oleju za filtrem
B. Wzrost ciśnienia oleju za filtrem
C. Spadek temperatury oleju przed filtrem
D. Wzrost ciśnienia oleju przed filtrem
Zrozumienie objawów zanieczyszczenia filtra hydraulicznego wymaga analizy mechanizmów, które rządzą przepływem oleju w systemie. Wzrost ciśnienia oleju za filtrem nie świadczy o zanieczyszczeniu, ponieważ w zdrowym układzie ciśnienie za filtrem powinno być niższe niż przed filtrem, co wynika z oporu, jaki filtr stawia przepływającemu olejowi. Zjawisko to może być mylnie interpretowane jako wskaźnik problemu. Również spadek temperatury oleju przed filtrem nie jest związany z zanieczyszczeniem, ponieważ temperatura oleju może być wpływana przez inne czynniki, takie jak warunki atmosferyczne czy obciążenie pracy. Spadek temperatury za filtrem również nie jest wskaźnikiem zanieczyszczenia, ponieważ filtr działa jako element, który może obniżać temperaturę oleju, usuwając z niego zanieczyszczenia, które mogą prowadzić do wzrostu temperatury. Chociaż na pierwszy rzut oka te objawy mogą wydawać się logiczne, są one przykładem nieprawidłowego rozumienia procesów hydraulicznych, które wymaga gruntownej wiedzy na temat działania systemów hydraulicznych oraz ich komponentów. W praktyce, monitorowanie ciśnienia i temperatury oleju w systemie to kluczowe aspekty utrzymania sprawności hydrauliki, które powinny być ściśle powiązane z regularną konserwacją i kontrolą filtrów.

Pytanie 36

Cyfrowy tachometr jest narzędziem do mierzenia

A. lepkości cieczy
B. naprężeń w metalach
C. natężenia przepływu powietrza
D. prędkości obrotowej wału silnika
Analizując nieprawidłowe odpowiedzi, warto zaznaczyć, że pomiar naprężeń w metalu oraz natężenia przepływu powietrza nie mają związku z zastosowaniem tachometru cyfrowego. Naprężenia w metalu mierzy się za pomocą tensometrów, które bazują na zmianach oporu elektrycznego materiału pod wpływem obciążenia. Jest to technika stosowana w materiałoznawstwie i inżynierii mechanicznej, gdzie kluczowe jest zrozumienie, jak materiały reagują na różne siły. Natomiast natężenie przepływu powietrza najczęściej OCENIA się przy użyciu anemometrów, które mogą przybierać różne formy, jak na przykład anemometry cieplne lub wirnikowe, które są dostosowane do pomiaru prędkości ruchu powietrza w danym obszarze. Lepkość cieczy, z kolei, jest mierzona za pomocą lepkościomierzy, które służą do określenia oporu, jaki ciecz stawia podczas przepływu. Każda z tych metod pomiarowych jest zdefiniowana przez odrębne zasady i techniki, różniące się znacznie od reguł dotyczących pomiaru prędkości obrotowej. W rezultacie, nieodpowiednie przyporządkowanie funkcji do tachometru cyfrowego może prowadzić do poważnych nieporozumień i błędnych decyzji w praktyce inżynieryjnej, co podkreśla znaczenie zrozumienia podstawowych zasad działania różnych narzędzi pomiarowych oraz ich zastosowania w odpowiednich kontekstach.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Podczas pracy z urządzeniem hydraulicznym pracownik odniósł ranę w udo na skutek wysunięcia siłownika i krwawi. Osoba ratująca, przystępując do udzielania pierwszej pomocy, powinna najpierw

A. sprawdzić, czy w okolicy są osoby posiadające kwalifikacje w reanimacji
B. umieścić poszkodowanego w bezpiecznej pozycji bocznej
C. założyć poszkodowanemu opatrunek uciskowy na ranę
D. założyć poszkodowanemu opatrunek uciskowy poniżej rany
Założenie opatrunku uciskowego na ranę jest kluczowym krokiem w przypadku, gdy poszkodowany krwawi. Opatrunek uciskowy ma na celu zatamowanie krwawienia poprzez zastosowanie odpowiedniego nacisku na ranę. W sytuacji, gdy krwotok jest znaczny, a czas reakcji jest ograniczony, natychmiastowe podjęcie działań może uratować życie. Dobrym przykładem zastosowania tej techniki jest stosowanie opatrunków hemostatycznych, które są zaprojektowane specjalnie do zatrzymywania krwawienia. W przypadku urazów spowodowanych np. wypadkami w pracy, pierwsza pomoc powinna być udzielana zgodnie z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie szybkiego i skutecznego działania. Należy pamiętać, że nawet przy udzielaniu pierwszej pomocy, ważne jest, aby wezwać odpowiednie służby ratunkowe, aby zapewnić dalszą pomoc medyczną. Znajomość zasad udzielania pierwszej pomocy oraz umiejętność szybkiego reagowania na sytuacje kryzysowe są niezbędne w każdym miejscu pracy, a odpowiednie szkolenia mogą znacząco zwiększyć bezpieczeństwo w środowisku zawodowym.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Jakie urządzenie jest używane do pomiaru temperatury płynów?

A. termostat
B. czujnik termiczny
C. urządzenie do regulacji temperatury z cyfrowym wyświetlaczem
D. termoelement
Termoelement to naprawdę fajne urządzenie do pomiaru temperatury. Działa na zasadzie efektu Seebecka, co oznacza, że generuje napięcie, gdy są różnice temperatur między dwoma różnymi przewodnikami. Jest super dokładny i szybko reaguje na zmiany temperatury, co czyni go idealnym w różnych branżach, takich jak chemia czy przemysł spożywczy. Można go też spotkać w laboratoriach badawczych. Na przykład, w przemyśle monitoruje się dzięki niemu temperaturę, co jest kluczowe, żeby produkt był dobrej jakości. Co ciekawe, w zależności od użytych materiałów, termoelementy mogą działać w różnych zakresach temperatur, a ich właściwości spełniają międzynarodowe standardy, jak na przykład IEC 60584. Dzięki tym cechom są bardzo popularne w systemach automatyki oraz kontroli procesów.