Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 8 maja 2025 12:29
  • Data zakończenia: 8 maja 2025 12:39

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas badania skuteczności działania dwóch wyłączników różnicowoprądowych, których znamionowy prąd różnicowy wynosi 30 mA, uzyskano wyniki przedstawione w tabeli:
Przy założeniu, że prąd wyzwalający nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego oraz nie powinien przekraczać wartości znamionowego prądu różnicowego, o działaniu tych wyłączników można powiedzieć, że

Numer wyłącznika różnicowoprądowegoRzeczywisty, zmierzony prąd różnicowy
120 mA
210 mA

A. pierwszy i drugi działają prawidłowo.
B. pierwszy działa nieprawidłowo, a drugi działa prawidłowo.
C. pierwszy i drugi działają nieprawidłowo.
D. pierwszy działa prawidłowo, a drugi działa nieprawidłowo.
Wyłącznik różnicowoprądowy nr 1 działa jak należy, bo jego prąd wyzwalający to 20 mA. Mieści się to w akceptowalnym zakresie, bo prąd nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego. Dla wyłącznika 30 mA to oznacza, że musi być minimalnie 15 mA. Działanie takiego wyłącznika ocenia się pod kątem ochrony przed porażeniem prądem, co jest naprawdę ważne. W praktyce, wyłączniki różnicowoprądowe są kluczowe w instalacjach elektrycznych, bo zapewniają bezpieczeństwo wszystkich użytkowników. Regularne kontrolowanie i testowanie tych urządzeń to podstawa, żeby mieć pewność, że działają zgodnie z normami, na przykład PN-EN 61008-1, która określa wymagania dla tych wyłączników. Warto też prowadzić dokumentację pomiarów i regularnie je kalibrować, bo to zapewnia, że systemy ochrony przed porażeniem są niezawodne.

Pytanie 2

Zwiększenie liczby kabli umieszczonych w jednej rurze instalacyjnej spowoduje

A. zmniejszenie wartości obliczeniowej rezystancji żył pojedynczego kabla
B. zmniejszenie dopuszczalnego obciążenia prądem długotrwałym jednego kabla
C. wydłużenie czasu osiągania granicznej temperatury izolacji kabli
D. zwiększenie dozwolonej wartości spadku napięcia na kablach
Zrozumienie konsekwencji zwiększenia liczby przewodów w jednej rurze instalacyjnej wymaga znajomości podstawowych zasad dotyczących przewodnictwa elektrycznego oraz zarządzania ciepłem. Wydłużenie czasu osiągania temperatury granicznej izolacji przewodów to pojęcie, które nie ma zastosowania w kontekście większej liczby przewodów w rurze. Zwiększona liczba przewodów prowadzi do szybszego nagrzewania się izolacji, a nie do wydłużenia czasu, co może skutkować jej uszkodzeniem. Podobnie, zmniejszenie wartości obliczeniowej rezystancji żył pojedynczego przewodu nie jest również poprawnym podejściem, ponieważ rezystancja konkretnego przewodu nie ulega zmianie wskutek liczby przewodów w tej samej rurze. Rezystancja żył obliczana jest na podstawie materiałów, z których są wykonane oraz ich przekroju, a nie od ich liczby. Z kolei zwiększenie dopuszczalnej wartości spadku napięcia na przewodach jest całkowicie błędnym założeniem; spadek napięcia wzrasta proporcjonalnie do obciążenia i długości przewodów. Dlatego kluczowe jest zrozumienie, że niepoprawne odpowiedzi wynikają z mylnego postrzegania zjawisk cieplnych oraz zasad obliczeniowych stosowanych w elektryce. Konsekwencje niewłaściwego obciążenia mogą prowadzić do poważnych awarii, co podkreśla konieczność przestrzegania norm oraz zasad planowania instalacji elektrycznych.

Pytanie 3

Najtrudniejsze okoliczności gaszenia łuku elektrycznego występują w obwodzie o charakterze

A. rezystancyjnym, przy przepływie prądu przemiennego
B. indukcyjnym, przy przepływie prądu sinusoidalnego
C. rezystancyjnym, przy przepływie prądu stałego
D. indukcyjnym, przy przepływie prądu stałego
W obwodach o charakterze indukcyjnym, szczególnie przy przepływie prądu stałego, występują trudności związane z gaszeniem łuku elektrycznego, ze względu na charakterystyki reaktancji indukcyjnej. Łuk elektryczny generowany w takich obwodach ma tendencję do utrzymywania się, ponieważ prąd stały nie zmienia kierunku i nie przechodzi przez zero, co jest kluczowym momentem ułatwiającym gaszenie łuku. W praktyce, w systemach elektroenergetycznych, takie zjawisko jest szczególnie istotne przy zabezpieczeniach, takich jak wyłączniki elektromagnetyczne, które muszą być odpowiednio zaprojektowane, aby skutecznie radzić sobie z długotrwałym łukiem. Dobry przykład zastosowania tej wiedzy można znaleźć w projektowaniu rozdzielnic elektrycznych, gdzie należy uwzględnić wpływ indukcyjności na dobór odpowiednich zabezpieczeń. W zgodzie z normami IEC oraz dobrymi praktykami inżynieryjnymi, ważne jest, aby inżynierowie projektując systemy elektryczne brali pod uwagę te zjawiska, co przekłada się na bezpieczeństwo i niezawodność obsługiwanych instalacji.

Pytanie 4

Urządzenia elektryczne o klasie ochrony 0 mogą być stosowane wyłącznie w sytuacji

A. wdrożenia ochrony przed porażeniem w formie separacji elektrycznej lub izolacji miejsca wykonywania pracy
B. wcześniejszego zweryfikowania efektywności ochrony w instalacji
C. zasilania ich z gniazd z ochronnym bolcem uziemiającym
D. korzystania z nich pod nadzorem technicznym ze strony dostawcy energii elektrycznej
Urządzenia elektryczne klasy ochronności 0 są projektowane w sposób, który nie zapewnia żadnej formy ochrony przed porażeniem elektrycznym. W związku z tym ich stosowanie wymaga zastosowania dodatkowych środków ochrony, takich jak separacja elektryczna lub izolacja stanowiska pracy. Zgodnie z normą PN-IEC 61140, urządzenia tej klasy powinny być wykorzystywane w środowiskach, gdzie ryzyko porażenia jest minimalizowane poprzez odpowiednie techniki zabezpieczające. Przykładem może być stosowanie tych urządzeń w pomieszczeniach suchych, gdzie nie ma ryzyka kontaktu z wodą, oraz w sytuacjach, gdzie pracownicy są odpowiednio przeszkoleni w zakresie bezpieczeństwa. W praktyce, można zastosować również urządzenia ochronne, które odcinają zasilanie w przypadku wykrycia upływu prądu, co dodatkowo zwiększa bezpieczeństwo. Dlatego kluczowe jest, aby przed użyciem takich urządzeń, upewnić się, że są spełnione wszystkie warunki ochrony przeciwporażeniowej oraz że urządzenia są wykorzystywane zgodnie z ich przeznaczeniem.

Pytanie 5

Do jakiego celu wykorzystuje się przełącznik w układzie gwiazda-trójkąt w zasilaniu silnika trójfazowego?

A. Aby zredukować prąd rozruchowy
B. Aby obniżyć prędkość obrotową
C. Aby zwiększyć moment rozruchowy
D. Aby poprawić przeciążalność
Przełącznik gwiazda-trójkąt jest powszechnie stosowany w układach zasilania silników trójfazowych w celu ograniczenia prądu rozruchowego. Kiedy silnik jest uruchamiany w układzie gwiazdy, napięcie na każdej fazie wynosi tylko 1/√3 (około 58%) napięcia międzyfazowego, co powoduje znaczące zmniejszenie prądu rozruchowego, który jest proporcjonalny do napięcia. Dzięki temu unika się przeciążenia sieci zasilającej oraz zmniejsza ryzyko uszkodzenia silnika. Po osiągnięciu odpowiednich obrotów, przełącznik zmienia połączenie na układ trójkąta, co pozwala na uzyskanie pełnej mocy silnika. Stosowanie przełącznika gwiazda-trójkąt jest zgodne z normami, takimi jak IEC 60034, które regulują zasady stosowania silników elektrycznych. W praktyce, ten system jest niezwykle przydatny w aplikacjach, w których wymagany jest wysoki moment rozruchowy, np. w młynach, dźwigach czy kompresorach, gdzie kontrola prądu podczas rozruchu jest kluczowa dla zapewnienia bezpiecznej i efektywnej pracy.

Pytanie 6

Który z wymienionych bezpieczników powinien być użyty, aby chronić przed skutkami zwarć trójfazowego silnika klatkowego o prądzie znamionowym In = 12 A, jeśli jego prąd rozruchowy Ir = 5×In, a współczynnik rozruchu α = 3?

A. aM 20A
B. aM 16A
C. gF 35A
D. gR 20A
Odpowiedź aM 20A jest poprawna, ponieważ bezpiecznik typu aM charakteryzuje się dużą zdolnością do wytrzymywania krótkotrwałych prądów rozruchowych, co jest istotne w przypadku silnika klatkowego. W obliczeniach ustalamy prąd rozruchowy Ir jako pięciokrotność prądu znamionowego: Ir = 5 × In = 5 × 12 A = 60 A. Przy współczynniku rozruchu α równym 3, maksymalny prąd, który może wystąpić podczas rozruchu wynosi: Imax = Ir × α = 60 A × 3 = 180 A. Zastosowanie bezpiecznika aM 20A zapewnia odpowiednią ochronę, ponieważ jego charakterystyka pozwala na wytrzymanie krótkotrwałych prądów rozruchowych bez przepalania, a jednocześnie skutecznie zabezpiecza przed długotrwałym przeciążeniem. Takie rozwiązanie jest zgodne z normami IEC 60269 oraz NEC, które określają zasady wyboru zabezpieczeń dla silników elektrycznych. W praktyce, stosowanie bezpieczników typu aM jest powszechne w instalacjach przemysłowych, gdzie silniki są narażone na duże prądy rozruchowe.

Pytanie 7

Jaką liczbę należy użyć do pomnożenia wartości znamionowego prądu silnika trójfazowego klatkowego, który napędza pompę, aby obliczyć maksymalną dopuszczalną wartość nastawy prądu na jego zabezpieczeniu termicznym?

A. 2,2
B. 1,4
C. 1,1
D. 0,8
Odpowiedź 1,1 jest poprawna, ponieważ przy obliczaniu maksymalnej dopuszczalnej wartości nastawy prądu na zabezpieczeniu termicznym silników trójfazowych, stosuje się współczynnik 1,1. Ten współczynnik uwzględnia zwiększone obciążenie silnika w przypadku jego rozruchu oraz wpływ na jego pracę w warunkach długotrwałego obciążenia. Przyjmuje się, że silniki trójfazowe mogą być obciążane do wartości 10% powyżej znamionowej przez krótki czas, co jest kluczowe dla ochrony silnika oraz zapewnienia jego efektywności. W praktyce oznacza to, że jeżeli znamionowy prąd silnika wynosi na przykład 10 A, to maksymalna wartość nastawy na zabezpieczeniu termicznym powinna wynosić 11 A. Zastosowanie tego współczynnika jest zgodne z normami IEC 60034 oraz wytycznymi producentów urządzeń, co jest kluczowe dla zabezpieczenia silników i zapewnienia ich prawidłowej pracy.

Pytanie 8

Co należy zrobić w przypadku przeciążenia silnika elektrycznego podczas pracy?

A. Zredukować obciążenie lub sprawdzić wyłączniki termiczne
B. Zwiększyć napięcie zasilające
C. Zastosować dodatkowy filtr harmonicznych
D. Zwiększyć długość przewodów zasilających
W przypadku przeciążenia silnika elektrycznego kluczowe jest szybkie zidentyfikowanie i zredukowanie obciążenia, które może być przyczyną problemu. Przeciążenie często wynika z nadmiernego zapotrzebowania na moc, co prowadzi do przegrzania i potencjalnego uszkodzenia silnika. Standardy branżowe zalecają, aby regularnie monitorować obciążenie silników i odpowiednio reagować na wszelkie nieprawidłowości. Dodatkowo, sprawdzenie wyłączników termicznych to dobra praktyka, która pozwala na wykrycie i zapobieganie dalszym uszkodzeniom. Wyłączniki termiczne są zabezpieczeniem, które automatycznie odłącza zasilanie w przypadku wykrycia nadmiernego wzrostu temperatury, co chroni silnik przed uszkodzeniem. Regularna konserwacja i kontrola tych elementów jest niezbędna, aby zapewnić bezpieczną i efektywną pracę silników elektrycznych. Praktyczne zastosowanie tej wiedzy pozwala na dłuższą żywotność urządzeń i zmniejszenie ryzyka kosztownych napraw.

Pytanie 9

W jakim zakresie powinien znajdować się zmierzony rzeczywisty prąd różnicowy IΔN wyłącznika różnicowoprądowego typu AC w odniesieniu do jego wartości znamionowej, aby mógł być dopuszczony do użytkowania?

A. Od 0,3 IΔN do 0,8 IΔN
B. Od 0,5 IΔN do 1,2 IΔN
C. Od 0,5 IΔN do 1,0 IΔN
D. Od 0,3 IΔN do 1,0 IΔN
Odpowiedź "Od 0,5 IΔN do 1,0 IΔN" jest jak najbardziej ok, bo mówi o zakresie prądu różnicowego, który wyłączniki różnicowoprądowe typu AC powinny mieć. Z normami, takimi jak PN-EN 61008-1, mamy pewność, że wyłącznik nie zareaguje zbyt szybko w normalnych warunkach, a jednocześnie ochrona przed porażeniem prądem jest na dobrym poziomie. Wiesz, gdyby ten prąd był za mały, to mogą pojawić się problemy z izolacją. Z kolei zbyt wysoka wartość mogłaby wyłączyć urządzenie przez zakłócenia, co jest niebezpieczne. Dlatego ważne, żeby przed włączeniem wyłącznika upewnić się, że prąd mieści się w tym zakresie. Dobrym przykładem jest wyłącznik w domu, który daje dodatkową ochronę dla domowników.

Pytanie 10

Jakie środki ochrony przeciwporażeniowej stosuje się w przypadku uszkodzenia obwodu pojedynczego odbiornika?

A. separację elektryczną
B. umiejscowienie poza zasięgiem ręki
C. jedynie obudowy
D. wyłącznie specjalne ogrodzenia
Separacja elektryczna to metoda ochrony przed porażeniem elektrycznym, która polega na oddzieleniu obwodów elektrycznych od żywych części, co znacząco minimalizuje ryzyko bezpośredniego kontaktu z prądem. W praktyce, separacja elektryczna może być realizowana poprzez zastosowanie transformatorów separacyjnych, które izolują odbiorniki od źródła zasilania, co pozwala na uniknięcie niebezpiecznych sytuacji w przypadku uszkodzenia izolacji. Dobre praktyki w zakresie ochrony elektrycznej zalecają używanie transformatorów o odpowiednich parametrach, które nie tylko spełniają normy bezpieczeństwa, ale także są zgodne z obowiązującymi standardami, takimi jak norma IEC 61140 dotycząca ochrony przeciwporażeniowej. W kontekście instalacji elektrycznych, separacja elektryczna jest szczególnie ważna w obszarach o wysokim ryzyku, jak np. w łazienkach czy na zewnątrz budynków, gdzie ryzyko kontaktu z wodą jest zwiększone. Ponadto, stosowanie separacji elektrycznej w obiektach przemysłowych, gdzie występuje duża liczba maszyn i urządzeń, również przyczynia się do poprawy bezpieczeństwa pracowników i minimalizacji ryzyka wypadków. W związku z tym, separacja elektryczna jest nie tylko skuteczną, ale i rekomendowaną metodą ochrony przed porażeniem elektrycznym.

Pytanie 11

Podczas wymiany trójfazowego wyłącznika różnicowoprądowego należy mieć na uwadze, że do wyłącznika nie może być podłączony przewód

A. fazowy L2
B. neutralny N
C. fazowy LI
D. ochronny PE
Odpowiedź dotycząca przewodu ochronnego PE jako nieodpowiedniego do podłączenia do trójfazowego wyłącznika różnicowoprądowego jest poprawna. Przewód ochronny PE ma za zadanie zapewnienie bezpieczeństwa użytkowników poprzez odprowadzenie prądu w przypadku awarii do ziemi, co zmniejsza ryzyko porażenia prądem elektrycznym. Wyłącznik różnicowoprądowy jest zaprojektowany do monitorowania różnicy prądów między przewodami fazowymi a neutralnym. Podłączenie przewodu PE do tego urządzenia nie tylko jest niezgodne z jego przeznaczeniem, ale również może prowadzić do niebezpiecznych sytuacji, w których wyłącznik nie zadziała w przypadku wykrycia różnicy prądu. Zgodnie z normami PN-IEC 61008-1, wyłączniki różnicowoprądowe powinny być podłączane w sposób, który umożliwia ich prawidłowe działanie i spełnienie wymogów związanych z ochroną przeciwporażeniową. Przykładem poprawnej instalacji jest wykorzystanie wyłącznika różnicowoprądowego w połączeniu z przewodami fazowymi i neutralnym, co zapewnia skuteczną ochronę i minimalizuje ryzyko uszkodzeń.

Pytanie 12

Gdy chodzi o odbiornik o dużej mocy, taki jak kuchenka elektryczna, jak należy go zasilać?

A. z wydzielonego obwodu z własnym zabezpieczeniem
B. z wspólnego obwodu oświetleniowego
C. z wydzielonego obwodu bez własnych zabezpieczeń
D. z wspólnego obwodu gniazd wtyczkowych
Odpowiedź, że odbiornik dużej mocy, taki jak kuchenka elektryczna, powinien być zasilany z wydzielonego obwodu z własnym zabezpieczeniem, jest poprawna i zgodna z najlepszymi praktykami w zakresie bezpieczeństwa elektrycznego. Kuchenki elektryczne są urządzeniami o dużym zużyciu energii, co oznacza, że wymagają dedykowanego obwodu, który jest w stanie wytrzymać ich obciążenie. Wydzielony obwód zapewnia, że inne urządzenia podłączone do obwodu nie będą wpływać na jego działanie, co minimalizuje ryzyko przeciążenia. Dodatkowo, posiadanie własnego zabezpieczenia, jak na przykład wyłącznik nadprądowy, pozwala na szybkie reagowanie w przypadku zwarcia lub przeciążenia. W praktyce oznacza to, że w przypadku awarii kuchenki, zabezpieczenie automatycznie odłączy zasilanie, chroniąc zarówno urządzenie, jak i instalację elektryczną budynku. Przykładem są przepisy zawarte w normie PN-IEC 60364, które zalecają stosowanie oddzielnych obwodów dla urządzeń o dużym poborze mocy, co jest kluczowe dla zapewnienia bezpieczeństwa i efektywności systemu elektrycznego.

Pytanie 13

Którego z poniższych pomiarów eksploatacyjnych instalacji oświetleniowej nie jest możliwe przeprowadzić przy użyciu typowego miernika uniwersalnego?

A. Prądu, który jest pobierany przez odbiornik
B. Napięcia w poszczególnych fazach
C. Ciągłości przewodów ochronnych
D. Rezystancji izolacji przewodów
Rezystancja izolacji przewodów jest kluczowym pomiarem w ocenie bezpieczeństwa instalacji elektrycznych i oświetleniowych. Typowe mierniki uniwersalne, takie jak multimetrowe, są przeznaczone głównie do pomiarów prądu, napięcia i oporu, jednak nie są wystarczające do pomiaru rezystancji izolacji. Pomiar ten wymaga zastosowania specjalistycznych urządzeń, takich jak megomierze, które generują znacznie wyższe napięcia (zazwyczaj w zakresie 250V, 500V lub 1000V) w celu oceny jakości izolacji. W praktyce, taki pomiar pozwala na wykrycie uszkodzeń izolacji, które mogą prowadzić do niebezpiecznych sytuacji, takich jak przebicia elektryczne. Normy takie jak PN-IEC 60364 podkreślają konieczność regularnego przeprowadzania pomiarów rezystancji izolacji, co jest niezbędne dla zapewnienia bezpieczeństwa użytkowników oraz trwałości instalacji. Przykładowo, w przypadku instalacji w obiektach publicznych, pomiar ten jest obligatoryjny, aby zapewnić spełnienie określonych standardów bezpieczeństwa elektrycznego.

Pytanie 14

Który z podanych materiałów przewodzących jest najczęściej stosowany w instalacjach elektrycznych ze względu na swoje właściwości?

A. Aluminium
B. Miedź
C. Nikiel
D. Stal
Miedź to materiał przewodzący, który jest najczęściej stosowany w instalacjach elektrycznych ze względu na swoje wyjątkowe właściwości. Przede wszystkim charakteryzuje się bardzo dobrą przewodnością elektryczną, co oznacza, że opór stawiany przepływającemu prądowi jest minimalny. Dzięki temu straty energii są zredukowane, co jest kluczowe w efektywnym przesyle energii. Ponadto, miedź jest materiałem relatywnie łatwym do formowania, co ułatwia produkcję przewodów o różnych kształtach i rozmiarach. Jest również odporny na korozję, co przedłuża żywotność instalacji. Zastosowanie miedzi w kablach i przewodach elektrycznych jest standardem w branży, a jej właściwości mechaniczne pozwalają na utrzymanie wysokiej wytrzymałości oraz elastyczności przewodów. Warto również zauważyć, że miedź jest stosowana w różnych gałęziach przemysłu elektrotechnicznego, w tym w transformatorach, silnikach elektrycznych i generatorach, co świadczy o jej wszechstronności i niezawodności. Standardy branżowe i normy międzynarodowe, takie jak IEC i ANSI, często rekomendują użycie miedzi w instalacjach ze względu na jej doskonałe właściwości przewodzące i mechaniczne.

Pytanie 15

Jakie powinno być maksymalne natężenie prądu, które może zmierzyć amperomierz w instalacji zasilanej napięciem 230/400 V, o częstotliwości 50 Hz, obciążonej jednofazowym silnikiem elektrycznym o parametrach: P = 0,55 kW, η = 70%, cosα = 0,96?

A. 4 A
B. 3 A
C. 2 A
D. 1 A
Aby obliczyć wymagany zakres pomiarowy amperomierza dla silnika elektrycznego o mocy 0,55 kW, sprawności η = 70% oraz współczynniku mocy cosα = 0,96, należy najpierw obliczyć prąd pobierany przez urządzenie. Wzór na moc elektryczną to P = U * I * cosα, gdzie P to moc, U to napięcie, I to natężenie prądu, a cosα to współczynnik mocy. Przyjmując napięcie 230 V, przekształcamy wzór: I = P / (U * cosα). Wartość mocy czynnej P wynosi 0,55 kW / 0,7 (sprawność) = 0,7857 kW. Po podstawieniu wartości do wzoru otrzymujemy I = 0,7857 kW / (230 V * 0,96) co daje około 3,5 A. W związku z tym, potrzebny jest amperomierz o zakresie pomiarowym co najmniej 4 A, co daje możliwość bezpiecznego pomiaru prądu, uwzględniając ewentualne przeciążenia. W praktyce, dla pomiarów w instalacjach elektrycznych, zaleca się wybór przyrządów o zakresie pomiarowym przynajmniej 20% wyższym niż maksymalne oczekiwane wartości, co zapewnia dokładność i bezpieczeństwo pomiaru.

Pytanie 16

Zidentyfikuj uszkodzenie jednofazowego transformatora redukującego napięcie, jeśli jego znamionowa przekładnia napięciowa wynosi 5, a zmierzone w trybie jałowym napięcia na uzwojeniu pierwotnym i wtórnym wyniosły odpowiednio 230 V oraz 460 V?

A. Przerwa w uzwojeniu pierwotnym
B. Przerwa w uzwojeniu wtórnym
C. Zwarcie w uzwojeniu wtórnym
D. Zwarcie w uzwojeniu pierwotnym
Odpowiedzi sugerujące przerwę w uzwojeniu wtórnym lub pierwotnym są błędne z kilku powodów. Przerwa w uzwojeniu wtórnym spowodowałaby brak napięcia na uzwojeniu wtórnym, co w tym przypadku nie jest zgodne z wynikami pomiarów. Zmierzona wartość napięcia wtórnego w wysokości 460 V wskazuje, że uzwojenie wtórne jest sprawne i nie ma przerwy. Podobnie, przerwa w uzwojeniu pierwotnym skutkowałaby brakiem napięcia na uzwojeniu pierwotnym, a zatem napięcie 230 V, które zmierzono, również wskazuje na jego sprawność. Dodatkowo, zwarcie w uzwojeniu wtórnym, które mogłoby występować, prowadziłoby do dużego przepływu prądu, co jest sprzeczne z obserwowanymi wynikami pomiarów. Zrozumienie działania transformatorów obniżających napięcie oraz ich struktury jest kluczowe dla diagnostyki takich uszkodzeń. Interpretacja wyników pomiarów wymaga znajomości podstawowych zasad rządzących przekładnią napięciową, które determinują stosunek napięć na uzwojeniach. Dlatego ważne jest, by przedstawić poprawne rozumienie stanu transformatora w kontekście jego funkcjonalności oraz wykonać odpowiednie testy w celu zweryfikowania stanu technicznego urządzenia.

Pytanie 17

Jakiego składnika nie powinien mieć kabel zasilający do głównej rozdzielnicy w strefie przemysłowej, która jest klasyfikowana jako niebezpieczna pod względem pożaru?

A. Żył z aluminium.
B. Pokrywy polietylenowej.
C. Zewnętrznego splotu włóknistego.
D. Obudowy stalowej.
Zewnętrzny oplot włóknisty nie jest odpowiednim elementem w przypadku kabli zasilających używanych w pomieszczeniach przemysłowych o podwyższonym ryzyku pożarowym. W takich środowiskach kluczowe jest zapewnienie wysokiego poziomu ochrony przed działaniem ognia oraz substancji chemicznych. Oplot włóknisty, choć lekki i elastyczny, nie oferuje wystarczającej odporności na wysokie temperatury ani zabezpieczenia przed rozprzestrzenieniem się ognia. W praktyce, kable w takich strefach powinny posiadać pancerz stalowy, który chroni przed mechanicznymi uszkodzeniami oraz powłokę polietylenową, która zapewnia odpowiednią odporność na ogień. Zastosowanie takich materiałów jest zgodne z normami, takimi jak PN-EN 50575, która określa wymagania dotyczące kabli w kontekście ochrony przeciwpożarowej. Warto również pamiętać, że odpowiednia konstrukcja kabli zasilających może mieć kluczowe znaczenie dla bezpieczeństwa całego systemu zasilania w obiektach przemysłowych.

Pytanie 18

Przeglądy okresowe instalacji elektrycznej w budynkach mieszkalnych powinny być realizowane co najmniej raz na

A. 1 rok
B. 3 lata
C. 4 lata
D. 5 lat
Badania okresowe mieszkaniowej instalacji elektrycznej powinny być przeprowadzane co pięć lat, co jest zgodne z obowiązującymi przepisami prawa budowlanego oraz normami PN-HD 60364. Regularne kontrole instalacji elektrycznej są kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania systemu. W trakcie takich badań specjaliści sprawdzają między innymi stan izolacji przewodów, działanie zabezpieczeń oraz ich prawidłowe umiejscowienie. W praktyce oznacza to, że po pięciu latach użytkowania instalacji, warto zlecić jej audyt, aby upewnić się, że nie doszło do degradacji elementów elektrycznych, co mogłoby prowadzić do zwarcia lub pożaru. Dobrą praktyką jest również prowadzenie dokumentacji z przeprowadzonych badań, co ułatwia późniejsze analizy i decyzje dotyczące eksploatacji oraz ewentualnych modernizacji. Osoby wynajmujące mieszkania powinny być świadome, że odpowiedzialność za stan instalacji spoczywa na właścicielu, a regularne przeglądy są nie tylko wyrazem dbałości o bezpieczeństwo, ale również wymaganiem prawnym.

Pytanie 19

Kontrolę instalacji elektrycznej, znajdującej się w pomieszczeniach o wysokiej wilgotności (75÷100%), w zakresie efektywności ochrony przed porażeniem elektrycznym należy przeprowadzać co najmniej raz na

A. 1 rok
B. 2 lata
C. 4 lata
D. 3 lata
Instalacje elektryczne w pomieszczeniach wilgotnych, takich jak łazienki czy piwnice, wymagają szczególnej uwagi w kontekście ochrony przeciwporażeniowej. Wilgotność powietrza w takich miejscach może prowadzić do zwiększonego ryzyka porażenia prądem, dlatego też zgodnie z obowiązującymi normami i zaleceniami, takie instalacje powinny być poddawane kontroli co najmniej raz w roku. Regularne przeglądy pozwalają na wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe zabezpieczenia czy korozja elementów instalacji. Przykładem może być kontrola stanu gniazdek elektrycznych, które w miejscach o wysokiej wilgotności narażone są na działanie wody, co może prowadzić do zwarć. Warto również zwrócić uwagę na zastosowanie odpowiednich zabezpieczeń, takich jak różnicowoprądowe wyłączniki zabezpieczające (RCD), które mogą istotnie zwiększyć poziom bezpieczeństwa. Przestrzeganie tych zasad jest zgodne z normami, takimi jak PN-IEC 60364, które określają wymagania dotyczące instalacji elektrycznych w miejscach narażonych na wilgoć.

Pytanie 20

Jakie czynności związane z eksploatacją instalacji elektrycznych powinny być realizowane jedynie na podstawie pisemnego zlecenia?

A. Eksploatacyjne, wskazane w instrukcjach stanowiskowych i realizowane przez uprawnione osoby
B. Eksploatacyjne, które mogą prowadzić do szczególnego zagrożenia dla życia i zdrowia ludzi
C. Związane z ratowaniem życia i zdrowia ludzi
D. Dotyczące zabezpieczania instalacji przed uszkodzeniem
To, że czynności eksploatacyjne, które mogą grozić zdrowiu i życiu, powinny być robione tylko na pisemne polecenie, to dobra odpowiedź. Właściwie, takie sytuacje mogą się zdarzać, gdy ktoś ma do czynienia z urządzeniami pod napięciem albo w przypadku ryzyka porażenia prądem czy pożaru. Wymóg pisemnego polecenia pomaga upewnić się, że wszystko jest dokładnie opracowane, a ryzyko zminimalizowane zgodnie z normami, jak na przykład PN-IEC 60364. Oprócz tego, te procedury powinny być opisane w instrukcjach stanowiskowych i powinny być realizowane przez ludzi, którzy mają odpowiednie uprawnienia. Wiedza o bezpieczeństwie i procedurach związanych z elektrycznością jest naprawdę ważna dla każdego, kto pracuje w tej dziedzinie.

Pytanie 21

Jaką minimalną wartość rezystancji powinno się zmierzyć w ścianach i podłodze w izolowanym miejscu pracy z urządzeniami o napięciu 400 V, aby zabezpieczenie przed dotykiem pośrednim było efektywne?

A. 75 kΩ
B. 10 kΩ
C. 25 kΩ
D. 50 kΩ
Najmniejsza zmierzona wartość rezystancji ścian i podłogi na izolowanym stanowisku pracy z urządzeniami o napięciu 400 V powinna wynosić 50 kΩ, aby zapewnić skuteczną ochronę przeciwporażeniową. Zgodnie z normami bezpieczeństwa elektrycznego, takimi jak PN-EN 61140, minimalna rezystancja izolacji jest kluczowym czynnikiem, który wpływa na bezpieczeństwo użytkowników. W praktyce, wyższa rezystancja izolacji oznacza mniejsze ryzyko przebicia i przemieszczenia prądu do części nieizolowanych. W przypadku pracy z urządzeniami o napięciu 400 V, wartość 50 kΩ jest często stosowana jako standardowy wskaźnik, aby zminimalizować ryzyko porażenia prądem. Wartości te stosuje się nie tylko w przemyśle, ale również w kontekście instalacji elektrycznych w budynkach. Regularne pomiary rezystancji izolacji powinny być przeprowadzane na stanowiskach pracy, aby upewnić się, że systemy ochrony są nadal skuteczne. Przykładem może być przemysł produkcyjny, gdzie urządzenia o wysokim napięciu są powszechnie używane, a każda usterka izolacji może prowadzić do poważnych wypadków, podkreślając znaczenie monitorowania rezystancji izolacji.

Pytanie 22

Który przekrój kabla najczęściej używa się do tworzenia obwodów gniazdek w instalacjach domowych podtynkowych?

A. 1,5 mm²
B. 2,5 mm²
C. 1 mm²
D. 4 mm²
Przekrój przewodu 2,5 mm² jest najczęściej stosowany do wykonywania obwodów gniazd wtyczkowych w instalacjach mieszkaniowych podtynkowych, ponieważ zapewnia odpowiednią nośność prądową oraz minimalizuje ryzyko przegrzewania się przewodów. Zgodnie z normą PN-IEC 60364, obwody gniazd wtyczkowych powinny być projektowane z uwzględnieniem maksymalnych obciążeń, które mogą wystąpić w gospodarstwie domowym. Obwody z przekrojem 2,5 mm² są w stanie obsłużyć obciążenie do 16A, co jest wystarczające dla większości sprzętu AGD oraz elektroniki. Przykładowo, standardowa pralka, zmywarka czy kuchenka elektryczna wymagają takiego przekroju, aby zapewnić ich prawidłowe działanie. Użycie mniejszych przekrojów, takich jak 1 mm² czy 1,5 mm², może prowadzić do nadmiernego nagrzewania się przewodów, co zwiększa ryzyko pożaru. Dlatego stosowanie przewodów o przekroju 2,5 mm² w gniazdach wtyczkowych jest zgodne z zasadami bezpieczeństwa oraz dobrymi praktykami w zakresie instalacji elektrycznych.

Pytanie 23

Aby ocenić efektywność ochrony przeciwporażeniowej w silniku trójfazowym działającym w systemie TN-S, konieczne jest przeprowadzenie pomiaru

A. rezystancji uzwojeń fazowych silnika
B. prądu zadziałania wyłącznika instalacyjnego nadprądowego
C. impedancji pętli zwarcia w instalacji
D. czasu reakcji przekaźnika termobimetalowego
Pomiar impedancji pętli zwarcia jest kluczowym elementem oceny skuteczności ochrony przeciwporażeniowej w systemach TN-S. W systemach tych, ochrona przed porażeniem elektrycznym opiera się na zastosowaniu bardzo niskiej impedancji pętli zwarcia, co zapewnia szybkie zadziałanie wyłączników nadprądowych w przypadku zwarcia. Zgodnie z normą PN-EN 60364, impedancja pętli zwarcia powinna być na tyle niska, aby czas zadziałania zabezpieczeń nie przekraczał 0,4 sekundy w obwodach zasilających urządzenia o dużych mocach. W praktyce, pomiar ten wykonuje się za pomocą specjalistycznych urządzeń pomiarowych, które pozwalają na określenie wartości impedancji oraz ocenę stanu instalacji. Regularne kontrole tej wartości są istotne, gdyż zmiany w instalacji, takie jak korozja połączeń czy uszkodzenia izolacji, mogą prowadzić do wzrostu impedancji, co z kolei zwiększa ryzyko porażenia prądem. Dzięki pomiarom impedancji pętli zwarcia można szybko zdiagnozować potencjalne zagrożenia oraz podjąć odpowiednie działania naprawcze, co przyczynia się do poprawy bezpieczeństwa użytkowników.

Pytanie 24

Jakie warunki muszą zostać spełnione podczas pomiaru rezystancji izolacji w instalacji elektrycznej po wcześniejszym odłączeniu napięcia zasilającego?

A. Odłączone odbiorniki od gniazd wtyczkowych, włączone przełączniki oświetleniowe, wymontowane źródła światła
B. Włączone odbiorniki do gniazd wtyczkowych, włączone przełączniki oświetleniowe, zamontowane źródła światła
C. Odłączone odbiorniki od gniazd wtyczkowych, włączone przełączniki oświetleniowe, zamontowane źródła światła
D. Włączone odbiorniki do gniazd wtyczkowych, włączone przełączniki oświetleniowe, wymontowane źródła światła
Przy wykonywaniu pomiaru rezystancji izolacji w instalacji elektrycznej, kluczowe jest zapewnienie kompletnego bezpieczeństwa oraz dokładności uzyskiwanych wyników. Wyłączenie odbiorników z gniazd wtyczkowych eliminuje ryzyko przypadkowego załączenia obwodu, co mogłoby zafałszować wyniki pomiarów lub spowodować niebezpieczne sytuacje. Włączone łączniki oświetleniowe pozwalają na uzyskanie pełnej charakterystyki instalacji, ponieważ pomiar dotyczy także przewodów i elementów, które są podłączone do tych łączników. Wymontowanie źródeł światła jest istotne, ponieważ ich obecność może wprowadzać dodatkowe oporności i niepożądane elementy do obwodu, co może również wpłynąć na wynik pomiaru. Zgodnie z normami, takimi jak PN-EN 61557-2, poprawne wykonanie pomiarów rezystancji izolacji jest podstawą do oceny stanu technicznego instalacji oraz zapewnienia jej bezpieczeństwa użytkowania. W praktyce, przestrzeganie tych zasad jest kluczowe dla administratorów budynków, elektryków oraz firm zajmujących się konserwacją i modernizacją instalacji elektrycznych.

Pytanie 25

Jaka jest minimalna wymagana wartość natężenia oświetlenia dla powierzchni blatów ławek w klasie?

A. 500 lx
B. 300 lx
C. 400 lx
D. 200 lx
Wymagana minimalna wartość natężenia oświetlenia powierzchni blatów ławek szkolnych w sali lekcyjnej wynosi 300 lx. Jest to standardowa wartość określona w normach oświetleniowych, takich jak PN-EN 12464-1, które regulują kwestie oświetlenia miejsc pracy, w tym również szkół. W praktyce oznacza to, że odpowiednie natężenie oświetlenia zapewnia komfort i efektywność nauki uczniów, co jest kluczowe dla ich skupienia oraz zdolności do przyswajania wiedzy. Oświetlenie na poziomie 300 lx pozwala na wygodne czytanie, pisanie i wykonywanie innych zadań wymagających precyzyjnego wzroku. Wartości poniżej tej normy mogą prowadzić do zmęczenia oczu i obniżenia wydajności uczniów. Przykładem zastosowania tej wartości jest projektowanie wnętrz w nowych szkołach, gdzie architekci uwzględniają odpowiednie źródła światła, aby zapewnić optymalne warunki do nauki.

Pytanie 26

Przy badaniu uszkodzonego silnika trójfazowego połączonego w gwiazdę zmierzono rezystancje uzwojeń i rezystancje izolacji. Zamieszczone w tabeli wyniki pomiarów pozwalają stwierdzić, że możliwe jest

Wielkość mierzonaWartość, Ω
Rezystancja uzwojeń między zaciskami silnika:
U1 – V110,0
V1 – W1
W1 – U1
Rezystancja izolacji między zaciskami a obudową silnika:Wartość, MΩ
U1 – PE15,5
V1 – PE15,5
W1 – PE0

Ilustracja do pytania
A. odkręcenie się i dotknięcie obudowy przez przewód spod zacisku V1
B. przerwanie uzwojenia V1 - V2
C. odkręcenie się i dotknięcie obudowy przez przewód spod zacisku Wl
D. przerwanie uzwojenia Ul - U2
Analizując pozostałe odpowiedzi, można zauważyć, że każda z nich opiera się na błędnych założeniach dotyczących stanu uzwojeń i ich izolacji. Przerwanie uzwojenia V1 - V2 nie mogłoby być przyczyną niskiej rezystancji izolacji, która została zmierzona dla zacisku W1. Przede wszystkim, przerwanie obwodu mechanicznymi uszkodzeniami uzwojenia skutkowałoby innym rezultatem pomiaru rezystancji, a nie bezpośrednim zwarciem do obudowy, jak to ma miejsce w sytuacji, gdy przewód odkręca się i dotyka obudowy. Podobnie, stwierdzenie dotyczące przerwania uzwojenia Ul - U2 również opiera się na mylnych przesłankach, ponieważ pomiary pokazują, że pozostałe uzwojenia mają normatywną rezystancję izolacyjną, co nie sugeruje ich uszkodzeń. Niekiedy osoby analizujące takie wyniki mogą błędnie interpretować wysokie wartości rezystancji jako oznakę problemu, podczas gdy w rzeczywistości są to zdrowe, działające uzwojenia. Kluczowe jest zrozumienie, że w kontekście bezpieczeństwa elektrycznego oraz wydajności urządzeń, analiza wyników pomiarów wymaga dokładności oraz znajomości zasad działania silników elektrycznych, co może zapobiegać nieporozumieniom i niewłaściwym diagnozom. W branży elektrycznej nieprzestrzeganie standardów pomiarów i analiz może prowadzić do poważnych konsekwencji, w tym uszkodzenia sprzętu oraz zagrożenia dla zdrowia użytkowników.

Pytanie 27

Jakie z wymienionych uszkodzeń można zidentyfikować podczas przeglądów instalacji?

A. Brak ciągłości przewodu neutralnego
B. Pogorszenie stanu mechanicznego złącz przewodów
C. Zbyt wysoka rezystancja przewodu uziemiającego
D. Brak ciągłości przewodu ochronnego
Prawidłowa odpowiedź to pogorszenie się stanu mechanicznego połączeń przewodów, ponieważ jest to problem, który można łatwo zauważyć podczas oględzin instalacji. Oględziny polegają na wizualnej inspekcji elementów instalacji, co pozwala na identyfikację widocznych uszkodzeń, takich jak korozja, luzne złącza czy pęknięcia. Te defekty mogą prowadzić do zwiększonego oporu elektrycznego, co z kolei wpływa na wydajność i bezpieczeństwo całego systemu. Zgodnie z normą PN-IEC 60364, regularne przeglądy instalacji elektrycznych są kluczowe dla zapewnienia ich bezpieczeństwa i sprawności. Przykładem praktycznym może być inspekcja połączeń w rozdzielnicach, gdzie luźne przewody mogą powodować przegrzewanie się i ryzyko pożaru. Dlatego identyfikacja pogorszenia stanu mechanicznego połączeń jest niezbędna w celu zapobiegania awariom i zapewnienia ciągłości działania instalacji.

Pytanie 28

Jakie z wymienionych uszkodzeń można zidentyfikować podczas przeglądów podtynkowej instalacji elektrycznej?

A. Zerwanie w układzie przewodów ochronnych
B. Pogorszenie jakości izolacji przewodów instalacji
C. Uszkodzenia mechaniczne obudów oraz osłon urządzeń elektrycznych
D. Przekroczenie maksymalnego czasu reakcji RCD
Uszkodzenia mechaniczne obudów i osłon urządzeń elektrycznych są jednymi z najłatwiejszych do zidentyfikowania podczas oględzin podtynkowej instalacji elektrycznej. Obejmują one widoczne wgniecenia, pęknięcia oraz inne defekty zewnętrzne, które mogą negatywnie wpłynąć na bezpieczeństwo i funkcjonowanie instalacji. Obudowy urządzeń elektrycznych, takie jak skrzynki rozdzielcze czy osłony gniazdek, pełnią kluczową rolę w ochronie przed uszkodzeniami mechanicznymi oraz zapewnieniu bezpieczeństwa użytkowników. Regularne oględziny tych elementów są zalecane w ramach przeglądów okresowych, zgodnie z normami PN-EN 60204-1 dotyczącymi bezpieczeństwa maszyn oraz obowiązującymi przepisami prawa budowlanego. Przykładowo, w przypadku pękniętej obudowy gniazdka, istnieje ryzyko kontaktu z elementami przewodzącymi prąd, co może prowadzić do porażenia elektrycznego. Dlatego kluczowym jest, aby wszelkie uszkodzenia były niezwłocznie naprawiane, co podkreśla znaczenie systematycznych kontroli i odpowiednich działań prewencyjnych w zakresie utrzymania instalacji elektrycznych w dobrym stanie.

Pytanie 29

Jednofazowa grzałka o mocy 4 kW jest zasilana przewodem o długości 10 m i przekroju 1,5 mm2. W jaki sposób zmienią się straty mocy w przewodzie zasilającym, gdy jego przekrój wyniesie 2,5 mm2?

A. Zmniejszą się o 40%
B. Zmniejszą się o 100%
C. Zwiększą się o 100%
D. Zwiększą się o 40%
Przy zwiększeniu przekroju przewodu z 1,5 mm² do 2,5 mm² straty mocy w przewodzie ulegają redukcji o 40%. Straty mocy w przewodach elektrycznych są funkcją oporu, który z kolei zależy od przekroju przewodu, długości oraz materiału, z którego jest wykonany. Opór przewodu można obliczyć ze wzoru: R = ρ * (L / A), gdzie ρ to oporność właściwa materiału, L to długość przewodu, a A to jego przekrój. Zwiększenie powierzchni przekroju przewodu zmniejsza opór, co prowadzi do mniejszych strat mocy na skutek efektu Joule'a, gdzie moc stratna P = I² * R. Przykładowo, w instalacjach przemysłowych, gdzie wykorzystywane są długie przewody zasilające, zastosowanie większego przekroju przewodu nie tylko poprawia efektywność energetyczną, ale także zmniejsza ryzyko przegrzewania się przewodów oraz awarii. Standardy takie jak PN-IEC 60364 zalecają stosowanie odpowiednich przekrojów przewodów, aby zminimalizować straty energii oraz zwiększyć bezpieczeństwo instalacji elektrycznych.

Pytanie 30

Które z poniższych rozwiązań gwarantuje podstawową ochronę przed porażeniem w grzejniku elektrycznym działającym w systemie TN-S?

A. Zastosowanie wyłącznika instalacyjnego nadprądowego w obwodzie zasilania
B. Podłączenie obudowy do uziemienia ochronnego
C. Zastosowanie wyłącznika różnicowoprądowego w obwodzie zasilania
D. Izolacja robocza
Izolacja robocza jest kluczowym elementem zapewniającym podstawową ochronę przeciwporażeniową w urządzeniach elektrycznych, takich jak grzejniki elektryczne, pracujące w sieci TN-S. W tym systemie zasilania, który charakteryzuje się oddzieleniem przewodu neutralnego od przewodu ochronnego, odpowiednie zastosowanie izolacji roboczej ma na celu minimalizowanie ryzyka porażenia prądem w przypadku uszkodzenia urządzenia. Izolacja robocza to warstwa materiału izolacyjnego, która otacza przewody elektryczne i zapobiega ich kontaktowi z elementami metalowymi urządzenia, a tym samym z użytkownikiem. Przykładem praktycznego zastosowania izolacji roboczej jest użycie wysokiej jakości materiałów takich jak PVC lub guma, które są odporne na wysokie temperatury i działanie chemikaliów. Standardy takie jak IEC 60364 oraz normy krajowe dotyczące instalacji elektrycznych wskazują na konieczność stosowania izolacji roboczej, aby zapewnić bezpieczeństwo użytkowników. W praktyce, każdy grzejnik elektryczny powinien być zaprojektowany tak, aby spełniał wymagania dotyczące izolacji, co znacznie redukuje ryzyko wypadków związanych z porażeniem prądem.

Pytanie 31

Która z podanych czynności nie zalicza się do weryfikacji stanu technicznego podczas przeglądu układu napędowego z energoelektronicznym przekształtnikiem?

A. Weryfikacja połączeń stykowych
B. Ocena czystości filtrów powietrza chłodzącego
C. Pomiar natężenia oświetlenia na stanowisku obsługi układu napędowego
D. Sprawdzenie jakości zabezpieczeń nadprądowych i zmiennozwarciowych
Sprawdzenie oświetlenia na stanowisku obsługi układu napędowego nie jest tak naprawdę częścią ogólnej oceny stanu technicznego tego układu, szczególnie jeśli chodzi o przekształtniki energoelektroniczne. Większość przeglądów skupia się na tym, czy wszystkie elementy mechaniczne i elektryczne są w porządku. To znaczy, trzeba porządnie sprawdzić połączenia stykowe, upewnić się, że filtry powietrza chłodzącego są czyste, a także kontrolować zabezpieczenia nadprądowe i zmiennozwarciowe. Oświetlenie jest ważne dla bezpieczeństwa ludzi pracujących przy tych urządzeniach, ale nie ma bezpośredniego wpływu na to, jak wydajnie układ działa. Na przykład, jeśli mówimy o przekształtnikach, kluczowe jest zapewnienie właściwego chłodzenia, co możemy kontrolować poprzez te filtry powietrza. Dobre połączenia stykowe i odpowiednie zabezpieczenia są także bardzo ważne, żeby uniknąć awarii. Warto pamiętać, że istnieją normy, jak IEC czy ISO, które podkreślają, jak istotne są regularne przeglądy komponentów elektrycznych dla bezpieczeństwa w pracy.

Pytanie 32

Zgodnie z obowiązującymi przepisami, minimalna rezystancja izolacji uzwojeń silnika asynchronicznego o mocy 5 kW w temperaturze 20˚C powinna wynosić

A. 5 MΩ
B. 10 MΩ
C. 3 MΩ
D. 1 MΩ
Wybór niższej wartości minimalnej rezystancji izolacji, takiej jak 1 MΩ, 3 MΩ czy 10 MΩ, jest wynikiem niepełnego zrozumienia norm dotyczących bezpieczeństwa oraz wydajności silników elektrycznych. Przede wszystkim, zbyt niska wartość rezystancji izolacji, jak 1 MΩ, nie spełnia standardów, co może prowadzić do niebezpieczeństwa porażenia prądem, a także zwiększa ryzyko wystąpienia zwarć wewnętrznych. Silniki asynchroniczne są zaprojektowane tak, aby ich izolacja wytrzymywała znacznie wyższe napięcia i obciążenia, dlatego wartość 5 MΩ jest uważana za minimalną. Wybór 10 MΩ, choć teoretycznie wydaje się lepszą opcją, może być mylny, ponieważ zbyt wysoka rezystancja również może wskazywać na problemy z izolacją, takie jak nadmierne osuszenie materiału izolacyjnego, co prowadzi do jego kruchości i pęknięć. W praktyce, odpowiednie pomiary powinny być wykonywane z użyciem odpowiednich narzędzi, takich jak megger, aby dokładnie ocenić stan izolacji i zapewnić, że nie spadnie ona poniżej wspomnianych norm. Regularne monitorowanie rezystancji izolacji jest kluczowe w utrzymaniu silników w dobrym stanie, co przekłada się na ich długowieczność i optymalną wydajność. Ignorowanie tych zasad może prowadzić nie tylko do awarii silnika, ale również do poważnych wypadków w miejscu pracy.

Pytanie 33

Uszkodzenie izolacji uzwojenia w działającym przekładniku może wystąpić na skutek rozłączenia zacisków jego strony

A. wtórnej przekładnika prądowego
B. pierwotnej przekładnika napięciowego
C. wtórnej przekładnika napięciowego
D. pierwotnej przekładnika prądowego
Odpowiedzi związane z pierwotnym uzwojeniem przekładników prądowych i napięciowych są nieprawidłowe, ponieważ zakładają, że rozwarcie może wystąpić w obwodzie, który nie generuje niebezpiecznych warunków. W rzeczywistości pierwotne uzwojenie przekładnika prądowego jest na stałe podłączone do obwodu zasilającego i nie jest narażone na bezpośrednie rozwarcie, co powodowałoby wzrost napięcia na jego końcach. W przypadku przekładnika napięciowego, rozwarcie uzwojenia wtórnego może prowadzić do sytuacji, w której napięcie na uzwojeniu pierwotnym wzrasta, ale nie prowadzi to do uszkodzenia izolacji. Typowym błędem myślowym jest mylenie ról uzwojeń wtórnych i pierwotnych; uzwojenia wtórne są wrażliwe na rozwarcia, które prowadzą do ryzykownych warunków operacyjnych z powodu braku obciążenia. Dlatego istotne jest, aby zrozumieć, że uszkodzenia izolacji wynikają głównie z nieprawidłowego działania obwodów wtórnych, a nie pierwotnych, co powinno być uwzględnione w każdym projekcie systemu energetycznego. Przestrzeganie norm oraz stosowanie odpowiednich zabezpieczeń to kluczowe elementy zapewniające bezpieczeństwo i niezawodność systemów elektroenergetycznych.

Pytanie 34

Ruch napędu należy zatrzymać w sytuacji zagrożenia bezpieczeństwa operatora lub otoczenia, jak również w przypadku wykrycia uszkodzeń lub zakłóceń uniemożliwiających jego prawidłowe działanie, a szczególnie gdy występuje

A. znamionowe zużycie prądu
B. spadek rezystancji izolacji uzwojeń do 5 MΩ
C. spadek napięcia zasilania poniżej 3 %
D. nadmierne wibracje
Odpowiedź 3, dotycząca nadmiernych drgań, jest poprawna, ponieważ drgania w urządzeniach napędowych mogą prowadzić do poważnych problemów operacyjnych oraz uszkodzeń. Zgodnie z normami branżowymi, takim jak ISO 10816, nadmierne drgania mogą wskazywać na niewłaściwe osadzenie, zużycie łożysk czy też problemy z wirnikami. Przykładem może być sytuacja, gdy maszyna wibracyjna, taka jak silnik elektryczny, przekroczy dopuszczalne poziomy drgań, co może skutkować nie tylko uszkodzeniem samego urządzenia, ale również stanowić zagrożenie dla operatorów. W praktyce, w przypadku stwierdzenia nadmiernych drgań, należy natychmiast wstrzymać działanie urządzenia, aby przeprowadzić odpowiednią diagnostykę i naprawy, co jest zgodne z zasadą prewencji w zarządzaniu bezpieczeństwem pracy. Takie działania mają na celu minimalizację ryzyka obrażeń oraz zapewnienie ciągłości operacji, co jest kluczowe w przemyśle produkcyjnym.

Pytanie 35

Jak wpłynie na napięcie dolnej strony transformatora wzrost liczby aktywnych zwojów w uzwojeniu górnym, przy niezmienionym napięciu zasilania?

A. Nie ulegnie zmianie
B. Spadnie do zera
C. Wzrośnie
D. Zmniejszy się
Zrozumienie działania transformatora wymaga znajomości podstawowych zasad dotyczących napięcia, zwojów oraz ich wzajemnych relacji. Odpowiedzi sugerujące, że napięcie się nie zmieni, mogą wynikać z błędnego założenia, że liczba zwojów nie ma wpływu na napięcie wyjściowe. Takie podejście ignoruje fundamentalne zasady transformacji energii. W rzeczywistości, napięcie na uzwojeniu dolnym jest bezpośrednio związane z liczbą zwojów w uzwojeniu górnym. Jeśli liczba zwojów w uzwojeniu górnym wzrasta, napięcie na dolnym uzwojeniu musi się obniżyć, aby zachować równowagę w transformatorze. Z kolei twierdzenie, że napięcie wzrośnie, jest oparte na niewłaściwym zrozumieniu mechanizmu działania transformatora, gdzie zwiększenie liczby zwojów w jednym uzwojeniu automatycznie nie prowadzi do wzrostu napięcia w innym. Ostatnia możliwość, że napięcie spadnie do zera, może być wynikiem skrajnego myślenia, które nie uwzględnia faktu, że transformator, przy odpowiednim zasilaniu, zawsze wytwarza pewne napięcie na uzwojeniu dolnym, choć może być ono mniejsze niż w przypadku mniejszej liczby zwojów w uzwojeniu górnym. Dobrą praktyką w analizie układów elektrycznych jest zawsze uwzględnianie proporcji i zależności między poszczególnymi elementami, co pozwala na lepsze zrozumienie działania i przewidywanie konsekwencji zmian w układzie.

Pytanie 36

Należy kontrolować instalację elektryczną w obiektach o wysokiej wilgotności (75-100%) pod kątem efektywności ochrony przed porażeniem nie rzadziej niż co

A. 3 lata
B. 4 lata
C. 1 rok
D. 2 lata
Sprawdzenie instalacji elektrycznej przynajmniej raz do roku w wilgotnych pomieszczeniach to naprawdę ważna sprawa. Jest to zgodne z zasadami bezpieczeństwa i ochrony przed porażeniem prądem. Jeśli wilgotność w pomieszczeniu wynosi od 75% do 100%, ryzyko porażenia wzrasta, więc warto, żebyśmy zajmowali się tym regularniej. Dobrze jest przeprowadzać inspekcje urządzeń i instalacji, żeby upewnić się, że nic nie zagraża bezpieczeństwu. Do takiej kontroli należy sprawdzić stan przewodów, działanie wyłączników różnicowoprądowych oraz ogólny stan instalacji. Na przykład, w łazience, gdzie wilgotność jest wysoka, regularne kontrole oświetlenia są kluczowe. Dzięki odpowiednim testom i konserwacji można uniknąć niebezpiecznych sytuacji. Warto też pamiętać o normie PN-EN 61140, która wskazuje na potrzebę regularnych przeglądów w takich warunkach.

Pytanie 37

Przedstawione w tabeli wyniki pomiarów rezystancji uzwojeń i izolacji silnika trójfazowego wskazują na

Pomiar między zaciskami silnikaRezystancja
U1 – U232 Ω
V1 – V232 Ω
W1 – W232 Ω
U1 – V10
V1 – W15 MΩ
U1 – W15 MΩ
U1 – PE0
V1 – PE0
W1 – PE5 MΩ

A. uszkodzoną izolację w uzwojeniach U1 – U2 oraz V1 – V2
B. zwarcie między uzwojeniami U1 – U2 oraz W1 – W2
C. przerwę w uzwojeniu U1 – U2
D. zwarcie międzyzwojowe w uzwojeniu W1 – W2
Odpowiedź wskazująca na uszkodzoną izolację w uzwojeniach U1 – U2 oraz V1 – V2 jest prawidłowa ze względu na wyniki pomiarów rezystancji, które zostały przedstawione w tabeli. Wartości wynoszące 0 Ω dla izolacji są alarmującym sygnałem, wskazującym na bezpośrednie połączenie z masą, co oznacza, że nie ma odpowiedniej bariery izolacyjnej. Zgodnie z normą IEC 60034, rezystancja izolacji powinna wynosić przynajmniej kilkaset megaomów, aby zapewnić bezpieczną i niezawodną pracę silnika. Praktyka przemysłowa zaleca, aby regularnie monitorować stan izolacji silników poprzez pomiary rezystancji, co pozwala na wczesne wykrywanie potencjalnych problemów. W przypadku stwierdzenia uszkodzonej izolacji, należy podjąć natychmiastowe działania, takie jak odłączenie silnika od zasilania i dokładna inspekcja uzwojeń, aby zapobiec poważniejszym uszkodzeniom oraz zminimalizować ryzyko pożaru. Usunięcie tego typu defektów jest kluczowe dla zapewnienia bezpieczeństwa na stanowisku pracy oraz długoterminowej efektywności urządzenia.

Pytanie 38

Aby przeprowadzić bezpieczne oraz efektywne działania mające na celu zlokalizowanie uszkodzenia w silniku jednofazowym z kondensatorem rozruchowym, należy wykonać kolejność następujących czynności:

A. rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej
B. odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne
C. odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie
D. przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator
Poprawna odpowiedź polega na odłączeniu napięcia zasilania, odkręceniu pokrywy tabliczki zaciskowej, rozładowaniu kondensatora i przeprowadzeniu oględzin oraz pomiarów sprawdzających. Każdy z tych kroków ma kluczowe znaczenie dla zapewnienia bezpieczeństwa i efektywności pracy. Pierwszym krokiem jest odłączenie napięcia zasilania, co minimalizuje ryzyko porażenia prądem oraz zapobiega uszkodzeniom sprzętu. Następnie, odkręcenie pokrywy tabliczki zaciskowej umożliwia dostęp do wewnętrznych komponentów silnika. Warto zauważyć, że kondensatory mogą przechowywać ładunek elektryczny nawet po odłączeniu zasilania, dlatego ważne jest, aby rozładować kondensator przed dalszymi pracami, co eliminuje ryzyko porażenia. Ostatnim krokiem są oględziny i pomiary, które pozwalają na diagnozowanie potencjalnych uszkodzeń oraz ocenę stanu technicznego silnika. Stosowanie tej kolejności działań jest zgodne z dobrymi praktykami w zakresie bezpieczeństwa oraz spotykanymi w normach branżowych, co zapewnia skuteczność działań serwisowych i naprawczych.

Pytanie 39

Grzałka jednofazowa o mocy 4 kW jest zasilana przewodem o długości 10 m i przekroju 1,5 mm2. W jaki sposób zmienią się straty mocy w przewodzie zasilającym, jeśli jego przekrój zostanie zwiększony do 2,5 mm2?

A. Wzrosną o 40%
B. Wzrosną o 100%
C. Spadną o 40%
D. Spadną o 100%
Odpowiedź, że straty mocy w przewodzie zmniejszą się o 40%, jest prawidłowa z kilku powodów związanych z zasadami działania prądów elektrycznych i strat energii. Straty mocy w przewodach elektrycznych są związane z oporem przewodnika, który można obliczyć z wykorzystaniem wzoru: P = I²R, gdzie P to moc strat, I to natężenie prądu, a R to opór przewodu. Przy zwiększeniu przekroju przewodu z 1,5 mm2 do 2,5 mm2, opór przewodu maleje, co prowadzi do zmniejszenia strat mocy. W praktyce, stosowanie przewodów o większym przekroju jest zalecane w celu minimalizacji strat energii, co jest zgodne z normami i zasadami efektywności energetycznej. Na przykład, w instalacjach przemysłowych oraz budowlanych, dobór odpowiednich przewodów elektrycznych wpływa na bezpieczeństwo, efektywność operacyjną oraz oszczędności w kosztach energii. To podejście jest zgodne z dobrymi praktykami branżowymi, które promują zwiększenie efektywności energetycznej, a tym samym ograniczenie emisji CO2. Zmniejszenie strat mocy o 40% przy zastosowaniu przewodu o większym przekroju jest wymiernym zyskiem, który powinien być brany pod uwagę na etapie projektowania instalacji. Warto pamiętać, że zastosowanie odpowiednich przekrojów przewodów ma również wpływ na ich temperaturę roboczą, co poprawia bezpieczeństwo całego systemu.

Pytanie 40

W instalacjach oświetleniowych w mieszkaniach nie wolno używać opraw oświetleniowych stałych i regulowanych wykonanych w klasie ochronności

A. III
B. I
C. 0
D. II
Odpowiedź 0 jest ok, bo w mieszkaniach nie powinniśmy używać opraw oświetleniowych klasy ochronności 0. One nie mają żadnej dodatkowej izolacji, a to znaczy, że mogą być niebezpieczne, zwłaszcza gdy mówimy o kontaktach z prądem. Klasa ochronności 0 nie chroni przed prądami błądzącymi, a to niesie ryzyko, zwłaszcza tam, gdzie są wilgotne powierzchnie, jak w łazienkach. Z norm PN-IEC 61140 i PN-EN 60598 wynika, że najlepiej używać opraw przynajmniej klasy I, które mają uziemienie i dodatkowe zabezpieczenia. W praktyce, jeśli wybierzemy oprawy klasy I lub II, zwiększamy bezpieczeństwo, co w domowych warunkach jest bardzo ważne. W miejscach, gdzie może być woda, naprawdę warto postawić na oprawy odpowiedniej klasy, żeby zminimalizować ryzyko porażenia prądem.