Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik technologii chemicznej
  • Kwalifikacja: CHM.02 - Eksploatacja maszyn i urządzeń przemysłu chemicznego
  • Data rozpoczęcia: 3 maja 2025 16:15
  • Data zakończenia: 3 maja 2025 16:16

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie elementy składają się na niezbędne wyposażenie reaktora, w którym prowadzi się proces polimeryzacji chlorku winylu w autoklawie z chłodzącym płaszczem?

A. Mieszadło, termometr, wężownica
B. Termometr, bełkotka, pehametr
C. Manometr, termometr, mieszadło
D. Manometr, wężownica, pehametr
Wszystkie odpowiedzi inne niż poprawna nie spełniają kluczowych wymagań dotyczących oprzyrządowania autoklawu do polimeryzacji chlorku winylu. Mieszadło jest fundamentalnym elementem, ale wśród innych propozycji niektóre z nich zawierają nieodpowiednie komponenty. Na przykład, pehametr, choć przydatny w wielu procesach chemicznych, nie jest kluczowy w kontekście polimeryzacji chlorku winylu, gdzie pH nie zmienia się znacząco w trakcie reakcji. Użycie bełkotki, która jest rodzajem mieszadła, nie jest standardem w autoklawach, ponieważ nie zapewnia takiej samej efektywności mieszania jak dedykowane mieszadła mechaniczne. Co więcej, zastosowanie manometru i termometru w odpowiedzi, która nie zawiera mieszadła, zignorowałoby znaczenie jednorodnego rozprowadzenia reagentów, co jest kluczowe dla jakości produktu. W praktyce, błędna identyfikacja zasady funkcjonowania tych urządzeń może prowadzić do nieefektywnego procesu, a w konsekwencji do obniżonej jakości polimerów. Właściwe zrozumienie i identyfikacja odpowiednich elementów wyposażenia reaktora są kluczowe dla sukcesu procesu polimeryzacji, co wspiera efektywność produkcji i zgodność z normami branżowymi.

Pytanie 2

Jednym z kroków w produkcji sody metodą Solvaya jest filtracja uzyskanego NaHCO3. Przesącz, który zawiera sole amonowe, powinien być skierowany do

A. osadnika ścieków
B. kolumny karbonizacyjnej
C. pieca obrotowego
D. kolumny regeneracyjnej
Wybór odpowiedzi związany z osadnikiem ścieków wskazuje na brak zrozumienia roli, jaką pełnią różne elementy procesu produkcji sody. Osadniki są typowo używane do separacji ciał stałych od cieczy, co ma zastosowanie w oczyszczaniu ścieków, ale nie w procesie regeneracji amoniaku. Takie podejście prowadzi do nieefektywnej gospodarki zasobami, gdyż amoniak, który mógłby być odzyskany, zostanie zmarnowany. W przypadku kolumny karbonizacyjnej, jej podstawową funkcją jest wprowadzenie dwutlenku węgla do roztworu, co jest dalszym etapem po filtracji NaHCO3, a nie regeneracji amoniaku. Jeśli chodzi o piec obrotowy, jego rola w procesie produkcji sody jest związana z wypalaniem węglanu sodu, co również nie ma związku z przetwarzaniem przesączu. Wszystkie te wybory wskazują na błędne zrozumienie sekwencji procesów oraz ich wzajemnych relacji. Wzmacnia to potrzebę dokładniejszego przestudiowania procesów chemicznych i ich zastosowań w przemyśle, aby uniknąć błędów myślowych, które mogą prowadzić do nieefektywnych rozwiązań technologicznych oraz negatywnego wpływu na efektywność i rentowność procesów produkcyjnych.

Pytanie 3

Jakie analizy należy przeprowadzić, aby przygotować dokumentację dotyczącą procesu oczyszczania gazów planowanych do syntezy amoniaku?

A. Analiza stężenia związków siarki, metanu, tlenku węgla(II) oraz tlenku węgla(IV)
B. Analiza zawartości metali nieżelaznych oraz stężenia metanu i chlorowodoru
C. Analiza obecności węglowodorów aromatycznych oraz stężenia arsenowodoru i tlenku siarki(IV)
D. Analiza stężenia związków miedzi oraz obecności metanu, propanu i ksylenu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Badanie stężenia związków siarki, metanu, tlenku węgla(II) oraz tlenku węgla(IV) jest kluczowe w procesie oczyszczania gazów przeznaczonych do syntezy amoniaku, ponieważ te substancje mają istotny wpływ na efektywność reakcji oraz na jakość uzyskanego produktu. W procesie syntezy amoniaku, który zazwyczaj odbywa się w warunkach wysokiego ciśnienia i temperatury, obecność siarki może prowadzić do powstawania toksycznych związków, które mogą zatruwać katalizatory używane w procesie. Oczyszczanie gazów z metanu oraz tlenków węgla jest z kolei niezbędne, aby zminimalizować ryzyko powstawania niepożądanych reakcji ubocznych. Ponadto, monitorowanie tych związków jest zgodne z najlepszymi praktykami przemysłu chemicznego, które zalecają regularne analizowanie składu gazów procesowych, aby zapewnić wysoką jakość produkcji oraz bezpieczeństwo operacyjne. Dobrym przykładem zastosowania tej wiedzy jest ciągłe monitorowanie emisji gazów w zakładach zajmujących się syntezą amoniaku, co pozwala na bieżące podejmowanie działań korygujących i optymalizację warunków procesowych, co w efekcie prowadzi do zwiększenia wydajności oraz zmniejszenia wpływu na środowisko.

Pytanie 4

Nadzór nad funkcjonowaniem instalacji zasilającej piec rurowo cylindryczny (flaszkowy) opiera się na ciągłej obserwacji

A. twardości wody dostarczanej do pieca
B. natężenia przepływu oraz temperatury wody
C. natężenia przepływu oraz temperatury ropy naftowej
D. składu oraz odczynu podawanej ropy naftowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Monitorowanie działania instalacji zasilającej piec rurowo cylindryczny, szczególnie w kontekście przemysłu naftowego, wymaga stałej kontroli natężenia przepływu i temperatury ropy naftowej. Ropa, jako surowiec energetyczny, musi być dostarczana do pieca w odpowiednich warunkach, aby zapewnić efektywność procesu spalania oraz stabilność jego pracy. Odpowiednie natężenie przepływu zapewnia optymalne warunki reakcji chemicznych zachodzących w piecu, co wpływa na jego wydajność oraz bezpieczeństwo operacyjne. Zastosowanie nowoczesnych technologii monitoringu, takich jak sensory temperatury i przepływu, zgadza się z najlepszymi praktykami branżowymi, co pozwala na wczesne wykrywanie nieprawidłowości w działaniu instalacji. Na przykład, nagłe zmiany w natężeniu przepływu mogą wskazywać na zatykanie rurociągów lub problemy z pompami. Właściwe zarządzanie tymi parametrami jest kluczowe dla minimalizacji ryzyka awarii oraz zwiększenia efektywności energetycznej. W praktyce, firmy stosujące takie systemy monitorowania często osiągają lepsze wyniki operacyjne oraz oszczędności kosztów eksploatacyjnych.

Pytanie 5

W którym z urządzeń pomiarowych wilgotności używane jest zjawisko zmiany rozmiaru elementu sensora w zależności od poziomu wilgotności?

A. W wilgotnościomierzu pojemnościowym
B. W higrometrze kondensacyjnym
C. W psychrometrze Assmanna
D. W higrometrze bimetalicznym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Higrometr bimetaliczny wykorzystuje zjawisko rozszerzania i kurczenia się dwóch różnych metali połączonych w formie bimetalu. W zależności od zmieniającej się wilgotności powietrza, różne metale w bimetalu reagują odmiennie, co prowadzi do zginania się elementu detekcyjnego. To zjawisko jest kluczowe w praktycznych zastosowaniach, ponieważ umożliwia dokładny pomiar wilgotności w różnych warunkach atmosferycznych. Higrometry bimetaliczne są często stosowane w klimatyzatorach, nawilżaczach powietrza oraz w laboratoriach, gdzie precyzyjna kontrola wilgotności jest niezbędna. Warto również zauważyć, że zgodnie z normami branżowymi, urządzenia pomiarowe powinny być regularnie kalibrowane, aby zapewnić ich dokładność, a higrometry bimetaliczne są jednym z najstarszych, ale wciąż efektywnych narzędzi w tej dziedzinie. Ich prostota oraz niezawodność sprawiają, że są szeroko stosowane w różnych aplikacjach, co czyni je ważnym elementem w zarządzaniu środowiskiem. Podsumowując, wybór higrometru bimetalicznego do pomiaru wilgotności oparty jest na jego zdolności do wykorzystania fizycznych właściwości metali, co jest fundamentalne dla dokładnych pomiarów.

Pytanie 6

Co należy zrobić, gdy wskaźnik poziomu substancji w zbiorniku wskazuje maksymalną wartość?

A. Ignorować wskazanie, jeśli wskaźnik działa poprawnie, co jest błędnym i nieodpowiedzialnym działaniem.
B. Otworzyć zawór spustowy natychmiast, co może prowadzić do niekontrolowanego wypływu substancji.
C. Zwiększyć ciśnienie, aby zmniejszyć objętość substancji w zbiorniku, co jest niebezpiecznym i niewłaściwym podejściem.
D. Zatrzymać dopływ substancji i sprawdzić system alarmowy, by upewnić się, że działa prawidłowo.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W sytuacji, gdy wskaźnik poziomu substancji w zbiorniku pokazuje maksimum, kluczowe jest natychmiastowe zatrzymanie dopływu substancji. Pozwala to uniknąć przepełnienia, które mogłoby prowadzić do niebezpiecznych sytuacji, takich jak wyciek czy eksplozja. Sprawdzenie systemu alarmowego jest równie ważne, ponieważ zapewnia, że wszelkie ostrzeżenia o niebezpiecznych poziomach substancji są natychmiastowo rozpoznawane i odpowiednio adresowane. W branży chemicznej utrzymanie efektywności i bezpieczeństwa operacji jest priorytetem, dlatego kluczowe jest, by wszystkie systemy monitorujące działały prawidłowo. Regularne przeglądy i kalibracja sprzętu to standardy, które pomagają w uniknięciu sytuacji awaryjnych. Przykładowo, w zakładach chemicznych stosuje się często zintegrowane systemy bezpieczeństwa, które automatycznie wyłączają dopływ substancji przy osiągnięciu krytycznego poziomu, co jest dobrą praktyką w branży. Takie podejście minimalizuje ryzyko błędu ludzkiego i zwiększa ogólne bezpieczeństwo operacji przemysłowych.

Pytanie 7

Jednym ze sposobów na oszacowanie zużycia komponentów maszynowych jest metoda liniowa, która polega na

A. ważeniu części przed i po określonym czasie eksploatacji
B. ustaleniu zmian wymiarów liniowych składnika
C. ustaleniu zmian objętości części przed oraz po użytkowaniu
D. przeprowadzaniu badań dotykowych elementu po jego użyciu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Metoda liniowa jest bardzo ważna przy monitorowaniu zużycia części maszyn. Chodzi o to, żeby regularnie sprawdzać wymiary różnych elementów, co pomaga w ocenie ich stanu. Z mojego doświadczenia, zmiany wymiarów mogą wynikać z takich rzeczy jak ścieranie, deformacje czy zmiany temperatury, co powoduje, że maszyna może przestać działać dokładnie. Jak się dba o te pomiary, to można szybko wyłapać problemy i zaplanować konserwację lub wymianę części zanim dojdzie do awarii. W przemyśle motoryzacyjnym na przykład, pomiary wymiarów rzeczy jak wały korbowe czy części zawieszenia są na porządku dziennym, bo to pomaga utrzymać pojazdy w świetnej formie i zapewnia bezpieczeństwo na drodze. No i nie zapomnijmy o normach ISO 9001, które podkreślają, jak ważne są precyzyjne pomiary dla wydajności maszyn.

Pytanie 8

Jakie czynności obejmuje konserwacja płaszczowo-rurowego wymiennika ciepła?

A. Zawiera smarowanie uszczelek miedzianych wymiennika smarem silikonowym
B. Skupia się na usuwaniu kamienia oraz innych zanieczyszczeń z powierzchni rurociągów odprowadzających czynnik grzewczy
C. Dotyczy przedmuchania argonem zaworów znajdujących się na rurociągach doprowadzających czynnik grzewczy
D. Polega na eliminacji kamienia oraz innych zanieczyszczeń z powierzchni, na których odbywa się wymiana ciepła

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź odnosi się do kluczowego aspektu konserwacji płaszczowo-rurowych wymienników ciepła, który polega na usuwaniu kamienia oraz innych zanieczyszczeń z powierzchni, na których zachodzi wymiana ciepła. Zanieczyszczenia te mogą znacząco obniżyć sprawność wymiennika ciepła, prowadząc do zmniejszenia efektywności wymiany ciepła oraz zwiększenia zużycia energii. Regularna konserwacja polegająca na czyszczeniu wymienników ciepła zgodnie z zaleceniami producentów i normami branżowymi, takimi jak ASHRAE, ma na celu utrzymanie optymalnych warunków pracy urządzenia. Przykładem praktycznym może być stosowanie metod mechanicznych, takich jak szczotkowanie lub kąpiele chemiczne w celu usunięcia osadów. Ważne jest również monitorowanie stanu technicznego wymienników ciepła, co pozwala na wczesne wykrywanie problemów i planowanie działań serwisowych, co w dłuższej perspektywie przekłada się na zwiększenie żywotności urządzeń i ich efektywności operacyjnej.

Pytanie 9

Wokół podajnika taśmowego, który transportuje fosforyt, leżą znaczne ilości rozsypanego surowca. Jakie wnioski dotyczące stanu technicznego tego urządzenia można wyciągnąć na tej podstawie?

A. Taśma transportująca jest zbyt słabo napięta
B. Urządzenia działają poprawnie, jednak transportowany materiał ma zbyt dużą wilgotność
C. Urządzenia pracują poprawnie, a transportowany materiał ma niewłaściwą temperaturę
D. Taśma transportująca porusza się zbyt szybko

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca, że taśma transportująca jest zbyt słabo naciągnięta, jest trafna, ponieważ w przypadku zbyt luźno zamocowanej taśmy, materiał transportowany może nie być skutecznie przenoszony na urządzeniu, co prowadzi do jego rozsypywania. Zbyt małe napięcie taśmy powoduje, że nie jest ona w stanie utrzymać właściwego kształtu, co negatywnie wpływa na wydajność transportu. W praktyce, odpowiednie naciągnięcie taśmy jest kluczowe, aby zminimalizować straty materiału oraz zwiększyć efektywność operacyjną systemów transportowych. Standardy branżowe, takie jak normy ISO dotyczące transportu i przechowywania materiałów, podkreślają znaczenie utrzymania odpowiednich parametrów technicznych urządzeń transportowych, w tym naciągu taśmy. Aby zapewnić optymalną wydajność, regularne kontrole i konserwacja systemów transportowych, w tym sprawdzenie naciągu taśmy, powinny być przeprowadzane zgodnie z harmonogramem utrzymania ruchu.

Pytanie 10

Ile wody trzeba odparować z 150 g roztworu KCl o stężeniu 20%, aby uzyskać roztwór o stężeniu 50%?

A. 90 g
B. 30 g
C. 60 g
D. 50 g

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Żeby policzyć, ile wody trzeba odparować z roztworu KCl o stężeniu 20% (150 g), żeby uzyskać roztwór o stężeniu 50%, trzeba najpierw zobaczyć, ile KCl mamy na początku. Stężenie 20% znaczy, że w 100 g roztworu jest 20 g KCl, więc w 150 g roztworu będzie to: (150 g * 20 g) / 100 g = 30 g KCl. W nowym roztworze o stężeniu 50% ta sama ilość KCl (30 g) musi stanowić 50% całości. Czyli całkowita masa nowego roztworu wynosi: 30 g / 0,5 = 60 g. Różnica w masie, pomiędzy tym pierwotnym a nowym roztworem to: 150 g - 60 g = 90 g. Więc musimy odparować 90 g wody, żeby uzyskać potrzebne stężenie. Takie obliczenia są super ważne w chemii, zwłaszcza w laboratoriach, gdzie musimy precyzyjnie przygotować roztwory, by wyniki były wiarygodne.

Pytanie 11

Surowa ropa naftowa transportowana rurociągiem do zakładu przetwórczego jest poddawana badaniom laboratoryjnym. Jakie urządzenie należy wykorzystać do pobrania próbki?

A. sondy próżniowej
B. pipety zgłębnikowej
C. kurka probierczego
D. zgłębnika śrubowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kurka probiercza jest narzędziem powszechnie stosowanym w laboratoriach do pobierania próbek cieczy, w tym surowej ropy naftowej. Jej konstrukcja umożliwia pobieranie próbki z różnych głębokości, co jest kluczowe w kontekście zróżnicowanego składu ropy, który może się zmieniać w zależności od miejsca w zbiorniku. Kurka probiercza działa na zasadzie zamknięcia i otwarcia, co pozwala na pewne i precyzyjne pobranie próbki bez ryzyka zanieczyszczenia. W praktyce, przed pobraniem próbki, zaleca się przepłukanie kurka probierczego w tej samej cieczy, aby usunąć resztki z poprzednich analiz. Zgodnie z wytycznymi ASTM D4057, procedura pobierania próbek powinna być przeprowadzana w sposób, który zapewni reprezentatywność próbki. Prawidłowe wykorzystanie kurka probierczego nie tylko minimalizuje ryzyko błędów analitycznych, ale również zwiększa wiarygodność uzyskiwanych wyników, co jest kluczowe w ocenie jakości surowca przed jego dalszym przetwarzaniem w rafinerii.

Pytanie 12

Dane techniczne krystalizatora stosowanego w procesie krystalizacji laktozy zamieszczono w tabeli:
Jaką objętość produktu (m3) wykorzystano do napełnienia trzech krystalizatorów przy założeniu, że każdy został napełniony maksymalnie, czyli w 3/4 objętości zbiornika?

Pojemność8 m³
Temperatura na dopływie~42°C
Temperatura na odpływie~14°C
Zapotrzebowanie wody lodowej8 m³/h
Temperatura wody lodowej2°C

A. 8 m3
B. 12 m3
C. 18 m3
D. 6 m3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 18 m³ jest prawidłowa, ponieważ aby obliczyć łączną objętość produktu wykorzystanego do napełnienia trzech krystalizatorów, musimy najpierw ustalić pojemność jednego krystalizatora. Pojemność każdego krystalizatora wynosi 8 m³, jednak w procesie napełniania, wykorzystano tylko 3/4 tej objętości. Zatem obliczamy: 8 m³ * 3/4 = 6 m³. W każdym z trzech krystalizatorów znajduje się zatem 6 m³ produktu. Następnie, aby uzyskać łączną objętość, mnożymy objętość jednego krystalizatora przez liczbę krystalizatorów: 6 m³ * 3 = 18 m³. Ta metoda obliczeń jest zgodna z podstawowymi zasadami inżynierii procesowej, gdzie dokładne obliczenia objętości są kluczowe dla efektywności procesu krystalizacji. Pomocne może być również zrozumienie, jak takie obliczenia wpływają na optymalizację kosztów produkcji, co jest istotnym aspektem w branży spożywczej.

Pytanie 13

Jakie kroki należy podjąć po zauważeniu, że uszczelka autoklawu jest zużyta i ciśnienie w urządzeniu stale maleje?
przełożyć ją na drugą stronę.

A. Schłodzić urządzenie do temperatury otoczenia, wyrównać ciśnienie, odkręcić pokrywę, wyjąć zużytą uszczelkę i zamontować nową
B. Wyrównać ciśnienie w autoklawie, zdjąć pokrywę i zamontować nową uszczelkę na gorącą pokrywę
C. Otworzyć zawór bezpieczeństwa, schłodzić urządzenie do temperatury otoczenia, wyjąć uszczelkę i
D. Odkręcić pokrywę urządzenia, opróżnić autoklaw z zawartości, wyjąć zużytą uszczelkę, wyżarzyć ją i zamontować z powrotem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ postępowanie w sytuacji, gdy uszczelka autoklawu jest zużyta i ciśnienie systematycznie spada, powinno rozpocząć się od ochłodzenia aparatu do temperatury otoczenia. Jest to kluczowe, ponieważ manipulacja przy gorącym autoklawie może prowadzić do oparzeń i innych niebezpieczeństw. Następnie konieczne jest wyrównanie ciśnienia, co jest istotne, aby uniknąć nagłych wybuchów pary wodnej lub innych niebezpiecznych sytuacji. Dopiero po tych krokach można bezpiecznie odkręcić pokrywę autoklawu, wyjąć zużytą uszczelkę i zastąpić ją nową. Wymiana uszczelki jest niezbędna, aby zapewnić odpowiednią szczelność urządzenia, co ma kluczowe znaczenie dla jego prawidłowego działania i bezpieczeństwa. Dobre praktyki w zakresie konserwacji autoklawów podkreślają znaczenie regularnej inspekcji i wymiany uszczelek, co wpływa na efektywność sterylizacji oraz zabezpiecza przed uszkodzeniami sprzętu. Na przykład, w przemyśle medycznym, utrzymanie właściwego funkcjonowania autoklawu jest kluczowe dla zapewnienia bezpieczeństwa pacjentów i skuteczności procedur medycznych.

Pytanie 14

Proces zobojętniania kwasu fosforowego(V) przebiega zgodnie z reakcją przedstawioną równaniem H3PO4 + 3NaOH → Na3PO4 + 3H2O Ile kg NaOH, użytego z 10% nadmiarem, trzeba zużyć na zobojętnienie 294 kg kwasu fosforowego(V)?

MH3PO4 = 98 g/mol
MNaOH = 40 g/mol

A. 132 kg
B. 396 kg
C. 360 kg
D. 324 kg

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby poprawnie zobojętnić 294 kg kwasu fosforowego(V), konieczne jest stosowanie reakcji stechiometrycznych, które precyzyjnie określają ilość reagentów potrzebnych do przeprowadzenia reakcji chemicznej. W przypadku reakcji H3PO4 z NaOH, zgodnie z równaniem, stosunek molowy wynosi 1:3, co oznacza, że na każdy mol kwasu fosforowego(V) potrzeba trzech moli NaOH. Obliczając masę NaOH, musimy wziąć pod uwagę masę molową zarówno kwasu, jak i zasady. Zastosowanie 10% nadmiaru NaOH jest praktyczną metodą zapewniającą, że reakcja przebiegnie całkowicie, eliminując ryzyko niedoboru reagenta. W przemyśle chemicznym i laboratoriach, obliczenia te stanowią standardową procedurę, która zapewnia efektywność i bezpieczeństwo procesów chemicznych. Przykład użycia tej wiedzy to niezbędność w syntezach chemicznych, gdzie precyzyjne obliczenia ilości reagentów są kluczowe dla uzyskania wysokiej czystości produktu końcowego.

Pytanie 15

Podczas pracy z pompą wirową, wzrost poziomu hałasu może wskazywać na:

A. zwiększenie ciśnienia wejściowego
B. zmniejszenie wydajności pompy
C. zużycie łożysk lub kawitację
D. prawidłowe działanie pompy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wzrost poziomu hałasu w pompie wirowej jest zazwyczaj sygnałem ostrzegawczym, że coś jest nie tak. Jednym z głównych powodów takiego stanu może być zużycie łożysk. Łożyska w pompach są kluczowym elementem, zapewniającym płynne i efektywne działanie urządzenia. Z czasem jednak ulegają one zużyciu, co może prowadzić do zwiększonego tarcia, a w konsekwencji do wzrostu hałasu. Innym istotnym powodem może być zjawisko kawitacji. Kawitacja to proces, w którym pęcherzyki pary wodnej tworzą się w cieczy przepływającej przez pompę, a następnie gwałtownie zapadają się. To nie tylko generuje hałas, ale również może prowadzić do uszkodzeń mechanicznych. Zrozumienie tych procesów jest kluczowe dla eksploatacji i konserwacji maszyn przemysłu chemicznego. Regularne przeglądy i monitorowanie stanu technicznego pompy mogą zapobiec poważnym awariom i zapewnić jej długotrwałe działanie. Dbałość o prawidłowe działanie pompy to nie tylko kwestia efektywności, ale również bezpieczeństwa procesu przemysłowego.

Pytanie 16

Jakie elementy należy przede wszystkim zweryfikować, przygotowując butle do składowania gazów technicznych pod ciśnieniem do 15 MPa?

A. Aktualność legalizacji butli
B. Ilość rozpuszczalnika w butli
C. Wagę butli
D. Stan powłoki malarskiej butli

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aktualność legalizacji butli jest kluczowym aspektem przy przygotowywaniu butli do magazynowania gazów technicznych pod ciśnieniem. Zgodnie z normami oraz przepisami prawa, każdy zbiornik ciśnieniowy, w tym butle, musi być regularnie poddawany kontroli technicznej oraz legalizacji, aby zapewnić ich bezpieczeństwo i efektywność użytkowania. W Polsce na przykład, zgodnie z Rozporządzeniem Ministra Gospodarki, butle muszą być legalizowane co 10 lat. Kontrola legalizacji obejmuje ocenę stanu technicznego butli, a także potwierdzenie, że spełnia ona odpowiednie normy i standardy jakości. Przykładem zastosowania jest kontrola butli w zakładach przemysłowych, gdzie gazy techniczne są niezbędne do procesów produkcyjnych. Regularna legalizacja pozwala uniknąć niebezpieczeństw związanych z wyciekami gazu czy eksplozjami, co czyni ten proces kluczowym dla bezpieczeństwa wszystkich pracowników oraz otoczenia.

Pytanie 17

Jakie dodatki stosowane w stalach podnoszą ich odporność na działanie pary wodnej, roztworów soli oraz węglowodorów?

A. Fosfor, krzem, nikiel
B. Mangan, miedź, arsen
C. Chrom, molibden, tytan
D. Nikiel, glin, miedź

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Chrom, molibden i tytan to dodatki, które znacząco zwiększają odporność stali na działanie pary wodnej, roztworów soli oraz węglowodorów. Chrom, jako kluczowy składnik stali nierdzewnej, działa poprzez tworzenie cienkowarstwowej powłoki pasywnej, która chroni stal przed korozją. W połączeniu z molibdenem, jego właściwości antykorozyjne są znacznie wzmacniane, ponieważ molibden poprawia stabilność struktury w wysokich temperaturach i zwiększa odporność na pitting, czyli miejscową korozję. Tytan z kolei zwiększa wytrzymałość mechaniczna stali oraz jej odporność na działanie wysokich temperatur. W praktyce, stali z tymi dodatkami używa się w przemyśle chemicznym, na przykład w produkcji zbiorników i rur, które są narażone na działanie agresywnych mediów. Zastosowanie stali nierdzewnej w środowiskach o wysokiej wilgotności, jak np. przemysł spożywczy, potwierdza korzyści płynące z używania chromu, molibdenu i tytanu, co wpisuje się w normy jakościowe, takie jak ISO 9327, które regulują produkcję materiałów odpornych na korozję.

Pytanie 18

Aby potwierdzić obecność jonów Cl¯ w wodzie z sieci wodociągowej, powinno się zastosować

A. roztworu AgNO3
B. odczynnika Fehlinga
C. roztworu NH4SCN
D. odczynnika Tollensa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Roztwór AgNO3 (azotan srebra) jest najczęściej stosowanym odczynnikiem do wykrywania jonów Cl¯ w wodzie, ponieważ reaguje z nimi, tworząc nierozpuszczalny osad AgCl (chlorek srebra). Ta reakcja jest dobrze znana w chemii analitycznej i stanowi podstawę metody miareczkowania. W praktyce, test polega na dodaniu kilku kropli roztworu AgNO3 do próbki wody. Jeśli jony Cl¯ są obecne, pojawi się biały osad, co potwierdza ich obecność. Tego typu analiza jest zgodna z normami jakości wody, które wymagają regularnego monitorowania zawartości chlorków w wodzie pitnej. Roztwór AgNO3 jest również wykorzystywany w laboratoriach do analizy jakości wody, w badaniach środowiskowych oraz w przemyśle, gdzie kontrola zawartości jonów chlorkowych jest istotna. Ponadto, znajomość reakcji AgNO3 z jonami Cl¯ jest fundamentalna dla chemii analitycznej i wykorzystywana w różnych metodach analizy, takich jak miareczkowanie i spektroskopia.

Pytanie 19

Gazy pochodzące z mieszalnika oraz komór produkcyjnych superfosfatu, po absorpcji w wodzie, powinny zostać poddane badaniu na obecność

A. tlenku siarki(IV)
B. tlenku fosforu(V)
C. fluorku krzemu(IV)
D. tlenku azotu(IV)

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Fluorek krzemu(IV) jest związkiem chemicznym, który może powstawać w procesach chemicznych związanych z produkcją superfosfatu. W procesie tym, krzemionka może reagować z kwasami, co prowadzi do uwolnienia fluorku krzemu. Dlatego analiza gazów z mieszalnika i komór produkcyjnych po ich absorpcji w wodzie powinna obejmować detekcję tego niezwykle reaktywnego związku. Fluorek krzemu jest ważny, ponieważ może mieć wpływ na jakość produktu końcowego i bezpieczeństwo procesu. W praktyce, identyfikacja i kontrola stężenia fluorku krzemu w gazach odpadowych jest kluczowa, aby uniknąć ich szkodliwego wpływu na środowisko oraz zdrowie ludzi. Standardy branżowe, takie jak ISO 14001, zalecają monitorowanie emisji zanieczyszczeń, w tym gazów, co jest niezbędne dla zgodności z przepisami ochrony środowiska oraz dla zapewnienia bezpieczeństwa w miejscu pracy. Dobrą praktyką jest także regularne szkolenie pracowników dotyczące rozpoznawania potencjalnych zagrożeń związanych z emisjami chemicznymi.

Pytanie 20

Aby zapewnić właściwe funkcjonowanie przenośnika taśmowego, personel obsługujący powinien

A. okresowo redukować obciążenie napinacza
B. napinać w razie potrzeby taśmę nośną przy użyciu bębna napinającego
C. napinać w razie potrzeby taśmę nośną wykorzystując bęben napędowy
D. ciągle obserwować położenie zgarniaka

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ta odpowiedź jest poprawna, ponieważ odpowiednie napinanie taśmy nośnej przenośnika taśmowego jest kluczowym elementem utrzymania jego efektywności i prawidłowego funkcjonowania. Napinacz taśmy nośnej, umieszczony na bębnie napinającym, pozwala na dostosowanie napięcia taśmy do aktualnych warunków pracy, co zapobiega jej ślizganiu się, uszkodzeniom oraz nadmiernemu zużyciu. W praktyce, regularne monitorowanie stanu napinacza oraz jego odpowiednie regulacje przyczyniają się do zwiększenia żywotności przenośnika i minimalizują ryzyko awarii. W branży standardy dotyczące konserwacji i eksploatacji przenośników, takie jak normy ISO, podkreślają znaczenie regularnych przeglądów i dostosowywania napięcia taśmy. Pracownicy powinni być przeszkoleni w zakresie identyfikacji oznak niewłaściwego napięcia, takich jak hałas czy drgania taśmy. Przykładem dobrych praktyk jest wdrażanie harmonogramów przeglądów oraz dokumentowanie wszelkich regulacji, co pozwala na analizy trendów i podejmowanie działań prewencyjnych.

Pytanie 21

Urządzenia wykorzystywane w procesie oczyszczania gazów, które działają na zasadzie siły odśrodkowej, to

A. cyklony
B. wirówki filtracyjne
C. filtry workowe
D. osadniki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Cyklony to urządzenia odpylające, które wykorzystują siłę odśrodkową do separacji cząstek stałych z gazów. W procesie tym, zanieczyszczony gaz wprowadzany jest do cyklonu, gdzie następuje jego rotacja. Siła odśrodkowa powoduje, że cząstki stałe, ze względu na swoją masę, są wypychane ku ścianom wnętrza cyklonu, a następnie opadają na dno, skąd są usuwane. Cyklony są bardzo efektywne w usuwaniu dużych cząstek pyłów i są wykorzystywane w różnych branżach, w tym w przemyśle chemicznym, budowlanym i energetycznym. Przykładem zastosowania cyklonów jest ich wykorzystanie w instalacjach wentylacyjnych do oczyszczania powietrza z pyłów powstałych w procesach produkcyjnych. Warto również zaznaczyć, że cyklony są często stosowane w połączeniu z innymi systemami odpylania, co zwiększa ich skuteczność. Zgodnie z normami ISO i najlepszymi praktykami branżowymi, cyklony powinny być projektowane z uwzględnieniem specyfiki procesu technologicznego oraz rodzajów zanieczyszczeń, które mają być usuwane.

Pytanie 22

Skład wsadu do pieców koksowniczych tworzą wymieszane w odpowiednich ilościach określone gatunki węgla, przy czym węgiel gatunku 31 stanowi 22 ÷ 27% całkowitego składu. Jaką maksymalną ilość wsadu można przygotować, mając do dyspozycji 440 kg węgla gatunku 31 oraz nieograniczoną ilość węgla innych gatunków?

A. 1000 kg
B. 3000 kg
C. 2000 kg
D. 1500 kg

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć maksymalną ilość wsadu, który można przygotować, musimy uwzględnić udział procentowy węgla gatunku 31 w całym wsadzie. Ustalono, że węgiel ten powinien stanowić od 22% do 27% składu wsadu. Dysponując 440 kg węgla gatunku 31, możemy ustalić maksymalny wsad, przyjmując najniższy procent, czyli 22%. Wzór na obliczenie całkowitej masy wsadu przy znanym udziale masy konkretnego składnika wygląda następująco: M = m / p, gdzie M to całkowita masa wsadu, m to masa węgla gatunku 31, a p to udział procentowy tego węgla. Podstawiając wartości, otrzymujemy M = 440 kg / 0,22 = 2000 kg. Tak więc maksymalny wsad, który można przygotować, wynosi 2000 kg. W praktyce, przy projektowaniu wsadów, istotne jest stosowanie odpowiednich proporcji surowców, aby osiągnąć pożądane parametry jakościowe koksu, zgodne z normami branżowymi i wymaganiami technologicznymi procesów koksowniczych.

Pytanie 23

Jakie skutki może powodować realizacja procesu destylacji ropy naftowej bez przeprowadzenia wcześniejszego odsiarczenia, usunięcia soli (maks. 2-3 mg soli/dm3) oraz odwodnienia (poniżej 0,2% wody) surowca?

A. Obniżenie natężenia przepływu ropy przez system.
B. Zwiększenie tempa korozji w systemie.
C. Zwiększenie ciśnienia w systemie.
D. Osadzanie się kamienia w urządzeniach.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kiedy mówimy o destylacji ropy naftowej, to pamiętaj, że wstępne odsiarczenie, odsolenie i odwodnienie surowca to naprawdę ważne kroki. Bez nich, nasza instalacja może się szybciej psuć, a to przez siarkę, która w połączeniu z wodą robi kwas siarkowy. I to przyspiesza korozję stali i innych materiałów. W branży rafineryjnej mamy różne standardy, jak na przykład ISO 12944, które pomagają w ochronie przed korozją. W praktyce, jeśli zastosujemy techniki odsiarczenia, takie jak hydrogeneza czy adsorpcja, to zmniejszymy ilość siarki i w efekcie będziemy mogli dłużej korzystać z urządzeń, co w końcu zaoszczędzi nam kasę na konserwacji. Trzeba też pamiętać, że korozja potrafi doprowadzić do poważnych awarii, a to już ma swoje konsekwencje finansowe i wpływa na bezpieczeństwo pracy. Dlatego odpowiednie przygotowanie surowca przed procesem destylacji jest kluczowe.

Pytanie 24

Jak należy zmniejszyć ogólną próbkę świeżej partii fosforytów, aby uzyskać próbkę przeznaczoną do badań?

A. Odrzucając największe ziarna fosforytów
B. Z wykorzystaniem metody ćwiartkowania
C. Zagęszczając zbierany materiał podczas flotacji
D. Wybierając najmniejsze ziarna fosforytów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Stosując metodę ćwiartkowania" jest prawidłowa, ponieważ metoda ta jest klasyczną techniką redukcji próbki, szeroko stosowaną w laboratoriach geologicznych i mineralogicznych. Ćwiartkowanie polega na podziale próbki na cztery równe części, z których następnie wybiera się dwie do dalszej analizy. Ta metoda zapewnia, że próbka analizowana jest reprezentatywna dla całej partii, co jest kluczowe w kontekście analizy fosforytów, które mogą wykazywać znaczne zróżnicowanie. Przykładem zastosowania tej metody może być analiza jakości fosforytów w przemyśle nawozowym, gdzie ważne jest, aby próbka oddawała rzeczywisty skład chemiczny całej partii. Zgodnie z normami ISO dotyczącymi prób pobierania, stosowanie metody ćwiartkowania jest rekomendowane, ponieważ minimalizuje ryzyko błędów analitycznych związanych z niejednorodnością próbki. Dodatkowo, metoda ta jest łatwa do wykonania i nie wymaga specjalistycznego sprzętu, co czyni ją dostępną w wielu laboratoriach.

Pytanie 25

W trakcie produkcji kwasu azotowego(V) konieczne jest monitorowanie stężenia amoniaku w mieszance amoniakalno-powietrznej. Jak powinno się przeprowadzać pobieranie próbki do kontroli ruchowej?

A. Przy użyciu gazometru
B. Przy użyciu zgłębnika
C. Przy użyciu pipety gazowej
D. Przy użyciu butelki probierczej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pipeta gazowa to świetne narzędzie do pobierania gazów, bo dzięki niej możemy zwinnie i precyzyjnie napełniać próbki, co jest super ważne. Przy produkcji kwasu azotowego(V) musimy szczególnie pilnować stężenia amoniaku w mieszaninie amoniakalno-powietrznej, żeby reakcje chemiczne przebiegały jak należy i żeby nie wypuszczać za dużo szkodliwych substancji. Pipety gazowe są specjalnie stworzone do pracy z gazami i pozwalają na dokładne dawkowanie, co ma duże znaczenie, gdy analizujemy jakość i ilość. W praktyce przemysłowej użycie pipet gazowych to standard i zgodność z najlepszymi praktykami, jak te z normy ISO 8655, które mówią, jakie powinny być precyzyjne urządzenia pomiarowe. Dzięki pipetom unikamy też ryzyka kontaminacji próbki, co w chemii jest naprawdę kluczowe, bo czystość próbki wpływa na wyniki. Na przykład w przemyśle chemicznym standardem jest takie podejście, żeby wyniki były jak najbardziej wiarygodne.

Pytanie 26

W procesie flotacji nadzór sprawuje się poprzez pobieranie do analizy ruchowej między innymi

A. koncentrat po flotacji za pomocą zlewki
B. odczynniki flotacyjne za pomocą sondy
C. materiał do flotacji przy użyciu świdra
D. powietrze z aeratora przy pomocy aspiratora

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'koncentrat po flotacji za pomocą zlewki' jest poprawna, ponieważ monitorowanie procesu flotacji polega na analizie uzyskanego koncentratu, który jest kluczowym wskaźnikiem efektywności tego procesu. Flotacja jest techniką separacji, w której różne składniki mineralne są oddzielane na podstawie ich zdolności do przylegania do pęcherzyków powietrza. Po zakończeniu procesu, próbki koncentratu są pobierane do analizy, aby ocenić jakość i ilość odzyskanego materiału. W praktyce, pobranie próbki za pomocą zlewki pozwala na dokładne i kontrolowane zbadanie właściwości fizykochemicznych koncentratu. To pozwala na dostosowanie parametrów procesu flotacji, takich jak dawki reagentów czy czas kontaktu, w celu optymalizacji wydajności. Standardy branżowe zalecają regularne pobieranie i analizowanie próbek, aby zapewnić, że proces flotacji działa zgodnie z oczekiwaniami i że uzyskiwane wyniki są zgodne z wymaganiami jakościowymi.

Pytanie 27

Jakim parametrem dawkowanego materiału powinno się zarządzać podczas obsługi podajnika talerzowego?

A. Granulację.
B. Temperaturę.
C. Skład.
D. Wilgotność.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Granulacja materiału jest kluczowym parametrem w obsłudze podajnika talerzowego, ponieważ wpływa na efektywność dozowania oraz jednorodność mieszanki. Granulacja odnosi się do wielkości cząstek materiału, co ma bezpośredni wpływ na przepływ materiału przez podajnik. Zbyt duże cząstki mogą powodować zatykanie się urządzenia, podczas gdy zbyt małe mogą prowadzić do nieprzewidywalnych wahań w dozowaniu. W praktyce, kontrola granulacji pozwala na optymalne dostosowanie parametrów procesu, co jest zgodne z najlepszymi praktykami w branży. W wielu zakładach produkcyjnych standardem jest regularne monitorowanie granulacji za pomocą analizy sitowej lub sprzętu do pomiaru rozkładu wielkości cząstek. Właściwa granulacja jest także kluczowa w kontekście jakości końcowego produktu, ponieważ wpływa na jego właściwości fizyczne i chemiczne. Na przykład, w przemyśle farmaceutycznym, granulat o odpowiedniej wielkości zapewnia równomierne rozkładanie substancji czynnych w tabletach, co jest niezbędne dla zachowania ich skuteczności.

Pytanie 28

Jakie jest zastosowanie wirówek talerzowych?

A. oczyszczania powietrza
B. rozdzielania emulsji
C. mieszania materiałów sypkich
D. rozdrabniania materiałów włóknistych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wirówki talerzowe, znane również jako wirówki dekantacyjne, są specjalistycznymi urządzeniami stosowanymi do rozdzielania emulsji, czyli układów, w których jedna ciecz jest rozproszona w drugiej. Proces ten zachodzi przy użyciu siły odśrodkowej, która oddziela składniki na podstawie ich gęstości. Dzięki swojej konstrukcji i wydajności, wirówki talerzowe są szeroko stosowane w przemyśle chemicznym, spożywczym oraz farmaceutycznym. Przykładowo, w przemyśle mleczarskim mogą być wykorzystywane do oddzielania tłuszczu od mleka, a w przemysłach chemicznych – do separacji cieczy i stałych w procesach produkcyjnych. W kontekście dobrych praktyk, ważne jest, aby przed użyciem wirówki zrozumieć właściwości przetwarzanych substancji oraz parametry procesu, takie jak prędkość obrotowa i czas separacji, co wpływa na efektywność rozdzielania emulsji.

Pytanie 29

Jaką ilość czerni eriochromowej należy odważyć, aby uzyskać 50,25 g jej mieszanki z NaCl, przy przygotowywaniu alkoholowego roztworu czerni eriochromowej, który powstaje z połączenia czerni eriochromowej z chlorkiem sodu w proporcji 1 g czerni na 200 g NaCl oraz odpowiednią ilością etanolu?

A. 50,20 g
B. 0,05 g
C. 50,0 g
D. 0,25 g

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby otrzymać 50,25 g mieszaniny czerni eriochromowej z chlorkiem sodu w proporcji 1 g czerni na 200 g NaCl, należy obliczyć, ile czerni eriochromowej jest potrzebne. W tej proporcji oznacza to, że na 200 g NaCl przypada 1 g czerni. Całkowita masa mieszaniny wynosi 50,25 g, zatem masa NaCl będzie wynosić 50,25 g - masa czerni. Stosując proporcję, możemy ustalić, że 200 g NaCl odpowiada 1 g czerni, co prowadzi do równania 50,25 g = 200 g NaCl + 0,25 g czerni. Z tego wynika, że masa czerni eriochromowej wynosi 0,25 g. Taki sposób obliczeń jest ważny w praktyce laboratoryjnej, gdzie precyzyjne przygotowanie roztworów ma kluczowe znaczenie dla uzyskiwania rzetelnych i powtarzalnych wyników analitycznych. Dobre praktyki w laboratoriach analitycznych obejmują dokładne odważanie reagentów oraz stosowanie odpowiednich proporcji, co jest niezbędne w analizach chemicznych oraz w przygotowywaniu wskaźników, takich jak czerń eriochromowa, wykorzystywana w titracji.

Pytanie 30

Które pomieszczenia będą odpowiednie na magazyn styrenu?

Styren (wybrane właściwości)
  • Ciecz bezbarwna
  • Temperatura zapłonu tz = 31°C
  • Temperatura samozapłonu tsz = 490°C
  • Utlenia się pod wpływem tlenu z powietrza tworząc wybuchowe nadtlenki
  • Łatwo polimeryzuje pod wpływem ogrzewania i światła
  • Niekontrolowana polimeryzacja może przebiegać wybuchowo

A. Dobrze ogrzewane i zaciemnione.
B. Dobrze ogrzewane i bardzo dobrze oświetlone.
C. Chłodne i bardzo dobrze oświetlone.
D. Chłodne i zaciemnione.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomieszczenia chłodne i zaciemnione stanowią optymalne warunki do przechowywania styrenu, ponieważ zapobiegają niekontrolowanej polimeryzacji, która może wystąpić w wyniku podgrzewania i ekspozycji na światło. Styren, jako ciecz łatwopalna o temperaturze zapłonu wynoszącej 31°C, wymaga szczególnych środków ostrożności. Przechowywanie go w chłodnych warunkach ogranicza ryzyko samozapłonu, a zaciemnienie chroni przed działaniem promieniowania UV, które może przyspieszyć reakcje polimeryzacyjne. W branży chemicznej i przemysłowej przestrzeganie zasad przechowywania substancji niebezpiecznych jest kluczowe dla bezpieczeństwa. Zgodnie z normami takimi jak NFPA (National Fire Protection Association), pomieszczenia do składowania substancji chemicznych powinny być dostosowane do specyficznych właściwości fizycznych i chemicznych przechowywanych materiałów. Przykładem praktycznym może być zastosowanie chłodziarek przemysłowych lub magazynów chłodniczych, które spełniają wszystkie wymagania dotyczące bezpieczeństwa. Warto zwrócić uwagę na odpowiednie oznaczenia i systemy wentylacyjne, które dodatkowo zabezpieczają przed gromadzeniem się niebezpiecznych oparów.

Pytanie 31

Aby przetransportować żwir na wysokość około 20 m, należy zastosować przenośnik

A. zgarniakowy
B. ślimakowy
C. kubełkowy
D. taśmowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przenośniki kubełkowe są idealnym rozwiązaniem do transportu materiałów sypkich, takich jak żwir, na dużą wysokość, w tym przypadku około 20 metrów. Zasada działania przenośników kubełkowych opiera się na wykorzystaniu kubełków zamocowanych na taśmie, które napełniają się materiałem na dole przenośnika i są następnie podnoszone w górę przez system taśmowy. Dzięki swojej konstrukcji, przenośniki te są w stanie efektywnie transportować materiały, minimalizując straty i zapobiegając ich uszkodzeniu. W branży budowlanej oraz górniczej przenośniki kubełkowe są powszechnie stosowane nie tylko do transportu żwiru, ale także piasku czy kamieni. Warto zaznaczyć, że ich wydajność i elastyczność w zastosowaniach sprawiają, że są preferowanym wyborem w zakładach zajmujących się przetwarzaniem surowców, gdzie konieczne jest podnoszenie materiałów na znaczne wysokości. Dobrą praktyką jest również regularne serwisowanie tych urządzeń, co zapewnia ich długotrwałe i niezawodne działanie w trudnych warunkach operacyjnych.

Pytanie 32

Który z wymienionych metali, użyty jako dodatek do stali, poprawi odporność tego stopu na działanie kwasów?

A. Magnez
B. Cynk
C. Nikiel
D. Aluminium

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Nikiel jest metalem, który wykazuje doskonałe właściwości antykorozyjne, co czyni go idealnym dodatkiem do stopów żelaza w zastosowaniach, gdzie odporność na działanie kwasów i różnych mediów chemicznych jest kluczowa. Dzięki swojej zdolności do tworzenia pasywnej warstwy ochronnej, nikiel zapobiega dalszej korozji żelaza, co zwiększa trwałość oraz żywotność takich materiałów. Przykładem zastosowania niklu w stopach żelaza jest stal nierdzewna, która zawiera zazwyczaj od 8% do 12% niklu. Stal nierdzewna, dzięki swoim właściwościom, znajduje szerokie zastosowanie w przemyśle spożywczym, chemicznym oraz budowlanym, gdzie narażona jest na kontakt z agresywnymi substancjami. Stosowanie niklu w stopach żelaza zgodne jest z branżowymi standardami, takimi jak ASTM A240, które określają wymogi dotyczące stali nierdzewnej. Warto również zaznaczyć, że nikiel pomaga w poprawie właściwości mechanicznych stali, co w połączeniu z jego odpornością na korozję czyni go niezwykle ważnym składnikiem w nowoczesnym inżynierii materiałowej.

Pytanie 33

Określ zestaw urządzeń laboratoryjnych, który powinien zostać wykorzystany do przeprowadzenia destylacji prostej?

A. Kolba ssawkowa, chłodnica, nasadka destylacyjna
B. Kolba destylacyjna, chłodnica, termometr
C. Kolba destylacyjna, lejek szklany, termometr
D. Kolba stożkowa, chłodnica, tryskawka

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to kolba destylacyjna, chłodnica i termometr, ponieważ jest to standardowy zestaw sprzętu używanego w procesie destylacji prostej. Kolba destylacyjna jest kluczowym elementem, w którym znajduje się mieszanina cieczy do destylacji. Jej kształt umożliwia efektywne prowadzenie procesu, przyczyniając się do oddzielania substancji na podstawie różnicy temperatur wrzenia. Chłodnica służy do schładzania par, które powstają w wyniku podgrzewania cieczy, co jest niezbędne do kondensacji pary w cieczy. Termometr pozwala na precyzyjne monitorowanie temperatury, co jest kluczowe dla kontrolowania procesu destylacji, gdyż różne składniki mają różne temperatury wrzenia. Przykładem zastosowania destylacji prostej jest oczyszczanie wody, gdzie można oddzielić zanieczyszczenia czy sole rozpuszczone w wodzie. Dzięki zastosowaniu tego zestawu sprzętu, można uzyskać wysokiej jakości produkt końcowy, który spełnia standardy czystości wymagane w laboratoriach oraz przemyśle chemicznym.

Pytanie 34

Przed przetworzeniem rudy siarki, w oparciu o zasadę jak najlepszego wykorzystania urządzeń, należy ją

A. rozpuścić w selektywnym rozpuszczalniku
B. oczyścić w procesie elektrolizy
C. poddać wzbogaceniu
D. wyprażyć w piecu szamotowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ruda siarki przed dalszym przetwarzaniem powinna być poddana wzbogaceniu. Wzbogacenie polega na usunięciu zbędnych zanieczyszczeń, co zwiększa zawartość siarki w produkcie końcowym. W praktyce oznacza to wykorzystanie różnych metod separacji, takich jak flotacja czy grawitacja, które pozwalają na uzyskanie bardziej czystego surowca. Przykładowo, w przypadku rudy siarki, flotacja może być stosowana do oddzielenia siarki od innych minerałów, co jest zgodne z najlepszymi praktykami w przemyśle mineralnym. Wzbogacenie jest kluczowe, ponieważ pozwala na optymalizację procesu wydobycia i przetwarzania, co skutkuje mniejszym zużyciem energii i materiałów w dalszych etapach. Dobre praktyki w branży zalecają, aby każda partia rudy była analizowana pod kątem zawartości surowca przed poddaniem dalszym procesom, co pozwala na lepsze zaplanowanie działań oraz maksymalizację efektywności ekonomicznej.

Pytanie 35

Jakie są wymagania dotyczące przechowywania karbidu?

A. W ciśnieniowych stalowych butlach
B. W stalowych pojemnikach
C. W foliowych workach
D. W luzie w suchym pomieszczeniu magazynowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przechowywanie karbidu w pojemnikach z blachy stalowej jest zalecane ze względu na jego właściwości chemiczne oraz ryzyko związane z jego reagowaniem z wilgocią. Karbid, zwany także węglikiem wapnia, reaguje z wodą, produkując acetylen, co może prowadzić do niebezpiecznych sytuacji, w tym wybuchów. Pojemniki stalowe zapewniają szczelność oraz odporność na działanie chemiczne, co minimalizuje ryzyko kontaminacji wilgocią. W praktyce, stosowanie pojemników stalowych jako standardowego rozwiązania w magazynach przemysłowych lub laboratoriach jest powszechną praktyką. Warto również zwrócić uwagę na odpowiednie oznakowanie tych pojemników, aby zminimalizować ryzyko błędnego użycia. Dodatkowo, przestrzeganie norm bezpieczeństwa takich jak normy OSHA lub ANSI w zakresie przechowywania substancji chemicznych podkreśla znaczenie stosowania odpowiednich pojemników, co nie tylko zwiększa bezpieczeństwo, ale również ułatwia zarządzanie ryzykiem w środowisku pracy.

Pytanie 36

Węgiel rozdrobniony i zmieszany w odpowiednich ilościach, pochodzący z określonych gatunków, przeznaczony na wsad do pieców koksowniczych powinien być poddany analizie

A. na zawartość siarki
B. sitowej
C. na zawartość popiołu
D. organoleptycznej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Analiza sitowa jest kluczowym procesem w ocenie jakości wsadu do komór koksowniczych. Polega na określeniu rozkładu ziarnowego węgla, co ma bezpośredni wpływ na wydajność procesu koksowania. Odpowiednie proporcje frakcji węglowych są istotne, ponieważ zbyt duża ilość zbyt drobnych cząstek może prowadzić do zmniejszenia efektywności procesu, a także wpływać na jakość otrzymanego koksu. Zastosowanie analizy sitowej pozwala na optymalizację procesu produkcji koksu, co jest zgodne z dobrymi praktykami stosowanymi w przemyśle węglowym. W praktyce oznacza to, że nieprawidłowa frakcja ziarnowa może prowadzić do problemów technologicznych, takich jak zatykanie komór koksowniczych czy nieefektywne spalanie. W związku z tym, regularne wykonywanie analizy sitowej węgla stanowi element zapewnienia wysokiej jakości produktu końcowego oraz efektywności operacyjnej zakładów koksowniczych. Ponadto, zgodnie z normami ISO, analiza ziarnowości jest jednym z podstawowych wymogów w kontroli jakości surowców w przemyśle metalurgicznym i energetycznym.

Pytanie 37

Mieszanina nitrująca składa się z HNO3 w stężeniu oraz H2SO4 w stężeniu. Waga kwasu azotowego(V) w tej mieszance wynosi 46%. Jakie ilości tych kwasów trzeba zmieszać, aby uzyskać 200 kg tej mieszanki?

A. 95 kg HNO3 i 105 kg H2SO4
B. 92 kg HNO3 i 108 kg H2SO4
C. 105 kg HNO3 i 95 kg H2SO4
D. 108 kg HNO3 i 92 kg H2SO4

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 92 kg HNO3 i 108 kg H2SO4 jest prawidłowa, ponieważ dokładnie spełnia wymagania dotyczące składu mieszaniny nitrującej. Mieszanina ta powinna zawierać 46% kwasu azotowego(V), co oznacza, że w 200 kg mieszaniny musi być 92 kg HNO3 (46% z 200 kg). Pozostała masa, czyli 108 kg, stanowi kwas siarkowy(VI). Takie proporcje są zgodne z praktycznymi zastosowaniami w przemyśle chemicznym, gdzie precyzyjne określenie składników jest kluczowe dla jakości procesu. Dodatkowo, mieszanie tych kwasów zgodnie z tymi zasadami jest istotne, ponieważ pozwala na uzyskanie odpowiednich właściwości reaktantów, które są wykorzystywane w syntezach chemicznych, w tym produkcji azotanów. Zgodność z tymi wartościami jest również zgodna z dobrymi praktykami laboratoryjnymi, które wymagają dokładności w przygotowywaniu reagentów chemicznych.

Pytanie 38

Solanka używana jako surowiec do wytwarzania sody metodą Solvaya jest pozbawiana soli wapnia i magnezu przed dalszą obróbką. Proces ten kontroluje się przez oznaczanie stężenia jonów Ca2+ oraz Mg2+ w oczyszczonej solance stosując metodę

A. wagową
B. jodometryczną
C. strąceniową
D. wersenianową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Metoda wersenianowa, zwana także metodą EDTA, jest jedną z najskuteczniejszych technik analitycznych stosowanych do oznaczania jonów metali, w tym wapnia (Ca2+) i magnezu (Mg2+). W tej metodzie wykorzystuje się chelatację, gdzie EDTA (kwas etylenodiaminotetraoctowy) stabilizuje jony metali, tworząc kompleksy. Dzięki temu można dokładnie oznaczyć ich stężenie w próbce. W przemyśle chemicznym, takim jak produkcja sody, kontrola jakości surowców jest kluczowa. Usunięcie jonów Ca2+ i Mg2+ z solanki jest istotne, ponieważ ich obecność może prowadzić do powstawania niepożądanych osadów i obniżać efektywność procesów chemicznych. W szczególności, metody wersenianowe są preferowane ze względu na swoją precyzję i szybkość, co czyni je standardem w laboratoriach kontrolnych. Dodatkowo, w stosunku do innych metod, werseniany są mniej wrażliwe na zakłócenia ze strony innych jonów, co zwiększa ich użyteczność w analizie skomplikowanych próbek.

Pytanie 39

Wskaż, w którym miejscu należy odczytać temperaturę podczas kontroli działania pompy wirowej?

A. Rurociąg tłoczny
B. Łożyska pompy
C. Obudowa pompy
D. Rurociąg ssący

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odczyt temperatury w łożyskach pompy wirowej jest kluczowy dla monitorowania jej stanu operacyjnego. Łożyska są odpowiedzialne za podtrzymywanie wirnika i przenoszenie obciążeń, a ich temperatura może wskazywać na poprawność działania całego systemu. Wzrost temperatury w łożyskach często sygnalizuje nadmierne tarcie, co może prowadzić do uszkodzenia łożysk, a w konsekwencji do awarii pompy. Dobre praktyki branżowe zalecają regularne monitorowanie temperatury łożysk w celu wczesnego wykrywania anomalii. Na przykład, stosowanie czujników temperatury, takich jak termopary lub czujniki RTD, umożliwia ciągłe śledzenie temperatury, co pozwala na szybkie podejmowanie działań w celu zapobiegania poważniejszym uszkodzeniom. Zgodnie z normami ISO, monitorowanie temperatury łożysk powinno być częścią programu konserwacji prewencyjnej, co jest nie tylko praktyką zalecaną, ale także oczekiwaną w nowoczesnych zakładach przemysłowych.

Pytanie 40

Ile dm3 wody o gęstości 1 g/cm3 powinno być odmierzone, by przygotować 1000 kg roztworu chlorku sodu o stężeniu 25% masowych?

A. 25 dm3
B. 975 dm3
C. 750 dm3
D. 250 dm3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby sporządzić 1000 kg roztworu chlorku sodu o stężeniu 25%, musimy najpierw obliczyć masę chlorku sodu oraz masę wody, która będzie potrzebna. Stężenie masowe 25% oznacza, że na 100 g roztworu przypada 25 g chlorku sodu. Zatem w 1000 kg roztworu (co odpowiada 1 000 000 g) ilość chlorku sodu wynosi 25% z tej masy, co daje 250 000 g. Reszta masy roztworu, czyli masa wody, będzie wynosić 1 000 000 g - 250 000 g = 750 000 g. Ponieważ gęstość wody wynosi 1 g/cm³, to 750 000 g wody odpowiada 750 000 cm³, co przelicza się na 750 dm³. Takie wyliczenia są zgodne z zasadami przygotowania roztworów w chemii oraz standardami laboratoryjnymi, gdzie precyzyjne obliczenia są kluczowe dla uzyskania oczekiwanych wyników. W praktyce, znajomość stężeń i umiejętność przeliczania objętości wody jest niezwykle ważna podczas przygotowywania reagentów w laboratoriach chemicznych oraz w przemyśle farmaceutycznym.