Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 19 maja 2025 19:36
  • Data zakończenia: 19 maja 2025 20:01

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Odczynnik, który w specyficznych warunkach reaguje wyłącznie z danym jonem, umożliwiając tym samym jego identyfikację w mieszance, to odczynnik

A. selektywny
B. charakterystyczny
C. indywidualny
D. specyficzny
Odczynnik specyficzny to taki, który reaguje z określonym jonem w danej mieszaninie, co pozwala na jego wykrycie i analizę. Oznacza to, że w warunkach laboratoryjnych, odczynnik ten jest w stanie wyizolować reakcję tylko dla jednego jonu, unikając interakcji z innymi składnikami. Przykładem może być zastosowanie odczynnika specyficznego do wykrywania jonów srebra w roztworach, gdzie używany jest tiocyjanian potasu, który reaguje z srebrem, tworząc charakterystyczny kompleks. Tego typu odczynniki są kluczowe w analizie chemicznej, gdyż umożliwiają precyzyjne pomiary i wykrywanie substancji w skomplikowanych mieszaninach. W laboratoriach często stosuje się różne metody analityczne, takie jak spektroskopia czy chromatografia, które wymagają użycia odczynników o wysokiej specyfice, aby wyniki były wiarygodne. Specyficzność odczynnika jest zgodna z dobrą praktyką laboratoryjną i standardami jakości, co jest istotne w kontekście zapewnienia dokładności wyników analizy.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Piktogram nie jest konieczny dla

A. substancji, które powodują korozję metali
B. substancji, które mają działanie drażniące na oczy
C. substancji, które działają drażniąco na skórę
D. mieszanin samoreaktywnych typu G
Wybór substancji działających drażniąco na oczy oraz substancji działających drażniąco na skórę jako odpowiedzi na pytanie o piktogramy jest oparty na niewłaściwym zrozumieniu wymogów dotyczących klasyfikacji chemikaliów. Substancje te, zgodnie z regulacjami CLP, wymagają jednoznacznego oznakowania za pomocą piktogramów, ponieważ ich działanie na organizm człowieka jest dobrze udokumentowane i klasyfikowane jako niebezpieczne. Piktogramy mają na celu zapewnienie szybkiego i jasnego przekazu informacji o zagrożeniach dla osób pracujących z tymi substancjami. Osoby zajmujące się bezpieczeństwem chemicznym często popełniają błąd, nie rozróżniając pomiędzy różnymi kategoriami substancji oraz ich właściwościami niebezpiecznymi. Dodatkowo, wybór substancji powodujących korozję metali również nie jest trafny, ponieważ substancje te również wymagają odpowiednich piktogramów, aby ostrzegać o ich agresywnym działaniu na materiały. Powszechnym błędem jest myślenie, że jeśli substancja nie jest bezpośrednio niebezpieczna dla zdrowia, to nie wymaga oznakowania. W rzeczywistości, każda substancja, która ma potencjalne działanie szkodliwe, powinna być klasyfikowana i odpowiednio oznaczana, co jest kluczowe dla bezpieczeństwa w miejscu pracy oraz ochrony środowiska.

Pytanie 5

Korzystając z danych w tabeli wskaż, ile cm3 36% roztworu HCl należy użyć, aby przygotować 250 cm3 0,1-molowego roztworu tego kwasu.

% wagowy
[%]
d420
[g/cm3]
m HCl
w 100 cm3
[g/100cm3]
CM HCl
[mol/dm3]
301,149234,489,46
321,159337,1010,17
341,169139,7510,90
361,178942,4411,64

A. 2,15 cm3
B. 2,52 cm3
C. 2,13 cm3
D. 2,50 cm3
Aby przygotować 250 cm³ 0,1-molowego roztworu HCl z 36% roztworu, użycie 2,15 cm³ tego roztworu jest poprawne. Obliczenia opierają się na zasadzie rozcieńczenia, która jest kluczowym pojęciem w chemii. Przygotowując roztwory, istotne jest, aby znać stężenie molowe roztworu wyjściowego oraz objętość roztworu, który chcemy uzyskać. W tym przypadku, 36% roztwór HCl ma stężenie molowe wynoszące około 10 mol/dm³. Aby obliczyć, ile tego roztworu potrzeba, stosujemy równanie rozcieńczenia: C1 * V1 = C2 * V2, gdzie C1 to stężenie roztworu wyjściowego, V1 to objętość roztworu wyjściowego, C2 to stężenie roztworu docelowego, a V2 to objętość roztworu docelowego. Po podstawieniu wartości i przekształceniu równania otrzymujemy, że V1 wynosi 2,15 cm³. Praktyczne zastosowanie tej wiedzy jest niezwykle istotne w laboratoriach chemicznych, gdzie precyzyjne przygotowanie roztworów jest kluczowe dla uzyskania powtarzalnych i wiarygodnych wyników eksperymentalnych. Dobrą praktyką jest również zawsze zwracać uwagę na jednostki oraz dokładność pomiaru, co jest fundamentalne w chemii analitycznej.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jakie proporcje objętościowe powinny być zastosowane do zmieszania roztworu etanolu o stężeniu 30% (V/V) z roztworem o stężeniu 70% (V/V), aby uzyskać roztwór o stężeniu 50% (V/V)?

A. 2:1
B. 3:7
C. 1:1
D. 1:2
Aby zrobić roztwór o stężeniu 50% (V/V), trzeba połączyć roztwór etanolu 30% (V/V) z roztworem 70% (V/V) w równych częściach. Czyli, jeśli masz jednostkę objętości 30%, to dodajesz dokładnie taką samą jednostkę objętości 70%. W ten sposób końcowe stężenie etanolu wychodzi idealnie 50%, bo dobrze zbalansowaliśmy ilość etanolu z obu roztworów. Można to też zapisać matematycznie: (0.3V1 + 0.7V2) / (V1 + V2) = 0.5, gdzie V1 to objętość 30%, a V2 to objętość 70%. Takie obliczenia są na porządku dziennym w laboratoriach chemicznych i wszędzie tam, gdzie trzeba dokładnie wymieszać substancje. Na pewno widziałeś to w produkcji alkoholu, bo różne stężenia etanolu są tam używane, żeby uzyskać różne smaki. Zrozumienie tych zasad jest też ważne z perspektywy przepisów dotyczących sprzedaży alkoholu, które często opierają się na konkretnych stężeniach substancji aktywnych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Związki chromu(VI) oddziałują negatywnie na środowisko, ponieważ

A. powodują nadmierny wzrost roślinności w zbiornikach wodnych
B. prowadzą do zakwaszenia wód
C. stanowią główną przyczynę korozji urządzeń technicznych w wodzie
D. wykazują toksyczne działanie na organizmy żywe
Związki chromu(VI), takie jak chromiany i dichromiany, są znane z ich wysokiej toksyczności dla organizmów żywych. Działają one na poziomie komórkowym, wpływając na różne procesy biochemiczne oraz powodując uszkodzenia DNA, co może prowadzić do nowotworów. Chrom(VI) jest szczególnie niebezpieczny, ponieważ ma zdolność do przenikania przez błony komórkowe i wywoływania reakcje oksydacyjne, które mogą prowadzić do stresu oksydacyjnego w komórkach. Z tego powodu substancje te są klasyfikowane jako substancje niebezpieczne i wymagają szczególnej ostrożności podczas transportu oraz przechowywania. W praktyce, w zakładach przemysłowych, gdzie stosuje się związki chromu(VI), należy wdrażać odpowiednie środki ochrony, takie jak systemy wentylacyjne, osobiste zabezpieczenia dla pracowników oraz ścisłe kontrole emisji do środowiska. Przykładem standardów, które regulują te kwestie, są normy ISO 14001 dotyczące zarządzania środowiskowego oraz dyrektywy unijne dotyczące substancji niebezpiecznych. Dzięki tym praktykom można minimalizować ryzyko związane z wykorzystaniem tych toksycznych substancji.

Pytanie 11

Który z procesów jest endotermiczny?

A. roztwarzanie magnezu w kwasie solnym
B. rozpuszczanie azotanu(V) amonu w wodzie
C. rozpuszczanie wodorotlenku sodu w wodzie
D. rozcieńczanie stężonego kwasu siarkowego(VI)
Rozpuszczanie wodorotlenku sodu w wodzie, rozcieńczanie stężonego kwasu siarkowego(VI) oraz roztwarzanie magnezu w kwasie solnym nie są procesami endotermicznymi. W rzeczywistości, rozpuszczanie wodorotlenku sodu w wodzie jest procesem egzoenergetycznym, co oznacza, że wydziela energię w postaci ciepła. Podczas tego procesu temperatura roztworu wzrasta, co jest efektem uwolnienia energii, a nie jej absorpcji. Podobnie, rozcieńczanie stężonego kwasu siarkowego(VI) z wodą generuje dużą ilość ciepła, co może prowadzić do niebezpiecznych reakcjach, jeśli nie jest przeprowadzane ostrożnie. Roztwarzanie magnezu w kwasie solnym również jest reakcją egzoenergetyczną, ponieważ podczas tego procesu wydzielają się gazy (w tym wodór), a reakcja ta jest silnie egzotermiczna, co oznacza, że wydziela dużo ciepła. Typowym błędem myślowym, który prowadzi do błędnych wniosków, jest utożsamianie wszystkich procesów rozpuszczania z absorpcją ciepła, podczas gdy wpływ na temperaturę roztworu zależy od rodzaju reagentu oraz jego interakcji z rozpuszczalnikiem. Kluczowe jest zrozumienie, jakie procesy są egzotermiczne, a jakie endotermiczne, aby prawidłowo przewidywać zmiany temperatury w różnych reakcjach chemicznych.

Pytanie 12

Przedstawiony schemat ideowy ilustruje proces wytwarzania N2 → NO → NO2 → HNO3

A. kwasu azotowego(IV) z azotu
B. kwasu azotowego(V) z azotu
C. kwasu azotowego(III) z azotu
D. kwasu azotowego(II) z azotu
Odpowiedź na pytanie o kwas azotowy(V) jest jak najbardziej trafna. Proces wytwarzania HNO3 z azotu (N2) rzeczywiście zaczyna się od utlenienia azotu do tlenku azotu(II) (NO), który potem przekształca się w tlenek azotu(IV) (NO2). To właśnie ten tlenek odgrywa ważną rolę w produkcji kwasu azotowego. W przemyśle chemicznym najczęściej stosuje się metodę Ostwalda, gdzie amoniak jest pierwszym etapem, który prowadzi nas do tlenku azotu. Potem ten tlenek reaguje z tlenem, tworząc NO2, a w obecności wody przekształca się to w HNO3. Kwas azotowy(V) ma sporo zastosowań, na przykład produkując nawozy azotowe czy materiały wybuchowe, a także jest ważnym odczynnikiem w laboratoriach. Myślę, że warto pamiętać, że kwas ten jest istotny w wielu dziedzinach chemii, zarówno organicznej, jak i nieorganicznej, co czyni go kluczowym dla branży chemicznej.

Pytanie 13

Na podstawie zmierzonej temperatury topnienia można określić związek organiczny oraz ustalić jego

A. palność
B. reaktywność
C. czystość
D. rozpuszczalność
Rozpuszczalność, palność i reaktywność to cechy chemiczne, które nie są bezpośrednio związane z temperaturą topnienia. Rozpuszczalność odnosi się do zdolności substancji do tworzenia roztworu w danym rozpuszczalniku, a jej pomiar wymaga zupełnie innych metod, takich jak testy rozpuszczalności w różnych rozpuszczalnikach czy badania na podstawie równowagi fazowej. Palność to z kolei właściwość dotycząca łatwości, z jaką substancje palą się w obecności tlenu, co wymaga analizy jej właściwości fizykochemicznych, a nie temperatury topnienia. Reaktywność odnosi się do skłonności substancji do reagowania z innymi substancjami chemicznymi, co można ocenić poprzez różnorodne testy chemiczne, ale również nie jest związane z pomiarem temperatury topnienia. Często błędne myślenie pojawia się, gdy studenci mylą te pojęcia z czystością substancji. Każda z tych cech wymaga odrębnych metod analizy, a skupienie się wyłącznie na temperaturze topnienia do ich oceny prowadzi do nieprawidłowych wniosków i niewłaściwej interpretacji wyników. Dlatego ważne jest, aby zrozumieć, że temperatura topnienia jest szczególnie przydatna w określaniu czystości substancji, a nie w analizie jej rozpuszczalności, palności czy reaktywności.

Pytanie 14

Sączenie na gorąco powinno być użyte, aby

A. miało miejsce wydzielanie kryształów z roztworu
B. nie miało miejsca wydzielanie kryształów z roztworu
C. nie doszło do rozpuszczenia substancji obecnych w roztworze
D. doszło do rozpuszczenia substancji obecnych w roztworze
Odpowiedzi, które sugerują, że sączenie na gorąco ma na celu rozpuszczenie substancji zawartych w roztworze lub zapobieganie ich wydzielaniu w postaci kryształów, nie uwzględniają rzeczywistych zasad fizykochemicznych, które rządzą tym procesem. Sącząc na gorąco, dąży się do tego, aby zminimalizować ryzyko krystalizacji, a nie do rozpuszczania substancji. W rzeczywistości, podczas podgrzewania roztworu, substancje, które są mniej rozpuszczalne w wyższych temperaturach, mogą zacząć wytrącać się w postaci kryształów, co jest niepożądane w kontekście oczyszczania. Sącząc na gorąco, kluczowe jest również zrozumienie, że proces ten pozwala na przeprowadzenie filtracji w warunkach, które zapobiegają osadzaniu się zanieczyszczeń na dnie naczynia, co może prowadzić do błędnych wniosków analitycznych. W praktyce laboratoryjnej ignorowanie tych aspektów może prowadzić do nieefektywnego oczyszczania i uzyskiwania produktów o niższej jakości, co jest niezgodne z dobrymi praktykami w chemii analitycznej. Zrozumienie zasad działania sączenia na gorąco jest kluczowe dla prawidłowego przeprowadzania analiz chemicznych oraz procesów syntezy.

Pytanie 15

Odczynnik chemiczny, w którym zawartość domieszek wynosi od 1 do 10%, jest nazywany odczynnikiem

A. spektralnie czysty
B. czysty
C. techniczny
D. czysty do analizy
Odczynnik chemiczny oznaczany jako "techniczny" jest substancją, w której domieszki stanowią od 1 do 10% całkowitej masy. To definiuje jego szersze zastosowanie w przemyśle, ponieważ odczynniki techniczne często nie są wymagane do wysokiej czystości, ale muszą spełniać określone normy jakościowe. Na przykład, w laboratoriach chemicznych odczynniki techniczne mogą być stosowane w procesach, gdzie nie jest konieczne użycie substancji czystych do analizy. Często wykorzystywane są w syntezach chemicznych, produkcji farb, lakierów czy w kosmetykach. Zgodnie z normą ISO 9001, przedsiębiorstwa muszą dążyć do stosowania odpowiednich standardów jakości, co obejmuje również stosowanie odczynników technicznych, które muszą być odpowiednio oznakowane oraz dokumentowane. Dzięki temu można zapewnić ich właściwe użycie w procesach produkcyjnych oraz badawczych, co podkreśla znaczenie znajomości właściwych klas substancji chemicznych.

Pytanie 16

Jakie roztwory chemiczne powinny być stanowczo pobierane przy włączonym dygestorium?

A. kwasu cytrynowego o stężeniu 36%
B. glicerolu o stężeniu 36%
C. etanolu o stężeniu 36%
D. kwasu solnego o stężeniu 36%
Glicerol, etanol i kwas cytrynowy, choć mogą być stosunkowo bezpieczniejsze niż kwas solny, wciąż wymagają ostrożności w obiegu. Glicerol o stężeniu 36% jest substancją o niskiej toksyczności, ale może powodować podrażnienia skóry i błon śluzowych przy długotrwałym kontakcie. Głównym błędem w myśleniu o glicerolu jest przekonanie, że jest on całkowicie bezpieczny. W rzeczywistości, każda substancja chemiczna, nawet te uznawane za mniej niebezpieczne, powinny być stosowane z odpowiednimi środkami ostrożności, jednak niekoniecznie wymagają one pracy pod dygestorium. Etanol, jako rozpuszczalnik organiczny, ma swoje ryzyka związane z łatwopalnością i potencjalnymi skutkami zdrowotnymi w przypadku wdychania oparów, ale nie jest na tyle niebezpieczny jak kwas solny, co może prowadzić do błędnych przekonań na temat jego stosowania. Kwas cytrynowy z kolei jest substancją stosunkowo bezpieczną, jednak w laboratoriach chemicznych powinien być traktowany z należytą ostrożnością, zwłaszcza w przypadku stężonych roztworów. Przykładem typowego błędu myślowego jest niedocenianie potencjalnych zagrożeń związanych z danymi substancjami, co może prowadzić do nieodpowiednich praktyk w laboratoriach. Właściwe przygotowanie i przestrzeganie zasad BHP powinno być zawsze priorytetem, niezależnie od rodzaju używanych odczynników.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Waga przedstawiona na rysunku umożliwia ważenie substancji z dokładnością do

Ilustracja do pytania
A. 10 mg
B. 10 g
C. 0,01 mg
D. 1,00 g
Wybór innej odpowiedzi niż 10 mg może wynikać z nieporozumienia dotyczącego możliwości pomiarowych wag laboratoryjnych. Odpowiedź 1,00 g jest zbyt dużą wartością, ponieważ wskazuje na możliwość pomiaru masy z dokładnością, która jest znacznie niższa niż ta oferowana przez precyzyjną wagę. W praktyce, wagi o takiej dokładności mogą nie być wystarczające do zastosowań wymagających wysokiej precyzji, co jest istotne w chemii analitycznej, lecz bardziej w codziennym użytkowaniu. Wybór 0,01 mg jest niewłaściwy, ponieważ przekracza możliwości typowych wag laboratoryjnych, które nie osiągają tak wysokiej precyzji w standardowych zastosowaniach, co może prowadzić do niepomiaru lub błędów w analizach. Odpowiedź 10 g również jest nieadekwatna, ponieważ wagi precyzyjne mają na celu dokładne ważenie niewielkich ilości substancji, a nie większych próbek, które mogą być ważone na wagach analitycznych o innej specyfikacji. W związku z tym, każdy z wybranych błędnych odpowiedzi ilustruje typowe błędy myślowe, które mogą wynikać z braku zrozumienia charakterystyki wag laboratoryjnych oraz ich zastosowań w praktyce. Kluczowe jest, aby przy wyborze odpowiedzi na pytania dotyczące pomiarów masy kierować się zrozumieniem dokładności urządzeń oraz ich przeznaczenia w kontekście laboratoryjnym.

Pytanie 21

Sód metaliczny powinien być przechowywany w laboratorium

A. w butlach metalowych z wodą destylowaną
B. w szklanych naczyniach
C. w szklanych pojemnikach wypełnionych naftą
D. w butelkach plastikowych
Sód metaliczny należy przechowywać w szklanych butlach wypełnionych naftą, ponieważ ma on silne właściwości reaktywne, szczególnie w kontakcie z wodą i powietrzem. Sód reaguje z wodą, wytwarzając wodór i ciepło, co może prowadzić do niebezpiecznych eksplozji. Nafta, jako substancja organiczna, skutecznie izoluje sód od kontaktu z wodą i wilgocią, co zapobiega jego utlenianiu oraz niebezpiecznym reakcjom chemicznym. Ponadto, szklane pojemniki są neutralne chemicznie i nie wchodzą w reakcje z sodem, co czyni je odpowiednim materiałem do przechowywania. Tego rodzaju praktyki są zgodne z normami bezpieczeństwa w laboratoriach chemicznych, gdzie szczególną uwagę zwraca się na odpowiednie metody przechowywania substancji niebezpiecznych. Warto również zauważyć, że w wielu laboratoriach stosuje się podobne metody przechowywania innych reaktywnych metali, aby zminimalizować ryzyko ich reakcji z substancjami zewnętrznymi.

Pytanie 22

Różnica pomiędzy średnim wynikiem pomiaru a wartością rzeczywistą stanowi błąd

A. względny
B. bezwzględny
C. systematyczny
D. przypadkowy
W kontekście pomiarów różnice pomiędzy średnimi wynikami a wartościami rzeczywistymi mogą być opisywane różnymi terminami, jednak użycie pojęcia błędu względnego, systematycznego czy przypadkowego może prowadzić do nieporozumień. Błąd względny to stosunek błędu bezwzględnego do wartości rzeczywistej, co oznacza, że opisuje on błąd w kontekście wielkości zmierzonej. Na przykład, jeśli błąd bezwzględny wynosi 0,5 cm, a wartość rzeczywista to 10 cm, błąd względny wyniósłby 5%. Warto jednak zauważyć, że błąd względny nie informuje nas o rzeczywistej wielkości błędu, a jedynie o jego proporcji do wartości rzeczywistej. Błąd systematyczny odnosi się do błędów, które są stałe lub powtarzalne w danym pomiarze, na przykład spowodowane nieprawidłową kalibracją przyrządów. Takie błędy mogą być trudne do wykrycia, ponieważ wpływają na wszystkie pomiary w podobny sposób, co może prowadzić do błędnych wniosków dotyczących analizowanych danych. Wreszcie, błąd przypadkowy odnosi się do losowych fluktuacji, które mogą wystąpić podczas pomiarów, a ich przyczyny mogą być trudne do zidentyfikowania. Te błędy są niemal nieuniknione w każdym pomiarze, ale nie powinny być mylone z błędami bezwzględnymi, które są ważnym wskaźnikiem dokładności pomiaru. Właściwe zrozumienie tych terminów i ich różnic jest kluczowe dla właściwej analizy wyników oraz podejmowania decyzji opartych na pomiarach.

Pytanie 23

Do wykonania preparatu według zamieszczonej procedury należy przygotować wagę, łyżeczkę, palnik gazowy, trójnóg, bagietkę, szczypce metalowe oraz

Procedura otrzymywania tlenku magnezu przez prażenie węglanu magnezu.
Odważoną ilość węglanu magnezu ubić dokładnie w tyglu (wcześniej zważonym) i przykryć pokrywką.
Początkowo ogrzewać niewielkim kopcącym płomieniem, a następnie gdy tygiel ogrzeje się, ogrzewać
silniej w temperaturze czerwonego żaru przez około 20 minut. Po zakończeniu prażenia tygiel odstawić
do ostudzenia chroniąc przed wilgocią. Zważyć tygiel z preparatem i obliczyć wydajność.

A. tygiel, trójkąt ceramiczny, krystalizator.
B. tygiel, siatkę grzewczą, eksykator.
C. tygiel z pokrywką, siatkę grzewczą, zlewkę z zimną wodą.
D. tygiel z pokrywką, trójkąt ceramiczny, eksykator.
Poprawna odpowiedź zawiera tygiel z pokrywką, trójkąt ceramiczny oraz eksykator, które są kluczowymi elementami w procesie prażenia węglanu magnezu do uzyskania tlenku magnezu. Tygiel z pokrywką jest niezbędny do przeprowadzenia reakcji chemicznych w kontrolowanych warunkach, chroniąc substancję przed zanieczyszczeniami oraz zapewniając właściwą izolację termiczną. Trójkąt ceramiczny pełni rolę podpory dla tygla, umożliwiając równomierne ogrzewanie nad płomieniem palnika gazowego. Eksykator jest istotny po zakończeniu prażenia, gdyż pozwala na schłodzenie produktu w warunkach niskiej wilgotności, co zapobiega jego absorpcji wody z otoczenia. Odpowiednie korzystanie z tych narzędzi jest zgodne z najlepszymi praktykami laboratoriami chemicznymi, co jest szczególnie ważne w kontekście uzyskiwania czystych i stabilnych produktów chemicznych. Zrozumienie procedur oraz standardów bezpieczeństwa w laboratoriach chemicznych jest kluczowe dla osiągnięcia sukcesu w eksperymentach.

Pytanie 24

Aby podnieść stężenie mikroelementów w roztworze, próbkę należy poddać

A. rozcieńczaniu
B. zagęszczaniu
C. liofilizacji
D. roztwarzaniu
Zagęszczanie jest procesem, który polega na usunięciu części rozpuszczalnika z roztworu, co prowadzi do zwiększenia stężenia składników rozpuszczonych w tym roztworze. Proces ten jest szczególnie istotny w chemii analitycznej, gdzie precyzyjne przygotowanie próbek jest kluczowe dla uzyskania wiarygodnych wyników analiz. Przykładami zastosowania zagęszczania mogą być przygotowanie próbek do spektroskopii lub chromatografii, gdzie wymagane jest osiągnięcie odpowiedniego stężenia analitu. Dodatkowo, w przemyśle farmaceutycznym zagęszczanie jest stosowane w produkcji leków, gdzie stężenie substancji czynnej musi być dokładnie kontrolowane. Standardy branżowe, takie jak GMP (Good Manufacturing Practices), kładą duży nacisk na precyzyjne przygotowanie roztworów, co czyni zagęszczanie kluczowym krokiem w wielu procesach produkcyjnych i analitycznych.

Pytanie 25

Który z wskaźników nie jest używany w alkacymetrii?

A. Fenoloftaleina
B. Skrobia
C. Oranż metylowy
D. Błękit tymolowy
Skrobia jest polisacharydem, który nie pełni funkcji wskaźnika pH w reakcjach alkacymetrycznych. W alkacymetrii, kluczowe jest monitorowanie zmian pH roztworu, co pozwala na określenie punktu równoważności. W tym kontekście, wskaźniki takie jak oranż metylowy, fenoloftaleina oraz błękit tymolowy są stosowane ze względu na ich zdolność do zmiany koloru w określonym zakresie pH. Oranż metylowy zmienia kolor w pH od 3,1 do 4,4, co czyni go użytecznym w reakcjach kwasowo-zasadowych w środowisku kwasowym. Fenoloftaleina natomiast zmienia kolor z bezbarwnego na różowy w pH od 8,2 do 10,0, co jest istotne w alkacymetrii zasadowej. Błękit tymolowy działa w zakresie pH 6,0 - 7,6, co pozwala na wykrywanie przejścia z kwasowego do obojętnego. W przeciwieństwie do tych wskaźników, skrobia nie jest używana w alkacymetrii, a jej zastosowanie koncentruje się głównie w analizie jakościowej, jako reagent do wykrywania jodu.

Pytanie 26

Jakie jest stężenie roztworu HNO3, który powstał w wyniku połączenia 50 cm3 roztworu HNO3 o stężeniu 0,2 mol/dm3 oraz 25 cm3 roztworu HNO3 o stężeniu 0,5 mol/dm3?

A. 0,003 mol/dm3
B. 0,3 mol/dm3
C. 0,03 mol/dm3
D. 0,0003 mol/dm3
Aby dowiedzieć się, jakie stężenie będzie miała mieszanka roztworów HNO3, najlepiej zacząć od obliczenia, ile moli kwasu azotowego mamy w każdym z roztworów. W pierwszym roztworze z objętością 50 cm³ i stężeniem 0,2 mol/dm³ wychodzi, że mamy 0,01 mol: 0,2 mol/dm³ * 0,050 dm³ = 0,01 mol. W drugim roztworze, przy 25 cm³ i stężeniu 0,5 mol/dm³, obliczamy to jako 0,0125 mol: 0,5 mol/dm³ * 0,025 dm³ = 0,0125 mol. Jak to dodamy, to razem dostajemy 0,0225 mol. A całkowita objętość po zmieszaniu to 75 cm³, czyli 0,075 dm³. Z tego obliczamy stężenie końcowe: C = n/V, czyli 0,0225 mol / 0,075 dm³ = 0,3 mol/dm³. To, jakie stężenie otrzymasz, jest naprawdę ważne w laboratoriach, bo dokładne przygotowywanie roztworów pozwala uzyskać powtarzalne wyniki. W chemii, jak i w przemyśle, musisz znać te stężenia, żeby mieć pewność, że wszystko idzie zgodnie z planem.

Pytanie 27

Podaj nazwę reagentu chemicznego, który w specyficznych warunkach reaguje tylko z jednym jonem, pierwiastkiem lub związkiem chemicznym?

A. Wzorcowy
B. Specyficzny
C. Grupowy
D. Selektywny
Wybór odczynników grupowych, wzorcowych lub selektywnych, choć może wydawać się atrakcyjny, jest nieodpowiedni w kontekście poszukiwanego przez pytanie odczynnika specyficznego. Odczynniki grupowe to substancje chemiczne, które reagują z wieloma, a nie z jednym, określonym jonem czy związkiem, co sprawia, że ich zastosowanie w precyzyjnej analizie chemicznej jest ograniczone. Na przykład, odczynnik grupowy może być stosowany do identyfikacji grupy kationów, ale nie do wskazania pojedynczego jonu. Z kolei odczynniki wzorcowe służą do kalibracji i walidacji metod analitycznych, co oznacza, że choć są ważne, nie mają one specyficznego działania w kontekście jednoczesnych reakcji chemicznych z pojedynczymi substancjami. Odczynniki selektywne mogą reagować z jednym lub kilkoma związkami, ale ich działanie może być mniej precyzyjne niż w przypadku odczynników specyficznych. Dlatego kluczowe jest zrozumienie, że reagowanie z wieloma substancjami często prowadzi do wyników, które są nieprecyzyjne i mogą być mylące, co jest niezgodne z najnowszymi standardami praktyki analitycznej, które promują dokładność i wiarygodność pomiarów chemicznych. Właściwe zastosowanie odpowiednich odczynników w praktyce analitycznej jest kluczowe dla uzyskania wiarygodnych wyników, a ich dobór powinien być oparty na rzetelnej wiedzy o ich właściwościach i zastosowaniach.

Pytanie 28

Najskuteczniejszą techniką separacji ketonu oraz kwasu karboksylowego obecnych w roztworze benzenowym jest

A. destylacja z parą wodną
B. zatężenie i krystalizacja
C. ekstrakcja chloroformem
D. ekstrakcja roztworem zasady
Ekstrakcja chloroformem nie jest skuteczna w rozdziale ketonu i kwasu karboksylowego, ponieważ oba te związki są organiczne i mogą się dobrze rozpuszczać w chloroformie. W praktyce, podczas ekstrakcji, nie zachodzi wystarczająca separacja tych substancji, co prowadzi do trudności w ich dalszej analizie i oczyszczaniu. W przypadku destylacji z parą wodną, metoda ta działa najlepiej dla substancji lotnych, a kwasy karboksylowe często są mniej lotne, co ogranicza jej zastosowanie w tym kontekście. Z kolei zatężenie i krystalizacja są bardziej odpowiednie dla czystych substancji, a nie dla mieszanin, których składniki wykazują złożoną interakcję. Często zdarza się, że studenci błędnie zakładają, że wszystkie metody rozdzielania substancji organicznych są uniwersalne, co prowadzi do niewłaściwych wyborów w laboratoriach. Kluczowe jest zrozumienie chemicznych interakcji pomiędzy substancjami, co jest podstawą efektywnego rozdziału i oczyszczania związków organicznych.

Pytanie 29

Czułość bezwzględna wagi definiuje się jako

A. najmniejsze dozwolone obciążenie wagi
B. największe dozwolone obciążenie wagi
C. najmniejszą masę, która powoduje wyraźne wychylenie wskazówki
D. największą masę, która powoduje wyraźne wychylenie wskazówki
Zrozumienie czułości bezwzględnej wagi wymaga analizy kilku aspektów jej funkcjonowania. Największe dopuszczalne obciążenie wagi to maksymalna masa, jaką waga może zmierzyć bez ryzyka uszkodzenia, co różni się całkowicie od pojęcia czułości. Ustalanie tego parametru opiera się na wytrzymałości mechanicznej urządzenia, a nie na jego zdolności do wykrywania małych zmian. Z kolei najmniejsze dopuszczalne obciążenie wagi odnosi się do najniższej masy, jaką waga może zmierzyć, zanim pomiar stanie się nieprecyzyjny. To również jest inny aspekt, który nie dotyczy bezpośrednio czułości, lecz granic operacyjnych wagi. W kontekście największej masy, która powoduje zauważalne wychylenie wskazówki, pojawia się mylne przekonanie, że czułość odnosi się do maksymalnych wartości, co jest błędnym założeniem. Czułość bezwzględna jest definiowana przez najniższą masę, która wywołuje reaktywne zachowanie wagi. Pojmowanie czułości poprzez pryzmat maksymalnych wartości prowadzi do nieporozumień i może skutkować błędnymi wynikami w laboratoriach czy procesach przemysłowych, gdzie precyzyjne pomiary mają kluczowe znaczenie dla jakości produktów i badań. Kluczowym błędem jest także mylenie parametru czułości z innymi aspektami funkcjonowania urządzeń pomiarowych, co może prowadzić do niewłaściwego doboru wag do konkretnych zadań pomiarowych.

Pytanie 30

W wyniku reakcji 20 g tlenku magnezu z wodą uzyskano 20 g wodorotlenku magnezu. Oblicz efektywność reakcji.
MMg = 24 g/mol, MO = 16 g/mol, MH = 1 g/mol?

A. 20%
B. 68,9%
C. 79,2%
D. 48,2%
Analizując błędne odpowiedzi, można zauważyć kilka typowych nieporozumień dotyczących obliczania wydajności reakcji chemicznych. Wydajność reakcji definiuje się jako stosunek masy uzyskanego produktu do masy teoretycznej, co oznacza, że kluczowe jest dokładne zrozumienie przebiegu reakcji oraz obliczeń molowych. Wiele osób może błędnie zakładać, że 20 g uzyskane po reakcji to całkowita masa reagentów, co jest nieprawidłowe, ponieważ musimy uwzględnić teoretyczną ilość produktu. Ponadto, niektórzy mogą niepoprawnie przeliczać masy molowe, co prowadzi do błędnych wyników. Kluczowe jest również zrozumienie, że wydajność reakcji nie jest jedynie wynikiem stołu z danymi, ale jest złożonym wynikiem wielu czynników, takich jak czystość reagentów, warunki reakcji oraz efektywność procesu. W praktyce chemicznej stosuje się określone standardy, aby ocenić efektywność i wydajność produkcji, i takie błędy mogą prowadzić do nieodpowiednich wniosków. Znajomość teoretycznych podstaw chemii, takich jak zasady zachowania masy i bilans reakcji, jest kluczowa dla prawidłowego obliczania wydajności. Dlatego konieczne jest dokładne zrozumienie tych koncepcji, aby uniknąć pułapek w logicznym myśleniu i uzyskać wiarygodne wyniki.

Pytanie 31

W karcie charakterystyki chemikaliów znajduje się informacja o przechowywaniu dichromianu(VI) potasu: .. powinien być przechowywany w odpowiednio oznakowanych, szczelnie zamkniętych pojemnikach, w chłodnym, suchym i dobrze wentylowanym magazynie, który posiada instalację elektryczną i wentylacyjną. Z tego opisu wynika, że ten chemikal może być przechowywany

A. w szczelnie zamkniętych słoikach, umieszczonych w wentylowanym pomieszczeniu
B. w workach jutowych umieszczonych w wentylowanym pomieszczeniu
C. w drewnianych skrzyniach umieszczonych w wentylowanym pomieszczeniu
D. w workach papierowych umieszczonych w wentylowanym magazynie
Odpowiedzi sugerujące magazynowanie dichromianu(VI) potasu w workach jutowych, papierowych lub drewnianych skrzyniach są nieprawidłowe, ponieważ nie spełniają wymaganych norm dotyczących przechowywania substancji chemicznych. Przede wszystkim, użycie worków jutowych lub papierowych nie zapewnia odpowiedniej szczelności, co jest kluczowe dla substancji chemicznych mogących emitować toksyczne opary lub reagować z wilgocią. Jutowe i papierowe materiały mogą wchłaniać wilgoć, co może prowadzić do destabilizacji substancji chemicznych, a w skrajnych przypadkach do reakcji niepożądanych. Dodatkowo, nieodpowiednie opakowanie może prowadzić do zanieczyszczenia substancji oraz zwiększać ryzyko przypadkowego uwolnienia ich do otoczenia. Magazynowanie chemikaliów w drewnianych skrzyniach również budzi wątpliwości, ponieważ drewno jako materiał nie jest łatwe do dezynfekcji i może absorbowac chemikalia, co wpływa na ich integralność oraz bezpieczeństwo. Należy również pamiętać o tym, że odpowiednie oznakowanie opakowań jest kluczowe, aby łatwo zidentyfikować substancje oraz ich potencjalne zagrożenia. Ignorowanie tych zasad może prowadzić do poważnych incydentów, w tym zanieczyszczenia środowiska i narażenia zdrowia ludzi na działanie niebezpiecznych substancji.

Pytanie 32

Losowo należy pobierać próbki z opakowań

A. z dolnej części opakowania
B. z górnej części opakowania
C. z kilku punktów w obrębie opakowania
D. z krawędzi opakowania
Odpowiedź "z kilku miejsc przekroju opakowania" jest poprawna, ponieważ losowe pobieranie próbek z różnych miejsc w opakowaniu zapewnia reprezentatywność próbki. Jest to kluczowe w wielu dziedzinach, takich jak analiza jakościowa, zapewnienie bezpieczeństwa produktów oraz kontrola procesów technologicznych. W praktyce oznacza to, że próbki należy pobierać z różnych warstw i lokalizacji w obrębie opakowania, aby zminimalizować ryzyko błędnych wniosków wynikających z niejednorodności składu. W odniesieniu do standardów takich jak ISO 2859-1, który określa metody pobierania próbek dla kontroli jakości, ważne jest, aby każda próbka była reprezentatywna dla całej partii. Takie podejście zwiększa wiarygodność wyników analiz laboratoryjnych i umożliwia dostarczenie rzetelnych informacji na temat jakości produktu. Przykładowo, w przemyśle spożywczym, pobieranie próbek z różnych miejsc opakowania pozwala na identyfikację ewentualnych zanieczyszczeń lub niezgodności jakościowych, co jest fundamentem dla zapewnienia bezpieczeństwa konsumentów.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Wybór lokalizacji do poboru próbek wody z rzeki nie jest uzależniony od

A. usytuowania dopływów
B. rodzaju pojemników do ich przechowywania
C. celu oraz zakresu badań
D. usytuowania źródeł zanieczyszczeń
Wybór miejsca pobierania próbek wody z rzeki jest procesem, który musi uwzględniać wiele czynników, aby uzyskane wyniki były wiarygodne i reprezentatywne. Analiza celu i zakresu badań jest pierwszym krokiem, który pozwala na określenie, jakie parametry będą monitorowane. Na przykład, w sytuacji, gdy celem jest ocena wpływu zanieczyszczeń na ekosystem rzeki, kluczowe będzie wybranie miejsc w pobliżu źródeł zanieczyszczenia, aby uchwycić ich oddziaływanie. W kontekście rozmieszczenia dopływów, warto zauważyć, że miejsca ich zrzutu mogą znacząco zmieniać jakość wody w rzece, a tym samym wpływać na wyniki badań. Ignorowanie tych aspektów przy wyborze lokalizacji może prowadzić do błędnych wniosków dotyczących stanu wód. Nie można zatem lekceważyć wpływu rozmieszczenia źródeł zanieczyszczenia oraz dopływów, gdyż są to czynniki bezpośrednio związane z jakością próbek. Często popełnianym błędem jest przekonanie, że najmniej istotnym elementem są naczynia do przechowywania próbek, co jest mylnym założeniem. Choć rodzaj naczyń jest istotny dla zapewnienia integralności próbki, nie powinien wpływać na wybór miejsca ich pobierania, które powinno wynikać z badań i norm jakościowych.

Pytanie 35

Jakie urządzenie wykorzystuje się do określania lepkości płynów?

A. wiskozymetr
B. areometr
C. kolorymetr
D. piknometr
Wiskozymetr to całkiem fajne urządzenie, które mierzy lepkość cieczy. Lepkość to taki parametr, który mówi nam, jak bardzo ciecz jest 'gęsta' w swoim zachowaniu, co jest istotne w różnych dziedzinach jak chemia, inżynieria materiałowa czy technologie procesów. Lepkość ma ogromne znaczenie, szczególnie gdy myślimy o tym, jak ciecz przepływa przez rury lub jak jest używana w przemyśle i laboratoriach. Wiskozymetry dzielą się na różne typy – mamy na przykład wiskozymetry dynamiczne, które badają lepkość przy różnych prędkościach, albo kinematyczne, które skupiają się na czasie przepływu cieczy przez określoną objętość. Warto wspomnieć, że w przemyśle spożywczym, kontrolowanie lepkości soków czy sosów jest mega ważne, żeby uzyskać dobrą konsystencję i jakość. Dodatkowo, istnieją standardy, jak na przykład ASTM D445, które określają, jak mierzyć lepkość, dzięki czemu wyniki są spójne i wiarygodne w różnych laboratoriach.

Pytanie 36

Do wykrywania pierwiastków w niskich stężeniach w badaniach spektrograficznych należy używać reagentów

A. czystych do badań
B. czystych
C. chemicznie czystych
D. spektralnie czystych
Odpowiedzi 'chemicznie czyste', 'czyste do analizy' oraz 'czyste' nie są wystarczające dla procesu oznaczania pierwiastków śladowych metodami spektrograficznymi. Czystość chemiczna reagentów oznacza jedynie, że są one wolne od zanieczyszczeń chemicznych, ale nie gwarantuje, że nie zawierają innych pierwiastków, które mogą być detekowane podczas analizy spektrograficznej. Czystość do analizy sugeruje, że reagenty są odpowiednie do użytku w analizach chemicznych, jednak nie odnosi się bezpośrednio do aspektu ich spektralnej czystości. W praktyce chemicznej zanieczyszczenia mogą prowadzić do interferencji w pomiarach, co znacząco obniża jakość wyników. Typowe błędy myślowe, które mogą prowadzić do używania tych niewłaściwych terminów, obejmują mylenie pojęć czystości chemicznej z czystością spektralną. Z tego powodu ważne jest, aby w laboratoriach analitycznych stosować reagenty spektralnie czyste, co jest zgodne z najlepszymi praktykami branżowymi oraz normami, takimi jak ISO, które podkreślają znaczenie wysokiej jakości reagentów dla uzyskiwania rzetelnych wyników analizy spektroskopowej.

Pytanie 37

Masa molowa kwasu azotowego(V) wynosi 63,0 g/mol. Jakie jest stężenie molowe 20% roztworu tego kwasu o gęstości 1,1 g/cm3?

A. 3,60 mol/dm3
B. 3,49 mol/dm3
C. 6,30 mol/dm3
D. 5,30 mol/dm3
Aby obliczyć stężenie molowe kwasu azotowego(V) w 20% roztworze, należy zastosować wzór na stężenie molowe, który określa ilość moli substancji chemicznej w jednostce objętości roztworu. W pierwszej kolejności obliczamy masę kwasu azotowego w 100 g roztworu: 20% oznacza, że w 100 g roztworu znajduje się 20 g kwasu azotowego. Następnie przeliczymy tę masę na mole, korzystając z masy molowej kwasu azotowego(V), która wynosi 63,0 g/mol. Dzieląc masę kwasu przez jego masę molową, uzyskujemy liczbę moli: 20 g / 63,0 g/mol = 0,317 mol. Teraz musimy obliczyć objętość roztworu. Gęstość roztworu wynosi 1,1 g/cm³, co oznacza, że 100 g roztworu ma objętość 100 g / 1,1 g/cm³ = 90,91 cm³, czyli 0,09091 dm³. Wreszcie, stężenie molowe obliczamy dzieląc liczbę moli przez objętość roztworu: 0,317 mol / 0,09091 dm³ ≈ 3,49 mol/dm³. Takie obliczenia są istotne w chemii analitycznej i laboratoryjnej, gdzie precyzyjne przygotowanie roztworów ma kluczowe znaczenie dla uzyskania wiarygodnych wyników analiz chemicznych.

Pytanie 38

Wykonano ocenę jakości dostarczonej partii wodorotlenku sodu.
Zgodne ze specyfikacją towaru są

Parametr oznaczanyJednostkaWartość parametru
Według specyfikacjiZbadana analitycznie
Zawartość wodorotlenku sodu%>=9898,3
Zawartość węglanu sodu%<=0,40,39
Zawartość chlorku sodu%<=0,0150,015

A. tylko zawartości procentowe wodorotlenku sodu i węglanu sodu.
B. tylko zawartości procentowe wodorotlenku sodu i chlorku sodu.
C. zawartości procentowe wodorotlenku sodu, węglanu sodu i chlorku sodu.
D. tylko zawartości procentowe węglanu sodu i chlorku sodu.
Odpowiedź, która wskazuje na zawartości procentowe wodorotlenku sodu, węglanu sodu i chlorku sodu jako te, które są zgodne ze specyfikacją, jest poprawna. Z analizy wyników wynika, że wszystkie te substancje muszą być odpowiednio monitorowane w partii wodorotlenku sodu. W przypadku wodorotlenku sodu, jego minimalna zawartość powinna wynosić co najmniej 98%, co zostało spełnione, gdyż wynosi 98,3%. Zawartość węglanu sodu nie może przekraczać 0,4%, a wynik 0,39% jest zgodny z tym wymogiem. Ponadto, zawartość chlorku sodu musi być niższa lub równa 0,015%, co w tym przypadku również zostało spełnione, gdyż wynik wynosi 0,015%. Takie podejście do monitorowania jakości substancji chemicznych jest kluczowe w branży chemicznej, gdzie każdy zbiornik musi być regularnie oceniany pod kątem spełnienia określonych norm jakościowych. Przykładami zastosowania tej wiedzy są procesy wytwarzania chemikaliów oraz zapewnienie zgodności z normami ISO, które kładą nacisk na kontrolę jakości.

Pytanie 39

W wyniku rozkładu 100 g węglanu wapnia, otrzymano 25 g tlenku wapnia. Wydajność procentowa reakcji wynosi

MCaCO3 = 100g / molMCaO = 56g / mol

A. 4,4%
B. 100%
C. 44,6%
D. 56,0%
Wydajność procentowa reakcji chemicznych jest kluczowym wskaźnikiem efektywności procesów chemicznych. W omawianym przypadku, mając 100 g węglanu wapnia (CaCO3), teoretyczna masa tlenku wapnia (CaO), który można uzyskać w wyniku rozkładu, wynosi 56 g. Otrzymana masa 25 g tlenku wapnia pozwala na obliczenie wydajności procentowej, stosując wzór: (rzeczywista masa / teoretyczna masa) * 100%. Obliczenia prowadzą do wartości 44,6%, co wskazuje na to, że tylko część teoretycznej ilości produktu została uzyskana w rzeczywistej reakcji. Taka sytuacja może być efektem różnych czynników, w tym niepełnego rozkładu, strat materiałowych podczas procesu, czy też niewłaściwych warunków reakcji. W praktyce, zrozumienie i obliczanie wydajności reakcji chemicznych jest niezbędne w przemyśle chemicznym i farmaceutycznym, gdzie optymalizacja procesów jest kluczowa dla efektywności kosztowej i jakości produktów. Utrzymywanie wysokiej wydajności jest również zgodne z zasadami zrównoważonego rozwoju, co jest istotne w nowoczesnych procesach produkcyjnych.

Pytanie 40

Metodą, która nie służy do utrwalania próbek wody, jest

A. schłodzenie do temperatury 2-5°C
B. naświetlanie lampą UV
C. zakwaszenie do pH < 2
D. dodanie biocydów
Wybór schłodzenia do temperatury 2-5°C jako metody utrwalania próbki wody jest powszechnie stosowany, ponieważ niskie temperatury spowalniają procesy biologiczne oraz chemiczne, co jest kluczowe dla zachowania stabilności próbki. Metoda ta jest zgodna z wytycznymi ISO, które rekomendują utrzymanie próbek w odpowiednich warunkach, aby zminimalizować ryzyko degradacji i utraty właściwości próbki. Dodanie biocydów to kolejna strategia, która ma na celu eliminację mikroorganizmów, co również wpływa na zachowanie integralności próbki. Zakwaszenie próbki do pH < 2 jest stosowane w niektórych analizach, szczególnie w kontekście metalurgii i chemii analitycznej, aby zdenaturować białka i stabilizować niektóre substancje, co jest istotne w przypadku próbek wymagających analizy chemicznej. Błędem jest jednak założenie, że naświetlanie lampą UV może uznać za metodę utrwalania, ponieważ jego celem jest dezynfekcja, a nie długoterminowe zabezpieczenie próbki. Naświetlanie UV może prowadzić do nieodwracalnych zmian chemicznych, a także do zniszczenia niektórych związków w próbce, co osłabia jakość wyników analiz. W kontekście odpowiednich praktyk laboratoryjnych, należy przestrzegać standardów dotyczących przygotowania próbek, aby zapewnić ich wiarygodność i dokładność analiz.