Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 9 stycznia 2025 16:32
  • Data zakończenia: 9 stycznia 2025 16:46

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Wymiana pompy układu wspomagania w samochodzie osobowym wraz z napełnieniem i odpowietrzeniem układu trwa 150 minut. Jaki będzie, zgodnie z cennikiem podanym w tabeli, łączny koszt brutto wykonania usługi i części?

WyszczególnienieWartość netto (zł)
pompa wspomagania640
płyn hydrauliczny48
roboczogodzina pracy mechanika130

A. 1086,09 zł
B. 1245,99 zł
C. 1345,99 zł
D. 778,00 zł
Wybór błędnej odpowiedzi może wynikać z kilku typowych nieporozumień związanych z obliczaniem kosztów usług w branży motoryzacyjnej. Często zdarza się, że osoby nie uwzględniają pełnego czasu pracy, przeliczając go na godziny robocze, co prowadzi do niedoszacowania kosztów robocizny. Kolejnym powszechnym błędem jest nieuwzględnienie podatku VAT, który znacząco wpływa na całkowity koszt usługi. W przypadku obliczeń, kluczowe jest zrozumienie, że koszt części i robocizny należy ująć razem przed obliczeniem VAT. Pominięcie tej zasady może skutkować drastycznym błędnym wynikiem. Wartości netto i brutto są często mylone, co również może prowadzić do nieprecyzyjnych obliczeń. Poza tym, potrzeba znajomości aktualnych stawek robocizny i kosztów części zamiennych jest niezbędna, aby móc prawidłowo oszacować całkowity koszt usługi. Nieprawidłowe interpretowanie wartości może wiązać się z nadmiernym wydatkowaniem środków finansowych lub niewłaściwym podejściem do wyceny usług w warsztacie samochodowym. Aby unikać tych pułapek, kluczowe jest zrozumienie zasadności każdego elementu kosztów oraz ich kalkulacji według standardów branżowych.

Pytanie 2

Jaką częścią łączy się wał korbowy z tłokiem?

A. sworznia
B. zaworu
C. popychacza
D. korbowodu
Zaznaczenie błędnych odpowiedzi, jak sworzeń czy popychacz, może wynikać z tego, że nie do końca wiesz, jak te elementy działają. Sworzeń to część korbowodu, ale sam w sobie nie przekształca ruchu tłoka w ruch wału. Popychacz z kolei ma za zadanie przesuwać zawory w silnikach czterosuwowych, więc nie ma związku z korbowodem. Zawór kontroluje przepływ mieszanki paliwowej i spalin, ale także nie jest bezpośrednio związany z tym, jak działa korbowód. Mylenie tych elementów to częsty błąd, ale nie martw się, wszyscy przechodziliśmy przez to. Ważne, żeby zrozumieć, jak każdy z tych komponentów współpracuje w silniku. Warto poświęcić chwilę na przemyślenie tego, jak to wszystko działa razem.

Pytanie 3

Jakim narzędziem dokonuje się oceny luzu zamka pierścienia zgarniającego na tłoku?

A. z wykorzystaniem mikrometra
B. przy pomocy suwmiarki
C. przy użyciu płytek wzorcowych
D. za pomocą szczelinomierza
Płytki wzorcowe, mikrometry oraz suwmiarki są narzędziami pomiarowymi, które mają różne zastosowania, ale nie są one odpowiednie do sprawdzania luzu zamka pierścienia zgarniającego na tłoku. Płytki wzorcowe są używane głównie do kalibracji i weryfikacji innych narzędzi pomiarowych. Choć mogą być użyteczne w niektórych kontekstach, nie oferują wystarczającej precyzji do pomiaru luzu, który jest krytyczny w kontekście działania mechanizmów. Mikrometry, z drugiej strony, są przeznaczone do pomiaru wymiarów zewnętrznych lub wewnętrznych obiektów z dużą dokładnością, ale ich konstrukcja nie pozwala na pomiar szczelin w trudnodostępnych miejscach, takich jak luz zamka. Suwmiarki choć mogą być stosowane w pomiarach, również nie są w stanie zapewnić wymaganego poziomu dokładności dla tego typu pomiarów. Typowym błędem w myśleniu jest przekonanie, że każde narzędzie pomiarowe można zastosować w każdej sytuacji. Kluczowe jest zrozumienie, że różne aplikacje wymagają dopasowanych narzędzi, a narzędzia, które nie są przeznaczone do konkretnego zastosowania, mogą prowadzić do niepoprawnych wyników i ostatecznie do uszkodzeń mechanizmów. Właściwy dobór narzędzia pomiarowego jest fundamentem efektywnej diagnostyki i konserwacji sprzętu mechanicznego.

Pytanie 4

Aby przeprowadzić pomiar podciśnienia w kolektorze ssącym silnika spalinowego, należy użyć

A. manometru
B. sonometru
C. wakuometru
D. barometru
Barometr to instrument przeznaczony do pomiaru ciśnienia atmosferycznego, a nie podciśnienia, co sprawia, że nie jest przydatny w kontekście pomiarów w kolektorze dolotowym silnika spalinowego. Użycie barometru w tym przypadku prowadzi do błędnych wniosków o stanie silnika, ponieważ nie jest on w stanie dostarczyć informacji o różnicy ciśnień, która jest kluczowa dla zrozumienia procesów zachodzących w dolocie silnika. Manometr, choć często mylony z wakuometrem, jest przystosowany do pomiarów ciśnienia w obiektach, gdzie ciśnienie jest wyższe niż otoczenie, a nie niższe, jak w przypadku pomiarów podciśnienia. Zastosowanie manometru w kolektorze dolotowym może prowadzić do błędnych odczytów i nieefektywnej diagnostyki. Sonometr, z kolei, jest urządzeniem służącym do mierzenia poziomu dźwięku i nie ma zastosowania w pomiarach ciśnienia. Powszechnym błędem jest zatem mylenie różnych typów przyrządów pomiarowych i ich przeznaczenia, co podkreśla konieczność posiadania wiedzy na temat funkcji i zastosowań narzędzi w diagnostyce silników spalinowych. Praktyczne zrozumienie tego tematu jest kluczowe dla inżynierów i mechaników, którzy muszą umieć dobierać odpowiednie narzędzia do konkretnych zadań pomiarowych.

Pytanie 5

Wibracje oscylacyjne odczuwane w pojeździe na kole kierownicy przy niskiej prędkości mogą być spowodowane

A. zgubą sztywności sprężyny śrubowej
B. biciem opony
C. niewyważeniem koła
D. awarią amortyzatora
Utrata sztywności sprężyny śrubowej, uszkodzenie amortyzatora oraz niewyrównoważenie koła to problemy, które także mogą wpływać na komfort jazdy, jednak nie są one bezpośrednio odpowiedzialne za drgania odczuwane w kole kierownicy przy małych prędkościach. Zaczynając od sprężyny, jej utrata sztywności może prowadzić do spadku stabilności pojazdu podczas jazdy, zwłaszcza na nierównych nawierzchniach, jednak wibracje, które można odczuć na kierownicy, są zazwyczaj efektem problemów z kołami, a nie z samą sprężyną. Uszkodzenie amortyzatora również wpływa na komfort jazdy, ale jego główną rolą jest tłumienie drgań wynikających z nierówności drogi, a nie generowanie drgań na kole kierownicy. Niewyrównoważenie koła może prowadzić do wibracji, jednak zazwyczaj występują one przy wyższych prędkościach, a w tym przypadku pytanie dotyczy sytuacji przy małych prędkościach, co czyni tę odpowiedź mniej trafną. Typowym błędem jest mylenie źródła drgań; należy zwrócić uwagę na to, że ostatecznym źródłem powstania drgań w pojeździe są opony. Rekomendowane jest zatem regularne sprawdzanie stanu opon oraz ich właściwego wyważenia, co ma kluczowe znaczenie dla komfortu i bezpieczeństwa podczas jazdy.

Pytanie 6

Odporność na niekontrolowany samozapłon paliwa przeznaczonego do silników z zapłonem iskrowym jest określana przez

A. liczbę propanową
B. liczbę oktanową
C. liczbę cetanową
D. liczbę metanową
Liczba oktanowa jest miarą odporności paliwa na niekontrolowany samozapłon, co jest kluczowe dla silników z zapłonem iskrowym. Wyższa liczba oktanowa oznacza, że paliwo jest bardziej odporne na detonację, co zwiększa efektywność pracy silnika oraz jego żywotność. W praktyce, paliwa o wyższej liczbie oktanowej, takie jak paliwa premium, są często zalecane dla pojazdów sportowych lub tych z silnikami o wysokim stopniu sprężania. Dzięki temu, silniki mogą pracować z optymalnym osiągnięciem mocy i momentu obrotowego, co przekłada się na lepsze osiągi i mniejsze zużycie paliwa. Dobre praktyki branżowe zalecają regularne stosowanie paliw o uzasadnionej liczbie oktanowej zgodnie z specyfikacją producenta samochodu, aby zminimalizować ryzyko uszkodzeń silnika. Ponadto, zrozumienie liczby oktanowej pomaga w wyborze odpowiedniego paliwa w celu dostosowania do warunków eksploatacji, takich jak jazda w górach, gdzie silnik może być obciążony większymi wymaganiami.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

W głowicy znajdują się dwa wałki rozrządu. Który symbol to przedstawia?

A. OHC
B. SOHC
C. DOHC
D. OHV
Termin DOHC, czyli Double Overhead Camshaft, odnosi się do silników, które posiadają dwa wałki rozrządu umieszczone w głowicy cylindrów. Taki układ umożliwia bardziej precyzyjne sterowanie zaworami w porównaniu do starszych rozwiązań. Dzięki temu, silniki DOHC mogą osiągać wyższe obroty, co przekłada się na lepsze osiągi i efektywność. Dodatkowo, zastosowanie dwóch wałków pozwala na lepszą synchronizację otwierania i zamykania zaworów, co z kolei wpływa na optymalizację cyklu pracy silnika. Przykładowo, silniki sportowe często korzystają z tego typu rozrządu, aby uzyskać maksymalne parametry mocy i momentu obrotowego. W praktyce, DOHC jest powszechnie stosowany w nowoczesnych samochodach, co czyni tę wiedzę istotną dla każdego, kto zajmuje się motoryzacją czy inżynierią mechaniczną.

Pytanie 13

Czas wymiany uszczelki podgłowicowej w silniku wynosi 2,3 rbg, a całkowity koszt części zamiennych to 339,00 zł netto. Jaki jest całkowity koszt brutto naprawy (VAT 23%), przy założeniu, że cena za 1 rbg to 70,00 zł netto?

A. 600,00 zł
B. 595,00 zł
C. 615,00 zł
D. 500,00 zł
Obliczanie całkowitego kosztu naprawy silnika wymaga precyzyjnego uwzględnienia zarówno kosztów pracy, jak i części zamiennych. W przypadku błędnych odpowiedzi, które nie uwzględniają zarówno stawki za roboczogodzinę, jak i VAT, pojawiają się podstawowe błędy koncepcyjne. Na przykład, niektóre odpowiedzi mogą ignorować konieczność dodawania VAT do całkowitego kosztu netto. Przyjęcie, że koszt pracy jest stały, a następnie nie uwzględnienie VAT, prowadzi do zaniżenia całkowitych kosztów naprawy. Ważne jest również, aby zrozumieć, że każde zlecenie naprawy powinno być dokładnie kalkulowane na podstawie rzetelnych danych, co jest zgodne z najlepszymi praktykami w branży. Dobre praktyki obejmują dokładne przeliczanie godzin pracy oraz materiałów, a także transparentność w stosunku do klienta, co pozwala na uniknięcie nieporozumień. Zrozumienie pełnego procesu kosztorysowania, w tym wpływu VAT na cenę końcową usługi, jest kluczowe dla efektywnego zarządzania finansami w warsztatach. Ignorowanie tych elementów może prowadzić do nie tylko błędnych ocen kosztów, ale także do utraty zaufania klientów oraz nieefektywności operacyjnej.

Pytanie 14

Gdy kontrolka ABS (Anty Bloking System) na desce rozdzielczej pojazdu jest włączona podczas jazdy, nie oznacza to

A. o zużyciu tarczy hamulcowej
B. o wycieku płynu z pompy hamulcowej
C. o uszkodzeniu czujnika prędkości kół
D. o blokadzie kół
Kiedy mówimy o kontrolce ABS, warto wiedzieć, że sygnalizuje ona problemy w systemie hamulcowym, ale każda odpowiedź wskazuje na różne aspekty. Na przykład, wycieki płynu z pompy to poważna sprawa, bo mogą sprawić, że ciśnienie w układzie spadnie, co bezpośrednio wpływa na hamowanie i może włączyć kontrolkę. Blokowanie kół to coś, co ABS ma zapobiegać, więc to myślenie, że to jeden z problemów, jest błędne. Uszkodzenia czujników prędkości kół wpływają na działanie ABS, bo to one mówią systemowi, co robić, żeby koła się nie zablokowały. Zużycie tarczy hamulcowej jest jednak inna sprawą, bo nie aktywuje kontrolki ABS. Wiele osób myśli, że wszystko z hamulcami wiąże się z tą kontrolką, a to nieprawda. Pojazdy mają różne czujniki, które muszą działać, a ich diagnostyka jest kluczowa. Dobra praktyka to regularne sprawdzanie stanu hamulców, co może uratować życie.

Pytanie 15

Opony, które nie są wyposażone w wskaźnik informujący o granicznym zużyciu, powinny mieć głębokość bieżnika nie mniejszą niż

A. 2,4mm
B. 2,0 mm
C. 0,6mm
D. 1,6mm
Odpowiedź 1,6 mm jest poprawna, ponieważ jest to minimalna dopuszczalna głębokość bieżnika opon letnich i całorocznych według Dyrektywy Unii Europejskiej 2003/37/WE oraz przepisów wielu krajów. Głębszy bieżnik zapewnia lepszą przyczepność na mokrej nawierzchni, co jest kluczowe dla bezpieczeństwa jazdy. Opony z bieżnikiem o głębokości co najmniej 1,6 mm spełniają wymogi dotyczące bezpieczeństwa i efektywności paliwowej. W praktyce, opony z taką głębokością powinny być regularnie kontrolowane, szczególnie przed sezonem deszczowym, aby upewnić się, że ich właściwości jezdne nie są osłabione. Ponadto, należy pamiętać, że w warunkach zimowych zaleca się głębokość bieżnika co najmniej 4 mm, aby zapewnić odpowiednią przyczepność na śniegu i lodzie. Zastosowanie opon z niewystarczającą głębokością bieżnika może prowadzić do poślizgów i innych niebezpiecznych sytuacji na drodze, dlatego wymogi dotyczące głębokości bieżnika są kluczowe dla ochrony kierowców i pasażerów.

Pytanie 16

Oparzenia spowodowane gorącymi elementami oraz cieczami mogą wystąpić w trakcie

A. zajmowania się działającym silnikiem
B. pielęgnacji karoserii
C. instalacji części synchronizatorów
D. sprawdzania komponentów silnika
Odpowiedź "obsługi pracującego silnika" jest prawidłowa, ponieważ oparzenia gorącymi częściami i płynami najczęściej zdarzają się w trakcie pracy silnika, gdy jego elementy osiągają wysokie temperatury. W takich sytuacjach, szczególnie przy kontaktach z elementami układu chłodzenia, układem wydechowym czy innymi gorącymi komponentami, ryzyko oparzeń jest znacznie zwiększone. Przykładem może być wymiana oleju silnikowego, podczas której silnik musi być rozgrzany do pracy, a kontakt z gorącym olejem lub innymi cieczami może prowadzić do poważnych oparzeń. Zgodnie z normami BHP w przemyśle motoryzacyjnym, pracownicy powinni nosić odpowiednie środki ochrony osobistej, takie jak rękawice odporne na wysoką temperaturę oraz odzież ochronną, aby minimalizować ryzyko urazów. Weryfikacja procedur bezpieczeństwa oraz odpowiednie szkolenia z zakresu obsługi silników przyczyniają się do zmniejszenia liczby wypadków związanych z oparzeniami.

Pytanie 17

Nieprawidłowe rozpylenie paliwa wtryskiwanego, przejawiające się zwiększoną ilością sadzy w spalinach ponad dopuszczalne wartości, nie może być spowodowane

A. nieszczelnością rozpylacza.
B. nieszczelnością głowicy.
C. zużyciem otworów wylotowych rozpylacza.
D. zbyt niskim ciśnieniem wtrysku.
Nieszczelność w rozpylaczu, zużyte otwory wylotowe i niskie ciśnienie wtrysku to rzeczy, które mogą mocno wpłynąć na to, jak dobrze paliwo się rozpyla. Jak rozpylacz jest nieszczelny, to paliwo wtryskuje się źle i silnik działa nieregularnie. Kiedy paliwo jest źle rozprowadzone, mogą się pojawić duże krople, które nie spalają się tak, jak powinny, a to zwiększa emisję cząstek stałych, w tym sadzy. Zużyte otwory w rozpylaczu zaburzają strumień paliwa, co znowu ma wpływ na to, jak dobrze zachodzi spalanie. A niskie ciśnienie wtrysku to kolejny problem, bo przez to atomizacja paliwa nie zachodzi prawidłowo, co znów zwiększa ryzyko powstawania sadzy. Myślenie, że nieszczelności głowicy mogą być za to odpowiedzialne, to spory błąd, bo głowica nie wpływa na wtrysk. Więc żeby zmniejszyć emisję sadzy, ważne jest, żeby na bieżąco serwisować układy wtryskowe, sprawdzając stan rozpylaczy i ciśnienie, jak radzą producenci.

Pytanie 18

Jakim narzędziem dokonuje się pomiaru zużycia otworu tulei cylindrowej?

A. średnicówką mikrometryczną
B. szczelinomierzem
C. suwmiarką
D. liniałem krawędziowym
Szczelinomierz jest narzędziem używanym do pomiaru szczelin i luzów, a nie średnic otworów. Jego zastosowanie ogranicza się głównie do kontrolowania przestrzeni między dwoma elementami, co czyni go niewłaściwym wyborem do pomiaru średnic tulei cylindrowych, gdzie wymagane są precyzyjne pomiary średnicy. Użycie liniału krawędziowego również mija się z celem, ponieważ jest to narzędzie do pomiaru długości, a jego dokładność w kontekście pomiarów średnic jest niewystarczająca. Suwmiarka, choć bardziej uniwersalna i przydatna do pomiarów szerokości, grubości i średnic, nie osiąga takiej precyzji jak średnicówka mikrometryczna. Często w praktyce, użycie suwmiarki do pomiaru średnicy otworu może prowadzić do błędów wynikających z niewłaściwego ułożenia narzędzia lub techniki pomiaru. Typowe błędy myślowe, prowadzące do wyboru niewłaściwych narzędzi, obejmują niedokładną ocenę wymagań dotyczących precyzji i tolerancji wymiarowych, a także brak znajomości właściwych narzędzi pomiarowych dostępnych na rynku. W kontekście inżynierii mechanicznej, gdzie precyzja jest kluczowa, nie można zignorować znaczenia odpowiednich narzędzi pomiarowych.

Pytanie 19

Omomierz można zastosować do weryfikacji czujnika

A. Halla
B. położenia przepustnicy
C. manometrycznego
D. zegara
Zegarowy, czujnik Halla oraz manometryczny to różne rodzaje czujników, które pełnią inne funkcje i nie są odpowiednie do pomiaru położenia przepustnicy. Czujnik zegarowy służy do pomiaru czasu lub częstotliwości zdarzeń, co jest zupełnie inną dziedziną niż monitorowanie położenia elementów silnika. Z kolei czujnik Halla jest wykorzystywany do detekcji pól magnetycznych i ma zastosowanie np. w systemach zapłonowych lub do pomiaru prędkości obrotowej, natomiast nie nadaje się do bezpośredniego pomiaru kątów otwarcia przepustnicy. Czujnik manometryczny, z drugiej strony, jest stosowany do pomiaru ciśnienia gazów lub cieczy, a więc również nie jest właściwym narzędziem do oceny położenia przepustnicy. Wybór odpowiedniego czujnika jest kluczowy dla uzyskania rzetelnych danych, a mylenie ich funkcji może prowadzić do błędnych wniosków diagnostycznych. Często występującym błędem jest zakładanie, że każdy czujnik może być użyty zamiennie, co jest niezgodne z zasadami inżynierii i diagnostyki pojazdów. Dlatego ważne jest, aby mieć świadomość specyfiki każdego czujnika oraz jego zastosowania w kontekście układów elektronicznych pojazdu.

Pytanie 20

Jakie narzędzie pomiarowe powinno być zastosowane do określenia wartości zużycia tulei cylindrowej?

A. Sprawdzianu do otworów
B. Średnicówki zegarowej
C. Mikrometru
D. Suwmiarki
Mikrometr, suwmiarka oraz sprawdzian do otworów to narzędzia, które również służą do pomiarów, jednak każde z nich ma swoje ograniczenia, które czynią je nieodpowiednimi w kontekście pomiaru tulei cylindra. Mikrometr, mimo że jest precyzyjny, jest projektowany głównie do pomiarów grubości lub średnic małych obiektów, co może być niewystarczające przy pomiarach większych otworów, takich jak tuleje cylindrów. Dodatkowo, mikrometr nie pozwala na pomiar wewnętrzny w tak wygodny sposób, jak średnicówka zegarowa. Suwmiarka, choć wszechstronna, ma swoje ograniczenia co do dokładności, szczególnie w kontekście pomiarów wewnętrznych. Jej odczyty mogą być mniej precyzyjne w porównaniu do średnicówki zegarowej, co jest kluczowe przy pomiarach, gdzie tolerancje są bardzo małe. Sprawdzian do otworów, z kolei, jest narzędziem dostosowującym, które służy do oceny, czy dany otwór spełnia określone normy wymiarowe, ale nie dostarcza dokładnych wartości pomiarowych. W praktyce, podejmowanie decyzji o wyborze narzędzi pomiarowych wymaga zrozumienia ich specyfiki oraz zakresu zastosowania, co w tym przypadku prowadzi do błędnych wniosków, gdyż prawidłowy wybór narzędzia zapewnia skuteczność procesów pomiarowych i gwarantuje jakość wytworzonych elementów.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Cykliczne zapalanie się oraz wygaszanie kontrolki systemu hamulcowego w trakcie jazdy może być spowodowane

A. włączonym hamulcem ręcznym
B. zbyt dużym zużyciem klocków hamulcowych
C. przegrzewaniem się tarcz hamulcowych
D. niedostateczną ilością płynu hamulcowego
Kiedy kontrolka od hamulców świeci się okresowo, to zazwyczaj znaczy, że coś nie gra z płynem hamulcowym. To jest mega ważny element w systemie hamulcowym. Jak poziom płynu jest za niski, to może być problem z ciśnieniem, a to sprawia, że hamulce nie działają jak powinny. Wtedy kontrolka się zapala, żeby dać kierowcy znać, że coś jest nie tak. Z moich doświadczeń wynika, że jak poziom płynu spadnie poniżej normy, to powietrze może się zassanie do układu, a to jeszcze bardziej komplikuje sprawę. Dlatego ważne jest, żeby regularnie sprawdzać poziom płynu hamulcowego, to powinno być częścią przeglądów. Jak zauważysz niski poziom, to najlepiej od razu dolać odpowiedni płyn hamulcowy, a przy okazji zdiagnozować, czemu go ubywa, bo mogą być wycieki z przewodów albo zużyte uszczelki. Regularne kontrole hamulców to klucz do bezpieczeństwa na drodze.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Jak wykonuje się pomiar wysokości krzywki wałka rozrządu?

A. głębokościomierzem
B. mikromierzem do pomiarów wewnętrznych
C. szczelinomierzem
D. suwmiarką noniuszową
Mikromierz do pomiarów wewnętrznych, głębokościomierz i szczelinomierz to narzędzia, które posiadają różne zastosowania, ale nie są one idealnymi rozwiązaniami do pomiaru wysokości krzywki wałka rozrządu. Mikromierz, choć precyzyjny, jest przeznaczony głównie do pomiarów średnic wewnętrznych lub zewnętrznych, a nie do wysokości. Jego konstrukcja nie pozwala na łatwe i bezbłędne zmierzenie wysokości krzywki, gdyż wymaga on odpowiedniego punktu wsparcia, co może prowadzić do błędów pomiarowych. Głębokościomierz natomiast, jak sama nazwa wskazuje, służy do pomiarów głębokości otworów czy rowków, co nie ma zastosowania w przypadku pomiaru wysokości krzywki. Użycie głębokościomierza do tego celu może skutkować nieprecyzyjnymi wynikami, ponieważ nie jest on dostosowany do pomiarów na płaszczyznach poziomych, a jedynie pionowych. Szczelinomierz, z kolei, służy do pomiaru szczelin i to jest jego główne zastosowanie. Używanie go do pomiaru wysokości krzywek prowadzi do błędnego wnioskowania, ponieważ szczelinomierz nie jest narzędziem do pomiarów wymiarów zewnętrznych i nie daje możliwości uzyskania precyzyjnych odczytów wysokości. Prawidłowe pomiary w inżynierii mechanicznej wymagają odpowiednich narzędzi dostosowanych do specyficznych zadań, co jest kluczowe dla zapewnienia efektywności i bezpieczeństwa w pracy.

Pytanie 25

Metaliczne stuki z obszaru głowicy silnika mogą być spowodowane

A. niskim ciśnieniem sprężania
B. nieszczelnością zaworów
C. zbyt dużym luzem zaworowym
D. nieszczelną uszczelką pod głowicą
Zbyt duży luz zaworowy jest jedną z częstszych przyczyn metalicznych stuków w silniku. Gdy luz zaworowy jest zbyt duży, zawory nie zamykają się prawidłowo, co prowadzi do nieprawidłowego cyklu pracy silnika. Taki stan rzeczy może powodować, że zawory nie są w stanie wygenerować wystarczającej siły do zamknięcia, co skutkuje uderzeniami metalowymi. Oprócz hałasu, może to prowadzić do poważnych uszkodzeń w układzie rozrządu i górnej części silnika. Przykładowo, niewłaściwe ustawienie luzu zaworowego może skutkować ich nadmiernym zużyciem, co z kolei prowadzi do nieprawidłowej pracy silnika. W praktyce, mechanicy często zalecają regularne kontrolowanie i regulację luzu zaworowego zgodnie z instrukcjami producenta, co jest kluczowym elementem konserwacji silnika. Pomiar luzu zaworowego powinien być dokonywany za pomocą specjalistycznych narzędzi, takich jak feeler gauge, a odpowiednie wartości luzu są zazwyczaj podane w dokumentacji technicznej pojazdu. Przestrzeganie tych standardów pomoże zapobiec problemom z hałasem i zwiększy żywotność silnika."

Pytanie 26

Jeśli przełożenie w skrzyni biegów wynosi ib=1,0, a przełożenie tylnego mostu to it=4,1, to całkowite przełożenie układu napędowego jest równe

A. 5,1
B. 1,0
C. 3,1
D. 4,1
Wybór niepoprawnej odpowiedzi wynika zazwyczaj z nieporozumienia dotyczącego sposobu obliczania przełożenia całkowitego. Niektórzy mogą mylić pojedyncze wartości przełożeń z ich kombinacją, co prowadzi do błędnych wniosków. Przełożenie 4,1 jest wynikiem pomnożenia przełożenia skrzyni biegów i tylnego mostu, a nie prostym odczytem jednego z tych przełożeń. Na przykład, wybierając 3,1, można pomyśleć, że to tylko wartość z przełożenia tylnego mostu, jednak całkowite przełożenie nigdy nie może być mniejsze niż największe z indywidualnych przełożeń, gdyż obie wartości są ze sobą powiązane działania na jeden układ napędowy. Z kolei wybór 1,0 może sugerować, że nie uwzględniono przełożenia tylnego mostu, co również jest błędne, ponieważ pomija kluczowy element układu napędowego. Aby uniknąć takich pomyłek, warto pamiętać, że w każdym układzie napędowym przełożenia powinny być zawsze analizowane w kontekście ich współdziałania i wpływu na osiągi pojazdu. Analiza przełożeń jest szczególnie istotna w projektowaniu skrzyń biegów oraz układów napędowych, gdzie zrozumienie podstawowych zasad inżynierii mechanicznej i dynamiki pojazdów ma kluczowe znaczenie dla uzyskania pożądanych parametrów jazdy.

Pytanie 27

Na profil wału korbowego silnika nie oddziałuje

A. umiejscowienie wałka rozrządu
B. liczba cylindrów
C. pojemność skokowa silnika
D. kolejność zapłonów
Umiejscowienie wałka rozrządu nie ma wpływu na kształt wału korbowego silnika, ponieważ te dwa elementy pełnią różne funkcje w układzie napędowym silnika. Wał korbowy jest odpowiedzialny za przekształcanie ruchu posuwistego tłoków w ruch obrotowy, natomiast wałek rozrządu kontroluje otwieranie i zamykanie zaworów w odpowiednich momentach cyklu pracy silnika. W praktyce oznacza to, że zmiany w umiejscowieniu wałka rozrządu mogą wpływać na dynamikę pracy silnika, jednak nie zmieniają geometrii wału korbowego. Przykładami zastosowania tej wiedzy w projektowaniu silników są silniki DOHC (Double Overhead Camshaft), które posiadają dwa wałki rozrządu, ale to ich umiejscowienie nie wpływa na kształt wału korbowego, który pozostaje niezmienny. W kontekście standardów branżowych, projektanci silników często korzystają z zaawansowanych symulacji komputerowych, by ocenić wpływ różnych parametrów na osiągi silnika, a umiejscowienie wałka rozrządu jest jednym z wielu aspektów, które są brane pod uwagę, ale nie wpływa na kształt wału korbowego.

Pytanie 28

W dowodzie rejestracyjnym wskazana dopuszczalna masa całkowita pojazdu odnosi się do maksymalnej masy określonej przepisami, włączając w to

A. przyczepę
B. materiały eksploatacyjne w ilościach standardowych, z pominięciem kierowcy i ładunku
C. pasażerów, kierowcę i ładunek
D. kierowcę oraz pasażerów, jednak bez ładunku
Odpowiedź wskazująca, że dopuszczalna masa całkowita pojazdu odnosi się do masy pojazdu wraz z pasażerami, kierowcą i ładunkiem jest prawidłowa, ponieważ zgodnie z przepisami prawa drogowego, dopuszczalna masa całkowita (DMC) to maksymalna masa, jaką pojazd może ważyć podczas użytkowania na drodze. W skład tej masy wchodzą nie tylko same materiały eksploatacyjne, ale również wszyscy użytkownicy pojazdu oraz wszelkie przewożone ładunki. Przykładowo, przy wyliczaniu DMC dla autobusu pasażerskiego uwzględnia się zarówno masę pojazdu, jak i masę wszystkich pasażerów oraz ewentualny bagaż. Dobrą praktyką dla kierowców i przedsiębiorstw transportowych jest monitorowanie ilości przewożonych pasażerów oraz ładunku, aby nie przekraczać DMC, co może prowadzić do niebezpiecznych sytuacji na drodze oraz naruszeń przepisów prawa. W przypadku przekroczenia DMC, kierowca naraża siebie, pasażerów oraz innych uczestników ruchu na ryzyko, a także może ponieść konsekwencje prawne, w tym mandaty i kary administracyjne.

Pytanie 29

Który z rodzajów odpadów generowanych w warsztacie samochodowym stanowi istotne zagrożenie dla środowiska?

A. Klocki hamulcowe
B. Tarcze sprzęgła
C. Filtry powietrza
D. Oleje silnikowe
Klocki hamulcowe, filtry powietrza oraz tarcze sprzęgła, mimo że mogą generować odpady, nie mają tak negatywnego wpływu na środowisko jak oleje silnikowe. Klocki hamulcowe składają się głównie z materiałów kompozytowych, które, choć mogą wydzielać pyły podczas eksploatacji, nie zawierają substancji toksycznych w takiej ilości, która mogłaby stanowić poważne zagrożenie dla środowiska. Filtry powietrza, wykonane często z materiałów syntetycznych, również nie są tak uciążliwe, ponieważ można je poddać recyklingowi, a ich zawartość nie jest tak szkodliwa. Tarcze sprzęgła, chociaż mogą być wykonane z metali, nie emitują substancji niebezpiecznych i, podobnie jak klocki, można je poddać recyklingowi. Wiele osób myli wpływ tych odpadów, nie zdając sobie sprawy, że najbardziej niebezpiecznym i problematycznym odpadem w kontekście ochrony środowiska są oleje silnikowe. Typowe błędy myślowe prowadzące do takich wniosków obejmują niedostateczną wiedzę na temat substancji zawartych w różnych materiałach oraz brak zrozumienia procesów recyklingu. Edukacja w zakresie różnicy między odpadami oraz ich wpływem na środowisko jest kluczowa, aby prawidłowo ocenić ich szkodliwość.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

W oznaczeniu opony 205/55 R15 82 T symbol T wskazuje na

A. indeks nośności
B. oponę bezdętkową
C. indeks prędkości
D. wysokość bieżnika
Odpowiedzi wskazujące na oponę bezdętkową, indeks nośności oraz wysokość bieżnika są nieprawidłowe, ponieważ nie odnoszą się bezpośrednio do symbolu T w oznaczeniu opony. Opona bezdętkowa to typ opony, który nie wymaga dętki, a jego oznaczenie w numeracji zazwyczaj nie zawiera symbolu T. Indeks nośności, oznaczany innymi cyframi, odnosi się do maksymalnej wagi, którą opona może unieść, co jest kluczowe dla bezpieczeństwa pojazdu, lecz nie ma związku z maksymalną prędkością. W praktyce, nieprawidłowe zrozumienie indeksu nośności może prowadzić do wyboru opon niewłaściwych dla danego pojazdu, co w konsekwencji może skutkować ich uszkodzeniem. Wysokość bieżnika jest również elementem wpływającym na osiągi opony, ale nie jest reprezentowana przez symbol T. Często błędnie myli się różne aspekty oznaczeń opon, co może prowadzić do nieodpowiednich wyborów przy zakupie. Warto pamiętać, że każde oznaczenie na oponie ma swoje precyzyjne znaczenie, i zrozumienie tych symboli jest kluczowe dla zapewnienia bezpieczeństwa i efektywności jazdy. Edukacja w zakresie oznaczeń opon może znacząco poprawić świadomość kierowców, co do właściwych wyborów podczas zakupu opon.

Pytanie 32

Oznaczenie na alternatorze: 14V, 90A wskazuje

A. sprawność alternatora
B. najmniejszy prąd wzbudzenia
C. maksymalne natężenie prądu dla akumulatora
D. najniższe zdolności produkcyjne prądu
Oznaczenie 14V, 90A na alternatorze wskazuje, że jego maksymalne napięcie wynosi 14V, a maksymalne dopuszczalne natężenie prądu to 90A. Wydajność alternatora odgrywa kluczową rolę w prawidłowym funkcjonowaniu systemu elektrycznego pojazdu. Alternator generuje prąd, który ładował akumulator oraz zasila urządzenia elektryczne w samochodzie. W praktyce, aby zapewnić niezawodność pracy alternatora, jego wydajność powinna być dostosowana do wymagań pojazdu, co oznacza, że powinien on być w stanie dostarczyć odpowiednie natężenie prądu w różnych warunkach eksploatacyjnych. Dobrą praktyką jest również regularne sprawdzanie stanu alternatora i akumulatora, aby uniknąć problemów z rozruchem oraz zapewnić odpowiednią moc dla systemów multimedialnych, oświetlenia i innych urządzeń elektrycznych. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie efektywności i niezawodności komponentów elektronicznych w pojazdach, co znajduje odzwierciedlenie w doborze odpowiednich alternatorów do konkretnych modeli samochodów.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Stosunek rzeczywistej objętości powietrza w cylindrze do objętości powietrza niezbędnej do całkowitego spalenia paliwa znajdującego się w danym momencie w cylindrze nazywa się współczynnikiem

A. nadmiaru powietrza
B. wzmocnienia
C. wypełnienia impulsu
D. oporu powietrza
Współczynnik nadmiaru powietrza to kluczowy parametr w procesie spalania, który definiuje stosunek rzeczywistej ilości powietrza dostarczonego do silnika do ilości powietrza potrzebnej do całkowitego spalenia paliwa. W praktyce, gdy współczynnik nadmiaru powietrza wynosi 1, oznacza to, że do silnika dostarczono dokładnie tyle powietrza, ile potrzeba do spalenia całego paliwa. Wartości powyżej 1 wskazują na nadmiar powietrza, co jest korzystne z punktu widzenia redukcji emisji szkodliwych substancji, ponieważ sprzyja całkowitemu spalaniu paliwa. Przykładowo, w silnikach spalinowych, takich jak te stosowane w pojazdach, optymalizacja tego współczynnika pozwala na osiągnięcie lepszej efektywności paliwowej oraz zmniejszenie emisji tlenków azotu. Normy emisji, takie jak Euro 6, wymagają stosowania technologii, które pozwalają na kontrolowanie współczynnika nadmiaru powietrza w celu spełnienia rygorystycznych standardów dotyczących czystości spalin. Dobra praktyka w zakresie projektowania silników i układów wydechowych polega na monitorowaniu tego współczynnika w czasie rzeczywistym, co umożliwia dostosowanie parametrów pracy silnika do zmieniających się warunków eksploatacji.

Pytanie 35

Aby ustalić przyczynę braku maksymalnych wydajności silnika przy całkowicie otwartej przepustnicy, gdy nie stwierdza się innych symptomów, należy w pierwszej kolejności przeprowadzić pomiar

A. napięcia ładowania
B. ciśnienia smarowania
C. ciśnienia paliwa
D. ciśnienia sprężania
Pomiar ciśnienia paliwa jest kluczowym krokiem w diagnostyce problemów z osiągami silnika, szczególnie w sytuacjach, gdy silnik nie osiąga maksymalnych obrotów przy pełnym otwarciu przepustnicy. Niewłaściwe ciśnienie paliwa może prowadzić do niedostatecznego podawania paliwa do silnika, co z kolei wpływa na jego wydajność. W praktyce, ciśnienie paliwa powinno mieścić się w określonym zakresie, który jest zazwyczaj podawany przez producenta pojazdu. Na przykład, w wielu silnikach ciśnienie paliwa powinno wynosić od 2,5 do 3,5 bara. Zbyt niskie ciśnienie może być spowodowane przez uszkodzone pompy paliwa, zanieczyszczone filtry paliwa lub nieszczelności w układzie paliwowym. W przypadku stwierdzenia problemów z ciśnieniem, zaleca się systematyczne sprawdzenie całego układu paliwowego, co jest zgodne z dobrymi praktykami w branży motoryzacyjnej, zapewniając rzetelne i skuteczne diagnostyki.

Pytanie 36

Przy regulacji geometrii przednich kół pojazdu, w którym można dostosować wszystkie kąty, kolejność przeprowadzania tych ustawień wygląda następująco:

A. Kąt pochylenia każdego koła, wyprzedzenie sworznia zwrotnicy każdego koła, a na końcu regulacja zbieżności kół
B. Najpierw regulacja zbieżności kół, następnie kąt pochylenia każdego koła, a na końcu wyprzedzenie sworznia zwrotnicy każdego koła
C. Wyprzedzenie sworznia zwrotnicy każdego koła, regulacja zbieżności kół, a potem kąt pochylenia każdego koła
D. Wyprzedzenie sworznia zwrotnicy, kąt pochylenia każdego koła, a później regulacja zbieżności kół
Patrząc na błędy, które się pojawiły, to widać kilka rzeczy. Po pierwsze, niektóre odpowiedzi sugerują, że kolejność regulacji nie ma znaczenia, a to nie jest prawda. Jeśli zaczniemy od zbieżności, a nie od wyprzedzenia sworznia zwrotnicy, to możemy mieć naprawdę poważne problemy z prowadzeniem pojazdu. Wyprzedzenie powinno być na pierwszym miejscu, bo stabilność kierowania jest kluczowa dla bezpieczeństwa. Kolejna rzecz, to pochylenie kół – wcale nie można je zaniedbać. Regulując pochylenie przed zbieżnością, nie bierzemy pod uwagę, jak to wszystko działa razem. Z mojego punktu widzenia, brak zrozumienia tych wszystkich kątów może prowadzić do kłopotów, które będą nas kosztować w naprawach. Takie pomyłki naprawdę nie służą jakości jazdy, warto to mieć na uwadze.

Pytanie 37

Przed rozpoczęciem weryfikacji sprawności układu hamulcowego pojazdu w stanowisku diagnostycznym w Stacji Kontroli Pojazdów należy najpierw

A. zmierzyć grubość materiału ciernego klocków hamulcowych
B. wyregulować ciśnienie w oponach
C. sprawdzić funkcjonowanie serwomechanizmu
D. zmierzyć poziom wody w płynie hamulcowym
Zarówno pomiar grubości okładzin ciernych klocków hamulcowych, jak i sprawdzenie działania serwomechanizmu czy zawartości wody w płynie hamulcowym, są ważnymi elementami diagnostyki układu hamulcowego, ale ich przeprowadzenie powinno mieć miejsce po zapewnieniu prawidłowego ciśnienia w ogumieniu. Nieprawidłowe ciśnienie w oponach może prowadzić do mylnych wyników testów hamulcowych, ponieważ zmienia ono dynamikę pojazdu. Zmiana profilu opon może prowadzić do zmiany siły, z jaką opony przylegają do nawierzchni, co bezpośrednio wpływa na efektywność hamowania. Sprawdzenie serwomechanizmu, które ma na celu zbadanie efektywności wspomagania układu hamulcowego, również nie ma sensu bez odpowiedniego ciśnienia w oponach, ponieważ działanie tego mechanizmu w dużej mierze zależy od ustawienia pojazdu na drodze. Ponadto, pomiar zawartości wody w płynie hamulcowym, choć istotny dla oceny stanu układu hamulcowego, także musi być zrealizowany w kontekście całkowitej sprawności pojazdu, co oznacza, że nie powinno się pomijać regulacji ciśnienia w ogumieniu. Typowym błędem jest zakładanie, że diagnostyka układu hamulcowego może rozpocząć się od bardziej skomplikowanych elementów, podczas gdy podstawowe parametry, takie jak ciśnienie w oponach, mają kluczowe znaczenie dla poprawności wyników testów.

Pytanie 38

W przykładowym oznaczeniu opony 195/65R15 91H litera R wskazuje na

A. indeks prędkości
B. średnicę opony
C. oponę radialną
D. promień opony R
Odpowiedzi 1, 2 i 3 odnoszą się do mylących interpretacji oznaczeń opon. Średnica opony, wskazana w oznaczeniu, jest ważnym parametrem, jednak nie jest ona reprezentowana przez literę R. Zwykle średnica wyrażana jest w calach, jak w przypadku liczby 15 w oznaczeniu 195/65R15. Indeks prędkości, który jest istotnym czynnikiem w określaniu maksymalnej prędkości, jaką opona może znieść, jest natomiast reprezentowany przez litery znajdujące się na końcu oznaczenia, w tym przypadku H, co oznacza maksymalną prędkość 210 km/h. Promień opony, chociaż istotny w kontekście jej charakterystyki, nie jest bezpośrednio wyrażany w standardowym oznaczaniu opon i nie jest związany z literą R. Te błędne interpretacje mogą wynikać z niewłaściwego rozumienia podstawowych zasad konstrukcji opon oraz ich oznaczeń. Właściwe zrozumienie tych oznaczeń jest niezbędne do wyboru odpowiednich opon do pojazdu, co ma kluczowe znaczenie dla bezpieczeństwa i wydajności jazdy. Dlatego zrozumienie, że R oznacza opony radialne, jest kluczowe w kontekście doboru opon, które wpływają na komfort, bezpieczeństwo i osiągi pojazdu.

Pytanie 39

Jakiego rodzaju parametr opisuje zapis 100A (Amper)?

A. Lepkości cieczy
B. Natężenia prądu
C. Temperatury cieczy
D. Napięcia prądu
Odpowiedź 'Natężenia prądu' jest poprawna, ponieważ zapis 100A odnosi się bezpośrednio do wartości natężenia prądu elektrycznego, które mierzone jest w amperach (A). Natężenie prądu definiuje ilość ładunku elektrycznego przepływającego przez punkt w obwodzie w jednostce czasu. W praktyce, zrozumienie natężenia prądu jest kluczowe w wielu zastosowaniach inżynieryjnych i elektronicznych, np. przy projektowaniu obwodów elektrycznych, w których należy zapewnić, aby przekroje przewodów były odpowiednie do przewodzenia określonego natężenia prądu bez ryzyka przegrzania. Standardy takie jak IEC 60228 dotyczące przewodów elektrycznych zawierają szczegółowe wytyczne dotyczące doboru przekrojów przewodów w zależności od natężenia prądu. Warto również zauważyć, że w systemach zasilania, takich jak instalacje domowe czy przemysłowe, natężenie prądu ma kluczowe znaczenie dla obliczania mocy elektrycznej, co jest niezbędne do prawidłowego doboru urządzeń oraz zabezpieczeń elektrycznych.

Pytanie 40

Kolumna McPhersona stanowi część zawieszenia pojazdu

A. skrętny
B. sztywny
C. tłumiący
D. elastyczny
Wybór odpowiedzi, która nie odnosi się do funkcji tłumiącej kolumny McPhersona, prowadzi do nieporozumienia w zakresie mechaniki zawieszenia. Odpowiedzi wskazujące na cechy takie jak sztywność, elastyczność czy skrętność w kontekście kolumny McPhersona nie uwzględniają jej podstawowej roli w systemie zawieszenia. Sztywność elementów zawieszenia odnosi się do ich zdolności do oporu przeciwko deformacji pod wpływem sił zewnętrznych. Chociaż kolumna McPhersona ma pewne właściwości sztywne, jej kluczowe znaczenie tkwi w zdolności do tłumienia drgań. Elastyczność, z drugiej strony, dotyczy zdolności materiałów do rozciągania i deformacji, co nie jest główną cechą kolumny McPhersona, która jest projektowana z myślą o zapewnieniu stabilności. Skrętność, związana z reakcją zawieszenia na obroty pojazdu, jest również niewłaściwie odnoszona do kolumny McPhersona, ponieważ jej funkcja jest bardziej związana z absorpcją wstrząsów niż z reakcją na kierunek jazdy. Zrozumienie tych różnic jest kluczowe dla kompetentnej analizy układów zawieszenia oraz do projektowania pojazdów, które muszą spełniać określone normy bezpieczeństwa i komfortu jazdy.