Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 1 kwietnia 2025 09:24
  • Data zakończenia: 1 kwietnia 2025 09:46

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie złącza powinny być wykorzystane dla kabli koncentrycznych w systemie monitoringu telewizyjnego?

A. SCART
B. HDMI
C. BNC
D. DIN
Złącza DIN, SCART i HDMI, mimo że są szeroko stosowane w różnych dziedzinach elektroniki, nie są odpowiednie do kabli koncentrycznych w systemach telewizji dozorowej. Złącza DIN stosowane są głównie w starszych urządzeniach audio i MIDI, a ich konstrukcja nie zapewnia optymalnych parametrów dla przesyłania sygnałów wideo. W kontekście telewizji dozorowej, ich użycie mogłoby prowadzić do degradacji jakości sygnału ze względu na niekompatybilność z typowym przewodem koncentrycznym. Z kolei złącza SCART, popularne w telewizorach i odtwarzaczach wideo, są projektowane do przesyłania sygnałów analogowych oraz cyfrowych, jednak ich zastosowanie w systemach CCTV jest ograniczone, ponieważ nie obsługują standardowych kabli koncentrycznych. HDMI, mimo że jest nowoczesnym złączem, które obsługuje wysoką jakość obrazu i dźwięku, również nie jest przeznaczone do pracy z kablami koncentrycznymi. HDMI wymaga zastosowania specjalnych przewodów, które nie są zgodne z konwencjonalnymi systemami CCTV. Wybierając złącza do systemu monitoringu, należy unikać typowych błędów myślowych, które mogą prowadzić do wyboru niewłaściwych komponentów, co może skutkować problemami z jakością obrazu oraz awariami systemu.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Dwie czujki radiowe zainstalowane w tym samym pomieszczeniu zakłócają nawzajem swoje działanie. Przyczyną tego jest

A. to, że działają na tej samej częstotliwości
B. ich natychmiastowe działanie
C. to, że instalacja ma tylko jeden sygnalizator
D. ich umiejscowienie na suficie
Czujki radiowe, które pracują na tej samej częstotliwości, mogą się nawzajem zakłócać, bo sygnały się mieszają. Z mojego doświadczenia wynika, że jak dwie czujki nadają na tej samej częstotliwości, to ich sygnały mogą się nałożyć, co prowadzi do błędnych wyników. Weźmy na przykład systemy alarmowe – zazwyczaj mamy tam kilka czujek w jednym miejscu. Żeby uniknąć problemów z zakłóceniami, projektanci systemów często używają różnych częstotliwości dla czujek albo stosują różne techniki kodowania sygnałów, dzięki czemu urządzenia mogą działać równolegle. To wszystko jest zgodne z normami, jak EN 50131, które mówią o wymaganiach dla systemów alarmowych, w tym o zakłóceniach radiowych.

Pytanie 4

Zastosowanie uszkodzonych bezpieczników, zastępując je bezpiecznikami o większej wartości prądu znamionowego, może prowadzić do

A. większego zużycia energii
B. większego zużycia mocy
C. wzrostu napięcia źródła zasilania
D. przeciążenia oraz zniszczenia instalacji
Wiesz, wymiana uszkodzonych bezpieczników na te o wyższej wartości prądu może przynieść sporo problemów w instalacji elektrycznej. Bezpieczniki mają swoją rolę, chronią obwody przed przeciążeniem i zwarciami. Ich wartość znamionowa mówi, ile maksymalnie prądu można puścić przez obwód bez ryzyka uszkodzenia. Jak włożysz bezpiecznik o wyższej wartości, to obwód zacznie tolerować większy prąd, co może spalić przewody lub zepsuć urządzenia, które nie są na to gotowe. Przykład? Wyobraź sobie, że masz sprzęt, który jest stworzony do pracy z określonym prądem, a potem zmieniasz bezpiecznik. Dajesz mu więcej prądu i nagle urządzenie się przegrzewa, a w rezultacie kończy w śmietniku. W branży są normy, jak PN-IEC 60364, które podkreślają, jak ważne jest dobranie odpowiednich zabezpieczeń, żeby wszystko działało sprawnie i bezpiecznie.

Pytanie 5

Jakiego rodzaju diodą jest dioda o oznaczeniu BZV49-C7V5?

A. Zenera
B. Prostownicza
C. Pojemnościowa
D. Tunelowa
Wybór diody prostowniczej jako odpowiedzi na pytanie o diodę BZV49-C7V5 jest błędny, ponieważ diody prostownicze mają zupełnie inną funkcję w obwodach. Ich głównym zadaniem jest konwersja prądu zmiennego na prąd stały, co jest kluczowe w zasilaczach. Dioda prostownicza pozwala na przepływ prądu tylko w jednym kierunku, co jest istotne w aplikacjach, gdzie potrzebne jest odfiltrowanie składowej zmiennej. Z kolei diody tunelowe są używane w specyficznych zastosowaniach, takich jak oscylatory i układy o wysokiej częstotliwości, ze względu na swoje unikalne właściwości związane z tunelowaniem elektronów, co czyni je zupełnie nieprzydatnymi w kontekście regulacji napięcia. W przypadku diod pojemnościowych, ich zastosowanie skupia się na przechowywaniu energii w polu elektrycznym, a nie na stabilizacji napięcia jak w przypadku diod Zenera. Ponadto, powszechne błędy w myśleniu prowadzące do takich nieprawidłowych odpowiedzi to mylenie funkcji diody z jej oznaczeniem. Wiele osób może nie być świadomych, że oznaczenia diod często wskazują na ich specyfikacje i właściwości, co w tym przypadku jasno wskazuje diodę Zenera. Ważne jest, aby w procesie uczenia się zwracać uwagę na różnice w zastosowaniu i charakterystykach poszczególnych typów diod, co jest kluczowe dla zrozumienia ich roli w elektronice.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Przed wymianą urządzenia w systemie elektronicznym, konieczne jest odłączenie przewodu zasilającego?

A. po usunięciu starego urządzenia
B. po zakończeniu montażu
C. zanim rozpoczną się prace demontażowe
D. w trakcie instalacji nowego sprzętu
Odpowiedź "przed rozpoczęciem prac demontażowych" jest prawidłowa, ponieważ bezpieczeństwo jest kluczowym aspektem w pracy z instalacjami elektronicznymi. Przed przystąpieniem do jakichkolwiek działań związanych z wymianą urządzenia, kluczowe jest odłączenie przewodu zasilającego. To działanie minimalizuje ryzyko porażenia prądem oraz uszkodzenia sprzętu. W praktyce, każdy technik powinien stosować się do procedur zawartych w normach bezpieczeństwa, takich jak PN-EN 50110-1, które nakładają obowiązek odłączenia zasilania przed przystąpieniem do pracy. Dodatkowo, w przypadku wymiany urządzeń, zawsze warto stosować się do zasad dotyczących oznaczania i dokumentacji prac, aby mieć pewność, że wszystkie etapy demontażu i montażu są odpowiednio udokumentowane. Przykładem może być sytuacja, gdy technik wymienia starą lampę na nową; przed przystąpieniem do demontażu lampy, powinien najpierw wyłączyć zasilanie, co zapewnia bezpieczeństwo zarówno jego, jak i osób znajdujących się w pobliżu.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Aby zweryfikować ciągłość instalacji, należy użyć

A. watmierz
B. woltomierza
C. omomierza
D. amperomierza
Amperomierz, watomierz i woltomierz to urządzenia pomiarowe o różnych zastosowaniach, które nie są odpowiednie do sprawdzania ciągłości instalacji elektrycznej. Amperomierz jest używany do pomiaru natężenia prądu w obwodzie, co pozwala na ocenę, ile prądu przepływa przez dany element. W przypadku sprawdzania ciągłości instalacji, mierzenie natężenia nie dostarcza informacji na temat istnienia przerw w obwodzie. Z kolei watomierz mierzy moc elektryczną (w watach) i jest przydatny w ocenie efektywności urządzeń, ale również nie ma zastosowania w kontekście ciągłości przewodów. Woltomierz, który mierzy napięcie, również nie jest odpowiedni, ponieważ nie może wykryć, czy przewód jest ciągły - może jedynie wskazać, czy w danym momencie na przewodzie jest obecne napięcie. Typowe błędy myślowe prowadzące do wyboru tych urządzeń związane są z myleniem pojęć związanych z pomiarem prądu, mocy oraz napięcia z błędami w obwodzie. W praktyce, do sprawdzania ciągłości instalacji konieczne jest użycie omomierza, który dostarcza dokładnych informacji o rezystancji, a tym samym o ewentualnych przerwach w obwodzie. Nieodpowiednie dobieranie narzędzi pomiarowych może prowadzić do poważnych błędów w ocenie stanu instalacji, co w konsekwencji grozi awariami lub zagrożeniem dla bezpieczeństwa użytkowników.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

W trakcie prac serwisowych dotyczących wlutowywania elementów elektronicznych w wzmacniaczu akustycznym, pracownik powinien założyć

A. obuwie elektroizolacyjne
B. odzież ochronną
C. rękawice elektroizolacyjne
D. hełm ochronny
Odpowiedź "odzież ochronna" jest prawidłowa, ponieważ w trakcie prac serwisowych związanych z wlutowywaniem elementów elektronicznych, kluczowe jest zapewnienie bezpieczeństwa pracownika. Odzież ochronna ma na celu nie tylko ochronę przed zabrudzeniami, ale także minimalizację ryzyka kontaktu z potencjalnie niebezpiecznymi substancjami chemicznymi oraz zapobieganie uszkodzeniom ciała w wyniku przypadkowych kontaktów z ostrymi lub gorącymi elementami. Przykłady zastosowania obejmują użycie fartuchów ochronnych, które są wykonane z materiałów odpornych na działanie chemikaliów, a także noszenie rękawów ochronnych, które chronią skórę przed szkodliwymi substancjami. W praktyce stosowanie odzieży ochronnej jest zgodne z normą PN-EN ISO 13688:2013, która określa wymagania dotyczące odzieży ochronnej, zapewniając odpowiednią ochronę w różnych środowiskach pracy. Pracownicy powinni zawsze być świadomi znaczenia stosowania odpowiedniej odzieży, aby zminimalizować ryzyko wystąpienia wypadków i urazów w miejscu pracy.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Urządzenie pozwalające na podłączenie większej ilości czujników do systemu alarmowego nosi nazwę

A. ekspandera wyjść
B. modułu ETHM
C. ekspandera wejść
D. modułu GSM
Moduł ETHM, ekspander wyjść oraz moduł GSM to urządzenia, które pełnią różne funkcje w systemach alarmowych, ale nie są przeznaczone do rozszerzania liczby czujników. Moduł ETHM służy do komunikacji z siecią Ethernet, co pozwala na zdalne zarządzanie systemem alarmowym za pomocą aplikacji lub przeglądarki internetowej. Jego głównym zastosowaniem jest umożliwienie dostępu do danych alarmowych i zarządzanie nimi zdalnie, co jest niezwykle istotne w nowoczesnych systemach zabezpieczeń. Ekspander wyjść, z drugiej strony, jest urządzeniem, które zwiększa liczbę wyjść w centrali, co może być przydatne do podłączenia dodatkowych sygnalizatorów alarmowych lub innych urządzeń, ale nie dodaje nowych czujników. Moduł GSM natomiast zapewnia komunikację systemu alarmowego z siecią GSM, co umożliwia powiadamianie użytkowników o alarmach poprzez SMS lub połączenia telefoniczne. Istnieje często mylne przekonanie, że te urządzenia mogą pełnić tę samą funkcję, co ekspander wejść, co prowadzi do błędnych wniosków przy projektowaniu systemów alarmowych. Kluczowym błędem jest brak zrozumienia, że każde z tych urządzeń ma swoją specyfikę i zastosowanie, które powinny być dostosowane do konkretnych potrzeb danego systemu zabezpieczeń.

Pytanie 16

Jaki układ powinien być zastosowany, aby zestawić badane napięcie z napięciem odniesienia i w zależności od różnicy uzyskać na wyjściu układu sygnał logiczny 0 lub 1?

A. Multiplekser
B. Stabilizator
C. Komparator
D. Demultiplekser
Wybór niewłaściwego układu, takiego jak multiplekser, demultiplekser czy stabilizator, jest wynikiem mylnych przekonań na temat ich funkcji. Multiplekser to układ, który umożliwia wybór jednej z wielu linii wejściowych i przesyłanie jej na wyjście. Jego głównym celem jest manipulacja danymi, a nie bezpośrednie porównywanie napięć, co czyni go nieodpowiednim do zadania porównania napięć. Z kolei demultiplekser działa w przeciwny sposób – rozdziela sygnał z jednego źródła na wiele wyjść, co również nie odpowiada na potrzeby porównawcze. Stabilizator natomiast ma za zadanie utrzymanie stałego napięcia na wyjściu, niezależnie od zmian w napięciu wejściowym lub obciążeniu, co również jest inną funkcjonalnością. Te błędne wybory wynikają często z nieporozumień dotyczących podstawowych funkcji tych układów. Na przykład, mylenie roli komparatora z funkcją multipleksera może prowadzić do sytuacji, w której użytkownik szuka rozwiązania dla problemu porównania napięć, używając układu, który nie jest w stanie wykonać tej operacji. Aby uniknąć takich błędów, ważne jest zrozumienie różnic między tymi układami oraz ich zastosowań w praktyce, co jest kluczowe w projektowaniu systemów elektronicznych.

Pytanie 17

Sygnał z wewnętrznej anteny osiąga wartość 40 dBμV. Aby na wejściu antenowym telewizora uzyskać sygnał o poziomie 60 dBμV, jaki wzmacniacz o określonym wzmocnieniu powinien być zastosowany?

A. 20 dB
B. 100 dB
C. 60 dB
D. 40 dB
Wybór wzmocnienia sygnału na poziomie 40 dB, 60 dB czy 100 dB nie jest właściwy, ponieważ nie uwzględnia rzeczywistej różnicy między poziomami sygnału. Wzmocnienie 40 dB sugerowałoby, że sygnał wzmacniany do 80 dBμV, co jest nadmiernym wzmocnieniem w tym przypadku, mogącym prowadzić do przesterowania sygnału na wejściu odbiornika. Takie przesterowanie może skutkować zniekształceniem i degradacją jakości odbieranych sygnałów. Podobnie, wzmocnienia 60 dB i 100 dB są niewłaściwe, ponieważ prowadziłyby do jeszcze większego wzrostu poziomu sygnału, co nie tylko przekraczałoby wymagany poziom, ale także wprowadzałoby znaczące problemy z szumami i interferencjami. W praktyce, dobierając wzmacniacz, należy kierować się zasadą, że wzmocnienie powinno być dokładnie dopasowane do różnicy pomiędzy poziomem sygnału wejściowego a pożądanym poziomem sygnału wyjściowego. Każde nadmierne wzmocnienie może prowadzić do zakłóceń, co jest szczególnie ważne w aplikacjach telewizyjnych, gdzie jakość sygnału jest kluczowa dla odbioru. Przy doborze wzmacniaczy warto zwrócić uwagę na specyfikacje producenta oraz normy branżowe, aby uniknąć problemów z jakością odbioru.

Pytanie 18

Obwód sabotażowy bez zastosowania rezystorów w systemie alarmowym powinien być skonfigurowany w trybie

A. NC
B. EOL
C. NO
D. 2EOL
Konfiguracja EOL (End of Line) polega na zastosowaniu rezystorów na końcu linii czujników, co jest przydatne w bardziej skomplikowanych systemach, gdzie chcemy monitorować stan obwodu na całej jego długości. Jednak w przypadku obwodu sabotażowego bez rezystorów, zastosowanie tej konfiguracji nie jest możliwe, ponieważ wymaga ona dodatkowych komponentów, których w tym przypadku nie ma. Ustawienia NO (Normally Open) również nie są właściwe, ponieważ w tej konfiguracji obwód jest domyślnie otwarty, co w sytuacji sabotażu może nie wywołać alarmu, co jest sprzeczne z zamiarem zabezpieczenia. W przypadku sabotażu, gdy obwód jest otwarty, nie zostanie wysłany żaden sygnał, co prowadzi do poważnego ryzyka. Typowe błędy myślowe, które mogą prowadzić do wyboru niepoprawnych odpowiedzi, obejmują niepełne zrozumienie zasad działania obwodów lub mylenie ich z innymi zastosowaniami. Wybór opcji 2EOL jest także niewłaściwy w kontekście danej kwestii, ponieważ ta metoda również zakłada użycie rezystorów na końcu linii, co nie jest zgodne z wymaganiami pytania. Ostatecznie, zrozumienie różnicy między tymi konfiguracjami oraz ich zastosowaniem w systemach alarmowych jest kluczowe dla skutecznego projektowania i wdrażania zabezpieczeń.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Urządzenie służące do pomiaru bitowej stopy błędów (BER) stosuje się do analizy parametrów

A. instalacji antenowej
B. sieci komputerowej
C. systemu alarmowego
D. telewizji dozorowej
Instalacja antenowa to obszar, w którym miernik bitowej stopy błędów (BER) odgrywa kluczową rolę w ocenie jakości sygnałów transmisyjnych. BER jest wskaźnikiem określającym stosunek liczby błędnie odebranych bitów do całkowitej liczby bitów przesłanych w czasie określonym. W kontekście instalacji antenowych, szczególnie w systemach telekomunikacyjnych i satelitarnych, niska stopa błędów jest kluczowym parametrem gwarantującym niezawodność i jakość odbioru sygnału. Przykładowo, w przypadku telewizji satelitarnej, jeśli BER przekracza akceptowalny poziom, może to prowadzić do przerw w odbiorze sygnału. Właściciele instalacji antenowych mogą korzystać z mierników BER do szybkiej diagnozy problemów, takich jak niewłaściwe ustawienie anteny, zły jakościowo kabel czy interferencje z innymi źródłami sygnału. Dobre praktyki branżowe zalecają regularne monitorowanie BER, aby zapewnić ciągłość i jakość usług. Warto także nadmienić, że standardy takie jak DVB-S2 dla telewizji satelitarnej definiują konkretne wartości BER, które muszą być spełnione, aby system mógł działać poprawnie.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Na jaką metodę najlepiej postawić, by ocenić sprawność tranzystora wylutowanego z obwodu, wykonując pomiary?

A. oscyloskopu i generatora funkcyjnego
B. omomierza
C. oscyloskopu i zasilacza
D. woltomierza
Podczas oceny stanu tranzystora, wybór narzędzia pomiarowego ma kluczowe znaczenie. Zastosowanie woltomierza, oscyloskopu czy generatora funkcyjnego w tej sytuacji nie jest optymalne. Woltomierz, choć może być użyty do pomiaru napięć, nie dostarcza informacji o rezystancji wewnętrznej tranzystora, co jest esencjonalne w ocenie jego sprawności. Z kolei oscyloskop w połączeniu z zasilaczem może pomóc w analizie sygnałów oraz charakterystyki dynamicznej tranzystora, ale wymaga złożonej konfiguracji oraz dostarcza jedynie pośrednie informacje o stanie komponentu. Generator funkcyjny, używany z oscyloskopem, głównie służy do testowania odpowiedzi tranzystora na sygnały zmienne, co również nie jest praktycznym sposobem na wykrycie uszkodzeń. Często w takich przypadkach można popełnić błąd myślowy, zakładając, że bardziej zaawansowane urządzenia pomiarowe zawsze dostarczają lepsze wyniki, co nie jest zgodne z rzeczywistością diagnostyki komponentów elektronicznych. Kluczowe jest zrozumienie, że dla szybkiej i efektywnej analizy stanu tranzystora, omomierz jest narzędziem o największej skuteczności w ocenie podstawowych parametrów.

Pytanie 23

W osiedlowym szlabanie uszkodzony został pilot zdalnego sterowania działający w systemie Keeloq. Konieczna jest jego wymiana na pilot

A. jakikolwiek zmiennokodowy
B. jakikolwiek stałokodowy
C. uniwersalny (samouczący)
D. jedynie dostarczony przez producenta szlabanu
Wybór odpowiedzi "wyłącznie dostarczony przez producenta szlabanu" jest właściwy, ponieważ systemy zdalnego sterowania, takie jak Keeloq, często są zaprojektowane do pracy z określonymi pilotami, które są dostarczane przez producenta. System Keeloq oparty jest na technologii kodowania zmiennego, co oznacza, że piloty są programowane do współpracy z danym urządzeniem, zapewniając maksymalne bezpieczeństwo i niezawodność. Użycie uniwersalnych pilotów lub pilotów stałokodowych może prowadzić do problemów z kompatybilnością, a nawet do naruszenia bezpieczeństwa, ponieważ mogą nie być w stanie poprawnie zidentyfikować sygnałów lub mogą być podatne na nieautoryzowane kopiowanie sygnałów. Przykładem zastosowania tego podejścia jest system zabezpieczeń w parkingach, gdzie korzystanie z pilotów dostarczonych przez producenta zapobiega nieautoryzowanemu dostępowi. W przypadku uszkodzenia pilota, zaleca się kontakt z producentem w celu uzyskania oryginalnych komponentów, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jakie działania powinny być podjęte jako pierwsze, gdy przystępuje się do naprawy telewizyjnego odbiornika?

A. Wyłączenie odbiornika, a następnie odłączenie go od zasilania przez wyjęcie wtyczki z gniazda sieci elektrycznej
B. Wyłączenie napięcia w budynku, a następnie odłączenie kabla antenowego od odbiornika
C. Wyłączenie odbiornika pilotem, a następnie zdemontowanie tylnej obudowy
D. Odłączenie kabla antenowego od odbiornika, a następnie wyłączenie zasilania odbiornika
Podczas analizowania błędnych odpowiedzi, zauważamy, że wiele z nich opiera się na zrozumieniu procedur bezpieczeństwa, które są kluczowe w pracy z urządzeniami elektrycznymi. Wyłączenie napięcia w budynku oraz odłączenie kabla antenowego przed wyłączeniem odbiornika telewizyjnego jest podejściem, które może prowadzić do niebezpiecznych sytuacji. Wyłączenie napięcia w całym budynku jest skrajnie niepraktyczne i może wywołać niepotrzebne zakłócenia w działaniu innych urządzeń w tym samym czasie, a także nie rozwiązuje problemu związanych z ewentualnym porażeniem prądem podczas pracy z telewizorem. Kolejnym niedobrym pomysłem jest wyłączenie odbiornika pilotem, co nie zapewnia pełnego bezpieczeństwa. Pilot zdalnego sterowania może nie odłączyć urządzenia od zasilania, co pozostawia je w stanie gotowości, co jest potencjalnie niebezpieczne przy dalszych pracach naprawczych. Dodatkowo, demontowanie tylnej ściany obudowy bez wyłączenia zasilania jest odpowiedzialne za zwiększone ryzyko uszkodzenia komponentów wewnętrznych oraz porażenia prądem. Odłączenie kabla antenowego przed wyłączeniem odbiornika również nie jest prawidłowym podejściem, ponieważ nie eliminuje ryzyka powstania napięcia w urządzeniu podczas jego naprawy. Należy zawsze pamiętać, że bezpieczeństwo jest na pierwszym miejscu, dlatego każde działanie związane z naprawą musi zaczynać się od wyłączenia odbiornika z sieci.

Pytanie 26

Linka charakteryzująca się zwiększoną elastycznością, utworzona z wielu cienkich drucików miedzianych, nosi oznaczenie literowe

A. LgY
B. YDY
C. DY
D. YDYp
Wybór oznaczeń takich jak DY, YDY czy YDYp może wynikać z niepełnego zrozumienia klasyfikacji przewodów elektrycznych. Oznaczenie DY odnosi się do przewodów z izolacją polwinitową, które nie są tak elastyczne jak linki LgY i wykorzystywane są głównie w instalacjach stacjonarnych. Ta pomyłka może wynikać z mylnego założenia, że wszystkie przewody z izolacją polwinitową mają podobne właściwości giętkości. Z kolei YDY to oznaczenie, które odnosi się do przewodów o dużej elastyczności, ale zbudowanych z innych materiałów, które niekoniecznie są tak elastyczne jak te z miedzi. Ostatnie oznaczenie, YDYp, sugeruje przewody o większej odporności na uszkodzenia mechaniczne, ale ich strukturą nie jest tak optymalna do zastosowań wymagających dużej giętkości. Tego rodzaju myśli mogą prowadzić do wyboru niewłaściwego przewodu dla danej aplikacji, co może skutkować problemami z wydajnością i niezawodnością połączeń elektrycznych. Dlatego ważne jest, aby dokładnie zrozumieć różnice między różnymi oznaczeniami oraz ich zastosowaniami w praktyce, aby unikać błędów w obrębie projektowania i realizacji instalacji elektrycznych.

Pytanie 27

Na jaki zakres powinien być ustawiony woltomierz analogowy, aby minimalizować błąd pomiaru napięcia wynoszącego 19 V?

A. 0 do 20 V
B. 0 do 200 V
C. 0 do 2 V
D. 0 do 700 V
Woltomierz analogowy powinien być ustawiony na zakres 0 do 20 V, aby minimalizować błąd pomiaru napięcia wynoszącego 19 V. Ustawienie na ten zakres umożliwia uzyskanie największej dokładności pomiaru, ponieważ analogowe przyrządy pomiarowe zazwyczaj osiągają swoją optymalną precyzję, gdy mierzona wartość znajduje się blisko górnej granicy zakresu. W przypadku napięcia 19 V, to ustawienie daje możliwość uzyskania dokładności w granicach 1-2% w zależności od specyfiki danego woltomierza. Używając zbyt szerokiego zakresu, jak 0 do 200 V lub 0 do 700 V, zjawisko nazywane 'efektem rozdzielczości' powoduje, że pomiary mogą być mniej precyzyjne, a większe wartości mogą generować znaczący błąd w odczycie. Na przykład, jeśli zakres zostanie ustawiony na 200 V, niewielkie zmiany napięcia w pobliżu 19 V mogą nie być wystarczająco wyraźnie widoczne na skali. Ponadto zgodnie z praktykami w zakresie metrologii, ważne jest, aby dostosować przyrządy pomiarowe do specyficznych warunków, co ma kluczowe znaczenie w laboratoriach oraz podczas prac inżynieryjnych, aby zapewnić wiarygodność wyników pomiarów.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Który z parametrów nie dotyczy monitorów LCD?

A. Luminancja
B. Kąt widzenia
C. Napięcie katody kineskopu
D. Czas reakcji piksela
Wszystkie pozostałe parametry związane z monitorami LCD mają kluczowe znaczenie dla jakości wyświetlanego obrazu. Czas reakcji piksela jest jednym z najważniejszych parametrów, które wpływają na płynność wyświetlania dynamicznych scen, co jest szczególnie istotne w kontekście gier oraz filmów akcji. Wysoka wartość czasu reakcji może powodować efekt smużenia, co jest wysoce niepożądane w zastosowaniach, gdzie liczy się szybkość. Kąt widzenia to parametr, który określa, jaką jakość obrazu uzyskuje się z różnych pozycji w stosunku do osi centralnej monitora. W przypadku monitorów LCD, szeroki kąt widzenia jest istotny dla grupowego oglądania treści, np. podczas prezentacji czy oglądania filmów. Natomiast luminancja, mierzona w kandela na metr kwadratowy (cd/m²), określa jasność obrazu, co jest istotne w kontekście warunków oświetleniowych w pomieszczeniu. Niedostateczna luminancja może prowadzić do trudności w odczytywaniu szczegółów w jasnym otoczeniu. Błędne skojarzenie napięcia katody kineskopu z monitorami LCD może wynikać z niepełnej znajomości technologii wyświetlaczy. Należy pamiętać, że technologia LCD nie opiera się na kryteriach związanych z CRT, dlatego ważne jest, aby zrozumieć różnice między tymi technologiami i osobiście przetestować różne modele, by wybrać ten najlepiej odpowiadający naszym potrzebom.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Dokładne umycie i odtłuszczenie powierzchni płytki przed instalacją elementów elektronicznych jest wykonywane w celu

A. zapobiegania utlenianiu lutu
B. zwiększenia adhezji lutowia do pola lutowniczego
C. zapobiegania pękaniu lutu
D. zwiększenia temperatury topnienia lutu
Zaniechanie starannego mycia i odtłuszczenia powierzchni może prowadzić do szeregu problemów, jednak twierdzenie, że ma to na celu zapobieganie utlenianiu się lutu, jest błędne. Utlenianie lutu to proces chemiczny, który zachodzi niezależnie od czystości powierzchni płytki, zwłaszcza gdy lutowia są narażone na działanie atmosfery. W rzeczywistości, utlenianie może być kontrolowane poprzez odpowiednią manipulację temperaturą lutowania oraz stosowanie odpowiednich topników, a nie przez czystość przygotowanego podłoża. Ponadto, zapobieganie pękaniu lutu jest wynikiem właściwego doboru materiałów lutowniczych i technik lutowania, a nie samego mycia powierzchni. Zastosowanie odpowiednich materiałów o właściwej plastyczności i wytrzymałości pozwala na skuteczne zapobieganie pękaniu połączeń lutowniczych. Warto również zauważyć, że zwiększenie temperatury topnienia lutu nie jest związane z czystością powierzchni, ale z właściwościami chemicznymi i fizycznymi samego lutowia. Prawidłowe przygotowanie powierzchni jest częścią szerszej praktyki inżynieryjnej, która obejmuje nie tylko mycie, ale również kontrolę procesów lutowniczych, co podkreśla znaczenie wieloaspektowego podejścia do problemu jakości w elektronice.

Pytanie 32

Programowanie mikrokontrolera bez konieczności jego wylutowania z obwodu jest realizowane za pomocą metody

A. RS 485
B. RS 238
C. USB
D. ISP
Wybór innych technik, takich jak RS 238, USB czy RS 485, wskazuje na nieporozumienie dotyczące metod programowania mikrokontrolerów. RS 238 jest standardem komunikacji szeregowej, który nie jest przeznaczony do programowania, lecz do wymiany danych między urządzeniami. Jest to rozwiązanie o ograniczonej prędkości i nieefektywne w kontekście programowania mikrokontrolerów, które wymagają precyzyjnych i szybkich metod dostępu do pamięci. USB, z drugiej strony, to uniwersalny interfejs, który może być używany do wielu celów, ale nie jest to bezpośrednia technika programowania w systemie. Wiele mikrokontrolerów wykorzystuje USB do komunikacji z komputerem, ale nie do programowania, gdyż wymaga dodatkowego sprzętu i protokołów. RS 485 to z kolei standard komunikacji, który jest używany do transmisji danych na długich dystansach i w trudnych warunkach, jednak również nie jest powiązany z programowaniem mikrokontrolerów. Wybór tych metod może prowadzić do błędnych wniosków, gdyż sugerują one, że programowanie mikrokontrolera można zrealizować za pomocą standardowych protokołów komunikacyjnych, co w rzeczywistości wymaga zastosowania specjalnych technik, takich jak właśnie ISP, dedykowanych do tego celu. Zrozumienie różnicy między programowaniem a komunikacją jest kluczowe dla efektywnego projektowania systemów elektronicznych.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Zasady zabraniają przeprowadzania prac serwisowych na instalacjach antenowych w warunkach

A. ograniczonej widoczności
B. niskiej temperatury
C. wyładowań atmosferycznych
D. wietrznej pogody
Prace serwisowe instalacji antenowych w warunkach wyładowań atmosferycznych są zabronione, ponieważ stanowią one poważne ryzyko dla bezpieczeństwa pracowników oraz integralności systemu. Wyładowania atmosferyczne mogą prowadzić do uszkodzeń sprzętu, a także zagrażać życiu ludzi pracujących na wysokości, gdzie instalacje antenowe są często montowane. Standardy BHP oraz przepisy dotyczące prac na wysokości jednoznacznie wskazują, że prace te powinny być wykonywane w warunkach minimalizujących ryzyko, a wyładowania atmosferyczne są jednym z najpoważniejszych zagrożeń. Na przykład, w przypadku burzy, potencjalne uderzenie pioruna może nie tylko uszkodzić sprzęt, ale także spalić instalację elektryczną, co może prowadzić do pożaru. Pracownicy powinni być w pełni świadomi tych zagrożeń i przestrzegać zasad bezpieczeństwa, takich jak monitorowanie prognoz pogody, aby unikać pracy w takich warunkach. Zastosowanie odpowiednich praktyk, takich jak planowanie prac serwisowych w czasie stabilnej pogody, jest kluczowe dla zapewnienia bezpieczeństwa.

Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Maksymalne rozciągnięcie kabla UTP w gniazdku użytkownika nie powinno przekraczać

A. 30 mm
B. 3 mm
C. 12 mm
D. 20 mm
Maksymalne rozszycie kabla UTP w gniazdku abonenckim określane na 12 mm jest zgodne z wymaganiami standardów telekomunikacyjnych, takich jak TIA/EIA-568. Ważne jest, aby minimalizować długość odsłoniętych par przewodów, ponieważ zbyt duża długość może prowadzić do zwiększenia podatności na zakłócenia elektromagnetyczne oraz degradację sygnału. Kiedy przewody są rozdzielane i odsłonięte na zbyt dużej długości, mogą powstawać niepożądane efekty, takie jak crosstalk i tłumienie sygnału, co negatywnie wpływa na jakość transmisji danych. Przykładem zastosowania tej zasady jest instalacja w biurach, gdzie wiele urządzeń może współdzielić tę samą infrastrukturę sieciową. Odpowiednie utrzymanie maksymalnego rozszycia w gniazdku pozwala na zachowanie pełnej funkcjonalności oraz wydajności sieci, co jest kluczowe w środowiskach o wysokich wymaganiach transmisyjnych, takich jak centra danych czy biura z intensywnym obciążeniem sieciowym.

Pytanie 37

Podczas regularnego przeglądu systemu telewizyjnego należy między innymi

A. oczyścić oraz pomalować antenę, a następnie ją ustawić
B. określić rezystancję falową kabla i w razie potrzeby ją skorygować
C. zmierzyć impedancję falową kabla koncentrycznego
D. zmierzyć poziom sygnału w gniazdku abonenckim oraz ocenić jakość połączeń wtyków F
Pomiar poziomu sygnału w gnieździe abonenckim oraz sprawdzenie jakości połączeń wtyków F jest kluczowym krokiem w ramach okresowego przeglądu instalacji telewizyjnej. Umożliwia to ocenę, czy sygnał docierający do odbiornika jest wystarczającej jakości dla prawidłowego odbioru programów telewizyjnych. Zmierzony poziom sygnału powinien mieścić się w zalecanym zakresie, zazwyczaj pomiędzy -10 dBmV a +10 dBmV, co zapewnia stabilny odbiór bez zakłóceń. Jakość połączeń wtyków F jest także istotna, ponieważ ich niewłaściwe podłączenie może prowadzić do strat sygnału, co w dłuższej perspektywie może skutkować degradacją jakości obrazu. Sprawdzanie i ewentualne poprawianie tych połączeń jest zgodne z najlepszymi praktykami branżowymi, które podkreślają znaczenie regularnych kontroli w celu zapewnienia wysokiej jakości sygnału i długiej żywotności instalacji. Dodatkowo, pomiar impedancji falowej kabla koncentrycznego, choć istotny, nie jest bezpośrednio związany z ocena jakości sygnału w gnieździe abonenckim.

Pytanie 38

Jakie z wymienionych urządzeń znajduje zastosowanie w systemach zarządzania dostępem oraz zabezpieczeniach?

A. Stacja czołowa
B. Centrala abonencka
C. Zamek elektroniczny
D. Skaner portów
Zamek elektroniczny to kluczowy element systemów kontroli dostępu i zabezpieczeń. Jego głównym zadaniem jest zapewnienie, że tylko upoważnione osoby mają dostęp do określonych obszarów. W przeciwieństwie do tradycyjnych zamków mechanicznych, zamki elektroniczne wykorzystują technologie takie jak karty zbliżeniowe, biometryka czy aplikacje mobilne do otwierania drzwi. Przykłady zastosowania obejmują budynki biurowe, hotele oraz obiekty przemysłowe, gdzie bezpieczeństwo i kontrola dostępu są priorytetowe. Warto również zaznaczyć, że zamki elektroniczne mogą być integrowane z systemami alarmowymi i monitoringu, co podnosi ich efektywność. Standardy branżowe, takie jak ISO/IEC 27001, podkreślają znaczenie skutecznej kontroli dostępu w zarządzaniu bezpieczeństwem informacji. W praktyce, wiele firm decyduje się na zainstalowanie zamków elektronicznych, aby zwiększyć poziom bezpieczeństwa oraz uprościć proces zarządzania dostępem.

Pytanie 39

Podstawowym celem hermetycznej obudowy urządzenia elektronicznego z tworzywa sztucznego jest zapewnienie właściwej odporności tego urządzenia na wpływ

A. przepięć
B. pól elektromagnetycznych
C. wilgoci
D. wysokiej temperatury
Obudowa hermetyczna w urządzeniach elektronicznych, zrobiona z tworzywa sztucznego, jest bardzo ważna, bo chroni je przed różnymi warunkami atmosferycznymi. Jej podstawowym zadaniem jest ochrona przed wilgocią, co jest kluczowe, kiedy urządzenia mogą mieć kontakt z wodą lub w wysokiej wilgotności. Jeśli obudowa jest dobrze zaprojektowana, to spełnia normy, takie jak te od IP67, które pokazują, jak dobrze urządzenie jest zabezpieczone przed wodą oraz innymi zanieczyszczeniami. Można to zobaczyć na przykład w smartfonach czy zegarkach sportowych, które narażone są na deszcz czy pot. W przemyśle morskim i budowlanym hermetyzacja to standard, bo to zapewnia, że urządzenia działają prawidłowo w trudnych warunkach. Ważne jest, żeby używać odpowiednich materiałów i technologii uszczelniania, jak silikonowe uszczelki, bo to naprawdę pomaga w ochronie przed wilgocią. Moim zdaniem, producenci powinni też regularnie testować szczelność obudów, bo to wydłuży ich żywotność.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.