Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 7 maja 2025 12:41
  • Data zakończenia: 7 maja 2025 12:45

Egzamin niezdany

Wynik: 4/40 punktów (10,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Masa jednego opakowania rur miedzianych, które są przeznaczone do budowy instalacji i składowane w kręgach bez wewnętrznego rdzenia (szpuli), nie powinna być większa niż

A. 40 kg
B. 50 kg
C. 30 kg
D. 25 kg
Choć odpowiedzi, takie jak 25 kg, 30 kg czy 40 kg, mogą wydawać się rozsądne, są one niezgodne z rzeczywistością i standardami branżowymi. Odpowiedź 25 kg, na przykład, jest zbyt niska, aby odzwierciedlić typową masę jednego opakowania rur miedzianych. W rzeczywistości, rury miedziane, ze względu na swój materiał oraz przeznaczenie, zazwyczaj ważą więcej. Ograniczenie masy opakowania do 25 kg wymusiłoby zastosowanie zbyt wielu jednostek, co z kolei generowałoby większe koszty transportu i magazynowania, co jest nieefektywne z punktu widzenia logistyki. Odpowiedź 30 kg również nie spełnia wymogów, ponieważ nadal jest zbyt mała dla standardowego pakowania. W przypadku 40 kg sytuacja jest podobna. Ustalenie limitu masy opakowania na 40 kg może prowadzić do problemów z transportem, ponieważ wiele rodzajów rur oraz innych materiałów budowlanych przekracza tę wartość. Użycie niewłaściwych wartości masy może prowadzić do błędnej oceny możliwości transportowych, a także do zwiększenia ryzyka uszkodzeń materiałów oraz wypadków przy pracy. Dlatego kluczowe jest stosowanie się do określonych standardów i praktyk, które zapewniają bezpieczeństwo pracowników oraz efektywność procesów logistycznych.

Pytanie 2

Minimalna przestrzeń między sąsiadującymi turbinami w elektrowniach wiatrowych, mierzona w średnicach wirnika turbiny, powinna wynosić przynajmniej

A. 5
B. 20
C. 10
D. 15
Minimalna odległość między sąsiadującymi turbinami wiatrowymi, wyrażona w średnicach wirnika turbiny, wynosząca co najmniej 5, jest uzasadniona wieloma czynnikami technicznymi i praktycznymi. Przestrzeganie tej normy pozwala na zminimalizowanie wpływu turbulencji powietrza generowanych przez jedną turbinę na drugą. W praktyce, turbiny wiatrowe wymagają odpowiedniej separacji, aby zapewnić optymalną wydajność oraz efektywność wytwarzania energii. Ponadto, odpowiednia odległość ogranicza ryzyko uszkodzeń mechanicznych związanych z wiatrem, co może prowadzić do zwiększenia kosztów eksploatacji. Standardy branżowe, takie jak those recommended by the International Electrotechnical Commission (IEC), podkreślają znaczenie odpowiednich odległości między turbinami, co jest kluczowe dla zapewnienia ich długowieczności oraz stabilności operacyjnej. W przypadku turbin o dużych średnicach wirnika, zalecenia dotyczące minimalnych odległości są jeszcze bardziej istotne, aby zminimalizować wpływ na ich wydajność i bezpieczeństwo. Przykłady dobrych praktyk w tej dziedzinie można zaobserwować w projektach dużych farm wiatrowych, gdzie optymalizacja układu turbin jest kluczowa dla maksymalizacji produkcji energii.

Pytanie 3

Jakim symbolem określa się przetwornicę, która zmienia napięcie stałe na zmienne?

A. AC/DC
B. DC/AC
C. AC/AC
D. DC/DC
Odpowiedź DC/AC jest poprawna, ponieważ przetwornice DC/AC, znane również jako inwertery, są urządzeniami elektronicznymi, które konwertują napięcie stałe (DC) na napięcie zmienne (AC). Takie przetwornice są kluczowe w systemach, gdzie napięcie stałe, na przykład z baterii, musi być przekształcone do formy zmiennej do zasilania urządzeń elektrycznych, które wymagają AC. Przykładem zastosowania inwerterów są systemy fotowoltaiczne, gdzie energia słoneczna, przetwarzana na energię elektryczną w postaci DC, jest następnie konwertowana na AC, aby mogła być używana w domowych instalacjach elektrycznych lub wprowadzana do sieci energetycznej. Dobre praktyki w projektowaniu systemów z inwerterami obejmują wybór odpowiednich komponentów, takich jak tranzystory i układy scalone, które zapewniają wysoką sprawność konwersji oraz minimalizację zakłóceń w sieci elektrycznej. Zrozumienie zasady działania przetwornic DC/AC jest istotne dla inżynierów zajmujących się energią odnawialną oraz automatyzacją przemysłową.

Pytanie 4

W przypadku bardzo dużych różnic poziomu wody (H>500 m) optymalnym rozwiązaniem jest wykorzystanie turbiny wodnej

A. Deriaza
B. Francisa
C. Peltona
D. Kaplana
Turbina Peltona jest idealnym rozwiązaniem do zastosowania w warunkach dużych spadków wody, szczególnie gdy wysokość spadku przekracza 500 metrów. Działa ona na zasadzie impulsu, co oznacza, że wykorzystuje energię kinetyczną spadającej wody do napędu wirnika. Wysokie spadki wody generują dużą prędkość strumienia, co czyni turbiny Peltona bardzo efektywnymi w takich warunkach. Przykłady zastosowania turbin Peltona można znaleźć w elektrowniach wodnych, takich jak elektrownia HPP Tignes we Francji, gdzie wykorzystuje się tę technologię do produkcji energii elektrycznej z dużych wysokości. Turbiny Peltona są również preferowane w miejscach, gdzie dostępne jest ograniczone przepływy wody, ale bardzo wysoka energia potencjalna. W kontekście dobrych praktyk branżowych, turbiny Peltona są zgodne z normami IEC 60041 dotyczącymi badań hydraulicznych turbin wody, co zapewnia ich niezawodność i wysoką wydajność.

Pytanie 5

System hydrauliczny instalacji solarnej został zmontowany, jednak odbiorniki ciepła z kolektorów nadal nie są podłączone. W tej sytuacji instalator powinien

A. pozostawić system bez napełniania czynnikiem grzewczym.
B. zwiększyć objętość naczynia wzbiorczego oraz napełnić system.
C. napełnić system i włączyć grupę solarną.
D. napełnić system i uruchomić pompę cyrkulacyjną.
Pozostawienie instalacji bez napełniania czynnikiem grzewczym jest odpowiednim działaniem w przypadku, gdy odbiorniki ciepła z kolektorów nie są jeszcze podłączone. W takim stanie, napełnienie instalacji czynnikiem grzewczym mogłoby prowadzić do niepotrzebnych strat ciepła oraz ewentualnych uszkodzeń systemu, szczególnie jeśli wystąpiłyby usterki w układzie. Zgodnie z zasadami projektowania instalacji solarnych, kluczowe jest, aby wszystkie komponenty systemu były właściwie podłączone i gotowe do pracy przed wprowadzeniem czynnika grzewczego. Przykładem zastosowania tej zasady może być sytuacja, w której nowo instalowany system solarny wymaga przetestowania szczelności rurociągów przed napełnieniem cieczą. W praktyce, instalatorzy często przeprowadzają testy na sucho, aby upewnić się, że wszystkie połączenia i armatura są w porządku. Dodatkowo, w przypadku napełniania instalacji, ważne jest, aby używać odpowiednich mediów, które są zgodne z wytycznymi producenta oraz normami branżowymi, aby zapewnić długowieczność i efektywność systemu.

Pytanie 6

Aby uzyskać optymalną wydajność instalacji słonecznej do podgrzewania wody w basenie w trakcie lata, kolektory powinny być ustawione pod kątem względem poziomu

A. 60o
B. 45o
C. 30o
D. 90o
Ustawienie kolektorów słonecznych pod kątem 45 stopni, 60 stopni, czy 90 stopni nie jest odpowiednie do zapewnienia maksymalnej efektywności instalacji grzewczej w basenie w sezonie letnim. Kąt 45 stopni, chociaż może być używany do instalacji systemów w innych porach roku, nie wykorzystuje pełni potencjału promieniowania słonecznego latem, gdy słońce znajduje się wyżej na niebie. Taki kąt powoduje, że kolektory są mniej efektywne w absorpcji energii, co przekłada się na niższą wydajność podgrzewania wody. Podobnie, kąt 60 stopni jest zbyt stromy, co również skutkuje mniejszą ilością energii słonecznej docierającej do kolektorów w letnich miesiącach. Co więcej, kąt 90 stopni, który zakłada, że kolektor jest ustawiony pionowo, w praktyce niemal całkowicie blokuje dostęp promieni słonecznych w ciągu dnia, co prowadzi do minimalnej wydajności systemu. W praktyce błąd w podejściu do właściwego kąta nachylenia wynika z nieznajomości cyklu słonecznego i jego wpływu na wydajność instalacji. Aby osiągnąć maksymalną efektywność, należy stosować się do sprawdzonych metod ustawienia kolektorów, które uwzględniają zarówno kąt nachylenia, jak i kierunek, w którym są skierowane. Dostosowanie tych parametrów jest kluczowe dla uzyskania optymalnych rezultatów w wykorzystaniu energii słonecznej.

Pytanie 7

Uchwyt PV bezpiecznika powinien być zamontowany na szynie DIN przy użyciu

A. śrub
B. kołków montażowych
C. zatrzasków
D. nitów
Montaż uchwytów PV bezpieczników na szynie DIN za pomocą nitów jest nieodpowiedni ze względu na brak możliwości łatwego demontażu. Nity tworzą trwałe połączenie, co w przypadku konieczności konserwacji lub wymiany elementów może prowadzić do znacznych trudności. W środowisku przemysłowym, gdzie elastyczność i adaptacja są kluczowe, takie podejście może prowadzić do nieefektywności i zwiększenia kosztów. Podobnie, użycie kołków montażowych nie jest zalecane, ponieważ również wymagają one precyzyjnego wiercenia otworów oraz dodatkowego sprzętu, co może zwiększać czas montażu i ryzyko błędów. Śruby, z drugiej strony, mogą oferować stabilność, ale ich montaż jest bardziej czasochłonny i wymaga regularnego sprawdzania dokręcenia, co w dłuższej perspektywie może prowadzić do problemów z utrzymaniem odpowiedniego połączenia. Wiele osób może myśleć, że bardziej skomplikowane metody montażu są bardziej niezawodne, jednak w praktyce to prostota i efektywność są kluczowe w nowoczesnych instalacjach elektroenergetycznych. Dlatego ważne jest, aby stosować odpowiednie metody zgodnie z zaleceniami producentów i normami branżowymi, aby zapewnić efektywność oraz bezpieczeństwo systemu.

Pytanie 8

W trakcie przerwy urlopowej przewiduje się brak odbioru ciepła z kolektorów słonecznych. Aby uniknąć przegrzania systemu solarnego, konieczne jest aktywowanie w sterowniku opcji chłodzenia, która polega na

A. zmianie czynnika w instalacji na czas przerwy urlopowej
B. działaniu pomp obiegowych w nocy
C. zatrzymaniu pomp obiegowych
D. opróżnieniu instalacji na czas przerwy urlopowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
No więc, praca pomp obiegowych w nocy to naprawdę świetny sposób na to, żeby nie dopuścić do przegrzania instalacji solarnej. Kiedy jesteśmy na urlopie i nie korzystamy z energii, temperatura w układzie może poszybować w górę, co w ogóle nie jest dobre dla kolektorów ani innych elementów instalacji. Włączając pompy nocą, zapewniamy cyrkulację cieczy i w ten sposób odprowadzamy nadmiar ciepła do zbiornika, co pomaga utrzymać stabilną temperaturę. Uważam, że to naprawdę ważne, żeby tak robić, bo to zgodne z zasadami efektywnego zarządzania energią. Wiele nowoczesnych systemów ma automatyczne sterowanie, które może to ogarnąć w odpowiednim czasie, co znacząco wpływa na trwałość i wydajność instalacji. Na przykład w miejscach z dużym nasłonecznieniem, to naprawdę może uratować system przed przegrzaniem i zmniejszyć ryzyko awarii.

Pytanie 9

W trakcie corocznej kontroli systemu solarnego do ogrzewania wody należy

A. przeprowadzić regulację ustawienia kolektorów
B. wykonać płukanie systemu
C. uzupełnić instalację płynem solarnym
D. zweryfikować stan płynu solarnym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie stanu płynu solarnego podczas corocznego przeglądu instalacji grzewczej jest kluczowe dla zapewnienia jej optymalnej wydajności i bezpieczeństwa. Płyn solarny pełni funkcję transportowania ciepła z kolektorów do zbiornika, a jego właściwe właściwości fizyczne są niezbędne dla efektywności całego systemu. Warto regularnie kontrolować poziom płynu, jego temperaturę oraz ewentualne zanieczyszczenia, które mogą wpływać na wydajność instalacji. Przykładowo, zbyt niski poziom płynu może prowadzić do przegrzewania się kolektorów, co w skrajnych przypadkach może uszkodzić system. Z drugiej strony, zanieczyszczenia mogą powodować osady w rurach, co ogranicza przepływ i obniża efektywność wymiany ciepła. Regularne kontrole są zgodne z najlepszymi praktykami branżowymi i pozwalają na wczesne wykrycie problemów, co z kolei redukuje koszty napraw oraz przestojów. Dbałość o stan płynu solarnego to istotny element strategii konserwacyjnej, która wspiera długowieczność i efektywność systemu. Rekomendowane jest również uzupełnianie płynu zgodnie z zaleceniami producenta, co pozwala utrzymać optymalne parametry działania instalacji.

Pytanie 10

Jakie jest napięcie łańcucha modułów (stringu) po jego odłączeniu od falownika?

A. napięciu pojedynczego modułu
B. nieskończoności
C. zero
D. sumie napięć wszystkich modułów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wybrana jako poprawna, czyli suma napięć wszystkich modułów, jest zgodna z zasadami łączenia paneli fotowoltaicznych w łańcuchach (stringach). W przypadku, gdy moduły są połączone szeregowo, ich napięcia sumują się, co jest kluczowym aspektem przy projektowaniu systemów fotowoltaicznych. Na przykład, jeśli mamy trzy moduły o napięciu nominalnym 30 V każdy, to napięcie całego stringu po odłączeniu od falownika wynosi 90 V. To zjawisko ma istotne znaczenie podczas obliczania wymaganej mocy falownika oraz projektowania instalacji, aby zapewnić optymalną wydajność systemu. Dobrą praktyką jest zawsze sprawdzanie parametrów technicznych modułów oraz falowników, aby zapewnić ich wzajemną kompatybilność. Dodatkowo, znajomość obliczeń napięcia w łańcuchach pozwala na unikanie przeciążeń i poprawia efektywność energetyczną instalacji. W kontekście standardów, normy IEC 61730 i IEC 61215 są kluczowe w zapewnieniu bezpieczeństwa i wydajności modułów fotowoltaicznych.

Pytanie 11

Jaką objętość może uzupełnić solarna stacja napełniająca, działająca z efektywnością 3 dm3/s, w ciągu dwóch godzin?

A. 10,80 m3
B. 6,00 m3
C. 32,40 m3
D. 21,60 m3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 21,60 m³, co można obliczyć w sposób następujący: stacja napełniająca ma wydajność 3 dm³/s. Aby obliczyć, ile wody stacja może napełnić w ciągu dwóch godzin, najpierw przeliczamy czas na sekundy. Dwa godziny to 2 × 60 minut × 60 sekund = 7200 sekund. Następnie obliczamy całkowitą objętość wody, mnożąc wydajność przez czas: 3 dm³/s × 7200 s = 21600 dm³. Przy przeliczeniu jednostek z dm³ na m³ (1 m³ = 1000 dm³) otrzymujemy 21,60 m³. W praktyce taki kalkulator objętości jest niezwykle przydatny przy projektowaniu systemów nawadniających, instalacji wodociągowych czy też w kontekście zarządzania zasobami wodnymi, gdzie precyzyjne obliczenia mają kluczowe znaczenie dla efektywności i oszczędności. Wiedza o wydajności systemów napełniających jest również istotna w regulacjach dotyczących ochrony środowiska oraz zasobów wodnych.

Pytanie 12

Dokumentacja robót budowlanych nie obejmuje

A. wykazów działów dokumentacji robót.
B. strony tytułowej.
C. przypisów dokumentacji robót.
D. cen jednostkowych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Cen jednostkowych nie zawiera się w przedmiarze robót budowlanych, ponieważ jest to dokument, który ma na celu jedynie przedstawienie szczegółowego zestawienia robót budowlanych. Przedmiar robót składa się z elementów takich jak spis działów przedmiaru, karta tytułowa oraz tabela przedmiaru, które zawierają opisy i ilości poszczególnych robót. Cena jednostkowa, natomiast, jest ustalana na etapie kosztorysowania i nie jest częścią samego przedmiaru. Praktyczne zastosowanie przedmiaru robót polega na umożliwieniu inwestorom oraz wykonawcom lepszego zrozumienia zakresu planowanych prac bez bezpośredniego odniesienia do kosztów. W standardach branżowych, takich jak normy PN-ISO oraz wytyczne dotyczące kosztorysowania, podkreśla się, że przedmiar powinien być neutralny pod względem finansowym, aby służył jako narzędzie do planowania i zarządzania projektem budowlanym, nie zaś do określania kosztów.

Pytanie 13

Jaką funkcję pełni zbiornik buforowy?

A. wyrównywać ciśnienie w systemie solarnym
B. przechowywać nadmiar ciepłej wody
C. przechowywać biopaliwo
D. wyrównywać ciśnienie w systemie centralnego ogrzewania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zbiornik buforowy pełni kluczową rolę w systemach ogrzewania, szczególnie w instalacjach solarnych oraz centralnego ogrzewania. Jego głównym zadaniem jest magazynowanie nadmiaru ciepłej wody, co umożliwia efektywne wykorzystanie energii, a także stabilizację pracy systemu. Przykładowo, w instalacjach solarnych, w ciągu dnia, kiedy produkcja ciepła jest wysoka, zbiornik buforowy gromadzi nadmiar ciepłej wody. Dzięki temu, w godzinach wieczornych, gdy zapotrzebowanie na ciepło wzrasta, możliwe jest wykorzystanie zgromadzonej energii, co przekłada się na oszczędności oraz efektywność energetyczną. Zgodnie z normami branżowymi, odpowiednie zaprojektowanie i umiejscowienie zbiornika buforowego pozwala na optymalizację pracy całego systemu grzewczego i zwiększa jego żywotność. W praktyce, niezależnie od typu źródła ciepła, użycie zbiornika buforowego jest standardem, który przyczynia się do bardziej zrównoważonego i ekologicznego podejścia do ogrzewania budynków.

Pytanie 14

Gdzie w instalacji solarnej umieszcza się zawór zwrotny?

A. za pompą solarną
B. przed pompą solarną
C. za separatorem
D. przed inwerterem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór zwrotny w instalacji solarnej to naprawdę ważny element, który pomaga utrzymać system w dobrym stanie i działać efektywnie. Odpowiednie jego umiejscowienie za pompą solarną jest zgodne z praktykami branżowymi, bo zapobiega cofaniu się medium grzewczego w kierunku kolektorów, gdy pompa nie działa. Dzięki temu nie musimy się martwić o spadki ciśnienia czy uszkodzenie paneli słonecznych. Wyobraź sobie, co by się stało, gdyby ten zawór był zamontowany przed pompą - to mogłoby doprowadzić do tego, że medium cofnęłoby się do kolektorów, co z kolei mogłoby przegrzać i uszkodzić instalację. Przykłady norm, jak EN oraz wytyczne różnych organizacji, jasno mówią, że zawory zwrotne powinny być umieszczane tam, gdzie naprawdę mogą dobrze działać i nie narażać nas na awarie. Na przykład, w instalacjach z wymiennikami ciepła, zawór zwrotny jest wręcz konieczny dla prawidłowego działania systemu grzewczego. Dobrze dobrane komponenty i ich odpowiednie umiejscowienie to klucz do osiągnięcia maksymalnej efektywności energetycznej.

Pytanie 15

Zanim instalacja kotłowni spalającej biomasę zostanie oddana do użytku, jaki dokument jest niezbędny?

A. pozytywna opinia straży miejskiej
B. decyzja o wprowadzaniu zanieczyszczeń do powietrza atmosferycznego
C. ocena wpływu inwestycji na środowisko
D. protokół odbioru końcowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Protokół odbioru końcowego jest kluczowym dokumentem w procesie oddawania do eksploatacji instalacji kotłowni spalającej biomasę. Stanowi on formalne potwierdzenie, że instalacja została zbudowana zgodnie z projektem, spełnia wymagania techniczne oraz bezpieczeństwa, a także jest gotowa do użytkowania. W praktyce, protokół ten powinien być sporządzony przez odpowiednie organy nadzoru budowlanego lub inżynierów, którzy przeprowadzają inspekcję instalacji. Protokół powinien zawierać informacje o wykonanych pracach, zastosowanych materiałach oraz zgodności z obowiązującymi normami prawnymi i technicznymi. Przykładowo, zgodnie z normą PN-EN 303-5, która dotyczy kotłów na paliwa stałe, protokół odbioru powinien potwierdzać, że kotłownia spełnia wymogi dotyczące emisji zanieczyszczeń. Dobre praktyki branżowe zalecają również, aby protokół był dokumentowany w formie pisemnej, co ułatwia przyszłe audyty oraz kontrole. Odpowiedni protokół odbioru jest nie tylko wymogiem prawnym, ale również kluczowym elementem dla zapewnienia bezpieczeństwa i efektywności energetycznej kotłowni.

Pytanie 16

Powstawanie zapowietrzenia w instalacji solarnej może być wynikiem

A. niewłaściwie wolnym wypełnianiem systemu
B. wykorzystania zbyt dużych średnic rur w instalacji
C. nieprawidłowym ciśnieniem wstępnym w zbiorniku przeponowym
D. użycia pompy obiegowej o niedostosowanej mocy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Niewłaściwe ciśnienie wstępne w naczyniu wzbiorczym jest kluczowym czynnikiem wpływającym na prawidłowe funkcjonowanie instalacji solarnej. Naczynie wzbiorcze, które pełni rolę bufora, powinno być odpowiednio dobrane do systemu. Jeśli ciśnienie wstępne jest zbyt niskie, może to prowadzić do powstawania pęcherzyków powietrza w instalacji, co z kolei skutkuje obniżeniem efektywności systemu i możliwości jego pracy. Przykładowo, w systemach solarnych często rekomenduje się ciśnienie wstępne w zakresie 1-2 bar, co zapewnia odpowiednie warunki do obiegu cieczy. W praktyce, regularne kontrole ciśnienia oraz jego kalibracja w oparciu o specyfikacje producenta naczynia wzbiorczego są kluczowe dla utrzymania efektywności instalacji. Ponadto, zgodnie z normami branżowymi, takich jak PN-EN 12976, odpowiednie ciśnienie wstępne przyczynia się do stabilności całego systemu, eliminując ryzyko awarii związanych z zapowietrzeniem.

Pytanie 17

Pompy obiegowe w systemach solarnych mają funkcję soft-start. Jakie jest jej przeznaczenie?

A. ochrony pompy przed przepięciem
B. kontroli prędkości obrotowej pompy
C. redukcji prądu rozruchu pompy
D. zablokowania pompy, gdy temperatura płynu przekroczy 110°C

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pompy obiegowe w instalacjach solarnych są często wyposażone w funkcję soft-start, która ma na celu obniżenie prądu rozruchu pompy. Ta technologia przyczynia się do wydłużenia żywotności urządzenia oraz redukcji obciążeń elektrycznych w momencie włączenia. W praktyce, podczas rozruchu silnika pompy, prąd może znacznie wzrosnąć, co prowadzi do nadmiernego zużycia energii i stresu mechanicznego na elementy pompy. Dzięki funkcji soft-start, prąd rozruchowy jest limitowany, co pozwala na stopniowe zwiększanie prędkości obrotowej silnika. To z kolei zmniejsza ryzyko uszkodzeń oraz zapewnia stabilną pracę instalacji. W kontekście standardów branżowych, taka funkcjonalność jest zalecana w celu spełnienia norm efektywności energetycznej oraz bezpieczeństwa, co potwierdzają wytyczne wielu organizacji energetycznych. Przykładem zastosowania mogą być systemy grzewcze, w których pompy obiegowe są kluczowe dla efektywności energetycznej, a ich delikatne uruchamianie wpływa na oszczędności oraz komfort użytkowania.

Pytanie 18

Jaką moc wygeneruje moduł fotowoltaiczny o parametrach znamionowych U = 30 V, I = 10 A, gdy zostanie zaciśnięty, a nasłonecznienie wyniesie Me = 1000 W/m2?

A. 300 W
B. 0 W
C. 1 000 W
D. 30 W

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 0 W jest jak najbardziej poprawna. Kiedy mamy zwarcie w module fotowoltaicznym, napięcie spada do zera. To znaczy, że prąd dalej płynie, ale wyjściowe napięcie z modułu jest zerowe, co sprawia, że nie mamy żadnej mocy, którą możemy wykorzystać. Wiesz, moc elektryczna to produkt napięcia (U) i prądu (I), czyli P = U * I. W przypadku zwarcia, U wynosi 0 V, więc moc na wyjściu też wynosi 0 W. Ważne jest jednak, żeby przy projektowaniu systemów fotowoltaicznych dbać o to, aby unikać zwarć, bo to może być naprawdę niebezpieczne. Dlatego używa się różnych zabezpieczeń, takich jak bezpieczniki czy wyłączniki, żeby chronić zarówno układ, jak i ludzi go używających. Dodatkowo, systemy monitorujące działanie modułów mogą pomóc zauważyć, że coś się dzieje nie tak i zapobiec zwarciom.

Pytanie 19

W systemie pompy ciepła typu powietrze-powietrze, króciec oznaczony jako "wypływ kondensatu" powinien być połączony z instalacją

A. ciepłej wody
B. odpływową
C. wentylacyjną
D. zimnej wody

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W przypadku pompy ciepła powietrze-powietrze, króciec oznaczony "wypływ kondensatu" powinien być połączony z instalacją odpływową. Kondensat powstaje w wyniku procesu chłodzenia powietrza, co prowadzi do skraplania się pary wodnej zawartej w powietrzu. Odpowiednie odprowadzenie kondensatu jest kluczowe dla efektywności i trwałości systemu. Zgodnie z zasadami dobrych praktyk branżowych, kondensat powinien być odprowadzany w sposób zapewniający, że nie będzie on gromadził się w urządzeniu ani w jego okolicy, co mogłoby prowadzić do uszkodzenia podzespołów lub sprzyjać rozwojowi pleśni i grzybów. W praktyce, instalacja odpływowa powinna być wykonana z materiałów odpornych na korozję oraz mieć odpowiedni spadek, aby zapewnić swobodny przepływ kondensatu. Dodatkowo, warto zainstalować filtr w odpływie, aby zapobiec zatorom. Właściwe zarządzanie kondensatem jest istotne dla zachowania efektywności energetycznej urządzenia oraz komfortu użytkowników.

Pytanie 20

Jaką liczbę łopat wirnika należy uznać za optymalną w turbinie wiatrowej?

A. 7
B. 2
C. 3
D. 5

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Optymalna liczba łopat wirnika w turbinie wiatrowej wynosi zazwyczaj trzy. Taka konfiguracja zapewnia równowagę pomiędzy efektywnością generowania energii a stabilnością działania. Trzy łopaty pozwalają na optymalne wykorzystanie siły wiatru, co zwiększa wydajność turbiny. Dzięki równomiernemu rozkładowi masy, wirnik z trzema łopatami działa płynniej, co minimalizuje drgania i hałas. Dodatkowo, turbiny z trzema łopatami są bardziej odporne na silne wiatry, co zwiększa ich trwałość i niezawodność. Przykłady zastosowania takich turbin można znaleźć w wielu nowoczesnych farmach wiatrowych, gdzie ich konstrukcja została dostosowana do standardów IEC 61400, które określają wymagania dotyczące projektowania i testowania turbin wiatrowych. Trzy łopaty zapewniają również lepszą możliwość dostosowania do różnych warunków wiatrowych, co jest kluczowe w kontekście zmieniającego się klimatu i lokalnych uwarunkowań geograficznych.

Pytanie 21

Instalacja kolektora próżniowego na płaskim podłożu zaczyna się od zamontowania

A. rury zasilającej i powrotnej do stelaża kolektora
B. konstrukcji stelaża
C. kolektora zbiorczego do stelaża
D. rur próżniowych do kolektora zbiorczego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Montaż kolektora próżniowego na podłożu płaskim zaczyna się od konstrukcji stelaża, ponieważ stanowi on podstawę dla całego systemu kolektorów. Stelaż musi być odpowiednio zaprojektowany, aby zapewnić stabilność i bezpieczeństwo instalacji. Właściwe umiejscowienie stelaża jest kluczowe dla efektywności kolektorów, gdyż odpowiedni kąt nachylenia wpływa na wydajność pozyskiwania energii słonecznej. Przykładem może być zastosowanie stelaży regulowanych, które pozwalają na dostosowanie kąta nachylenia w zależności od pory roku. Dobrą praktyką jest także używanie materiałów odpornych na korozję, co zapewnia długotrwałość i minimalizuje konieczność konserwacji. W kontekście norm budowlanych, stelaże powinny spełniać wymagania dotyczące nośności oraz odporności na działanie warunków atmosferycznych, co jest istotne dla bezpieczeństwa całej instalacji.

Pytanie 22

Do obróbki krawędzi rur miedzianych, które są stosowane w instalacjach ciepłej wody użytkowej i zostały przycięte na odpowiednią długość, należy zastosować

A. gwinciarki
B. gradownicy
C. giętarki
D. zaginarki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gradownice to narzędzia wykorzystywane do obróbki końców rur, w tym rur miedzianych, w celu uzyskania gładkich i równych krawędzi. Ich zastosowanie jest kluczowe w montażu instalacji ciepłej wody użytkowej, ponieważ zgrubne lub nierówne krawędzie mogą prowadzić do problemów z uszczelnieniem połączeń, co z kolei może skutkować wyciekami i innymi awariami. Gradownice działają na zasadzie mechanicznego usuwania nadmiaru materiału, co pozwala na precyzyjne wygładzenie krawędzi. W praktyce, korzyści płynące z użycia gradownicy obejmują nie tylko poprawę estetyki połączeń, ale również wzrost ich trwałości oraz niezawodności. Zgodnie z obowiązującymi standardami w branży sanitarno-grzewczej, odpowiednio obrobione krawędzie rur miedzianych są kluczowe dla zapewnienia szczelności połączeń lutowanych czy też gwintowanych. Zastosowanie gradownicy jest szczególnie zalecane w sytuacjach, gdy rury są poddawane dużym obciążeniom termicznym i ciśnieniowym, co jest typowe dla instalacji ciepłej wody użytkowej.

Pytanie 23

Turbina wiatrowa typu VAWT charakteryzuje się osią obrotu

A. pionową
B. zmienną
C. kośną
D. poziomą

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Turbina wiatrowa typu VAWT (Vertical Axis Wind Turbine) jest zaprojektowana w taki sposób, aby jej oś obrotu była pionowa. Taki układ konstrukcyjny ma kilka istotnych zalet, które czynią go atrakcyjnym rozwiązaniem w zastosowaniach wiatrowych. Przede wszystkim, pionowa oś obrotu pozwala na efektywniejsze wykorzystywanie wiatru z różnych kierunków, co jest szczególnie ważne w obszarach, gdzie kierunek wiatru jest zmienny. Dodatkowo, turbiny VAWT są mniej wrażliwe na turbulencje, co zwiększa ich wydajność w warunkach miejskich. Można je instalować w miejscach o ograniczonej przestrzeni, a ich konstrukcja zwykle nie wymaga skomplikowanych systemów kierowania, jak ma to miejsce w turbinach HAWT (Horizontal Axis Wind Turbines). Przykłady zastosowania turbin typu VAWT obejmują instalacje na dachach budynków oraz w parkach wiatrowych w miastach, gdzie tradycyjne turbiny mogą być mniej efektywne.

Pytanie 24

Jak często należy przeprowadzać kontrolę stanu technicznego instalacji elektrycznych w zakresie rezystancji izolacji?

A. co 2 lata
B. co 5 lat
C. co 3 lata
D. co 7 lat

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kontrola stanu technicznego instalacji elektrycznych w zakresie rezystancji izolacji jest kluczowym elementem zapewnienia bezpieczeństwa oraz niezawodności systemów elektroenergetycznych. Zgodnie z obowiązującymi normami, takimi jak PN-IEC 60364 oraz wytycznymi z zakresu utrzymania urządzeń elektrycznych, przegląd tej rezystancji powinien być przeprowadzany co najmniej co 5 lat. Taki okres umożliwia wczesne wykrywanie potencjalnych uszkodzeń izolacji, które mogą prowadzić do poważnych awarii, pożarów czy porażenia prądem. Przykładem zastosowania tej wiedzy jest regularne przeprowadzanie testów rezystancji izolacji w obiektach przemysłowych, gdzie instalacje elektryczne są szczególnie narażone na działanie czynników zewnętrznych, takich jak wilgoć czy substancje chemiczne, które mogą wpływać na degradację materiałów. Systematyczne wykonywanie tego rodzaju kontroli wspiera utrzymanie wysokich standardów bezpieczeństwa oraz zgodności z przepisami prawa.

Pytanie 25

Jaką wartość ma 1 roboczogodzina przy montażu 1 szt. kolektora słonecznego, jeśli koszt robocizny za zamontowanie 10 kolektorów słonecznych wynosi 5 000,00 zł, a ustalona stawka za roboczogodzinę to 25,00 zł?

A. 100 r-g/szt.
B. 1000 r-g/szt.
C. 500 r-g/szt.
D. 20 r-g/szt.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
To jest 20 roboczogodzin na montaż jednego kolektora słonecznego. Żeby to obliczyć, musimy na początku ustalić, ile czasu zajmie nam montaż 10 kolektorów. Mamy koszt robocizny na poziomie 5000 zł, a stawka za roboczogodzinę to 25 zł. Jak podzielimy te 5000 zł przez 25 zł za godzinę, dostajemy 200 roboczogodzin. Potem dzielimy te 200 roboczogodzin przez 10 kolektorów, co daje nam 20 roboczogodzin na jeden kolektor. Ważne, żeby zrozumieć, jak to działa, bo w zarządzaniu projektami budowlanymi i tworzeniu kosztorysów precyzyjne obliczenia naprawdę mają znaczenie. Dzięki nim lepiej planujemy zasoby i harmonogramy pracy, co jest naprawdę istotne w tej branży.

Pytanie 26

Przez realizację odwiertów weryfikuje się hydrotermalne zasoby energii, dotyczące

A. gorących suchych skał
B. wody, pary lub mieszaniny parowo-wodnej
C. suchych, ogrzanych i porowatych skał
D. atmosfery

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca wody, pary lub mieszaniny parowo-wodnej jest poprawna, ponieważ hydrotermiczne zasoby energii odnosi się bezpośrednio do energii geotermalnej, która znajduje się w płynach geotermalnych. Woda i para wodna są kluczowymi nośnikami energii w systemach geotermalnych, które są wykorzystywane do produkcji energii elektrycznej oraz do zastosowań grzewczych. Przykładem praktycznego zastosowania jest użycie geotermalnych źródeł energii w elektrowniach geotermalnych, gdzie woda pod wysokim ciśnieniem jest wydobywana z głębokich odwiertów, a następnie używana do napędzania turbin. W wielu krajach, takich jak Islandia czy Nowa Zelandia, dobrze rozwinięte systemy geotermalne przyczyniają się do znacznej części produkcji energii. Stosowanie odwiertów geotermalnych w celu potwierdzenia zasobów wód gruntowych jest zgodne z najlepszymi praktykami w branży, a także z normami środowiskowymi, które dbają o zrównoważony rozwój i efektywność energetyczną."

Pytanie 27

Podczas wymiany rotametru w instalacji grzewczej zasilanej energią słoneczną, w jaki sposób powinien być on zamontowany?

A. poziomo w kierunku przeciwnym do przepływu.
B. pionowo w kierunku przeciwnym do przepływu.
C. poziomo w zgodzie z kierunkiem przepływu.
D. pionowo w zgodzie z kierunkiem przepływu.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Montaż rotametru w pionie, zgodnie z kierunkiem przepływu, to naprawdę istotna sprawa, jeśli chcemy, żeby to urządzenie działało jak należy. Rotametry to takie fajne sprzęty, które mierzą przepływ cieczy albo gazu przez rurę, a ich konstrukcja pozwala na odczytwanie przepływu w zależności od tego, gdzie znajduje się pływak. Gdy rotametr jest zamontowany tak, jak trzeba, pływak ma luz i może swobodnie się poruszać, co daje dokładne pomiary. W branży mówi się, że zgodność z normami, jak ISO 5167, jest kluczowa, żeby uniknąć błędów w pomiarze. W instalacjach słonecznych, gdzie temperatura może się zmieniać, dobry montaż rotametru jest niezbędny do monitorowania efektywności systemu. Warto również pamiętać o regularnym sprawdzaniu kalibracji, żeby mieć pewność, że wyniki są miarodajne.

Pytanie 28

Kotły wykorzystujące paliwa stałe, takie jak pellet, klasyfikowane są jako kotły

A. ciśnieniowe wodne.
B. kondensacyjne.
C. niskotemperaturowe wodne.
D. wodnego wysokotemperaturowego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kotły na paliwa stałe, takie jak pellet, są klasyfikowane jako kotły wodne niskotemperaturowe, co oznacza, że pracują w niższych zakresach temperatury wody, zwykle poniżej 60°C. Tego rodzaju kotły są idealne do systemów ogrzewania, w których wykorzystuje się radiatory niskotemperaturowe lub ogrzewanie podłogowe. Dzięki temu możliwe jest osiągnięcie wysokiej efektywności energetycznej przy jednoczesnym zmniejszeniu emisji spalin. Przy spalaniu pelletu, który jest materiałem o wysokiej wartości opałowej i niskiej zawartości popiołu, kotły te mogą zapewnić długotrwałe, stabilne i ekologiczne źródło ciepła. Niskotemperaturowe kotły wodne wykorzystują również nowoczesne technologie, takie jak automatyczne podawanie paliwa oraz systemy kontroli emisji, co sprawia, że są zgodne z obowiązującymi normami ekologicznymi. W praktyce, zastosowanie kotłów niskotemperaturowych w połączeniu z odnawialnymi źródłami energii, takimi jak panele słoneczne, może znacznie obniżyć koszty eksploatacyjne oraz ślad węglowy.

Pytanie 29

Dla budynku jednorodzinnego zalecana instalacja powinna mieć około 3 kW zainstalowanej mocy (12 paneli fotowoltaicznych o mocy 250 W). Materiały niezbędne do realizacji instalacji PV sieciowej o mocy 1 kW kosztują 8 000 zł. Montaż systemu na dachu wymaga pracy dwóch pracowników przez 12 godzin każdy według stawki 20 zł za 1 roboczogodzinę. Firma wykonawcza dolicza marżę w wysokości 25% kosztów materiałów. Jaki jest całkowity koszt montażu instalacji PV sieciowej?

A. 30 480 zł
B. 30 300 zł
C. 8 240 zł
D. 10 240 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
No więc, dobra robota z wyborem odpowiedzi! 30 480 zł to całkiem konkretna kwota i dobrze to obliczyłeś. Jak to się ma do kosztów montażu instalacji fotowoltaicznej, to mamy tu sporo szczegółów. Koszt materiałów na 1 kW to 8 000 zł, to takie podstawowe dane. Pamiętaj też, że trzeba doliczyć robociznę - dwóch pracowników, każdy pracuje 12 godzin za 20 zł na godzinę, co daję nam 480 zł. Nie zapomnij, że firma też dorzuca swoją marżę, a tu jest 25% od materiałów, co daje dodatkowe 2 000 zł. Jak to wszystko zsumujesz, to wychodzi właśnie te 30 480 zł. To świetny przykład na to, jak ważna jest wiedza o kosztach przy planowaniu takich projektów. Zrozumienie tego wszystkiego pomaga w lepszej organizacji budżetu. No, a to, że to wszystko uwzględniłeś, to naprawdę dobrze o Tobie świadczy.

Pytanie 30

Podczas łączenia modułów fotowoltaicznych w układzie szeregowym, jakie efekty się uzyskuje?

A. zmniejszenie napięcia i zwiększenie natężenia prądu
B. zwiększenie natężenia prądu i zwiększenie mocy
C. zwiększenie napięcia i zwiększenie mocy
D. zwiększenie napięcia i zwiększenie natężenia prądu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Łączenie modułów fotowoltaicznych szeregowo prowadzi do zwiększenia napięcia systemu, co jest kluczowe dla efektywności instalacji. W przypadku modułów o napięciu 30 V każdy, po połączeniu szeregowo trzech takich modułów, otrzymujemy napięcie 90 V. Wzrost napięcia ma istotne znaczenie, gdyż umożliwia bardziej efektywne przesyłanie energii na większe odległości oraz zmniejsza straty związane z oporem przewodów. Zwiększenie napięcia w systemie wpływa również na wzrost mocy, ponieważ moc jest iloczynem napięcia i natężenia prądu (P = U * I). W praktyce, stosując moduły połączone szeregowo, można łatwiej dostosować system do wymagań inwertera oraz ograniczyć ilość przewodów i złączy, co z kolei zmniejsza ryzyko awarii oraz obniża koszty instalacji. Warto również zaznaczyć, że zgodne z normami instalacje fotowoltaiczne powinny uwzględniać odpowiednie zabezpieczenia, takie jak bezpieczniki i wyłączniki, aby chronić system przed przetężeniem oraz przeciążeniem. Takie podejście jest zgodne z najlepszymi praktykami w branży, co przekłada się na zwiększenie niezawodności oraz bezpieczeństwa systemu.

Pytanie 31

Diody bypass w systemie fotowoltaicznym zazwyczaj są instalowane

A. na końcu rzędu paneli
B. pomiędzy dwoma panelami w stringu
C. w skrzynce przyłączeniowej panelu fotowoltaicznego
D. między łańcuchem paneli a akumulatorem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Diody bypass w instalacji fotowoltaicznej są kluczowymi elementami, które zapewniają optymalną wydajność paneli słonecznych. Montuje się je w puszce przyłączeniowej panelu fotowoltaicznego, co pozwala na ich skuteczne działanie w sytuacjach, gdy jeden z ogniw panelu ulegnie zaciemnieniu lub uszkodzeniu. Dzięki diodom bypass, prąd może płynąć z pominięciem niedziałającego ogniwa, co minimalizuje straty mocy i pozwala na dalsze generowanie energii przez pozostałe sprawne ogniwa. Zastosowanie tych diod zgodnie z normami branżowymi, takimi jak IEC 61215 dla paneli słonecznych, jest powszechną praktyką, która zapewnia długoterminową niezawodność instalacji. Przykładowo, w przypadku instalacji solarnych na dachach z drzewami w pobliżu, gdzie cień może padać na część paneli, diody bypass pomagają utrzymać wydajność systemu, co jest krytyczne dla jego zwrotu z inwestycji. Warto również zauważyć, że odpowiednie umiejscowienie tych diod może wpływać na gwarancję paneli, dlatego ich instalacja powinna być przeprowadzona zgodnie z zaleceniami producenta.

Pytanie 32

Którego rodzaju kosztorysu nie tworzy wykonawca prac?

A. Zamiennego
B. Powykonawczego
C. Inwestorskiego
D. Ofertowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wiesz, wykonawca nie zajmuje się robieniem kosztorysu inwestorskiego. To inwestor albo jego przedstawiciel powinien tym się zająć. Kosztorys inwestorski to taki dokument, który szacuje, ile będzie kosztować cały projekt budowlany. Przydaje się głównie do planowania finansowego i oceny, czy inwestycja się opłaca. Z mojego doświadczenia, taki kosztorys musi być zrobiony według norm, na przykład PN-ISO 9001, żeby był rzetelny i przejrzysty. Generalnie powinien zawierać szczegółowy opis robót, materiałów i przewidywanych kosztów, co pozwala inwestorowi podjąć świadomą decyzję przy wyborze wykonawcy. Oczywiście w czasie przetargów, wykonawcy też robią kosztorysy ofertowe i powykonawcze, ale i tak za kosztorys inwestorski odpowiada inwestor, co jest zgodne z najlepszymi praktykami w branży budowlanej.

Pytanie 33

Pod jakim kątem powinny być ustawione na stałe kolektory słoneczne, aby zapewnić im optymalne nasłonecznienie przez cały rok?

A. 75 - 80 stopni
B. 60 - 70 stopni
C. 45 - 50 stopni
D. 30 - 40 stopni

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ustawienie kolektorów słonecznych pod kątem 45-50 stopni jest uznawane za optymalne dla ich efektywności w ciągu całego roku. Taki kąt zapewnia najlepszą ekspozycję na promieniowanie słoneczne, zarówno w okresie letnim, gdy słońce jest wyżej na niebie, jak i w zimie, kiedy znajduje się niżej. Poziom naświetlenia kolektorów jest kluczowy dla ich wydajności - odpowiedni kąt pozwala na maksymalne wykorzystanie energii słonecznej, co przekłada się na większą produkcję energii. W praktyce, wiele instalacji systemów solarnych na terenie Polski i innych krajów o podobnym klimacie stosuje właśnie ten kąt, aby zminimalizować straty związane z nieodpowiednim ustawieniem. Ponadto, zalecenia te są zgodne z wytycznymi branżowymi, które uwzględniają różne lokalizacje geograficzne oraz zmiany kątów padania promieni słonecznych w ciągu roku. Dobór odpowiedniego kąta nachylenia jest zatem kluczowym elementem projektowania systemów solarnych, wpływającym na ich efektywność i rentowność.

Pytanie 34

Na instalacji fotowoltaicznej zaobserwowano, że panele fotowoltaiczne generują energię prądu stałego, jednak nie jest ona przekształcana na energię prądu zmiennego. Jakie urządzenie jest odpowiedzialne za konwersję prądu stałego produkowanego przez instalację fotowoltaiczną na prąd zmienny?

A. Watomierz
B. Prostownik
C. Inwerter
D. Przekładnik napięciowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Inwerter to kluczowe urządzenie w systemach fotowoltaicznych, którego podstawową funkcją jest przekształcanie prądu stałego (DC) w prąd zmienny (AC). Panele fotowoltaiczne generują energię w postaci prądu stałego, która nie może być bezpośrednio wykorzystywana w większości aplikacji domowych ani nie może być wprowadzana do sieci elektroenergetycznej, gdyż ta operuje na prądzie zmiennym. Dlatego inwertery pełnią nie tylko rolę technologiczną, ale także zapewniają zgodność z przepisami i normami dotyczącymi jakości energii. W praktyce inwertery są odpowiedzialne za monitorowanie parametrów pracy systemu, optymalizację produkcji energii oraz zabezpieczenie przed przeciążeniem czy innymi nieprawidłowościami. Dobre praktyki branżowe wskazują na znaczenie wyboru inwertera o odpowiedniej mocy i funkcjach, takich jak monitoring online, co pozwala na bieżąco kontrolować wydajność instalacji.

Pytanie 35

Czujnik pływakowy, który powinien być zamontowany, stanowi zabezpieczenie przed zbyt niskim poziomem wody w kotłach na biomasę?

A. na zasilaniu instalacji c.o. 10 cm poniżej najwyższego punktu kotła
B. na powrocie z instalacji c.o. 10 cm powyżej najwyższego punktu kotła
C. na powrocie z instalacji c.o. 10 cm poniżej najwyższego punktu kotła
D. na zasilaniu instalacji c.o. 10 cm powyżej najwyższego punktu kotła

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Czujnik pływakowy jest kluczowym elementem zabezpieczającym kotły na biomasę przed niskim poziomem wody. Jego prawidłowe umiejscowienie ma znaczący wpływ na efektywność działania systemu grzewczego. Montaż czujnika na zasilaniu instalacji c.o. 10 cm powyżej najwyższej części kotła pozwala na wczesne wykrywanie spadku poziomu wody, co jest istotne dla zapobiegania uszkodzeniom kotła oraz niebezpieczeństwom związanym z pracą na sucho. W przypadku, gdy poziom wody w kotle spadnie poniżej poziomu czujnika, urządzenie może automatycznie wyłączyć system, co zapobiega dalszym szkodom. Dodatkowo, przestrzeganie zasady montażu czujnika powyżej najwyższej części kotła jest zgodne z dobrą praktyką inżynieryjną oraz normami bezpieczeństwa, takimi jak PN-EN 12952, które określają wymagania dotyczące bezpieczeństwa kotłów. Przykładem zastosowania czujnika pływakowego może być system zasilania biomasą, gdzie efektywne zarządzanie wodą w kotle wpływa na optymalizację zużycia paliwa oraz wydajność energetyczną całego układu.

Pytanie 36

Aby pompy ciepła funkcjonujące w systemie ogrzewania mogły przez cały okres eksploatacji skutecznie pełnić swoje zadania, konieczne jest zapewnienie regularnych przeglądów technicznych, które powinny być realizowane przynajmniej raz

A. w roku przed rozpoczęciem sezonu grzewczego
B. w roku po zakończeniu sezonu grzewczego
C. na pięć lat po zakończeniu sezonu grzewczego
D. na pięć lat przed rozpoczęciem sezonu grzewczego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź „w roku przed sezonem grzewczym” jest prawidłowa, ponieważ regularne przeglądy techniczne pomp ciepła są kluczowe dla ich niezawodności i efektywności. Przeglądy powinny być przeprowadzane przed rozpoczęciem sezonu grzewczego, aby zidentyfikować ewentualne usterki i zapewnić optymalne działanie urządzenia. Dobrym przykładem zastosowania tej praktyki jest wykonanie przeglądu całego systemu, w tym sprawdzenie stanu wymiennika ciepła, układu chłodniczego oraz poziomu czynnika chłodniczego. Ponadto, zgodnie z normą PN-EN 14511, producent pomp ciepła zaleca regularne przeglądy w celu oceny efektywności energetycznej oraz zmniejszenia ryzyka awarii. Przegląd można również połączyć z konserwacją, co pozwala na przedłużenie żywotności urządzenia oraz redukcję kosztów eksploatacyjnych. Regularne działania serwisowe przed sezonem grzewczym pozwalają na wczesne wykrycie problemów, co jest niezbędne do zapewnienia komfortu cieplnego w budynku.

Pytanie 37

W trakcie modernizacji elektrowni wodnej dokonano wymiany turbiny na nowy model o znamionowym przepływie Qn większym o 20%. Następnie zainstalowano rurę ssącą, co spowodowało wzrost użytecznego spadu Hu na turbinie z 1,6 m do 2 m. W rezultacie moc nominalna elektrowni Pn, wyrażona równaniem Pn = 9,81xQnxHuxη, wzrosła o około

A. 30%
B. 20%
C. 50%
D. 40%

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wzrost mocy nominalnej elektrowni wodnej można obliczyć, analizując zależność Pn = 9,81 x Qn x Hu x η, gdzie Pn to moc nominalna, Qn to przełyk znamionowy, Hu to spad użyteczny, a η to sprawność turbiny. W przypadku tego zadania, przełyk znamionowy Qn wzrósł o 20%, co oznacza, że nowy Qn wynosi 1,2 x Qn (stare). Dodatkowo, spad użyteczny Hu wzrósł z 1,6 m do 2 m, co stanowi wzrost o 25% (2 m / 1,6 m = 1,25). Łączny wzrost mocy można obliczyć mnożąc te dwa czynniki: (1,2) x (1,25) = 1,5, co oznacza wzrost o 50%. Przykład zastosowania tej wiedzy można zobaczyć w praktyce modernizacji elektrowni, gdzie inżynierowie starają się maksymalizować efektywność energetyczną poprzez optymalizację zarówno turbiny, jak i parametrów hydraulicznych. Zmiany te są zgodne z najlepszymi praktykami w branży, które dążą do zwiększenia wydajności systemów energetycznych. Warto również zauważyć, że poprawa parametrów turbiny przyczyni się do lepszej wykorzystania dostępnej energii wody, co jest kluczowe w kontekście zrównoważonego rozwoju energetyki wodnej.

Pytanie 38

Ośmiu paneli fotowoltaicznych o maksymalnej mocy P=250 Wp i napięciu U=12 V zostało połączonych równolegle. Instalacja ta cechuje się następującymi parametrami

A. P=2 000 Wp, U=96 V
B. P=2 000 Wp, U=12 V
C. P=250 Wp, U=96 V
D. P=250 Wp, U=12 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź P=2 000 Wp, U=12 V jest poprawna, ponieważ w układzie równoległym moc paneli fotowoltaicznych sumuje się, natomiast napięcie pozostaje stałe. W przypadku ośmiu paneli o mocy 250 Wp każdy, całkowita moc instalacji wynosi 8 x 250 Wp = 2000 Wp, co jest zgodne z pierwszą odpowiedzią. Napięcie w układzie równoległym pozostaje na poziomie 12 V, co również potwierdza prawidłowość tej odpowiedzi. Takie połączenie jest powszechnie stosowane w systemach fotowoltaicznych, gdzie stabilne napięcie jest kluczowe dla zasilania urządzeń o różnych wymaganiach energetycznych. W praktyce, takie układy są wykorzystywane w instalacjach domowych, gdzie zapewniają odpowiednią moc przy zachowaniu niskiego napięcia, co zwiększa bezpieczeństwo użytkowania. Zgodnie z normami IEC 61215 i IEC 61730, instalacje fotowoltaiczne powinny być projektowane tak, aby zapewnić maksymalną efektywność energetyczną oraz bezpieczeństwo, co również znajduje potwierdzenie w tej odpowiedzi.

Pytanie 39

Co oznacza przewód o symbolu YDY 2×1,5?

A. o średnicy żyły 1,5 mm² w postaci linek złożonych z wielu cienkich drucików miedzianych
B. płaski trójżyłowy o średnicy żyły 1,0 mm², gdzie każda żyła jest miedziana i ma formę drutu jednożyłowego
C. okrągły dwużyłowy o średnicy żyły 1,5 mm², przy czym każda żyła jest miedziana i ma postać drutu jednożyłowego
D. okrągły o średnicy żyły 3,0 mm², każda żyła miedziana w formie drutu jednożyłowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "okrągły dwużyłowy o przekroju żyły 1,5 mm², każda żyła miedziana w postaci drutu jednożyłowego" jest poprawna, ponieważ oznaczenie "YDY 2×1,5" dokładnie opisuje specyfikę przewodu. W tym przypadku, litera "Y" informuje o rodzaju izolacji, która jest wykonana z PVC, co jest powszechnie stosowane w przewodach elektrycznych ze względu na swoje właściwości dielektryczne oraz odporność na działanie różnych czynników atmosferycznych. Element "D" w oznaczeniu wskazuje na przewód dwużyłowy, co oznacza, że zawiera dwie żyły, co jest standardowym rozwiązaniem w instalacjach elektrycznych jedno- i trójfazowych. Przekrój "1,5 mm²" oznacza, że każda żyła ma przekrój 1,5 mm², co jest powszechnie stosowane w instalacjach o średnim obciążeniu, takich jak oświetlenie czy gniazda elektryczne. Użycie drutu jednożyłowego zamiast linki ma swoje uzasadnienie w łatwości instalacji i wygodzie w wielu zastosowaniach. W praktyce przewody YDY 2×1,5 są szeroko stosowane w budownictwie, co czyni je kluczowym elementem w projektowaniu instalacji elektrycznych według norm PN-IEC 60364.

Pytanie 40

Pompa ciepła jest wyposażona w sprężarkę o mocy elektrycznej P = 3 kW. Jaką ilość energii z sieci pobierze sprężarka w ciągu roku (365 dni), jeśli codziennie, systematycznie, pompa pracuje przez 4 godziny?

A. 1460 kWh
B. 1095 kWh
C. 4380 kWh
D. 3650 kWh

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybrana odpowiedź 4380 kWh jest poprawna, ponieważ obliczamy roczne zużycie energii przez sprężarkę, uwzględniając zarówno moc urządzenia, jak i czas jego pracy. Sprężarka o mocy elektrycznej 3 kW działa przez 4 godziny dziennie, co daje dzienne zużycie energii wynoszące 3 kW * 4 h = 12 kWh. Następnie, mnożąc to przez liczbę dni w roku (365), otrzymujemy 12 kWh * 365 = 4380 kWh. Tego rodzaju kalkulacje są kluczowe w branży HVAC, gdzie efektywność energetyczna jest priorytetem. Znajomość zużycia energii pozwala na optymalizację kosztów eksploatacyjnych oraz wprowadzenie środków oszczędnościowych, co jest szczególnie ważne w kontekście rosnących cen energii. W praktyce, dobrą praktyką jest monitorowanie zużycia energii urządzeń takich jak pompy ciepła, co można osiągnąć za pomocą systemów zarządzania energią, które umożliwiają wykrywanie nieefektywności i wprowadzanie ulepszeń.