Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 19 maja 2025 16:56
  • Data zakończenia: 19 maja 2025 17:10

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Jakiego rodzaju środek ochrony indywidualnej powinien w szczególności wykorzystać pracownik podczas wymiany tranzystora CMOS?

A. Fartuch ochronny z bawełny
B. Ochronne okulary
C. Opaskę uziemiającą
D. Buty z izolującą podeszwą
Opaska uziemiająca to kluczowy element ochrony indywidualnej, szczególnie podczas pracy z wrażliwymi komponentami elektronicznymi, takimi jak tranzystory CMOS. Te elementy są szczególnie podatne na uszkodzenia spowodowane wyładowaniami elektrostatycznymi (ESD). Uziemienie pozwala na odprowadzenie ładunków elektrycznych, które mogłyby uszkodzić delikatne układy. W praktyce, noszenie opaski uziemiającej jest standardowym wymogiem w branży elektroniki, aby zapewnić, że operatorzy nie wprowadzą niepożądanych ładunków podczas manipulacji elementami. Przykładowo, w laboratoriach i zakładach produkcyjnych, gdzie pracuje się z urządzeniami wrażliwymi na ESD, stosowanie tych opasek jest obligatoryjne i często wymaga ich podłączenia do odpowiednich gniazd uziemiających. Warto również dodać, że zgodność z normami, takimi jak ANSI/ESD S20.20, podkreśla znaczenie stosowania środków ochrony ESD, w tym opasek uziemiających, w celu minimalizacji ryzyka uszkodzeń. Dzięki temu można znacznie zwiększyć niezawodność i żywotność urządzeń elektronicznych.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jaki rodzaj czujnika, montowanego na metalowym cylindrze siłownika pneumatycznego, powinno się wykorzystać do monitorowania położenia tłoka?

A. Czujnik magnetyczny
B. Czujnik tensometryczny
C. Czujnik optyczny
D. Czujnik indukcyjny
Czujnik magnetyczny jest idealnym rozwiązaniem do kontroli położenia tłoka w siłownikach pneumatycznych, w szczególności tych wykonanych z metalu. Działa na zasadzie detekcji pola magnetycznego generowanego przez magnes zamontowany na tłoku. Dzięki temu czujnik może precyzyjnie określić położenie tłoka, co jest kluczowe w aplikacjach wymagających dokładności i powtarzalności. Przykłady zastosowań czujników magnetycznych to automatyka przemysłowa, linie montażowe oraz systemy robotyczne, gdzie precyzyjne pozycjonowanie jest niezbędne. W standardach branżowych, takich jak ISO 6431 czy IEC 60947, czujniki magnetyczne są rekomendowane do monitorowania ruchu w siłownikach, co potwierdza ich trwałość i niezawodność w trudnych warunkach przemysłowych. Ich bezdotykowa natura sprawia, że nie ma ryzyka zużycia mechanicznego, co dodatkowo zwiększa ich żywotność.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Wskaź zasady, która stosowana jest wyłącznie przy demontażu urządzenia o złożonej konstrukcji?

A. Rozmontować kolejno każdą część urządzenia, nie uwzględniając ich przynależności do podzespołów urządzenia
B. Przygotować plan demontażu i wymontować jedynie wybrane podzespoły
C. Ustalić lokalizację poszczególnych zespołów i oddzielić je, pozostawiając w całości
D. Opracować plan demontażu i rozłożyć poszczególne zespoły urządzenia, a następnie zdemontować podzespoły na części
Poprawna odpowiedź odnosi się do kluczowych zasad demontażu skomplikowanych urządzeń, które są kluczowe dla zapewnienia bezpieczeństwa oraz efektywności całego procesu. Wykonanie planu demontażu jest istotne, ponieważ pozwala na zrozumienie struktury urządzenia, co z kolei umożliwia bezpieczne i uporządkowane rozmontowywanie poszczególnych zespołów. Przy takiej procedurze, każdy zespół jest najpierw demontowany w całości, co minimalizuje ryzyko uszkodzenia podzespołów i ułatwia ich późniejszy montaż lub konserwację. Przykładem zastosowania tej zasady może być demontaż skomplikowanych systemów elektronicznych, takich jak komputery czy maszyny przemysłowe, gdzie precyzyjne rozpoznanie kolejności demontażu, na podstawie schematów, może zapobiec zniszczeniu delikatnych komponentów. Zgodnie z najlepszymi praktykami, taki plan demontażu powinien być udokumentowany oraz regularnie aktualizowany, aby uwzględniał zmiany w konstrukcji urządzeń oraz nowe technologie.

Pytanie 12

Siłownik hydrauliczny o powierzchni tłoka A = 20 cm2 musi wygenerować siłę F = 30 kN. Jakie powinno być ciśnienie oleju?

A. 1 500 bar
B. 150 bar
C. 15 bar
D. 15 000 bar
Odpowiedź 150 bar jest prawidłowa z uwagi na zastosowanie wzoru na obliczenie ciśnienia w siłowniku hydraulicznym. Ciśnienie (p) oblicza się według wzoru p = F / A, gdzie F to siła wywierana przez siłownik, a A to powierzchnia czynna tłoka. W tym przypadku F wynosi 30 kN, co jest równoznaczne z 30 000 N, a A wynosi 20 cm², co należy przeliczyć na m² (20 cm² = 0,002 m²). Podstawiając wartości do wzoru: p = 30 000 N / 0,002 m² = 15 000 000 Pa, co daje 150 bar (1 bar = 100 000 Pa). W praktyce, w hydraulice przemysłowej, utrzymywanie właściwego ciśnienia ma kluczowe znaczenie dla efektywności działania układów, co wpływa na bezpieczeństwo oraz niezawodność maszyn. Technologie hydrauliczne są powszechnie stosowane w budownictwie, przemyśle motoryzacyjnym i lotniczym, gdzie precyzyjne sterowanie siłą i ruchem jest niezbędne.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Które z poniższych urządzeń nie należy do kategorii mechatronicznych?

A. silnik indukcyjny klatkowy
B. drukarka laserowa
C. chłodziarko-zamrażarka z cyfrowym sterowaniem
D. odtwarzacz płyt CD oraz DVD
Wybór odpowiedzi, które wskazują na urządzenia mechatroniczne, raczej wynika z tego, że nie do końca rozumiesz, co to takiego. Przykłady jak drukarka laserowa, odtwarzacz płyt CD i DVD czy sterowana cyfrowo chłodziarko-zamrażarka to rzeczywiście łączą w sobie mechanikę, elektronikę i informatykę, przez co mogą być uznane za mechatroniczne. Przykładowo, drukarka laserowa to zaawansowane urządzenie, które łączy różne technologie – optykę, elektronikę i mechanikę – żeby drukować z dużą precyzją. Odtwarzacze płyt również wykorzystują mechanizmy do ładowania płyt i mają systemy laserowe do odczytu danych oraz elektroniki do przetwarzania dźwięku i obrazu. A te chłodziarko-zamrażarki, które są sterowane cyfrowo, to złożone systemy z czujnikami temperatury i mechaniką, które pomagają zarządzać temperaturą i oszczędzać energię. Warto, żebyś przy wyborze odpowiedzi pamiętał, że mechatronika to głównie systemy, gdzie mechanika spotyka elektronikę. Często popełniane błędy to takie, że zawężasz definicję mechatroniki tylko do mechaniki, przez co pomijasz ważne elektroniczne i cyfrowe elementy, które są kluczowe dla działania tych systemów.

Pytanie 17

System napędowy, który składa się z silnika prądu przemiennego zasilanego przez falownik, działa poprawnie, gdy wzrost częstotliwości napięcia zasilającego prowadzi do

A. wzrostu obrotów silnika
B. spadku obrotów silnika
C. obniżenia wartości napięcia zasilania
D. zmniejszenia reaktancji uzwojeń silnika
Wzrost obrotów silnika w układzie napędowym z silnikiem prądu przemiennego zasilanym z falownika jest zgodny z zasadą, że zmiana częstotliwości napięcia zasilającego wpływa na prędkość obrotową silnika. Zgodnie z równaniem: n = (120 × f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość zasilania, a p to liczba par biegunów silnika, możemy zauważyć, że zgodnie z tym równaniem, zwiększenie częstotliwości f prowadzi do proporcjonalnego wzrostu prędkości obrotowej n. Przykładowo, w zastosowaniach przemysłowych, takich jak napęd wentylatorów, pomp, czy taśmociągów, wykorzystuje się falowniki do precyzyjnego sterowania prędkością obrotową, co pozwala na oszczędność energii oraz zwiększenie efektywności procesów technologicznych. Warto także zwrócić uwagę na standardy takie jak IEC 60034, które definiują normy dla maszyn elektrycznych, w tym dla silników elektrycznych, co jest istotne dla zapewnienia ich prawidłowej pracy i bezpieczeństwa użytkowania. Zrozumienie tej zasady jest kluczowe dla inżynierów automatyków oraz techników zajmujących się systemami napędowymi.

Pytanie 18

Urządzenia elektroniczne, które gwarantują stabilność napięcia prądu elektrycznego na wyjściu, niezależnie od obciążeń oraz zmian w napięciu w sieci, określamy mianem

A. stabilizatorów
B. prostowników
C. zasilaczy
D. generatorów
Stabilizatory to urządzenia elektroniczne, które zapewniają stałe napięcie na wyjściu, niezależnie od zmian napięcia zasilania oraz obciążenia podłączonego do nich układu. Ich kluczową funkcją jest ochrona urządzeń elektronicznych przed niekorzystnymi skutkami wahań napięcia, co jest szczególnie istotne w zastosowaniach wymagających wysokiej niezawodności, jak w urządzeniach medycznych, systemach komputerowych czy automatyce przemysłowej. Stabilizatory można podzielić na liniowe i impulsowe, z których każdy typ ma swoje unikalne zalety i zastosowania. Stabilizatory liniowe są proste w konstrukcji i oferują niewielkie zniekształcenia, ale ich wydajność energetyczna jest niższa, co sprawia, że w zastosowaniach wymagających dużych prądów lepiej sprawdzają się stabilizatory impulsowe. W standardach branżowych, takich jak IEC 61000, uwzględnia się wymagania dotyczące stabilności napięcia w kontekście kompatybilności elektromagnetycznej, co czyni stabilizatory niezbędnym elementem w projektowaniu nowoczesnych systemów elektronicznych.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

W maszynach wirujących można zdiagnozować nieosiowe położenie wałów, niewyważenie mas wirujących lub ugięcie wałów

A. rejestratorem prądu
B. analizatorem drgań
C. tachometrem
D. testerem izolacji
Analizator drgań jest kluczowym narzędziem w diagnostyce maszyn wirujących, ponieważ umożliwia szczegółową analizę drgań generowanych przez maszyny, co pozwala na wykrycie nieprawidłowości związanych z ich ustawieniem, wyważeniem czy ugięciem wałów. Pomiar drgań jest istotnym elementem monitorowania stanu technicznego maszyn, zgodnie z normami ISO 10816 dotyczącymi oceny stanu maszyn na podstawie pomiarów drgań. Analizator drgań może wykryć różne rodzaje nieprawidłowości, takie jak niewyważenie, które prowadzi do nadmiernych drgań i może skutkować uszkodzeniami łożysk czy innych komponentów. Przykładowo, w przypadku silników elektrycznych, analiza drgań może pomóc w ocenie ich wyważenia oraz identyfikacji problemów z łożyskami, co pozwala na wczesne podjęcie działań serwisowych. W praktyce, regularne monitorowanie drgań może znacznie wydłużyć żywotność maszyn, a także zredukować koszty związane z nieplanowanymi przestojami i naprawami.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jaki środek smarny powinien być regularnie uzupełniany w smarownicy sprężonego powietrza?

A. Olej
B. Towot
C. Pastę
D. Silikon
Odpowiedź "Olej" jest jak najbardziej w porządku, bo smarownice sprężonego powietrza właśnie do olejów są stworzone. Używa się ich, żeby dobrze smarować i chronić różne części układów pneumatycznych. Dzięki olejowi, ruchome elementy współpracują lepiej, a ich żywotność jest dłuższa. Na przykład oleje mineralne i syntetyczne to popularne wybory w urządzeniach pneumatycznych, bo poprawiają działanie narzędzi, takich jak młoty udarowe czy wkrętarki. Zgodnie ze standardem ISO 8573, odpowiednie smarowanie jest kluczowe, żeby sprzęt działał długo i nie generował wysokich kosztów utrzymania. Ważne, żeby regularnie uzupełniać olej w smarownicy, bo jego brak może prowadzić do większego zużycia części i awarii. Dobrze jest sprawdzać poziom oleju i dbać o smarownicę według wskazówek producenta.

Pytanie 24

Do spawania metali za pomocą łuku elektrycznego wykorzystuje się zasilacz o

A. niskim napięciu i małym prądzie
B. wysokim napięciu i małym prądzie
C. wysokim napięciu i dużym prądzie
D. niskim napięciu i dużym prądzie
Rozumienie, jakie parametry prądu są właściwe do spawania metali, to mega ważna sprawa, jeśli chcesz dobrze wykonywać swoją robotę. Odpowiedzi, które sugerują niskie napięcie i mały prąd, są zwykle błędne, bo mały prąd po prostu nie da rady stopić materiału. Efekt? Możesz mieć niepełne spoiny i kłopoty z całą konstrukcją. A z wysokim napięciem i dużym prądem to już w ogóle trzeba uważać, bo można przegrzać materiał, co wprowadzi deformacje i pogorszy właściwości mechaniczne. Czasem są też problemy przy wysokim napięciu i małym prądzie, bo nie uzyskasz wystarczającej temperatury do skutecznego spawania. Niestety, dużo ludzi myśli, że wyższe napięcie zawsze jest lepsze, ale tak nie jest. Różne metody spawania wymagają różnych ustawień, które powinny być dostosowane do konkretnych warunków i materiałów. To jest zgodne z najlepszymi praktykami w branży, takimi jak normy AWS czy ISO. Dobrze dobrane parametry prądowe są kluczem do osiągnięcia jakości spoiny i jej długowieczności, co w przemyśle ma ogromne znaczenie.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Cyfrowy tachometr jest narzędziem do mierzenia

A. natężenia przepływu powietrza
B. lepkości cieczy
C. naprężeń w metalach
D. prędkości obrotowej wału silnika
Analizując nieprawidłowe odpowiedzi, warto zaznaczyć, że pomiar naprężeń w metalu oraz natężenia przepływu powietrza nie mają związku z zastosowaniem tachometru cyfrowego. Naprężenia w metalu mierzy się za pomocą tensometrów, które bazują na zmianach oporu elektrycznego materiału pod wpływem obciążenia. Jest to technika stosowana w materiałoznawstwie i inżynierii mechanicznej, gdzie kluczowe jest zrozumienie, jak materiały reagują na różne siły. Natomiast natężenie przepływu powietrza najczęściej OCENIA się przy użyciu anemometrów, które mogą przybierać różne formy, jak na przykład anemometry cieplne lub wirnikowe, które są dostosowane do pomiaru prędkości ruchu powietrza w danym obszarze. Lepkość cieczy, z kolei, jest mierzona za pomocą lepkościomierzy, które służą do określenia oporu, jaki ciecz stawia podczas przepływu. Każda z tych metod pomiarowych jest zdefiniowana przez odrębne zasady i techniki, różniące się znacznie od reguł dotyczących pomiaru prędkości obrotowej. W rezultacie, nieodpowiednie przyporządkowanie funkcji do tachometru cyfrowego może prowadzić do poważnych nieporozumień i błędnych decyzji w praktyce inżynieryjnej, co podkreśla znaczenie zrozumienia podstawowych zasad działania różnych narzędzi pomiarowych oraz ich zastosowania w odpowiednich kontekstach.

Pytanie 28

Jaką funkcję spełnia urządzenie, którego dane techniczne przedstawiono w tabeli?

Ciecz roboczaJednostkaOlej mineralny
Wydajnośćdm³/min47 przy n = 1450 min⁻¹, p = 1 MPa
Ciśnienie na wlocieMPa- 0,02 (podciśnienie) do 0,5 (nadciśnienie)
Ciśnienie na wylocieMPamaks 10
Ciśnienie przeciekówMPamaks 0,2
Moment obrotowyNmmaks. 2,5
Prędkość obrotowaobr/min1000 do 1800
Optymalna temperatura pracy (cieczy w zbiorniku)K313-328
Filtracjaμm16

A. Wytwarza strumień oleju w układach i urządzeniach hydraulicznych.
B. Utrzymuje stałe ciśnienie niezależnie od kierunku przepływu cieczy.
C. Steruje kierunkiem przepływu cieczy.
D. Otwiera i zamyka przepływ cieczy roboczej.
Wybór odpowiedzi sugerującej, że urządzenie utrzymuje stałe ciśnienie niezależnie od kierunku przepływu cieczy, nie uwzględnia podstawowych zasad działania pomp hydraulicznych. Pompy nie pełnią funkcji stabilizowania ciśnienia, a ich głównym zadaniem jest generowanie przepływu oleju. Utrzymywanie stałego ciśnienia w systemie hydrauliczny jest osiągane przez zastosowanie innych komponentów, takich jak zawory ciśnieniowe czy regulatory. Kolejna nieprawidłowa koncepcja sugeruje, że urządzenie steruje kierunkiem przepływu cieczy. Choć dostęp do określonych kierunków przepływu może być istotny w układach hydraulicznych, zadanie to leży w gestii zaworów kierunkowych, a nie pomp. Ostatnia błędna odpowiedź, dotycząca otwierania i zamykania przepływu cieczy roboczej, również jest mylna, ponieważ te funkcje realizowane są przez zawory sterujące. Typowe błędy myślowe prowadzące do tego rodzaju mylnych wniosków obejmują pomieszanie funkcji różnych elementów systemu hydraulicznego, co jest częstym problemem wśród osób uczących się o hydraulice. Ważne jest zrozumienie, że każdy komponent w układzie hydraulicznym odgrywa specyficzną rolę, a pompy są dedykowane do generowania przepływu, a nie do regulacji ciśnienia czy kierunku przepływu.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Jaką metodę należy wykorzystać do pomiaru prędkości obrotowej wirnika silnika napędzającego system mechatroniczny?

A. Radiometryczną
B. Stroboskopową
C. Ultradźwiękową
D. Termoluminescencyjną
Odpowiedź stroboskopowa jest prawidłowa, ponieważ technika ta jest powszechnie stosowana do pomiaru prędkości obrotowej wirujących elementów, takich jak wały silników. Stroboskopowe pomiary opierają się na zjawisku stroboskopowym, które wykorzystuje krótkie impulsy światła emitowane przez stroboskop do oświetlania wirującego obiektu. W momencie, gdy częstotliwość błysków stroboskopu jest zsynchronizowana z prędkością obrotową wału, obiekt wydaje się zatrzymany, co pozwala dokładnie określić jego prędkość obrotową. Przykładem zastosowania tej metody mogą być sytuacje w przemyśle, gdzie konieczne jest monitorowanie prędkości wałów w maszynach produkcyjnych. Metoda stroboskopowa jest również preferowana w badaniach laboratoryjnych, ponieważ nie wpływa na działanie mierzonych elementów, co jest zgodne z najlepszymi praktykami w inżynierii. Dodatkowo, ta metoda jest szeroko opisana w normach takich jak ISO 24410, które określają wymagania dotyczące pomiarów prędkości obrotowej.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Jaką metodę należy wykorzystać do połączenia szkła z metalem?

A. Nitowanie
B. Klejenie
C. Spawanie
D. Zgrzewanie
Wybór metod takich jak zgrzewanie, spawanie czy nitowanie do łączenia szkła z metalem opiera się na błędnym założeniu, że te procesy mogą efektywnie łączyć materiały o tak odmiennych właściwościach. Zgrzewanie, które jest procesem polegającym na miejscowym stopieniu materiałów, nie jest możliwe w przypadku szkła, ponieważ jego struktura krucha sprawia, że pod wpływem wysokiej temperatury może pęknąć. Spawanie, które również wymaga wysokich temperatur, prowadzi do tak samo niepożądanych efektów, a dodatkowo może spowodować uszkodzenie metalowych komponentów, jeśli nie są one odpowiednio przygotowane. Nitowanie jest kolejną nieodpowiednią metodą, ponieważ polega na mechanicznych połączeniach, które nie mogą zapewnić szczelności ani elastyczności wymaganej w przypadku łączenia szkła z metalem. Typowym błędem myślowym jest założenie, że wszystkie materiały można łączyć za pomocą tradycyjnych metod spajania, co często prowadzi do nieefektywnych i nietrwałych rozwiązań. W praktyce, ignorowanie odpowiednich metod łączenia szkła z metalem może prowadzić do awarii struktur oraz niskiej jakości wykonania, co jest niezgodne z najlepszymi praktykami inżynieryjnymi i normami budowlanymi.

Pytanie 33

Nie można zrealizować regulacji prędkości obrotowej silników indukcyjnych poprzez zmianę

A. kolejności faz
B. wartości skutecznej napięcia zasilania stojana
C. liczby par biegunów
D. wartości częstotliwości napięcia zasilającego
Regulacja prędkości obrotowej silników indukcyjnych jest kluczowym zagadnieniem w inżynierii elektrycznej, a odpowiedzi, które wskazują na inne metody, błądzą w interpretacji zasad działania tych silników. Zmiana wartości skutecznej napięcia zasilania stojana rzeczywiście wpływa na moment obrotowy i sprawność silnika, ale nie zmienia prędkości obrotowej w sposób bezpośredni. Kluczowym czynnikiem determinującym prędkość obrotową jest częstotliwość zasilania, co prowadzi do błędnego założenia, że napięcie mogłoby być alternatywną metodą regulacji. Zmiana liczby par biegunów jest zdecydowanie skuteczną metodą, ale wymaga fizycznej zmiany konstrukcji silnika, co jest niepraktyczne w wielu zastosowaniach. Przykładem błędnego myślenia jest założenie, że zmiana kierunku prądu w fazach mogłaby wpłynąć na prędkość; rzeczywiście, zmiana ta jedynie zmienia kierunek obrotów silnika, co może prowadzić do nieporozumień w projektowaniu systemów napędowych. Użycie falowników do kontroli częstotliwości zasilania jest nowoczesnym podejściem, które zapewnia elastyczność w regulacji prędkości, a zrozumienie, które metody są właściwe, jest kluczowe dla efektywności energetycznej i funkcjonalności systemów elektrycznych.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Silnik liniowy przekształca

A. energię mechaniczną w energię elektryczną
B. ruch obrotowy w ruch liniowy
C. ruch liniowy w ruch obrotowy
D. energię elektryczną w energię mechaniczną
Wybór odpowiedzi, która sugeruje, że silnik liniowy zamienia ruch liniowy na ruch obrotowy, oparty jest na błędnym zrozumieniu zasad działania tych urządzeń. Silniki liniowe i obrotowe różnią się zasadniczo w sposobie generacji ruchu. Silnik liniowy prowadzi do powstania ruchu bezpośrednio wzdłuż osi, co eliminuje potrzebę konwersji ruchu obrotowego, jak ma to miejsce w tradycyjnych silnikach. Z kolei odpowiedzi sugerujące zamianę energii mechanicznej na energię elektryczną również wprowadzają w błąd, ponieważ silnik liniowy nie generuje energii elektrycznej, lecz ją konsumuje, aby wytworzyć ruch mechaniczny. Kolejna nieprawidłowa odpowiedź wskazuje na zamianę energii elektrycznej na mechaniczną, co jest poprawne, ale nie odnosi się do zasadniczej funkcji silnika liniowego. Kluczowym jest zrozumienie, że silniki liniowe są projektowane specjalnie do działania w linii prostej, co sprawia, że ich zastosowanie jest znacznie bardziej efektywne w sytuacjach wymagających precyzyjnych ruchów liniowych. Użytkownicy często mylą silniki liniowe z innymi typami silników, co prowadzi do nieporozumień w ich zastosowaniach oraz funkcjach. W praktyce, silniki liniowe są wykorzystywane w systemach automatyki, transportu i robotyki, gdzie ich unikalne właściwości przekształcania energii elektrycznej w ruch liniowy są kluczowe dla efektywności operacyjnej.

Pytanie 37

Proces osuszania polega na absorbowaniu wilgoci oraz oleju ze sprężonego powietrza przez środek osuszający

A. poprzez schładzanie
B. adsorpcyjny
C. poprzez podgrzewanie
D. absorcyjny
Wybór odpowiedzi 'przez ogrzewanie' odnosi się do innego typu procesów, gdzie ciepło jest wykorzystywane do zwiększenia zdolności powietrza do wchłaniania wilgoci. Ogrzewanie powietrza upraszcza jego właściwości, ale nie eliminuje wilgoci, a jedynie zmienia jej stan. Z kolei 'przez oziębianie' to metoda, która polega na obniżeniu temperatury powietrza, co skutkuje skraplaniem wilgoci, ale nie jest to proces osuszania na poziomie absorpcyjnym. Oziębianie może prowadzić do kondensacji pary wodnej, ale wymaga dodatkowych środków, by ta skondensowana woda została usunięta. Wreszcie, 'adsorpcyjne' odnosi się do procesu, w którym cząsteczki wody przylegają do powierzchni materiału osuszającego, co jest różne od absorpcji, gdzie woda jest wchłaniana do wnętrza materiału. Zrozumienie różnicy między tymi procesami jest kluczowe dla efektywnego projektowania systemów osuszających. Typowe błędy myślowe, które prowadzą do wyboru niewłaściwych odpowiedzi, obejmują mylenie terminologii oraz niedostateczne zrozumienie mechanizmów działania środków osuszających.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.