Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 7 kwietnia 2025 12:18
  • Data zakończenia: 7 kwietnia 2025 12:34

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Czym jest radiator?

A. tor używany w transmisji radiowej
B. radiacyjny pirometr termoelektryczny
C. element odprowadzający ciepło do otoczenia
D. nastawna cewka toroidalna do strojenia radioodbiornika
Radiator to naprawdę ważny element w systemach chłodzenia, który odprowadza ciepło z różnych urządzeń, jak silniki czy sprzęt elektroniczny. Jego głównym zadaniem jest przekazywanie ciepła do otoczenia, żeby urządzenia się nie przegrzały. Radiatory znajdziesz w wielu miejscach, od komputerów po systemy klimatyzacji. Ważne, żeby były wykonane z odpowiednich materiałów, jak aluminium czy miedź, bo mają one super przewodność cieplną. Warto zwrócić uwagę na to, jak projektuje się radiatory – dobrze jest optymalizować powierzchnię, która wymienia ciepło, i zapewnić właściwy przepływ powietrza, co można wspierać wentylatorami. W branżowych standardach, jak IPC-9592, mówi się o tym, jak ważne są efektywne systemy chłodzenia w elektronice, więc naprawdę warto zrozumieć, czemu radiator jest tak istotny dla trwałości urządzeń.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Długość adresu IPv4 wynosi ile bitów?

A. 4 bity
B. 8 bitów
C. 16 bitów
D. 32 bity
Odpowiedzi wskazujące długości takie jak 8, 4 czy 16 bitów są niepoprawne, ponieważ nie odzwierciedlają rzeczywistej architektury adresów IPv4. Adres 8-bitowy mógłby teoretycznie reprezentować jedynie 256 unikalnych adresów, co byłoby niewystarczające dla współczesnych sieci, w których tysiące urządzeń wymagają indywidualnych adresów IP. Z kolei 4 bity, które mogą reprezentować tylko 16 adresów, są skrajnie niewystarczające, co czyni tę odpowiedź niepraktyczną. Podobnie, 16-bitowy adres IP mógłby oferować 65 536 unikalnych adresów, co również nie odpowiada potrzebom globalnej sieci. W praktyce, błędne odpowiedzi mogą wynikać z nieporozumień dotyczących struktury i wielkości protokołów sieciowych oraz ich zastosowania. Wiele osób może mylnie sądzić, że adresy IP są krótsze, co prowadzi do nieprawidłowej oceny realnych potrzeb adresacji w sieciach. Warto zwrócić uwagę na rozwój IPv6, gdzie długość adresu wynosi 128 bitów, co pozwala na znacznie większą liczbę unikalnych adresów, odpowiadając na rosnące zapotrzebowanie w erze Internetu rzeczy i powszechnej cyfryzacji.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Jaki jest standardowy poziom napięcia zasilania dla jednego urządzenia podłączonego do portu USB (pomijając USB Power Delivery)?

A. 1,2 V
B. 5 V
C. 1,5 V
D. 12 V
Podane odpowiedzi 1, 1,5 oraz 12 V są niepoprawne w kontekście standardowego napięcia zasilania dla portów USB. Napięcie 1,2 V i 1,5 V są typowe dla technologii baterii, takich jak ogniwa NiMH, które są używane w niektórych urządzeniach, ale nie są to standardowe wartości dla zasilania przez USB. Stosowanie takich wartości napięcia w kontekście portów USB prowadziłoby do niewłaściwego funkcjonowania urządzeń, które wymagają stabilnego zasilania na poziomie 5 V. Napięcie 12 V jest z kolei typowe dla zasilaczy stosowanych w komputerach stacjonarnych lub innych urządzeniach o większym zapotrzebowaniu energetycznym. W przypadku portów USB, zastosowanie wyższego napięcia niż 5 V bez odpowiednich zabezpieczeń może prowadzić do uszkodzenia sprzętu i jest sprzeczne z normami USB, które jasno określają maksymalne poziomy napięcia. Ważne jest, aby przy podłączaniu urządzeń do portów USB zwracać uwagę na te parametry, aby uniknąć błędów w zasilaniu, które mogą prowadzić do awarii lub uszkodzenia komponentów. Niezrozumienie standardowych wartości napięcia oraz ich zastosowania w różnych kontekstach jest powszechnym błędem, który może negatywnie wpłynąć na bezpieczeństwo i funkcjonalność urządzeń elektronicznych.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

W regulatorze PID wystąpiła awaria, która powoduje, że uchyb ustalony nie zmierza do 0. Przyczyną problemu może być uszkodzenie w elemencie

A. inercyjnym
B. całkującym
C. różniczkującym
D. proporcjonalnym
Zgłoszone odpowiedzi dotyczące innych członów regulatora PID, tj. inercyjnego, proporcjonalnego i różniczkującego, wskazują na nieporozumienia w zrozumieniu funkcji tych elementów w kontekście regulacji. Człon proporcjonalny odpowiada za bieżącą reakcję na uchyb, co wpływa na szybkość reakcji regulatora, ale nie eliminuje uchybów ustalonych. W przypadku wystąpienia stałego uchyb, jego działanie nie wystarczy do skompensowania błędu, co może prowadzić do tzw. błędu ustalonego. Człon różniczkujący, z kolei, reaguje na szybkość zmiany uchybu, co jest istotne w redukcji oscylacji, ale także nie adresuje problemu długoterminowego uchybu ustalonego. W kontekście członu inercyjnego, należy podkreślić, że jest on odpowiedzialny za reakcję systemu na przeszłe wartości, co może wprowadzać dodatkowe opóźnienia, ale nie wpływa na eliminację stałego uchybu. Często błędy w analizie występują z braku zrozumienia, że każda część regulatora ma swoje unikalne funkcje i nie można ich mylić ani traktować jako zamienników. Aby uniknąć takich nieporozumień, ważne jest przeszkolenie w zakresie teorii regulacji oraz praktycznego zastosowania regulatorów PID, co pozwoli na skuteczniejsze zarządzanie procesami i systemami przemysłowymi.

Pytanie 16

Zamiana linii asymetrycznej na linię symetryczną w transmisji sygnałów cyfrowych

A. zmniejsza odporność linii na zakłócenia i wymaga modyfikacji układów we/wy
B. zwiększa odporność linii na zakłócenia i nie wymaga modyfikacji układów we/wy
C. zwiększa odporność linii na zakłócenia i wymaga modyfikacji układów we/wy
D. zmniejsza odporność linii na zakłócenia i nie wymaga modyfikacji układów we/wy
Zastąpienie linii niesymetrycznej linią symetryczną w transmisji sygnałów cyfrowych jest uzasadnione z technicznego punktu widzenia, ponieważ linie symetryczne, do których zaliczają się takie rozwiązania jak różnicowe przesyłanie sygnałów, znacząco zwiększają odporność na zakłócenia. Dzięki równemu rozmieszczeniu potencjałów w przewodach, zakłócenia elektromagnetyczne mają minimalny wpływ na jakość sygnału. Przykładem zastosowania linii symetrycznych jest standard USB, który stosuje różnicowe pary przewodów do przesyłania danych. W kontekście modyfikacji układów we/wy, konieczne jest dostosowanie elektroniki do nowych warunków pracy, w tym implementacja układów różnicowych, co może wpłynąć na wydajność i niezawodność całego systemu. W branży telekomunikacyjnej, użycie linii symetrycznych w takich aplikacjach jak DSL, przyczynia się do zminimalizowania zakłóceń, co jest zgodne z najlepszymi praktykami w projektowaniu systemów komunikacyjnych.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Jaką wartość prądu z akumulatora o napięciu 6 V zużywa przetwornica napięcia 6 VDC / 12 VDC przy założonym teoretycznie 100% współczynniku sprawności energetycznej, podczas zasilania czterech zewnętrznych kamer systemu monitoringu napięciem 12 V, z których każda wymaga prądu rzędu około 50 mA?

A. 0,1 A
B. 0,2 A
C. 0,3 A
D. 0,4 A
Wybór niepoprawnej wartości natężenia prądu często wynika z błędnego zrozumienia zasad działania przetwornic napięcia oraz nieprawidłowego sumowania prądów pobieranych przez urządzenia. Odpowiedzi takie jak 0,1 A, 0,2 A lub 0,3 A mogą wydawać się atrakcyjne ze względu na to, że łączny prąd pobierany przez cztery kamery wynosi 200 mA, jednak nie uwzględniają one kluczowego aspektu, jakim jest sprawność przetwornicy oraz różnica napięć. Przetwornica przekształcająca napięcie z 6 V na 12 V musi pobrać więcej prądu z akumulatora, aby dostarczyć odpowiednią moc na wyjściu. Prawo Ohma oraz zasada zachowania energii mówiąc, że moc musi być zachowana, w szczególności w systemie idealnym, prowadzi do wniosku, że natężenie prądu pobieranego z akumulatora będzie większe niż natężenie prądu na wyjściu przetwornicy. W przypadku 100% sprawności przetwornicy, która jest w praktyce nieosiągalna, ale przyjmowana do uproszczenia obliczeń, dla 0,2 A na wyjściu 12 V musimy uwzględnić podwójne natężenie dla 6 V, co prowadzi do wartości 0,4 A. Ignorowanie tej zasady prowadzi do nieprawidłowych obliczeń i błędnych wniosków. W rzeczywistości, w projektowaniu systemów zasilania, dobrym zwyczajem jest zawsze przewidywać straty energii i obliczać wymaganą moc na podstawie rzeczywistych danych technicznych urządzeń oraz specyfikacji przetwornic.

Pytanie 19

Aby ocenić efektywność energetyczną przetwornicy DC/DC, należy użyć

A. omomierza
B. amperomierza
C. dwóch woltomierzy
D. dwóch watomierzy
W kontekście pomiaru sprawności energetycznej przetwornicy DC/DC, wykorzystanie omomierza jest niewłaściwe, ponieważ jego podstawową funkcją jest pomiar oporu elektrycznego, a nie mocy czy energii. Omomierz nie dostarcza informacji o prądzie i napięciu, które są niezbędne do obliczenia sprawności przetwornicy. Z kolei amperomierz, chociaż mierzy prąd, również nie dostarcza pełnego obrazu, ponieważ brakuje mu pomiaru napięcia, co uniemożliwia obliczenie mocy. Pomiar tylko jednego z tych parametrów prowadzi do niekompletnych i nieprecyzyjnych wyników. Użycie dwóch woltomierzy również nie jest odpowiednie, ponieważ chociaż pozwala na zmierzenie napięcia, nie uwzględnia wartości prądu, co jest niezbędne do obliczenia mocy. Typowym błędem jest myślenie, że można oszacować sprawność poprzez pomiar tylko jednego z parametrów – napięcia lub prądu. W rzeczywistości oba te parametry są komplementarne i niezbędne do prawidłowego określenia wydajności energetycznej systemu. Niezrozumienie tego konceptu może prowadzić do poważnych błędów w ocenie efektywności systemów zasilania, co może mieć negatywne konsekwencje w praktycznych zastosowaniach, takich jak systemy zarządzania energią czy projekty inżynieryjne związane z odnawialnymi źródłami energii.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Jakie IP może mieć drukarka sieciowa z wbudowanym interfejsem Ethernet (np. BROTHER HL-4040CN) działająca w prywatnej klasie C jako serwer druku, przy domyślnej masce podsieci 255.255.255.0?

A. 192.168.255.1
B. 192.168.0.255
C. 192.168.0.0
D. 198.162.1.1
Odpowiedź 192.168.255.1 jest poprawna, ponieważ mieści się w zakresie adresów IP przeznaczonych dla prywatnych sieci klasy C. Klasa C obejmuje adresy od 192.168.0.0 do 192.168.255.255, a domyślna maska podsieci 255.255.255.0 oznacza, że pierwsze trzy oktety adresu definiują sieć, a ostatni oktet służy do identyfikacji urządzeń w tej sieci. Adres 192.168.255.1 to adres, który można przydzielić do urządzenia w sieci 192.168.255.0, co czyni go idealnym dla drukarki sieciowej. Tego typu konfiguracja jest powszechnie stosowana w domowych i biurowych sieciach lokalnych, gdzie drukarki są udostępniane wielu użytkownikom. Warto również zauważyć, że adres 192.168.255.255 jest adresem rozgłoszeniowym dla tej podsieci, a 192.168.255.0 to adres identyfikujący samą sieć. Dlatego adres 192.168.255.1 jest w pełni funkcjonalny i zgodny z dobrymi praktykami zarządzania adresacją IP.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Jaką kluczową rolę w tunerze satelitarnym pełni moduł CI (Common Interface)?

A. Daje możliwość aktualizacji oprogramowania tunera.
B. Pozwala na podłączenie pamięci zewnętrznej.
C. Funkcjonuje jako czytnik kart dostępu.
D. Służy do łączenia urządzeń audio-video.
Odpowiedzi sugerujące, że moduł CI służy do podłączenia pamięci zewnętrznej, aktualizacji oprogramowania tunera lub podłączenia urządzeń audio-video, są błędne, ponieważ pomijają fundamentalną rolę, jaką odgrywa ten moduł w kontekście dostępu do zaszyfrowanych kanałów. Moduł CI nie jest przeznaczony do obsługi pamięci zewnętrznych; zamiast tego, jego głównym celem jest dekodowanie sygnałów z kart kodowych. Podłączenie pamięci zewnętrznej do tunera może być realizowane za pomocą portów USB, ale nie jest związane z funkcjonalnością modułu CI. Również aktualizacja oprogramowania tunera najczęściej realizowana jest poprzez internet lub zewnętrzne nośniki danych, a nie przez CI, który pełni rolę jedynie w kontekście zarządzania dostępem do treści. Co więcej, podłączenie urządzeń audio-video, takich jak odtwarzacze Blu-ray czy kina domowe, odbywa się zazwyczaj za pomocą HDMI lub innych standardowych złączy, a nie za pośrednictwem modułu CI. W ten sposób można dostrzec, że wiele błędnych odpowiedzi wynika z pomylenia ról różnych komponentów systemu telewizyjnego oraz braku zrozumienia, jakie funkcje pełnią poszczególne elementy w zapewnieniu dostępu do treści multimedialnych.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Która metoda naprawy uszkodzonego kabla antenowego zapewni wysoką jakość odbioru sygnału?

A. Zlutowanie oraz zaizolowanie przewodu w miejscu uszkodzenia
B. Połączenie kabla przy użyciu kostki do przewodów elektrycznych
C. Zainstalowanie złączek typu F i łącznika w miejscu awarii
D. Złączenie kabla przy pomocy tulejek zaciskowych
Jak dla mnie, zamontowanie w miejscu uszkodzenia złączek typu F oraz łącznika to naprawde najlepszy sposób na fix przerwanego kabla antenowego. Te złączki dają świetne ekranowanie i mają minimalne straty sygnału, co jest bardzo ważne w instalkach antenowych. Złączki typu F są szeroko stosowane w telekomunikacji, zwłaszcza w telewizji i systemach satelitarnych. Ich konstrukcja zapewnia stabilne połączenie, które nie jest podatne na różne zakłócenia, czy to elektromagnetyczne, czy fizyczne uszkodzenia. W profesjonalnych instalacjach często używa się ich, żeby utrzymać jakość sygnału i trwałość połączeń. Z tego co wiem, zgodnie z normami branżowymi, takie połączenia powinny być robione w sposób, który spełnia określone standardy. To wszystko zwiększa niezawodność transmisji, więc ryzyko utraty sygnału jest znacznie mniejsze. Daje to pewność, że urządzenia antenowe będą działać bez zarzutów.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

W przypadku wzmacniaczy prądu stałego pomiędzy kolejnymi stopniami nie wykorzystuje się sprzężenia pojemnościowego, ponieważ kondensator

A. jest zworą dla sygnału stałego
B. tak jak dioda, przewodzi sygnał w jednym kierunku
C. nie przekazuje składowej stałej sygnału
D. tworzy przerwę dla sygnału o wysokiej częstotliwości
Wzmacniacze prądu stałego, które są projektowane do pracy z sygnałami stałymi, nie stosują sprzężenia pojemnościowego, ponieważ kondensator, będący elementem pasywnym, nie przenosi składowej stałej sygnału. Sprzężenie pojemnościowe jest wykorzystywane głównie w wzmacniaczach prądu przemiennego, gdzie kondensator działa jako filtr, eliminując składowe stałe, umożliwiając przekazywanie składowych zmiennych sygnału. W praktyce, w układach wzmacniaczy prądu stałego, takie podejście byłoby niewłaściwe, ponieważ nasz sygnał mógłby zostać zniekształcony lub całkowicie zatrzymany. W związku z tym, w projektowaniu wzmacniaczy należy stosować inne metody, takie jak sprzężenie rezystancyjne lub innego rodzaju układy, które pozwalają na stabilizację sygnałów stałych bez wpływu kondensatorów. Przykładem mogą być wzmacniacze operacyjne w konfiguracjach, które zapewniają szeroki zakres DC, gdzie komponenty aktywne są kluczowe dla działania układu.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Dokumentacja serwisowa odbiornika radiowego nie zawiera

A. schematu ideowego
B. schematu blokowego
C. informacji o cenie odbiornika
D. opisu panelu przedniego
Poprawna odpowiedź wskazuje, że instrukcja serwisowa odbiornika radiowego nie zawiera informacji o cenie odbiornika. W kontekście serwisowania urządzeń elektronicznych, instrukcje serwisowe mają na celu dostarczenie technicznych i praktycznych wskazówek dotyczących napraw, konserwacji i diagnostyki. Zawierają one szczegółowe opisy konstrukcji, takie jak opis płyty czołowej, schematy blokowe i ideowe, które są kluczowe dla technika w procesie serwisowania. Informacja o cenie, chociaż istotna z perspektywy marketingowej, nie jest częścią dokumentacji technicznej. Przykładowo, podczas naprawy odbiornika radiowego technik może odnosić się do schematu ideowego, aby zrozumieć, jak poszczególne obwody są połączone i jak działają, co jest wyjątkowo istotne w diagnozowaniu problemów.

Pytanie 36

Dzięki działaniu negatywnego sprzężenia zwrotnego, wzmocnienie tego układu

A. zmniejsza się
B. zwiększa się
C. wynosi 0
D. pozostaje takie samo
W przypadku rozważania wpływu sprzędzenia zwrotnego na wzmocnienie układu, niektóre odpowiedzi mogą być mylące. Utrzymywanie wzmocnienia bez zmian jest błędnym założeniem, gdyż ujemne sprzężenie zwrotne ma jasno określony wpływ na obniżenie wzmocnienia. W rzeczywistości, analogowe układy wzmacniające, takie jak wzmacniacze operacyjne, zawsze podlegają wpływowi sprzężenia zwrotnego, co jest kluczowe dla ich poprawnego działania. Dalsze zwiększanie wzmocnienia w kontekście ujemnego sprzężenia zwrotnego jest niemożliwe, ponieważ mechanizm ten działa zgodnie z zasadą redukcji wzmocnienia, co skutkuje stabilizacją. W odpowiedzi sugerującej, że wzmocnienie jest równe zeru, występuje znaczący błąd rozumienia natury sprzężenia zwrotnego. Owszem, wzmocnienie może dążyć do zera w niektórych ekstremalnych przypadkach, ale nie jest to normą w zastosowaniach praktycznych. Takie podejście zniekształca zrozumienie funkcjonalności wzmacniaczy i ich zdolności do pracy w różnych warunkach. Dlatego, interpretując ujemne sprzężenie zwrotne, kluczowe jest zrozumienie jego roli w stabilizacji wzmocnienia oraz w poprawie jakości sygnału, co jest fundamentalnym aspektem inżynierii elektronicznej.

Pytanie 37

Tabela przedstawia ustawienia zworek czujki ruchu. W jakim położeniu należy ustawić zworki w celu włączenia wysokiej ochrony, diody LED i detekcji ruchu pojedynczym sygnałem?

J1
Opcja Digital Shield (ochrony przed zakłóceniami)
Wył = wysoka ochrona
Wł. = niska ochrona
J2
Ustawienia LED
Wył = wyłączony
Wł. = włączony
J3
Pojedyncze lub podwójne sygnały detekcji
Wył = podwójne
Wł. = pojedyncze

A. J1-wyłączona, J2-wyłączona, J3-wyłączona.
B. J1-włączona, J2-wyłączona, J3-wyłączona.
C. J1-wyłączona, J2-wyłączona, J3-włączona.
D. J1-wyłączona, J2-włączona, J3-włączona.
Wybór niewłaściwego ustawienia zworek często wynika z braku znajomości funkcji poszczególnych elementów systemu zabezpieczeń. Ustawienie J1 na włączoną oznacza, że czujka będzie działać w trybie niskiej ochrony, co w praktyce prowadzi do mniejszej czułości na ruch. To może być szczególnie niebezpieczne w miejscach wymagających zaawansowanej ochrony, ponieważ może prowadzić do nieautoryzowanego dostępu. W przypadku ustawienia J2 na wyłączoną, dioda LED nie będzie sygnalizować aktywności czujki, co może prowadzić do złego zarządzania systemem i braku świadomości użytkownika o stanie zabezpieczeń. Dodatkowo, ustawienie J3 na wyłączoną uniemożliwia efektywną detekcję ruchu w trybie pojedynczego sygnału, co jest kluczowe w sytuacjach wymagających natychmiastowej reakcji. Zrozumienie tego, jak poprawne ustawienia zworek wpływają na całość funkcjonowania systemu zabezpieczeń, jest niezbędne dla skutecznej ochrony. W praktyce, ignorowanie instrukcji dotyczących zworek może prowadzić do fałszywego poczucia bezpieczeństwa, a co gorsza, do sytuacji, w których alarm nie zareaguje na rzeczywiste zagrożenie. Dlatego tak ważne jest, aby zawsze stosować się do zaleceń producenta oraz standardów branżowych, do których zalicza się m.in. odpowiednie oznaczenie i zarządzanie ustawieniami zworek.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Opisz konstrukcję czujki

OPIS KONSTRUKCJI

Podstawowym elementem czujki jest układ detekcyjny, który składa się z: diody emitującej podczerwień oraz diody odbierającej. Oba te elementy są zamontowane w uchwycie w taki sposób, by promieniowanie ze diody nadawczej nie docierało bezpośrednio do diody odbierającej. Układ detekcyjny (uchwyt z diodami) jest przymocowywany bezpośrednio do płytki drukowanej, która zawiera elektronikę z procesorem kontrolującym działanie czujki. Labirynt chroni przed przedostawaniem się zewnętrznego światła do układu detekcyjnego. Metalowa siatka zabezpiecza układ detekcyjny przed niewielkimi owadami oraz większymi zanieczyszczeniami. Całość jest zainstalowana w obudowie wykonanej z białego tworzywa, składającej się z koszyczka, osłony czujki oraz ekranu.

A. dymu
B. zalania
C. stłuczenia
D. ruchu
Wybór odpowiedzi dotyczącej czujek ruchu, zalania lub stłuczenia wskazuje na nieporozumienie dotyczące funkcji i zastosowania czujki opisanej w pytaniu. Czujki ruchu są skonstruowane w celu wykrywania ruchu obiektów w danym obszarze, najczęściej na podstawie zmian pola elektromagnetycznego lub ciepła, co jest zupełnie inną technologią niż ta stosowana w czujkach dymu. Z kolei czujki zalania wykrywają obecność wody, zazwyczaj w systemach zabezpieczeń budynków przed wodami gruntowymi lub wyciekami, a ich zasada działania opiera się na detekcji przewodności elektrycznej. Dlatego też są one niezdolne do wykrywania dymu, co czyni je niewłaściwym wyborem w kontekście tego pytania. W odniesieniu do stłuczenia, urządzenia te mogą być używane do detekcji szkód fizycznych w obiektach, ale nie mają nic wspólnego z procesem wykrywania dymu. Przy podejmowaniu decyzji o tym, jakie urządzenie dobrane jest do konkretnej aplikacji, ważne jest zrozumienie specyficznych właściwości i przeznaczenia czujników, a także świadomość, że różne czujki operują na odmiennych zasadach. Coraz częściej w obiektach komercyjnych oraz mieszkalnych stosuje się systemy alarmowe, które integrują różne typy czujników, ale kluczowe jest, aby każda z tych technologii była używana zgodnie z jej właściwym przeznaczeniem.

Pytanie 40

Przy wymianie uszkodzonego kondensatora, co należy zrobić?

A. wprowadzić kondensator o pojemności identycznej z tą odczytaną z urządzenia pomiarowego po zbadaniu uszkodzonego kondensatora
B. wprowadzić kondensator o tych samych wymiarach
C. wprowadzić kondensator o pojemności o 30% większej niż znamionowa
D. wprowadzić kondensator o pojemności zgodnej z wartością znamionową uzyskaną z schematu urządzenia
Wstawienie kondensatora o pojemności 30% większej od znamionowej jest błędne, ponieważ kondensatory mają ściśle określone parametry, które muszą być spełnione, aby układ działał prawidłowo. Zwiększenie pojemności może prowadzić do nieprzewidywalnych skutków, takich jak zmiana częstotliwości rezonansowej obwodu, co w konsekwencji może wpływać na jego działanie. W praktyce, jeśli kondensator jest zbyt duży, może to prowadzić do przegrzewania się, co z kolei może doprowadzić do jego uszkodzenia. Kolejną nieprawidłową koncepcją jest wstawienie kondensatora o pojemności równej pomiarowi wykonanym na uszkodzonym kondensatorze. Uszkodzony komponent może wykazywać fałszywe wartości, dlatego pomiar na uszkodzonym kondensatorze nie jest miarodajny. Również gabaryty kondensatora są istotne – zastosowanie kondensatora gabarytowo identycznego nie gwarantuje, że jego parametry elektryczne będą takie same, ponieważ różne typy kondensatorów mogą mieć różne charakterystyki, które wpływają na ich funkcjonalność w danym obwodzie. Dlatego kluczowe jest, aby przy wymianie kondensatorów stosować się do specyfikacji producenta i standardów branżowych, aby zapewnić niezawodność i bezpieczeństwo całego urządzenia.