Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik geodeta
  • Kwalifikacja: BUD.18 - Wykonywanie pomiarów sytuacyjnych, wysokościowych i realizacyjnych oraz opracowywanie wyników tych pomiarów
  • Data rozpoczęcia: 20 maja 2025 12:00
  • Data zakończenia: 20 maja 2025 12:01

Egzamin niezdany

Wynik: 1/40 punktów (2,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie jest względne odchylenie pomiaru odcinka o długości 10 cm, jeżeli średni błąd pomiarowy wynosi ±0,2 mm?

A. 1:100
B. 1:50
C. 1:200
D. 1:500
Błąd względny pomiaru to stosunek błędu bezwzględnego do wartości rzeczywistej pomiaru. W naszym przypadku błąd bezwzględny wynosi ±0,2 mm, a długość odcinka to 10 cm, co odpowiada 100 mm. Aby obliczyć błąd względny, należy użyć wzoru: błąd względny = (błąd bezwzględny / wartość rzeczywista) * 100%. Podstawiając wartości, otrzymujemy: (0,2 mm / 100 mm) * 100% = 0,2%. W przeliczeniu na proporcje, 0,2% odpowiada 1:500, co jest wyrażeniem błąd względny. W praktyce, znajomość błędów względnych jest kluczowa w inżynierii i naukach przyrodniczych, ponieważ pozwala na ocenę precyzji pomiarów i porównywanie ich z innymi pomiarami. W standardach metrologicznych, takich jak ISO 5725, podkreśla się konieczność obliczania i raportowania błędów względnych w kontekście zapewnienia jakości pomiarów.

Pytanie 2

W związku z wymaganiami precyzyjności pomiaru, szczegóły terenowe klasyfikowane są w trzy

A. kategorie
B. rodzaje
C. klasy
D. grupy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podział szczegółów terenowych na grupy jest podstawowym elementem w organizacji i analizie danych terenowych, co jest kluczowe w geodezji oraz naukach przyrodniczych. Grupy te są definiowane na podstawie cech takich jak dokładność, typ terenu czy zastosowanie. W praktyce, klasyfikacja szczegółów terenowych na grupy umożliwia inżynierom i geodetom skuteczne planowanie pomiarów i analizę wyników. Na przykład, w geodezji inżynieryjnej, szczegóły mogą być podzielone na grupy w zależności od ich wpływu na projekt budowlany, co pozwala na optymalizację kosztów i czasu realizacji. W standardach geodezyjnych, takich jak normy ISO, podkreślana jest konieczność precyzyjnego określenia grup w celu zapewnienia jednolitości w zbieraniu i interpretacji danych, co jest niezbędne dla uzyskania wiarygodnych wyników.

Pytanie 3

Na łatach niwelacyjnych umiejscowionych w punktach 100 oraz 101 dokonano pomiarów l100 = 1 555, l101 = 2 225. Jaka jest różnica wysokości Δh100-101 między punktami 100 a 101?

A. -0,670 cm
B. -0,670 m
C. 0,670 m
D. 6,700 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź -0,670 m jest prawidłowa, ponieważ różnica wysokości między punktami niwelacyjnymi oblicza się jako różnicę odczytów poziomych na łatach. W tym przypadku, aby obliczyć różnicę wysokości Δh100-101, należy wykorzystać wzór Δh = l101 - l100. Podstawiając wartości: Δh = 2 225 - 1 555 = 670. Ponieważ punkt 101 jest wyżej od punktu 100, różnica wysokości powinna być ujemna, co daje -0,670 m. W praktyce proces ten jest kluczowy w geodezji, szczególnie w kontekście budowy, gdzie precyzyjne pomiary różnic wysokości są niezbędne do zapewnienia odpowiednich spadków i poziomów fundamentów. W branży stosuje się różne techniki pomiarowe, takie jak niwelacja, które pozwalają na dokładne określenie różnic wysokości między punktami. Dodatkowo, standardy geodezyjne, takie jak normy ISO i PN-EN, podkreślają znaczenie dokładności w pomiarach wysokościowych, co jest kluczowe dla bezpieczeństwa konstrukcji.

Pytanie 4

Na podstawie danych zamieszczonych w tabeli, oblicz wartość współczynnika kierunkowego cosAA-B linii pomiarowej A-B, który jest stosowany do obliczenia współrzędnych punktu pomierzonego metodą ortogonalną.

ΔXA-B = 216,11 mΔYA-B = 432,73 mdA-B = 483,69 m

A. cosAA-B = 2,0024
B. cosAA-B = 2,2382
C. cosAA-B = 0,4468
D. cosAA-B = 0,4994

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość współczynnika kierunkowego cosAA-B = 0,4468 jest prawidłowa, ponieważ odpowiada stosunkowi przyrostu współrzędnych w osi X do długości linii pomiarowej A-B. W praktyce, współczynnik ten jest kluczowy w metodzie ortogonalnej, która jest szeroko stosowana w geodezji oraz inżynierii lądowej. Metoda ortogonalna polega na precyzyjnym pomiarze współrzędnych punktów, co jest istotne dla zapewnienia dokładności w planowaniu i realizacji projektów budowlanych. Użycie prawidłowego współczynnika kierunkowego jest fundamentem dla dalszych obliczeń, takich jak określenie położenia punktów w przestrzeni. Dobrze wykonane obliczenia pozwalają na uniknięcie błędów, które mogą prowadzić do poważnych konsekwencji w realizacji projektów. Standardy takie jak PN-EN ISO 17123-1:2010 określają metody pomiarowe, które powinny być przestrzegane, aby uzyskać wiarygodne wyniki. Dlatego znajomość i umiejętność obliczania współczynnika kierunkowego jest niezbędna dla profesjonalistów w tej dziedzinie.

Pytanie 5

W trakcie stabilizacji punktu poziomej osnowy 1 klasy, w jego otoczeniu oraz jako jego ochrona, utworzono cztery punkty

A. kierunkowe
B. podcentra
C. przeniesienia
D. poboczniki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poboczniki to dodatkowe punkty pomiarowe, które są zakładane w pobliżu punktu osnowy, aby zapewnić stabilność i precyzję w pomiarach geodezyjnych. Wszechstronność poboczników jest szczególnie ważna podczas stabilizacji punktów osnowy 1 klasy, gdzie kluczowe znaczenie ma dokładność i niezawodność danych. W praktyce, poboczniki mogą być używane do weryfikacji i korekty błędów pomiarowych, a także do minimalizowania wpływu zjawisk atmosferycznych, które mogą zakłócać wyniki. Na przykład, w przypadku pomiarów w trudnych warunkach terenowych, takie jak obszary górzyste, użycie poboczników pozwala na uzyskanie dodatkowych danych, które mogą być wykorzystane do kalibracji głównych punktów osnowy. W branży geodezyjnej standardy takie jak norma PN-EN ISO 17123-1 określają wytyczne dotyczące zakładania i użytkowania poboczników, co czyni je niezbędnym elementem w realizacji zadań geodezyjnych.

Pytanie 6

Wyniki geodezyjnego opracowania projektu zagospodarowania działki należy przenieść na szkic

A. polowy
B. tyczenia
C. pomiarowy
D. dokumentacyjny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "dokumentacyjny" jest poprawna, ponieważ wyniki geodezyjnego opracowania projektu zagospodarowania działki są przede wszystkim poddawane formalnej dokumentacji, która stanowi podstawę do dalszych działań projektowych i administracyjnych. Dokument ten zawiera szczegółowe informacje na temat lokalizacji, wymiarów, granic działki oraz wszelkich istotnych danych geodezyjnych, które są niezbędne do uzyskania decyzji administracyjnych oraz do realizacji inwestycji. Przykładowo, w przypadku projektowania budynku, dokumentacyjny szkic geodezyjny jest często wymagany przy składaniu wniosków o pozwolenie na budowę, co podkreśla jego kluczowe znaczenie w procesie inwestycyjnym. Ponadto, zgodnie z polskimi normami geodezyjnymi, taki dokument musi być wykonany zgodnie z określonymi standardami, co zapewnia jego wiarygodność i użyteczność w przyszłych etapach realizacji projektu.

Pytanie 7

Jakim znakiem geodezyjnym powinno się zaznaczyć punkt sytuacyjnej osnowy pomiarowej na twardej nawierzchni drogi?

A. Palik drewniany
B. Bolec metalowy
C. Słupek marmurowy
D. Słupek betonowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Bolec metalowy jest odpowiedni do oznaczania punktów osnowy pomiarowej na utwardzonych nawierzchniach, takich jak jezdnie, ze względu na swoje właściwości trwałości oraz odporności na uszkodzenia mechaniczne. W praktyce geodezyjnej, stosowanie bolców metalowych pozwala na precyzyjne wytyczanie punktów, które są często narażone na mechaniczne obciążenia wynikające z ruchu drogowego. Metalowy bolec można łatwo zamontować w nawierzchni, co minimalizuje konieczność ingerencji w strukturę jezdni, w przeciwieństwie do słupków betonowych czy marmurowych, które wymagają bardziej skomplikowanego przygotowania terenu. Dodatkowo, standardy pomiarowe, takie jak normy ISO dotyczące geodezji, zalecają stosowanie trwałych i łatwych do identyfikacji znaczników, co czyni bolec metalowy najlepszym wyborem. W praktyce, zastosowanie bolców metalowych zapewnia długotrwałą widoczność punktów pomiarowych, co jest kluczowe dla dokładności i wiarygodności pomiarów geodezyjnych.

Pytanie 8

Jakiego urządzenia należy użyć do określenia wysokości punktów osnowy realizacyjnej?

A. Taśmy i tyczki
B. Dalmierza i łaty
C. Teodolitu i tyczki
D. Niwelatora i łaty

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Niwelator i łata to podstawowe narzędzia wykorzystywane do pomiaru wysokości punktów osnowy realizacyjnej, które są kluczowe w pracach geodezyjnych. Niwelator, jako instrument optyczny, pozwala na precyzyjne określenie różnic wysokości między różnymi punktami terenu. Użycie łaty, która jest długą, prostą miarą, umożliwia odczytanie wysokości w miejscach, gdzie niwelator jest ustawiony. W praktyce, aby zmierzyć wysokość danego punktu, geodeta ustawia niwelator na stabilnym statywie, a następnie mierzy wysokość za pomocą łaty, która jest umieszczana w odpowiednich miejscach. Zastosowanie tej metody jest zgodne z normami i najlepszymi praktykami w dziedzinie geodezji, co zapewnia wysoką precyzję pomiarów. Warto również podkreślić, że niwelacja jest używana w wielu dziedzinach, od budownictwa po inżynierię lądową, co czyni te narzędzia niezwykle uniwersalnymi.

Pytanie 9

Jakie prace geodezyjno-kartograficzne nie wymagają zgłoszenia ani przekazania dokumentacji do Zasobu Geodezyjnego i Kartograficznego?

A. Powiązane z inwentaryzacją powykonawczą budynków
B. Realizowane w celu określenia objętości mas ziemnych
C. Dotyczące aktualizacji mapy w celach projektowych
D. Odniesione do pomiarów sytuacyjno-wysokościowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź o pracach geodezyjno-kartograficznych, które mają na celu ustalenie objętości mas ziemnych, jest absolutnie trafna. Takie działania zazwyczaj nie wymagają żadnych formalności, jak zgłoszenia czy przekazywania dokumentacji do Zasobu Geodezyjnego i Kartograficznego. W praktyce te prace często są częścią różnych procesów budowlanych, na przykład przy ocenie, ile ziemi musimy wykopać albo nasypać. Myślę, że ustalanie objętości tych mas to naprawdę istotne zadanie, które można robić na podstawie prostych pomiarów w terenie i obliczeń matematycznych. Przy większych projektach budowlanych korzysta się też z nowoczesnych technologii, jak skanowanie 3D czy fotogrametria, co znacznie poprawia dokładność wyników. Dodatkowo, wszystkie te prace są zgodne z aktualnymi normami branżowymi, co zapewnia ich jakość i zgodność z przepisami. Co więcej, ustalanie objętości mas ziemnych jest ważne nie tylko w budownictwie, ale też w gospodarce przestrzennej oraz w ochronie środowiska, gdzie zarządzanie odpadami ziemnymi jest bardzo istotne.

Pytanie 10

Wysokość anteny odbiorczej przed oraz po zakończeniu sesji pomiarowej przy użyciu metody precyzyjnego pozycjonowania z zastosowaniem GNSS powinna być określona z dokładnością wynoszącą

A. 0,01 m
B. 0,004 m
C. 0,02 m
D. 0,001 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 0,01 m jest prawidłowa, ponieważ w kontekście precyzyjnego pozycjonowania GNSS, precyzja ustaleń dotyczących wysokości anteny odbiornika jest kluczowa dla uzyskania dokładnych wyników. Standardy pomiarowe, takie jak te określone przez IGS (International GNSS Service), wskazują, że dokładność pomiarów wysokości powinna wynosić co najmniej 0,01 m w przypadku dokładnych aplikacji, takich jak geodezja czy monitoring deformacji terenu. Przykładowo, w projektach budowlanych, gdzie precyzyjne pomiary wysokości mają kluczowe znaczenie dla stabilności konstrukcji, ustalanie wysokości anteny z dokładnością 0,01 m pozwala na minimalizację błędów, co przekłada się na wyższą jakość wykonania oraz bezpieczeństwo obiektów. Tego typu precyzja jest również kluczowa w aplikacjach związanych z systemami nawigacyjnymi oraz w badaniach geofizycznych, gdzie nawet najdrobniejsze różnice w wysokości mogą wpływać na wyniki analiz. Zatem, 0,01 m jest standardem, który zapewnia wystarczającą dokładność dla większości zastosowań związanych z GNSS.

Pytanie 11

Przeprowadzono dwa różne pomiary długości odcinka L1 oraz L2, które charakteryzują się odmienną precyzją. Każdemu z tych pomiarów nadano inną wagę p:

L1 = 20,000 m, p1 = 3
L2 = 20,050 m, p2 = 2

Jaką długość można uznać za najbardziej prawdopodobną dla tego odcinka?

A. 20,025 m
B. 20,020 m
C. 20,000 m
D. 20,010 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 20,020 m jest poprawna, ponieważ przy jej obliczaniu uwzględniono wagi przypisane do pomiarów L1 i L2. W przypadku pomiarów o różnych dokładnościach, najpowszechniej stosuje się ważoną średnią arytmetyczną, która pozwala na uzyskanie bardziej precyzyjnego wyniku. Stosując wzór: L = (p1 * L1 + p2 * L2) / (p1 + p2), mamy: L = (3 * 20,000 + 2 * 20,050) / (3 + 2) = (60,000 + 40,100) / 5 = 20,020 m. W praktycznych zastosowaniach, takich jak inżynieria, budownictwo czy geodezja, przydatna jest umiejętność analizy danych pomiarowych z uwzględnieniem ich dokładności. Stosowanie ważonej średniej pozwala na lepsze modelowanie rzeczywistości, co jest kluczowe w procesach decyzyjnych oraz przy ocenie ryzyka. Dobre praktyki w tej dziedzinie zalecają zawsze analizować i uwzględniać niepewności pomiarowe, co przekłada się na wyższą jakość podejmowanych decyzji.

Pytanie 12

Który krok nie jest częścią procesu konwersji mapy analogowej na cyfrową?

A. generalizacja
B. kalibracja
C. skanowanie
D. wektoryzacja

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Generalizacja to nie etap przerabiania mapy analogowej na cyfrową. Raczej chodzi o późniejsze działania związane z tworzeniem i ulepszaniem map. W sumie, generalizacja to sposób, żeby uprościć i zmniejszyć szczegóły danych przestrzennych, tak żeby były bardziej zrozumiałe dla ludzi. Na przykład, jak robimy mapę turystyczną, to możemy pominąć mało ważne drogi czy jakieś szczegóły terenu, przez co mapa staje się bardziej czytelna. W kontekście danych geoprzestrzennych, generalizacja pomaga dostosować mapy do różnych skal i potrzeb. Ważne według mnie, żeby to robić z zachowaniem niezbędnych informacji, bo inaczej możemy zniekształcić rzeczywisty obraz terenu. Zrozumienie tego etapu jest naprawdę istotne, jeżeli chcemy przygotować mapy, które będą odpowiadały na potrzeby odbiorców.

Pytanie 13

Jakie grupy lub grupy dokładnościowe obejmują detale terenowe, których pomiar można zrealizować za pomocą limy pomiarowej, opierając się z jednej strony na narożniku budynku, a z drugiej na latarni?

A. Tylko do II grupy
B. Do I i II grupy
C. Do II i III grupy
D. Tylko do I grupy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na przynależność szczegółów terenowych do II i III grupy jest poprawna, ponieważ obie te grupy obejmują pomiary, które można wykonać za pomocą limy pomiarowej. Grupa II odnosi się do pomiarów, które wymagają większej dokładności, typowych dla prac geodezyjnych związanych z inżynierią lądową i budownictwem, gdzie precyzyjne ustalenie lokalizacji elementów budowlanych jest kluczowe. Z kolei grupa III to pomiary o niższej precyzji, jednak nadal akceptowalne w kontekście podstawowych prac terenowych. W praktyce, dokładne pomiary związane z narożnikami budynków oraz ich relacją do latarni mogą mieć zastosowanie w różnych projektach budowlanych, takich jak planowanie i kontrola robót budowlanych, a także w geodezyjnych kontrolach jakości. Standardy, takie jak normy ISO 17123 dotyczące metod pomiarów w geodezji, podkreślają znaczenie stosowania odpowiednich narzędzi, jak lima pomiarowa, w celu zapewnienia wymaganej dokładności i powtarzalności pomiarów.

Pytanie 14

Przekierowanie spionowanej osi obrotowej tachimetru na punkt geodezyjny to

A. poziomowanie
B. rektyfikacja
C. centrowanie
D. pionowanie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Centrowanie oznacza precyzyjne doprowadzenie spionowanej osi obrotu tachimetru do punktu geodezyjnego. Jest to kluczowy proces w geodezji, ponieważ zapewnia, że wszystkie pomiary są dokonywane z jednego, stabilnego punktu. W praktyce centrowanie polega na umieszczeniu tachimetru w dokładnej pozycji nad punktem, co jest niezbędne do uzyskania prawidłowych i wiarygodnych wyników. Proces ten w szczególności uwzględnia użycie statywów i poziomic, aby zapewnić, że instrument jest nie tylko zlokalizowany w odpowiednim miejscu, ale również w odpowiedniej orientacji. Dobre praktyki w zakresie centrowania wymagają również regularnego kalibrowania sprzętu, aby zminimalizować błędy systematyczne. W praktyce, centrowanie jest stosowane zarówno w pomiarach terenowych, jak i w aplikacjach budowlanych, gdzie precyzja ma kluczowe znaczenie dla dalszych etapów pracy. Zrozumienie i umiejętność centrowania jest niezbędna dla każdego geodety, ponieważ błędne centrowanie prowadzi do nieprawidłowych pomiarów, co z kolei może wpłynąć na całokształt projektu.

Pytanie 15

Jaki jest błąd wartości wyrównanej, jeśli kąt poziomy został zmierzony 4 razy, a średni błąd pojedynczego pomiaru kąta wynosi ±10cc?

A. M = ±3cc
B. M = ±2cc
C. M = ±5cc
D. M = ±4cc

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź M = ±5cc jest poprawna, ponieważ błąd wartości wyrównanej oblicza się na podstawie błędu pomiaru oraz liczby pomiarów. W tym przypadku, błąd średni pojedynczego pomiaru wynosi ±10cc, a kąt poziomy został zmierzony cztery razy. Aby obliczyć błąd wartości wyrównanej, stosujemy wzór: M = błąd średni pomiaru / √n, gdzie n to liczba pomiarów. W naszym przypadku: M = ±10cc / √4 = ±10cc / 2 = ±5cc. Zastosowanie tej metody pozwala na uzyskanie bardziej precyzyjnych wyników pomiarów, które są kluczowe w inżynierii i geodezji. Umożliwia to nie tylko poprawę dokładności, ale także redukcję ryzyka błędów w dalszych analizach i obliczeniach. W praktyce, znajomość błędów pomiarowych oraz ich poprawne obliczanie jest fundamentalne dla zapewnienia jakości i wiarygodności wyników w takich dziedzinach jak geodezja, inżynieria czy kartografia.

Pytanie 16

W bazie danych dotyczącej obiektów topograficznych BDOT500 opisano sieć kanalizacyjną sanitarną oznaczeniami ksX300. Jakie jest źródło danych dotyczących lokalizacji tej sieci?

A. pochodzi z materiałów archiwalnych
B. jest trudne do ustalenia
C. pochodzi z materiałów nieaktualnych
D. jest nieokreślone

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "jest nieokreślone" jest prawidłowa, ponieważ w kontekście danych o sieci kanalizacyjnej sanitarnej w bazie BDOT500 brak jest jednoznacznych informacji na temat źródła pochodzenia tych danych. W praktyce, w przypadku sieci inżynieryjnych, takich jak kanalizacja, istotne jest, aby dane były zaktualizowane oraz pochodziły z wiarygodnych źródeł, co często jest trudne do ustalenia w obiektach archiwalnych czy nieaktualnych. Właściwe podejście do zarządzania danymi topograficznymi wymaga weryfikacji ich pochodzenia oraz aktualności, co jest zgodne z dobrymi praktykami w infrastrukturze. Na przykład, w przypadku projektowania nowych instalacji sanitarnych, kluczowe jest posiadanie precyzyjnych i aktualnych danych, aby uniknąć kolizji z istniejącą infrastrukturą. Przykłady zastosowań takich jak GIS (Geographic Information Systems) polegają na zintegrowaniu danych o sieciach z danymi demograficznymi i przestrzennymi, co pozwala na lepsze planowanie i zarządzanie zasobami.

Pytanie 17

Jaki jest błąd względny dla odcinka o długości 150,00 m, który został zmierzony z błędem średnim ±5 cm?

A. 1:300
B. 1:30
C. 1:30000
D. 1:3000

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Błąd względny jest kluczowym pojęciem w metrologii, które pozwala ocenić wiarygodność pomiarów. Obliczenie błędu względnego polega na podzieleniu błędu pomiarowego przez wartość zmierzoną, następnie mnożoną przez 100%, aby uzyskać wynik w procentach. W tym przypadku długość odcinka wynosi 150,00 m, a błąd średni wynosi ±5 cm, co jest równoważne ±0,05 m. Obliczamy błąd względny: (0,05 m / 150,00 m) * 100% = 0,0333% (co odpowiada 1:3000). W praktyce, wiedza o błędzie względnym jest niezwykle ważna w inżynierii i naukach przyrodniczych, gdzie precyzja pomiarów ma kluczowe znaczenie. Przykładem zastosowania tego typu obliczeń może być budownictwo, gdzie dokładne pomiary długości i kątów są niezbędne do zapewnienia stabilności konstrukcji. Ustalanie błędów względnych pomaga również w porównywaniu jakości różnych instrumentów pomiarowych oraz ich przydatności w różnych warunkach. Standardy ISO oraz normy krajowe definiują także wymagania dotyczące dopuszczalnych błędów pomiarowych w różnych dziedzinach, co czyni tę wiedzę niezbędną dla profesjonalistów.

Pytanie 18

Jaką wartość ma korekta kątowa dla jednego kąta w zamkniętym ciągu poligonowym, jeżeli ciąg ten zawiera 5 kątów, a odchylenie kątowe wynosi fα = +30cc?

A. Vk = +5cc
B. Vk = -5cc
C. Vk = +6cc
D. Vk = -6cc

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość poprawki kątowej do jednego kąta w ciągu poligonowym zamkniętym oblicza się na podstawie ogólnej zasady, że suma kątów wewnętrznych n-kąta w postaci: (n-2) * 180°. W przypadku poligonu zamkniętego, gdzie mamy 5 kątów, oczekiwana suma kątów powinna wynosić (5-2) * 180° = 540°. Odchyłka kątowa, fα = +30cc, oznacza, że całkowita suma kątów zamyka się z błędem pomiarowym, co wpływa na konieczność wprowadzenia poprawek. Zatem, aby skorygować pomiar, stosujemy wzór na poprawkę kątową Vk = fα / n, gdzie n to liczba kątów. W tym przypadku Vk = +30cc / 5 = +6cc. Jednakże w kontekście zamkniętego poligonu, w którym zaszła odchyłka, musimy dodać dodatkową poprawkę wynikającą z błędu pomiarowego, co prowadzi do obliczenia wartości korygującej na -6cc, aby uzyskać zamknięcie poligonu. Praktyczne zastosowanie tej wiedzy ma miejsce w geodezji, gdzie dokładność pomiarów kątowych jest kluczowa przy tworzeniu map i pomiarach terenowych.

Pytanie 19

Zrealizowano pomiar sytuacyjny dla budynku jednorodzinnego, parterowego z poddaszem, które nie jest przeznaczone do użytku. Jakim symbolem powinno się oznaczyć ten obiekt na mapie?

A. mj2
B. mj
C. m1
D. m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'mj' jest poprawna, ponieważ symbol ten odnosi się do budynków mieszkalnych jednorodzinnych, w tym do budynków parterowych oraz tych z poddaszem nieużytkowym. W polskich standardach klasyfikacji obiektów budowlanych, symbol 'mj' stosuje się do identyfikacji budynków mieszkalnych, co jest zgodne z normami przedstawionymi w rozporządzeniu o klasyfikacji obiektów budowlanych. W praktyce, oznaczenie to ułatwia lokalizację budynków na mapach oraz w dokumentacji urbanistycznej, co jest kluczowe dla planowania przestrzennego i zarządzania infrastrukturą. Dodatkowo, w kontekście projektowania urbanistycznego, zastosowanie odpowiednich symboli umożliwia lepszą analizę zagospodarowania terenu oraz wpływa na prawidłowe funkcjonowanie systemów zarządzania kryzysowego oraz dostępu do usług komunalnych. Przykładem może być analiza potrzeb infrastrukturę dla budynków oznaczonych symbolem 'mj', co wpływa na planowanie sieci wodociągowych czy kanalizacyjnych, biorąc pod uwagę specyfikę zabudowy jednorodzinnej.

Pytanie 20

Jaką wartość ma rzędna Hp dla pokrywy studzienki kanalizacyjnej, gdy zmierzona wysokość osi celowej Hc wynosi 202,21 m, a odczyt wartości podziału łaty niwelacyjnej z kreski środkowej lunety niwelatora to s = 1,140?

A. Hp = 201,07 m
B. Hp = 203,35 m
C. Hp = 202,01 m
D. Hp = 202,32 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to Hp = 201,07 m, co wynika z zastosowania prawidłowej metody obliczania rzędnej pokrywy studzienki kanalizacyjnej. Rzędna pokrywy studzienki (Hp) jest obliczana na podstawie wysokości osi celowej (Hc) oraz odczytu wartości podziału łaty (s). Wzór na obliczenie rzędnej pokrywy studzienki można zapisać jako: Hp = Hc - s. W naszym przypadku, podstawiając wartości, otrzymujemy: Hp = 202,21 m - 1,140 m = 201,07 m. Jest to standardowa metoda stosowana w geodezji, zapewniająca dokładność pomiarów oraz zgodność z normami branżowymi. Zrozumienie tych zasad jest kluczowe, szczególnie w kontekście projektowania infrastruktury oraz prac budowlanych, gdzie precyzyjne pomiary mają fundamentalne znaczenie dla bezpieczeństwa i funkcjonalności obiektów. Przykładem zastosowania takiej wiedzy w praktyce może być wyznaczanie poziomów wód gruntowych czy projektowanie systemów odwadniających, gdzie dokładne rzędne mają istotny wpływ na efektywność działania tych systemów.

Pytanie 21

Który z dokumentów jest konieczny do zlokalizowania w terenie punktu osnowy geodezyjnej?

A. Dziennik pomiaru kątów osnowy
B. Szkic polowy osnowy
C. Dziennik pomiaru długości boków osnowy
D. Opis topograficzny punktu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Opis topograficzny punktu jest kluczowym dokumentem w geodezji, ponieważ zawiera szczegółowe informacje o lokalizacji i charakterystyce punktu osnowy geodezyjnej. Zazwyczaj obejmuje takie elementy jak współrzędne geograficzne, wysokość, otoczenie punktu oraz dostępność do niego. Dzięki temu geodeta, przebywając w terenie, może szybko zlokalizować punkt osnowy, co jest istotne przy wykonywaniu pomiarów. Przykładowo, w przypadku prowadzenia pomiarów dla celów projektowych, posiadanie opisu topograficznego pozwala na efektywne planowanie prac w terenie oraz minimalizowanie ryzyk związanych z błędami lokalizacyjnymi. W branży geodezyjnej stosuje się standardy, które wymagają, aby wszystkie punkty osnowy miały odpowiednio przygotowaną dokumentację, co podnosi jakość i dokładność przeprowadzanych pomiarów.

Pytanie 22

Jaką wartość ma średni błąd pomiaru graficznego odcinka o długości 10 cm, gdy błąd względny pomiaru wynosi 1:1000?

A. ±10,00 mm
B. ±0,10 mm
C. ±1,00 mm
D. ±0,01 mm

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Średni błąd pomiaru można obliczyć, mnożąc długość mierzony odcinka przez błąd względny. W tym przypadku, długość odcinka wynosi 10 cm, a błąd względny wynosi 1:1000. Oznacza to, że na każdy 1000 mm długości mierzonych, błąd wynosi 1 mm. Dlatego, aby obliczyć średni błąd, wykonujemy następujące działanie: 10 cm (czyli 100 mm) * (1 mm / 1000 mm) = 0,10 mm. Takie obliczenia są istotne w kontekście precyzyjnych pomiarów, zwłaszcza w inżynierii i metrologii, gdzie dokładność i minimalizacja błędów pomiarowych są kluczowe. Przykładem zastosowania tej wiedzy jest projektowanie elementów mechanicznych, gdzie tolerancje muszą być ściśle określone, aby zapewnić ich poprawne funkcjonowanie. Stosowanie właściwych standardów, takich jak ISO 2768, które definiują tolerancje ogólne dla wymiarów, jest niezbędne dla uzyskania wysokiej jakości wyrobów.

Pytanie 23

Gdy różnice współrzędnych między początkiem a końcem boku AB wynoszą ΔxAB = 0, ΔyAB > 0, to jaki jest azymut AzAB boku AB?

A. 100g
B. 400g
C. 200g
D. 300g

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 100g, ponieważ azymut boku AB można określić na podstawie różnic współrzędnych ΔxAB i ΔyAB. W tym przypadku mamy do czynienia z sytuacją, gdy ΔxAB = 0 oraz ΔyAB > 0. Oznacza to, że punkt końcowy boku AB znajduje się bezpośrednio nad punktem początkowym w układzie współrzędnych. W takim kontekście azymut, definiowany jako kąt pomiędzy kierunkiem północnym a wektorem prowadzącym od punktu początkowego do końcowego, wynosi 0° (lub 400g w systemie g) w kierunku północnym. Biorąc pod uwagę, że kierunek północny odpowiada 0g, możemy stwierdzić, że azymut boku AB wynosi 100g, co odpowiada kierunkowi wschodniemu. Tego rodzaju obliczenia są kluczowe w geodezji oraz inżynierii lądowej, gdzie precyzyjne określenie azymutu jest niezbędne do właściwego pomiaru i nawigacji. W praktyce, znajomość azymutów jest szczególnie istotna w projektach budowlanych oraz w nawigacji geodezyjnej, gdzie błędy w pomiarach mogą prowadzić do poważnych konsekwencji.

Pytanie 24

Który z wymienionych programów nie nadaje się do tworzenia mapy zasadniczej?

A. Microstation
B. Mikro-Map
C. Winkalk
D. C-Geo

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Winkalk to program, który nie jest przeznaczony do wykreślania mapy zasadniczej, ponieważ jego funkcjonalność jest ukierunkowana głównie na obliczenia inżynieryjne i kosztorysowanie, a nie na tworzenie map. Mapy zasadnicze są opracowywane na podstawie danych geodezyjnych, a ich tworzenie wymaga specjalistycznych narzędzi do analizy i wizualizacji tych danych. Programy takie jak C-Geo, Mikro-Map i Microstation są odpowiednie do takich zadań, ponieważ oferują zaawansowane funkcje geodezyjne, w tym integrację z systemami GPS, obsługę plików CAD oraz możliwość generowania map w standardach obowiązujących w geodezji. Przykładowo, C-Geo jest często stosowany przez geodetów do przygotowywania map do celów prawnych i budowlanych, co czyni go odpowiednim wyborem do wykreślania mapy zasadniczej.

Pytanie 25

W jakim celu stosuje się metodę biegunową w pomiarach geodezyjnych?

A. Do wyznaczania kątów poziomych pomiędzy punktami w terenie.
B. Do wykonywania pomiarów przemieszczeń w pionie w budownictwie.
C. Do określania współrzędnych punktów na podstawie jednej odległości i dwóch kątów.
D. Do określania kąta nachylenia powierzchni w projektach architektonicznych.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Metoda biegunowa to jedna z najważniejszych i najczęściej stosowanych metod w geodezji. Jej głównym celem jest określanie współrzędnych punktów w terenie na podstawie jednej odległości i dwóch kątów — poziomego i pionowego. Dzięki tej metodzie można precyzyjnie ustalić lokalizację punktów w przestrzeni, co jest kluczowe w wielu zastosowaniach inżynieryjnych i budowlanych. W praktyce geodezyjnej metoda ta jest nieoceniona ze względu na swoją dokładność i efektywność. Na przykład, przy realizacji projektów infrastrukturalnych, takich jak budowa dróg, mostów czy budynków, precyzyjne określenie położenia punktów względem siebie jest niezbędne do prawidłowego przebiegu prac. Metoda biegunowa jest również szeroko stosowana w kartografii oraz przy tworzeniu map topograficznych. W standardach branżowych i dobrych praktykach geodezyjnych uznawana jest za podstawową technikę pomiarową, której znajomość jest niezbędna dla każdego profesjonalnego geodety. Dzięki jej zastosowaniu możliwe jest unikanie błędów w lokalizacji i zapewnienie zgodności projektów budowlanych z planami.

Pytanie 26

Jakie informacje można uzyskać z mapy zasadniczej?

A. Informacje o gatunkach roślin występujących w regionie (to nie jest zakres map zasadniczych).
B. Informacje o rozmieszczeniu fauny w okolicy (mapy zasadnicze nie obejmują takich danych).
C. Informacje o przebiegu infrastruktury technicznej i granicach nieruchomości.
D. Informacje o strefach klimatycznych (takie informacje nie są zawarte na mapach zasadniczych).

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Mapa zasadnicza to kluczowe narzędzie w geodezji i planowaniu przestrzennym, które dostarcza szczegółowych informacji o terenie. Zawiera dane o granicach działek, lokalizacji budynków, sieci uzbrojenia terenu jak kanalizacja, gazociągi, linie energetyczne oraz inne elementy infrastruktury technicznej. Z mojego doświadczenia, szczególnie w projektowaniu urbanistycznym, mapa zasadnicza jest nieocenionym źródłem informacji. Dzięki niej można dokładnie zidentyfikować ograniczenia terenu, co jest niezbędne przy planowaniu nowych inwestycji. Ponadto, mapa zasadnicza często zawiera informacje o ukształtowaniu terenu, co jest kluczowe przy analizie możliwości zagospodarowania przestrzeni. W praktyce zawodowej niejednokrotnie spotkałem się z przypadkami, gdzie błędna interpretacja danych z mapy zasadniczej prowadziła do problemów prawnych lub technicznych. Dlatego tak ważne jest, by umiejętnie korzystać z tego narzędzia i rozumieć, jakie informacje są na niej zawarte. Współczesne mapy zasadnicze są również zintegrowane z systemami informacji przestrzennej (GIS), co umożliwia ich łatwiejszą aktualizację i analizę danych w kontekście większej skali urbanistycznej.

Pytanie 27

Zadania związane z analizą wyników pomiarów nie obejmują sporządzania

A. obliczeń
B. sprawozdań technicznych
C. wywiadów terenowych
D. szkiców polowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wywiady terenowe nie są częścią prac związanych z przetwarzaniem wyników pomiarów, ponieważ koncentrują się głównie na zbieraniu danych jakościowych i informacji bezpośrednich od osób lub społeczności. Podczas gdy prace przetwarzające wyniki pomiarów obejmują obliczenia, analizy statystyczne oraz sporządzanie szkiców polowych, wywiady terenowe mają na celu pozyskanie kontekstu oraz opinii, co jest zupełnie innym procesem. Na przykład w badaniach geologicznych, gdy zbierane są dane o składzie gleby, analiza wyników takich jak pH, zawartość wody czy skład chemiczny wymaga precyzyjnych obliczeń. Szkice polowe służą do wizualizacji i dokumentacji zbieranych danych, a sprawozdania techniczne podsumowują wyniki i konkluzje. Dlatego wywiady terenowe, choć cenne, nie są elementem przetwarzania wyników pomiarów, lecz częścią metodologii zbierania danych.

Pytanie 28

Różnice wysokości oraz poprawki są zapisywane w dzienniku niwelacji z precyzją do

A. 0,01 m
B. 0,0001 m
C. 0,001 m
D. 0,1 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Różnice wysokości oraz poprawki w niwelacji zapisuje się z dokładnością do 0,001 m, co jest zgodne z normami określającymi precyzję pomiarów geodezyjnych. Taka dokładność jest niezbędna w sytuacjach, gdzie niewielkie zmiany wysokości mogą mieć istotne znaczenie dla wyników pomiarów, jak na przykład w budownictwie, gdzie precyzyjne pomiary są kluczowe dla stabilności konstrukcji. Standardy geodezyjne, takie jak norma PN-EN ISO 17123-1, wskazują na konieczność stosowania przyrządów pomiarowych o dużej dokładności. W praktyce, zapisując różnice wysokości w dzienniku niwelacji, stosuje się tę wartość, aby zapewnić, że wyniki są wystarczająco precyzyjne do celów projektowych i budowlanych. Wysoka dokładność pomiarów wpływa nie tylko na jakość wyników, ale również na zaufanie do nich w kontekście dalszych analiz oraz podejmowania decyzji.

Pytanie 29

Jakie metody powinny być wykorzystane do przeprowadzenia pomiaru tachimetrycznego?

A. Biegunową oraz niwelacji trygonometrycznej
B. Ortogonalną oraz niwelacji geometrycznej
C. Biegunową oraz niwelacji geometrycznej
D. Ortogonalną oraz niwelacji trygonometrycznej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar tachimetryczny to kluczowy element w geodezji, który polega na jednoczesnym pomiarze kątów i odległości w celu uzyskania dokładnych danych o położeniu punktów w terenie. Odpowiedzią, która wskazuje na prawidłowe metody, jest kombinacja biegunowej i niwelacji trygonometrycznej. Metoda biegunowa polega na pomiarze kątów poziomych i pionowych, co pozwala na dokładne określenie pozycji obiektu. Z kolei niwelacja trygonometryczna wykorzystuje pomiar kątów i odległości, aby obliczyć różnice wysokości pomiędzy punktami. Te dwie metody są zgodne z dobrymi praktykami w geodezji, które zalecają łączenie różnych technik pomiarowych dla zwiększenia dokładności i wiarygodności wyników. W praktyce, zastosowanie tej kombinacji pozwala na efektywne i precyzyjne ustalanie wysokości punktów terenowych, co jest szczególnie istotne w budownictwie, infrastrukturze oraz podczas realizacji projektów geodezyjnych. Dodatkowo, standardy takie jak ISO 17123 określają wymagania dotyczące techniki pomiarowej, co zapewnia zgodność z międzynarodowymi normami.

Pytanie 30

Wskazanie lokalizacji pikiet w terenie oznacza zdefiniowanie miejsca, w którym podczas dokonywania pomiaru

A. powinno znajdować się stanowisko instrumentu
B. powinien znajdować się obserwator
C. powinno być ustawione lustro lub łata
D. powinien być pomiarowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź wskazuje, że określenie położenia pikiet w terenie oznacza wskazanie miejsca, gdzie powinno być ustawione lustro lub łata. W kontekście pomiarów geodezyjnych, lustro lub łata jest kluczowym elementem, który umożliwia precyzyjne odczytywanie pomiarów wysokościowych i poziomych. Zastosowanie lustra w połączeniu z instrumentem pomiarowym, takim jak teodolit czy niwelator, pozwala na dokładne określenie wysokości punktu oraz jego położenia w przestrzeni. W praktyce, lustro powinno być ustawione w dokładnej linii widzenia z instrumentem, co umożliwia uzyskanie precyzyjnych wyników. Standardy branżowe, takie jak Normy Geodezyjne, podkreślają wagę poprawnego ustawienia lustra dla uzyskania wiarygodnych danych pomiarowych. Przykładowo, w przypadku niwelacji, poprawne ustawienie łaty w punkcie pomiarowym jest kluczowe dla uzyskania dokładnego różnicowania wysokości, co ma ogromne znaczenie w budownictwie oraz inżynierii lądowej, gdzie precyzyjne dane o wysokości są niezbędne.

Pytanie 31

Punkt, w którym niweleta styka się z powierzchnią terenu, nazywany jest punktem

A. charakterystycznym
B. zerowym robót ziemnych
C. zmiany kierunku trasy
D. hektometrowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Punkt zerowy robót ziemnych to kluczowy element w projektach budowlanych, który odnosi się do miejsca, w którym niweleta, czyli linia pozioma określająca wysokość terenu, przecina się z naturalnym poziomem gruntu. Ten punkt stanowi punkt odniesienia dla dalszych prac ziemnych i budowlanych. W praktyce oznacza to, że wszelkie pomiary wysokości i głębokości są dokonywane względem tego punktu, co umożliwia precyzyjne wykonanie wykopów, nasypów oraz układanie nawierzchni. Zastosowanie punktu zerowego pozwala na uniknięcie błędów w pomiarach, które mogłyby prowadzić do poważnych problemów w późniejszych etapach budowy, takich jak osiadanie konstrukcji czy nieprawidłowe ukształtowanie terenu. Zgodnie z dobrą praktyką inżynieryjną, punkt zerowy powinien być ustalany na etapie planowania inwestycji, a jego lokalizacja powinna być dokładnie zaznaczona na dokumentacji projektowej. Współczesne technologie, takie jak skanowanie 3D czy GPS, również wspierają precyzyjne wyznaczanie punktu zerowego, co zwiększa dokładność i efektywność prac budowlanych.

Pytanie 32

Zbiór danych o skrócie BDOT500, który służy do tworzenia mapy zasadniczej, oznacza bazę danych

A. geodezyjnej ewidencji sieci uzbrojenia terenu
B. obiektów topograficznych
C. szczegółowych osnów geodezyjnych
D. ewidencji gruntów i budynków

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
BDOT500, czyli Baza Danych Obiektów Topograficznych 500, jest kluczowym zbiorem danych, który gromadzi informacje o obiektach topograficznych na terenie Polski. Zawiera ona m.in. dane dotyczące rzek, jezior, gór, budynków i innych istotnych elementów krajobrazu. Użycie BDOT500 jest niezbędne w wielu dziedzinach, takich jak planowanie przestrzenne, ochrona środowiska, a także w geodezji i kartografii. Przykładowo, podczas tworzenia map topograficznych, BDOT500 dostarcza rzetelnych i aktualnych informacji, co jest zgodne z normami określonymi w Polskiej Normie PN-EN ISO 19115, dotyczącej metadanych geograficznych. Dzięki temu użytkownicy mogą podejmować decyzje na podstawie wiarygodnych danych. Przy pracy z systemami GIS, wiedza o strukturze i zawartości BDOT500 umożliwia efektywne włączanie tych danych do różnych analiz przestrzennych, co przyczynia się do lepszego zarządzania zasobami oraz ochrony środowiska.

Pytanie 33

Aby ułatwić lokalizację zmierzonych szczegółów danego obszaru na odpowiednim szkicu terenowym, tworzy się szkic

A. dokumentacyjny
B. przeglądowy
C. podstawowy
D. tachimetryczny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "przeglądowy" jest poprawna, ponieważ szkic przeglądowy jest to dokument, który wizualizuje ogólny układ terenu oraz lokalizację różnych obiektów na nim. Jest on tworzony w celu umożliwienia szybkiego odnalezienia i identyfikacji pomierzonych szczegółów w terenie. Przykładem zastosowania szkicu przeglądowego może być jego wykorzystanie w planowaniu prac budowlanych czy inwentaryzacji terenów. Szkic przeglądowy jest zgodny z dobrą praktyką w geodezji, ponieważ umożliwia efektywne przedstawienie danych w sposób zrozumiały dla różnych użytkowników, takich jak inżynierowie, architekci czy inwestorzy. Ułatwia to komunikację między różnymi stronami zaangażowanymi w projekt, a także przyspiesza proces podejmowania decyzji. Dobrze wykonany szkic przeglądowy powinien zawierać wszystkie istotne informacje, takie jak kierunki, skale oraz legendy, co czyni go kluczowym dokumentem w obiegu informacji przestrzennej.

Pytanie 34

Wyznacz wysokość punktu 10, jeśli wysokość punktu RpA wynosi HRpA = 125,500 m. Odczyt na łacie tylniej to t = 1500, a z przodu p = 0500.

A. H10 = 124,500 m
B. H10 = 123,500 m
C. H10 = 126,500 m
D. H10 = 142,500 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to H10 = 126,500 m. Aby obliczyć wysokość punktu 10, musimy uwzględnić wysokość punktu RpA oraz odczyty dokonane na łacie. Wysokość punktu RpA wynosi 125,500 m. Odczyt wsteczny na łacie wynosi 1500, co oznacza, że musimy dodać tę wartość do wysokości RpA, ponieważ jest to odczyt z laty umieszczonej w wyższej pozycji. Następnie odczyt w przód na łacie wynosi 0500, co oznacza, że musimy odjąć tę wartość od wcześniejszego wyniku. Obliczenia przedstawiają się następująco: H10 = HRpA + t - p = 125,500 m + 1500 - 0500 = 126,500 m. Tego rodzaju obliczenia są powszechnie stosowane w geodezji i inżynierii lądowej, gdzie precyzyjne pomiary wysokości są kluczowe dla projektów budowlanych oraz do pomiarów terenowych. Warto wiedzieć, że stosowanie łaty jest standardową praktyką w pomiarach geodezyjnych, co pozwala na uzyskiwanie dokładnych wyników. Zrozumienie tych zasad jest niezbędne dla każdego geodety.

Pytanie 35

Na mapie zasadniczej symbol literowy oznacza budynek mieszkalny jednorodzinny

A. mz
B. md
C. mj
D. mt

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'mj' jest poprawna, ponieważ oznaczenie budynku mieszkalnego jednorodzinnego na mapie zasadniczej zgodne jest ze standardami określonymi w Polskiej Normie PN-ISO 19108. W tej normie przypisano symbol literowy 'mj' dla budynków mieszkalnych jednorodzinnych. W praktyce oznaczenie to jest istotne dla urbanistów, architektów i innych profesjonalistów zajmujących się planowaniem przestrzennym, ponieważ umożliwia szybkie i jednoznaczne zidentyfikowanie rodzaju obiektu na mapie. Na przykład, w dokumentacji urbanistycznej, podczas analizy terenu pod zabudowę, oznaczenie 'mj' pozwala na łatwe rozróżnienie budynków mieszkalnych jednorodzinnych od innych typów zabudowy, co jest kluczowe w procesie projektowania oraz oceny wpływu planowanej zabudowy na środowisko. Dodatkowo, znajomość tych oznaczeń jest niezbędna podczas przeglądów administracyjnych, gdzie precyzyjna interpretacja mapy zasadniczej jest wymagana do podejmowania decyzji dotyczących wydawania pozwoleń na budowę lub zmian w zagospodarowaniu przestrzennym.

Pytanie 36

Jaką maksymalną długość mogą mieć linie pomiarowe na obszarach rolnych i leśnych?

A. 600 m
B. 300 m
C. 400 m
D. 500 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalna długość linii pomiarowych na terenach rolnych i leśnych wynosi 400 m. Ta wartość jest zgodna z wytycznymi określonymi w przepisach dotyczących pomiarów geodezyjnych i topograficznych. Długość linii pomiarowej ma kluczowe znaczenie w kontekście dokładności pomiarów. W praktyce, dla zapewnienia odpowiedniej precyzji, linie pomiarowe nie powinny przekraczać tej długości, ponieważ dłuższe linie są bardziej podatne na błędy związane z warunkami atmosferycznymi, ukształtowaniem terenu oraz innymi czynnikami zewnętrznymi. W przypadku pomiarów na terenach rolnych stosowanie linii o maksymalnej długości 400 m pozwala na efektywne zarządzanie powierzchnią, jak również na precyzyjne określenie granic działek. Przykładowo, podczas pomiarów do celów projektowania dróg czy systemów nawadniających, zachowanie tej normy przyczynia się do uzyskania wiarygodnych danych, które są niezbędne dla efektywnego planowania. Dodatkowo, przestrzeganie tych standardów jest często wymagane przez organy regulacyjne oraz instytucje zajmujące się ochroną środowiska.

Pytanie 37

Na jakiej odległości od startu trasy usytuowany jest punkt 1/5+78,00 m?

A. 578,00 m
B. 278,00 m
C. 2578,00 m
D. 1578,00 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 1578,00 m jest prawidłowa, ponieważ punkt oznaczony jako 1/5+78,00 m oznacza, że od początku trasy, który jest punktem odniesienia, do punktu 1/5 znajdują się 1578,00 m. Przy obliczeniach można spotkać się z różnymi systemami oznaczania odległości, co w praktyce oznacza, że kluczowe jest zrozumienie konwencji i sposobu, w jaki różne punkty są numerowane lub oznaczane. Standardy branżowe, takie jak normy ISO dotyczące pomiarów geodezyjnych, jasno określają, jak należy interpretować tego typu oznaczenia. Dla inżynierów i specjalistów zajmujących się planowaniem tras, umiejętność prawidłowego odczytywania takich informacji jest niezbędna, zwłaszcza w kontekście projektowania infrastruktury transportowej, gdzie precyzyjne określenie odległości jest kluczowe dla bezpieczeństwa i efektywności ruchu drogowego.

Pytanie 38

Długość odcinka zmierzonego na mapie o skali 1:2000 wynosi 11,1 cm. Jaką długość ma ten odcinek w rzeczywistości?

A. 22,20 m
B. 5,55 m
C. 2,22 m
D. 55,50 m

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 22,20 m jest prawidłowa, ponieważ w przypadku skali 1:2000 oznacza, że 1 cm na mapie odpowiada 2000 cm w terenie. Aby obliczyć długość odcinka w rzeczywistości, należy pomnożyć długość odcinka zmierzoną na mapie (11,1 cm) przez skalę. Zatem obliczenia wyglądają następująco: 11,1 cm * 2000 cm/cm = 22 200 cm. Przekształcając jednostki, otrzymujemy 22 200 cm = 222 m. Ostatecznie, aby uzyskać wynik w metrach, dzielimy przez 100, co daje nam 22,20 m. Ta umiejętność konwersji między długościami pomierzonymi na mapie a rzeczywistymi odległościami jest kluczowa w dziedzinach takich jak geodezja, urbanistyka czy kartografia. Przykładem zastosowania tej wiedzy może być zaplanowanie infrastruktury w terenie, gdzie precyzyjne pomiary są niezbędne do określenia lokalizacji budynków, dróg czy innych obiektów. W codziennym życiu również możemy wykorzystać tę wiedzę, na przykład, przy planowaniu podróży lub ocenie odległości podczas spaceru.

Pytanie 39

Co wpływa na wysokości opisów w mapie głównej?

A. Od typu i stylu pisma
B. Od wartości skalarnej mapy
C. Od opisywanej treści i skali mapy
D. Od metody wykonania opisu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wysokości opisów na mapie zasadniczej zależą w pierwszej kolejności od opisywanej treści oraz skali mapy. Skala mapy definiuje, w jakim stopniu rzeczywista powierzchnia została odwzorowana na mapie, co wpływa na sposób przedstawiania informacji. W praktyce oznacza to, że w przypadku map o dużej skali, które reprezentują mały obszar, opisy mogą być bardziej szczegółowe i tym samym wyższe, aby oddać specyfikę terenu. Na przykład, w mapie, która przedstawia obszar miejski, opisy budynków, ulic czy parków będą miały większą wysokość, aby były czytelne i zrozumiałe dla użytkowników. Dodatkowo, treść opisu, jak np. nazwy ulic czy obiektów, również ma wpływ na ich wysokość, gdyż dłuższe nazwy wymagają więcej miejsca. W branży kartograficznej ważne jest przestrzeganie standardów, takich jak Ustawodawstwo o geoinformacji oraz normy ISO, które określają zasady projektowania map, w tym sposoby przedstawiania opisów. Właściwe zrozumienie tych zasad pozwala tworzyć czytelne i funkcjonalne mapy.

Pytanie 40

W jakim rodzaju ciągu niwelacyjnym zakłada się, że teoretyczna suma różnic wysokości pomiędzy punktem startowym a końcowym wynosi 0 mm?

A. Otwarty
B. Zawieszonym
C. Zamkniętym
D. Obliczeniowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ciąg niwelacyjny zamknięty to taki, w którym pomiar wysokości rozpoczyna się w punkcie, a po wykonaniu pomiarów wraca się do punktu początkowego. Teoretyczna suma różnic wysokości między punktem początkowym i końcowym wynosi 0 mm, co oznacza, że w idealnych warunkach nie występują błędy pomiarowe ani różnice w terenie, które mogłyby wpłynąć na wyniki. Praktyczne zastosowanie ciągów zamkniętych jest szczególnie widoczne w inżynierii lądowej, gdzie precyzyjne pomiary wysokości są kluczowe dla projektów budowlanych i infrastrukturalnych. Wykonywanie niwelacji w cyklu zamkniętym pozwala na wykrycie błędów systematycznych, które mogą wystąpić w trakcie pomiarów, a także na ich korekcję, co jest zgodne z zasadami obowiązującymi w normach takich jak PN-EN ISO 17123. Ważnym aspektem jest również to, że stosowanie ciągów zamkniętych zwiększa wiarygodność uzyskanych wyników, co jest niezbędne w pracach geodezyjnych i w kontekście odpowiedzialności zawodowej geodetów.