Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 14 marca 2025 12:58
  • Data zakończenia: 14 marca 2025 13:11

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Na podstawie fragmentu instrukcji producenta oblicz, ile palet bloczków gazobetonowych o wymiarach
24×24×59 cm potrzeba do wymurowania dwóch ścian wysokości 2,75 m, długości 6 m i grubości 24 cm każda.

Informacje producenta bloczków betonu komórkowego
Wymiary bloczka
[cm]
Zużycie
[szt./m²]
Masa
[kg]
Liczba na palecie
[szt.]
24×24×59722,448
12×24×59712,296
8×24×5979,2144

A. 3 palety.
B. 58 palet.
C. 5 palet.
D. 116 palet.
Poprawna odpowiedź to 5 palet, co można wyjaśnić na podstawie obliczeń dotyczących wymagań materiałowych do wykonania dwóch ścian o podanych wymiarach. Wysokość każdej ściany wynosi 2,75 m, długość 6 m, a grubość 24 cm. Aby obliczyć całkowitą liczbę bloczków gazobetonowych potrzebnych do budowy, najpierw obliczamy objętość jednej ściany: 2,75 m * 6 m * 0,24 m = 3,96 m³. Dla dwóch ścian otrzymujemy 3,96 m³ * 2 = 7,92 m³. Bloczek gazobetonowy o wymiarach 24x24x59 cm ma objętość 0,024 m * 0,024 m * 0,059 m = 0,000028416 m³. Obliczamy, ile bloczków potrzebujemy: 7,92 m³ / 0,000028416 m³ ≈ 278,9, co zaokrąglamy do 279 bloczków. Na jednej palecie zmieści się 48 bloczków, więc dzieląc 279 przez 48, uzyskujemy około 5,8, co zaokrąglamy do 5 palet. W praktyce, zrozumienie takich obliczeń jest niezbędne w branży budowlanej, aby odpowiednio zarządzać materiałami i kosztami, co jest zgodne z dobrą praktyką inżynieryjną.

Pytanie 3

W jakiej lokalizacji należy umieścić izolację cieplną przegrody w budynku mieszkalnym?

A. na obydwu stronach przegrody
B. na tej stronie przegrody, gdzie przeważa wyższa temperatura
C. na tej stronie przegrody, gdzie przeważa niższa temperatura
D. po każdej stronie przegrody
Umieszczanie izolacji cieplnej przegrody budowlanej po stronie, gdzie panuje wyższa temperatura, jest podejściem, które nie tylko łamie zasady fizyki, ale także prowadzi do poważnych konsekwencji w kontekście efektywności energetycznej budynku. Izolacja ma na celu ograniczenie transferu ciepła, a umieszczanie jej w miejscu, gdzie temperatura jest wyższa, po prostu nie spełnia tego zadania. Tego rodzaju podejście wynika z nieporozumienia dotyczącego dynamiki cieplnej. Mylne jest przekonanie, że izolacja powinna być umieszczona tam, gdzie wydaje się, że ciepło jest „przechwytywane”; w rzeczywistości ciepło zawsze przepływa z obszaru o wyższej temperaturze do obszaru o niższej temperaturze. Umieszczając izolację w niewłaściwym miejscu, ryzykujemy nie tylko straty ciepła, ale także wzrost ryzyka kondensacji pary wodnej wewnątrz przegrody, co może prowadzić do powstawania pleśni oraz uszkodzeń konstrukcyjnych. Ponadto, zgodnie z normami budowlanymi, takim jak PN-EN 13370, istotne jest, aby izolacja była stosowana w sposób, który zapewnia optymalny komfort cieplny i minimalizuje zużycie energii. W rezultacie, umieszczanie izolacji w nieodpowiednich lokalizacjach, takich jak strona z wyższą temperaturą, jest nie tylko technicznie błędne, ale również ekonomicznie niekorzystne w dłuższej perspektywie.

Pytanie 4

Aby przygotować betonową mieszankę o objętościowej proporcji składników 1:2:4, jakie składniki należy zgromadzić?

A. 1 część żwiru, 2 części cementu i 4 części wody
B. 1 część piasku, 2 części żwiru i 4 części cementu
C. 1 część cementu, 2 części wody i 4 części żwiru
D. 1 część cementu, 2 części piasku i 4 części żwiru
Poprawna odpowiedź dotycząca proporcji składników do wykonania mieszanki betonowej o stosunku 1:2:4 odnosi się do zastosowania odpowiednich materiałów budowlanych. W tej proporcji 1 część cementu, 2 części piasku i 4 części żwiru zapewniają optymalną wytrzymałość i trwałość betonu. Cement działa jako spoiwo, które wiąże pozostałe składniki, piasek wypełnia przestrzenie między ziarnami żwiru, a żwir zapewnia odpowiednią strukturę oraz odporność na obciążenia. W praktyce, takie proporcje są powszechnie stosowane w budownictwie do wytwarzania betonu konstrukcyjnego, który jest używany w fundamentach, ścianach nośnych oraz elementach prefabrykowanych. Rekomendacje dotyczące mieszania betonu, takie jak norma PN-EN 206, podkreślają znaczenie starannego doboru składników oraz właściwego ich wymieszania, co wpływa na finalne właściwości mechaniczne betonu. Warto również zauważyć, że dobór odpowiedniej wody jest kluczowy, gdyż jej nadmiar może prowadzić do zmniejszenia wytrzymałości betonu, a zbyt mała ilość utrudnia prawidłowe wiązanie materiałów. Dlatego istotne jest przestrzeganie tych proporcji w praktyce budowlanej, by uzyskać trwałe i solidne konstrukcje.

Pytanie 5

Jakie kruszywo wykorzystuje się do produkcji betonów klasycznych?

A. Keramzyt
B. Łupkoporyt
C. Żwir
D. Baryt
Żwir jest kruszywem naturalnym, które jest powszechnie stosowane do produkcji betonów zwykłych. Jego zastosowanie wynika z korzystnych właściwości, takich jak odpowiednia granulacja, która zapewnia dobrą przepuszczalność oraz przyczepność z cementem. Żwir charakteryzuje się wysoką trwałością i odpornością na czynniki atmosferyczne, co sprawia, że jest idealnym materiałem do budowy infrastruktury, jak drogi, mosty czy budynki. W procesie produkcji betonu, żwir stanowi kluczowy składnik, który, w połączeniu z cementem, wodą i ewentualnymi dodatkami, tworzy trwałą i wytrzymałą mieszankę. W normach branżowych, takich jak PN-EN 12620, określono wymagania dotyczące jakości kruszyw, co dodatkowo podkreśla znaczenie wyboru odpowiednich materiałów. Przykładem zastosowania żwiru w praktyce może być beton używany do budowy fundamentów, gdzie jego właściwości mechaniczne są kluczowe dla stabilności całej konstrukcji.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Jakie konstrukcje uznawane są za obiekty inżynieryjne?

A. Budowle z konstrukcją szkieletową
B. Świątynie
C. Konstrukcje mostowe
D. Obiekty przemysłowe
Mosty to takie specjalne budowle, które zostały zaprojektowane po to, żebyśmy mogli przejeżdżać nad różnymi przeszkodami, jak rzeki czy doliny. W budowie mostów wykorzystuje się różne materiały, takie jak stal czy beton, bo muszą być mocne i trwałe. W inżynierii transportowej mosty są bardzo ważne, bo ułatwiają nam przemieszczanie się. Weźmy na przykład Most Golden Gate w San Francisco czy Most Millau we Francji - oba są nie tylko funkcjonalne, ale też piękne pod względem architektury. Kiedy projektuje się mosty, to trzeba wziąć pod uwagę różne normy i standardy, na przykład Eurokod, które mówią, jak powinny być bezpieczne i solidne. Budowa mostów to niełatwa sprawa, bo trzeba analizować różne czynniki, takie jak obciążenia, warunki gruntowe czy wpływ środowiska. Dlatego mosty są dość skomplikowanymi konstrukcjami, które wymagają wiedzy z różnych dziedzin.

Pytanie 8

Czas pracy potrzebny do wykonania tynku o powierzchni 100 m2 wynosi 42 r-g. Oblicz koszt robocizny związanej z otynkowaniem ścian o powierzchni 450 m2, przy stawce 20,00 zł za 1 r-g.

A. 3 780,00 zł
B. 2 000,00 zł
C. 840,00 zł
D. 9 000,00 zł
Prawidłowa odpowiedź wynika z precyzyjnego obliczenia kosztów robocizny związanej z otynkowaniem większej powierzchni. Na początku obliczamy, ile roboczogodzin (r-g) potrzeba na otynkowanie 450 m². Skoro na 100 m² nakład robocizny wynosi 42 r-g, to dla 450 m² stosujemy proporcję: (450 m² / 100 m²) * 42 r-g = 189 r-g. Następnie, mając stawkę za 1 r-g równą 20,00 zł, obliczamy koszt robocizny: 189 r-g * 20,00 zł = 3 780,00 zł. Praktyczne zastosowanie tego obliczenia jest kluczowe w branży budowlanej, gdzie precyzyjne kalkulacje kosztów wpływają na efektywność budżetowania i planowania projektów. Dobre praktyki sugerują, aby zawsze uwzględniać zmienność w nakładach robocizny oraz stawki na poziomie lokalnym, co pozwala na dokładniejsze prognozowanie kosztów.

Pytanie 9

Jakie mury można zbudować z cegły kratówki klasy 5?

A. Fundamentowe
B. Piwniczne
C. Kominowe
D. Osłonowe
Cegła kratówka klasy 5 jest materiałem budowlanym, który charakteryzuje się wysoką wytrzymałością na ściskanie oraz korzystnymi właściwościami izolacyjnymi. Jest to materiał o dobrych parametrach mechanicznych, co sprawia, że może być stosowany do budowy murów osłonowych. Mury osłonowe pełnią kluczową rolę w ochronie budynków przed działaniem warunków atmosferycznych, a ich konstrukcja często wymaga zastosowania materiałów, które zapewniają odpowiednią trwałość i izolację. W praktyce mury osłonowe wykonane z cegły kratówki klasy 5 mogą wspierać efektywność energetyczną budynku, a także przyczyniać się do jego estetyki. Dodatkowo, przy budowie murów osłonowych należy przestrzegać norm budowlanych, takich jak PN-EN 1996, które określają wymagania dotyczące materiałów, konstrukcji i ich właściwości. Dzięki tym standardom, inwestorzy mogą mieć pewność, że ich budowle będą nie tylko estetyczne, ale także funkcjonalne i trwałe.

Pytanie 10

Narzut tynku cementowo-wapiennego kategorii III powinien być nałożony na

A. zwilżonej gładzi
B. związanej gładzi
C. zwilżonej obrzutce
D. suchej obrzutce
Odpowiedź 'zwilżona obrzutka' jest poprawna, ponieważ narzut tynku pospolitego cementowo-wapiennego kategorii III należy aplikować na odpowiednio przygotowaną powierzchnię. Zwilżona obrzutka zapewnia lepszą przyczepność tynku do podłoża, co jest kluczowe dla trwałości i estetyki wykończenia. Wilgoć w obrzutce powoduje, że cząsteczki tynku lepiej wnikają w strukturę podłoża, co znacząco zmniejsza ryzyko łuszczenia się czy pękania tynku w przyszłości. W praktyce, przed nałożeniem narzutu, należy nawilżyć obrzutkę wodą, aby uzyskać optymalne warunki aplikacji. Dobre praktyki w budownictwie sugerują, aby obrzutkę przygotować zgodnie z normami PN-EN 998-1, które określają wymagania dla tynków. Dzięki temu można osiągnąć wysoką jakość wykonania, która przekłada się na długowieczność oraz estetykę zastosowanego rozwiązania budowlanego.

Pytanie 11

Na podstawie fragmentu specyfikacji technicznej określ, w których miejscach na elewacji budynku, nie należy wykonywać przerw technologicznych podczas wykonywania tynków mozaikowych.

n n n n n n n
n Specyfikacja techniczna wykonania i odbioru robót budowlanych
n Wykonanie tynków mozaikowych
n (fragment)n
n „(...) Materiał należy nakładać metodą „mokre na mokre", nie dopuszczając do zaschnięcia zatartej partii przed nałożeniem kolejnej. W przeciwnym razie miejsce tego połączenia będzie widoczne. Przerwy technologiczne należy z góry zaplanować na przykład: w narożnikach i załamaniach budynku, pod rurami spustowymi, na styku kolorów itp. Czas wysychania tynku zależnie od podłoża, temperatury i wilgotności względnej powietrza wynosi od ok. 12 do 48 godzin. W warunkach podwyższonej wilgotności i temperatury około +5°C czas wiązania tynku może być wydłużony. Podczas wykonywania i wysychania tynku min. temperatura otoczenia powinna wynosić +5°C, a max. +25°C.(...)"

A. Na środku ściany.
B. Na styku kolorów.
C. W narożnikach budynku.
D. W załamaniach budynku.
Odpowiedź "Na środku ściany" jest prawidłowa, ponieważ zgodnie z fragmentem specyfikacji technicznej, przerwy technologiczne powinny być planowane w miejscach, które są naturalnymi punktami podziału tynku, takimi jak narożniki budynków, załamania, odprowadzanie wody czy styki kolorów. Przerwy te są niezbędne, aby uniknąć pęknięć i deformacji, które mogą pojawić się w wyniku różnic w rozszerzalności termicznej oraz osiadania budynku. Na środku ściany, tworzenie przerw technologicznych może prowadzić do nieestetycznych połączeń i widocznych linii, które negatywnie wpływają na estetykę elewacji. W praktyce architektonicznej i budowlanej, ważne jest, aby przerwy były umieszczane w tak zwanych punktach krytycznych, które mogą zminimalizować ryzyko uszkodzeń tynku. Warto również zwrócić uwagę na zalecane praktyki, takie jak stosowanie odpowiednich materiałów do wypełnienia przerw, co zapewnia długowieczność i odporność na czynniki atmosferyczne.

Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Jakie kruszywo wykorzystuje się do produkcji ciepłochronnych zapraw murarskich?

A. Perlit
B. Pospółka
C. Kruszywo piaskowe
D. Kruszywo żwirowe
Perlit to materiał o doskonałych właściwościach izolacyjnych, który jest powszechnie stosowany do produkcji ciepłochronnych zapraw murarskich. Jego unikalna struktura, powstała w wyniku poddania wysokiej temperaturze naturalnego wulkanicznego szkła, sprawia, że perlit ma niską przewodność cieplną. Dzięki temu, zaprawy murarskie z dodatkiem perlitu skutecznie ograniczają straty ciepła, co jest istotne w kontekście budownictwa energooszczędnego. Przykłady zastosowania perlitu obejmują budowę domów pasywnych, gdzie kluczowe jest osiągnięcie jak najniższego zapotrzebowania na energię. Standardy branżowe, takie jak PN-EN 998-1, podkreślają znaczenie jakości izolacji w budynkach, a użycie perlitu w zaprawach murarskich jest zgodne z najlepszymi praktykami w tej dziedzinie. Warto dodać, że perlit jest materiałem ekologicznym, co dodatkowo zwiększa jego atrakcyjność w nowoczesnym budownictwie.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Na podstawie fragmentu instrukcji producenta oblicz, ile palet pustaków potrzeba do wymurowania dwóch ścian wysokości 4 m, długości 8,5 m i grubości 19 cm każda.

Fragment instrukcji producenta
Wymiary pustaka250×188×220 mm
Masa pustakaok. 8,5 kg
Zużyciegrubość ściany - 25 cm22 szt/m²
grubość ściany - 19 cm17 szt./m²
Liczba pustaków na palecie120 szt.

A. 10 palet
B. 13 palet
C. 9 palet
D. 12 palet
Analizując inne odpowiedzi, można zauważyć typowe błędy związane z obliczaniem potrzebnej ilości pustaków. Często błędne podejście polega na nieuwzględnieniu pełnej powierzchni ścian lub niepoprawnym obliczeniu ilości pustaków na metr kwadratowy. Na przykład, jeżeli ktoś obliczał jedynie powierzchnię jednej ściany, mógłby dojść do błędnego wniosku, że potrzebuje mniej palet. Inne możliwe pomyłki obejmują zaokrąglanie wyniku przed dokonaniem podziału lub błędne przyjęcie liczby pustaków na paletę. Kluczowym elementem w takich obliczeniach jest również zrozumienie, że w budownictwie nie tylko sama liczba pustaków, ale i ich właściwe rozmieszczenie oraz przygotowanie podłoża mają ogromne znaczenie. W praktyce, błędne obliczenia mogą prowadzić do nie tylko do nadmiaru materiałów, ale również do opóźnień w realizacji budowy, co w rezultacie generuje dodatkowe koszty. Właściwe podejście do obliczeń materiałowych powinno być zgodne z normami budowlanymi i standardami stosowanymi w branży, które zalecają dokładne planowanie i przewidywanie potrzeb materiałowych przed rozpoczęciem prac budowlanych.

Pytanie 18

Który z rodzajów tynków można zaklasyfikować jako trójwarstwowy zwykły kat. IV, charakteryzujący się równą i gładką, bardzo starannie wygładzoną powierzchnią uzyskaną przy użyciu packi?

A. Doborowy
B. Surowy
C. Wypalany
D. Pospolity
Tynk doborowy jest klasyfikowany jako tynk trójwarstwowy zwykły kat. IV, co oznacza, że spełnia określone wymagania techniczne dotyczące trwałości i estetyki. Jego powierzchnia jest bardzo starannie wygładzona packą, co zapewnia gładkość i równość, co jest kluczowe w wielu zastosowaniach budowlanych. Tynki doborowe są często stosowane w budownictwie mieszkalnym oraz komercyjnym, gdzie estetyka i wytrzymałość są równie ważne. W praktyce, tynk doborowy można z powodzeniem stosować w pomieszczeniach wewnętrznych oraz na zewnętrznych elewacjach, a jego właściwości pozwalają na osiągnięcie wysokiej jakości wykończeń. Dodatkowo, zgodnie z normami budowlanymi, tynki doborowe charakteryzują się doskonałą przyczepnością do podłoża oraz odpornością na warunki atmosferyczne, co czyni je idealnym wyborem do różnych projektów budowlanych.

Pytanie 19

Jakie działania powinny być podjęte jako pierwsze przed nałożeniem suchego tynku na nierównomierne podłoże ściany z cegły kratówki?

A. Uformować pasy kierunkowe z zaprawy cementowo-wapiennej
B. Wykonać na ścianie placki "marki"
C. Zastosować na ścianie warstwę gładzi gipsowej
D. Nałożyć zaprawę gipsową na płyty suchego tynku i mocno je przycisnąć do podłoża
Wykonanie placków 'marki' na nierównym podłożu ściany z cegły kratówki to kluczowy krok przed montażem płyt suchego tynku. Placki te służą jako punkty odniesienia, które ułatwiają wyrównanie powierzchni oraz zapewniają odpowiednią przyczepność dla kolejnych warstw. Ustanowienie placków jest zgodne z zaleceniami zawartymi w normach budowlanych, które podkreślają znaczenie przygotowania podłoża pod każde prace wykończeniowe. Przykładowo, przygotowanie podłoża w ten sposób pozwala na zminimalizowanie ryzyka pęknięć i odspojenia tynku od ściany, co jest szczególnie istotne w przypadku materiałów porowatych, jak cegła. Zastosowanie placków 'marki' w praktyce jest często realizowane przy użyciu zaprawy cementowej, co zwiększa stabilność i trwałość wykończenia. Dobrą praktyką jest także weryfikacja pionu i poziomu placków przed nałożeniem kolejnych warstw, co zapewnia długotrwałe efekty wykończeniowe.

Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Jakim preparatem powinno się pokryć powierzchnię tynku, który się osypuje i pyli, aby go wzmocnić?

A. Antyadhezyjnym
B. Gruntującym
C. Penetrującym
D. Barwiącym
Preparat gruntujący jest kluczowym elementem w procesie wzmocnienia osypującego się i pylącego tynku. Jego podstawową funkcją jest poprawa przyczepności materiałów wykończeniowych, co jest szczególnie istotne w przypadku powierzchni, które wykazują tendencję do kruszenia się lub osypywania. Gruntowanie powierzchni tynku zmniejsza chłonność podłoża, co pozwala na równomierne wchłanianie farby lub innego materiału wykończeniowego, co z kolei prowadzi do uzyskania lepszego efektu estetycznego i trwałości powłoki. Przykładem praktycznego zastosowania gruntów może być ich użycie przed malowaniem ścian z tynku, gdzie gruntowanie pozwala na uniknięcie powstawania smug czy różnic kolorystycznych. Dodatkowo, preparaty gruntujące często zawierają składniki, które wzmacniają strukturę tynku i zabezpieczają go przed działaniem wilgoci, co jest zgodne z dobrą praktyką budowlaną. Zastosowanie gruntów zgodnie z zaleceniami producentów na etykietach może znacznie wydłużyć żywotność powierzchni oraz zredukować potrzebę częstych napraw.

Pytanie 22

Tynk klasy IV wykonuje się

A. trójwarstwowo, wygładzając packą obłożoną filcem
B. dwuwarstwowo, wygładzając packą styropianową
C. trójwarstwowo, wygładzając packą na gładko
D. dwuwarstwowo, wygładzając packą na ostro
Wybór niewłaściwych technik wykonania tynku może prowadzić do nieprawidłowych rezultatów, które negatywnie wpływają na estetykę i funkcjonalność końcowego wykończenia. Na przykład, dwuwarstwowe zacieranie packą styropianową nie zapewnia odpowiedniej grubości tynku, co może skutkować zwiększoną podatnością na uszkodzenia mechaniczne oraz gorszymi właściwościami izolacyjnymi. Ponadto, ten sposób zacierania nie jest zgodny z wymaganiami dla tynków kategorii IV, które powinny być wykonane trójwarstwowo dla większej stabilności i trwałości. Zacieranie packą na ostro, choć może wydawać się stosunkowo szybkim rozwiązaniem, nie zapewnia gładkiej powierzchni, a często prowadzi do nieestetycznych wykończeń z widocznymi nierównościami i porami. Tynk trójwarstwowy, zacierany packą obłożoną filcem, co prawda daje lepsze efekty wizualne, jednak nie jest to typowe dla kategorii IV, która wymaga specyficznego podejścia w procesie aplikacji. Właściwe zrozumienie technologii tynkarskiej oraz właściwy dobór materiałów i technik jest kluczowe, aby uniknąć typowych błędów, które mogą prowadzić do problemów z późniejszym użytkowaniem oraz estetyką wykończenia.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Aby przygotować zaprawę cementowo-wapienną w proporcjach objętościowych 1:2,5:10,5, jakie składniki należy użyć?

A. 1 część cementu, 2,5 części wapna oraz 10,5 części wody
B. 1 część wapna, 2,5 części cementu oraz 10,5 części piasku
C. 1 część wapna, 2,5 części cementu oraz 10,5 części wody
D. 1 część cementu, 2,5 części wapna oraz 10,5 części piasku
Odpowiedź jest prawidłowa, ponieważ zaprawa cementowo-wapienna o proporcji objętościowej 1:2,5:10,5 wymaga zastosowania odpowiednich ilości składników, które są kluczowe dla uzyskania właściwych właściwości mechanicznych i trwałości zaprawy. Cement, wapno i piasek odgrywają fundamentalną rolę w procesie wiązania i twardnienia zaprawy, a proporcje te są zgodne z normami budowlanymi, które zalecają stosunek tych składników w celu uzyskania optymalnych wyników. W praktyce stosowanie cementu, wapna i piasku w takich proporcjach pozwala na uzyskanie zaprawy o dobrej plastyczności, która może być łatwo aplikowana, a jednocześnie charakteryzuje się odpowiednią wytrzymałością na ściskanie i odpornością na działanie czynników atmosferycznych. Takie zaprawy znajdują zastosowanie w budownictwie, szczególnie przy murowaniu ścian, gdzie właściwa kompozycja jest kluczowa dla długowieczności konstrukcji.

Pytanie 25

Do budowy ścian fundamentowych trzeba użyć

A. cegły szamotowej
B. bloczków betonowych
C. cegły dziurawki
D. pustaków ceramicznych
Bloczki betonowe są materiałem budowlanym powszechnie stosowanym do wykonania ścian fundamentowych. Charakteryzują się dużą wytrzymałością na nacisk, co jest kluczowe w przypadku fundamentów, które muszą przenosić ciężar całej konstrukcji budynku. Dodatkowo bloczki betonowe mają dobre właściwości izolacyjne, co przyczynia się do ochrony przed wilgocią oraz wpływem zmian temperatury na strukturę budowli. W praktyce, bloczki betonowe są łatwe w obróbce i montażu, co przyspiesza proces budowy. Standardy budowlane, takie jak normy PN-EN 1992, wskazują na stosowanie bloczków betonowych w przypadku budowy fundamentów, aby zapewnić odpowiednią nośność i stabilność. Przykładem zastosowania bloczków betonowych może być wznoszenie fundamentów pod domy jednorodzinne, gdzie ich zastosowanie pozwala na efektywne zarządzanie kosztami i czasem budowy.

Pytanie 26

Element architektoniczny rozciągający się poziomo i wystający przed lico ściany, który zabezpiecza budynek przed spływającą wodą to

A. attyka
B. cokół
C. gzyms
D. nadproże
Nadproże, attyka i cokół to różne elementy architektoniczne, ale nie mają nic wspólnego z gzymsami. Nadproże jest umieszczane nad otworami, jak okna czy drzwi, i jego zadaniem jest przenoszenie ciężaru z góry. Więc to bardziej o wzmacnianiu konstrukcji niż o ochronie przed wodą. Attyka to coś, co mamy na szczycie murów, często zdobiona, która ma zamykać budynek i dodaje mu lekkości. Może wpłynąć na kierunek spływu wody, ale nie jest odpowiedzialna za ochronę muru przed wilgocią. Cokół z kolei oddziela budynek od ziemi i dba o to, żeby dolna część ścian była chroniona przed wodą gruntową. Wybór nieodpowiedniego elementu w kontekście ochrony budynku przed wilgocią może prowadzić do błędów w projektowaniu i kosztownych napraw w przyszłości. Takie zrozumienie różnic między tymi elementami to klucz do udanych projektów budowlanych.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Gdy podłoże przeznaczone do tynkowania składa się z różnych materiałów, należy zabezpieczyć miejsce ich styku przed nałożeniem tynku

A. taśmą z papieru laminowanego folią
B. kształtką z plastiku
C. pasem z siatki z włókna szklanego
D. listwą aluminiową
Wybór pasa z siatki z włókna szklanego jako materiału do zakrywania miejsc styku różnych podłoży przed tynkowaniem jest uzasadniony z kilku powodów. Siatka z włókna szklanego charakteryzuje się wysoką odpornością na działanie wilgoci oraz stabilnością wymiarową, co czyni ją idealnym rozwiązaniem w kontekście różnorodnych materiałów budowlanych. Umieszczenie siatki w miejscu styku materiałów pozwala na zminimalizowanie ryzyka pęknięć tynku, które mogą powstać w wyniku różnej rozszerzalności cieplnej tych materiałów. Dodatkowo, siatka wzmacnia połączenie krawędzi, co jest szczególnie ważne w przypadku tynków cienkowarstwowych, które są bardziej wrażliwe na uszkodzenia. Przykładem praktycznego zastosowania może być przygotowanie elewacji budynku, gdzie różne materiały, takie jak beton, cegła czy płyty gipsowo-kartonowe, są ze sobą połączone. W takich sytuacjach zastosowanie siatki z włókna szklanego jest kluczowe dla trwałości i estetyki wykończenia. Siatka powinna być również zgodna z normami budowlanymi, co zapewnia jej wysoką jakość i funkcjonalność.

Pytanie 29

Na podstawie przedstawionej receptury roboczej oblicz ilość piasku potrzebną do wykonania 1,5 mieszanki betonowej.

Receptura robocza wykonania 1 m3 mieszanki betonowej
cement 42,5430 kg
piasek320 kg
żwir578 kg
woda267 l

A. 320 kg
B. 645 kg
C. 480 kg
D. 867 kg
Twoja odpowiedź jest poprawna! Ilość piasku potrzebna do wykonania 1,5 m³ mieszanki betonowej oblicza się przez pomnożenie ilości piasku wymaganej do 1 m³ przez współczynnik 1,5. Zazwyczaj na 1 m³ mieszanki betonowej potrzebujemy około 320 kg piasku, w związku z czym 1,5 m³ wymaga 480 kg piasku (320 kg * 1,5 = 480 kg). W praktyce stosowanie odpowiednich proporcji składników jest kluczowe dla uzyskania pożądanych właściwości betonu, takich jak wytrzymałość i trwałość. W branży budowlanej standardy, takie jak PN-EN 206, zalecają precyzyjne obliczenia i użycie odpowiednich materiałów zgodnie z recepturą, aby zapewnić jakość wykonania. Zrozumienie, jak obliczać proporcje składników, jest niezbędne dla każdego inżyniera budownictwa oraz technika, co przekłada się na efektywność pracy oraz bezpieczeństwo konstrukcji.

Pytanie 30

Rozpoczęcie docieplania ściany metodą lekką suchą polega na zamontowaniu

A. wełny mineralnej
B. kratek odpowietrzających
C. izolacji wiatrowej
D. rusztu konstrukcyjnego
Docieplenie ściany metodą lekką suchą zaczynamy od montażu rusztu konstrukcyjnego, ponieważ stanowi on podstawę dla dalszych warstw izolacyjnych. Ruszt ten może być wykonany z profili stalowych lub drewnianych, które są dostosowane do specyfiki budynku i rodzaju zastosowanej izolacji. Jego głównym zadaniem jest zapewnienie stabilności i nośności całego systemu ociepleń, a także umożliwienie montażu izolacji. Dobre praktyki wskazują na konieczność precyzyjnego wyznaczenia osi rusztu, co ma kluczowe znaczenie dla estetyki i efektywności izolacji. Po zamontowaniu rusztu, przystępuje się do aplikacji materiału izolacyjnego, który najczęściej jest wykonany z wełny mineralnej lub styropianu, zależnie od wymagań projektowych. Warto pamiętać, że zgodnie z normami budowlanymi ruszt powinien być odpowiednio zabezpieczony przed wilgocią oraz wiatrem, co znacząco wpływa na długoletnią efektywność izolacji. Takie podejście pozwala na skuteczne zarządzanie ciepłem w budynku oraz poprawia jego efektywność energetyczną.

Pytanie 31

Jaką wytrzymałość ma klasa zaprawy na

A. rozciąganie
B. przesuwanie
C. ściśnięcie
D. ugięcie
Klasa zaprawy rzeczywiście odnosi się do jej wytrzymałości na ściskanie. Wytrzymałość na ściskanie jest kluczowym parametrem, który określa zdolność materiału do przenoszenia obciążeń działających w kierunku osiowym, co jest szczególnie istotne w budownictwie i inżynierii lądowej. W praktyce, zaprawy murarskie są stosowane do łączenia elementów budowlanych, takich jak cegły czy bloczki, a ich wytrzymałość na ściskanie wpływa na trwałość całej konstrukcji. Zgodnie z normami PN-EN 1015-11, wytrzymałość na ściskanie zaprawy może być klasyfikowana według różnych klas, co pozwala inżynierom na dobór odpowiedniego materiału do danego zastosowania, np. w budynkach mieszkalnych czy obiektach użyteczności publicznej. Wytrzymałość na ściskanie zaprawy jest zatem kluczowym wskaźnikiem jakości, którego pomiar przeprowadza się w warunkach laboratoryjnych, a jej znajomość pozwala na optymalizację kosztów oraz zapewnienie bezpieczeństwa konstrukcji.

Pytanie 32

Odpowiednia organizacja miejsca pracy przy wykonywaniu robót murarskich polega na podzieleniu go na

A. 4 równoległe do muru pasma: robocze, materiałowe, transportowe, narzędziowe
B. 4 prostopadłe do muru pasma: robocze, materiałowe, transportowe, narzędziowe
C. 3 równoległe do muru pasma: robocze, materiałowe, transportowe
D. 3 prostopadłe do muru pasma: robocze, materiałowe, transportowe
Właściwa organizacja stanowiska roboczego w robót murarskich jest kluczowa dla efektywności i bezpieczeństwa pracy. Podział stanowiska na trzy równoległe do muru pasma: robocze, materiałowe i transportowe, jest zgodny z najlepszymi praktykami w zakresie organizacji pracy w budownictwie. Pasmo robocze to obszar, w którym wykonuje się główne czynności murarskie, co pozwala na płynne układanie materiałów budowlanych. Pasmo materiałowe powinno być zorganizowane w sposób umożliwiający łatwy dostęp do cegieł, zaprawy oraz innych niezbędnych materiałów, co zwiększa wydajność pracy. Pasmo transportowe natomiast powinno być wolne od przeszkód, co ułatwia przemieszczanie się i transportowanie materiałów do miejsca roboczego. Taki podział nie tylko zwiększa efektywność pracy, ale także minimalizuje ryzyko wypadków, ponieważ pozwala na lepszą kontrolę nad otoczeniem roboczym, a także umożliwia zachowanie porządku. Warto również pamiętać, że zgodnie z normami ISO oraz Kodeksem Pracy, odpowiednia organizacja stanowiska pracy jest kluczowa dla zachowania bezpieczeństwa pracowników.

Pytanie 33

Płaska pozioma przegroda wewnętrzna oddzielająca piętra budynku to

A. nadproże
B. stropodach
C. strop
D. ściana
Strop to element konstrukcyjny, który pełni kluczową rolę w budynku, dzieląc go na kondygnacje. Jest on płaską przegrodą poziomą, która przenosi obciążenia z wyższych poziomów na ściany lub inne elementy nośne. Stropy mogą być wykonane z różnych materiałów, w tym z betonu, stali lub drewna, w zależności od projektu budynku oraz wymagań konstrukcyjnych. W praktyce, stropy nie tylko tworzą poziome podłogi dla mieszkańców, ale również zapewniają izolację akustyczną i termiczną między kondygnacjami. Stosowanie odpowiednich materiałów oraz technologii wykonania stropów jest kluczowe dla zapewnienia bezpieczeństwa konstrukcji oraz komfortu użytkowników. W branży budowlanej istnieją normy, takie jak Eurokod, które określają wymagania dotyczące projektowania i wykonania stropów, aby zapewnić ich odpowiednią nośność, sztywność oraz bezpieczeństwo. Dobrze zaprojektowany strop nie tylko spełnia funkcje konstrukcyjne, ale także wpływa na estetykę wnętrza, umożliwiając różnorodne aranżacje przestrzeni.

Pytanie 34

Na podstawie informacji zawartych w tabeli określ, która ilość składników odpowiada proporcji wagowej stosowanej przy wykonaniu zaprawy cementowej klasy M7.

Skład i marka zapraw cementowych w zależności od klasy cementu
Klasa cementuSkład wagowy przy marce zaprawy
M4M7M12M15
32,51 : 5,51 : 4,51 : 3,51 : 3

A. 100 kg piasku i 450 kg cementu.
B. 100 kg cementu i 900 kg piasku.
C. 200 kg cementu i 900 kg piasku.
D. 200 kg piasku i 900 kg cementu.
Odpowiedź "200 kg cementu i 900 kg piasku" jest poprawna, ponieważ odpowiada proporcji wagowej 1:4,5, którą zastosowano przy wykonaniu zaprawy cementowej klasy M7. Zgodnie z tą proporcją, na każdą jednostkę cementu przypada 4,5 jednostki piasku. W tym przypadku, 200 kg cementu wymaga 900 kg piasku, co w pełni spełnia wymagania dotyczące tej mieszanki. Takie proporcje są kluczowe, ponieważ wpływają na właściwości mechaniczne zaprawy, takie jak wytrzymałość na ściskanie i trwałość. W praktyce, stosując te proporcje, uzyskujemy dobrze zharmonizowaną zaprawę, która zapewnia odpowiednią przyczepność i stabilność. Warto również pamiętać, że stosowanie właściwych proporcji jest zgodne z normami budowlanymi, co przekłada się na bezpieczeństwo i jakość realizowanych prac budowlanych.

Pytanie 35

Izolacje przeciwwilgociowe lekki typ dla ściany piwnicy powinny być wykonane

A. z pojedynczej warstwy folii PVC
B. z dwóch warstw lepiku asfaltowego
C. z papy asfaltowej
D. z folii kubełkowej
Izolacje w piwnicach to naprawdę istotna sprawa, bo źle zrobione mogą prowadzić do problemów. Folia PVC niby jest wodoodporna, ale w piwnicach, gdzie woda gruntowa jest cały czas obecna, nie jest najlepszym rozwiązaniem. Moim zdaniem, może spowodować nieszczelności. Folia kubełkowa też jest popularna, ale nie jest to to samo co lepik asfaltowy. Często się myli, że jedna warstwa lepiku wystarczy, ale tak naprawdę dwie warstwy dają dużo lepszą ochronę przed wilgocią. Papa asfaltowa, mimo że można ją stosować, to nie jest tak skuteczna jak lepik w warunkach wysokiej wilgotności i wody gruntowej. Ważne jest, żebyśmy rozumieli, że dobór materiałów wpływa nie tylko na koszty, ale też na długowieczność budynku.

Pytanie 36

Na niewielkiej budowie do przygotowania betonu zastosowano dozowanie objętościowe składników. Murarz miał stworzyć beton zwykły w proporcjach 1 : 2 : 4. Oznacza to, że odmierzył

A. 1 wiadro piasku, 2 wiadra żwiru, 4 wiadra cementu
B. 1 wiadro żwiru, 2 wiadra cementu, 4 wiadra piasku
C. 1 wiadro cementu, 2 wiadra żwiru, 4 wiadra piasku
D. 1 wiadro cementu, 2 wiadra piasku, 4 wiadra żwiru
Niepoprawne odpowiedzi przedstawiają różne błędne interpretacje proporcji składników betonu. W przypadku każdej z tych opcji występuje pomylenie podstawowych komponentów: cementu, piasku i żwiru. Kluczowym błędem jest nieprawidłowe zrozumienie zasady dozowania objętościowego, co prowadzi do nieodpowiednich proporcji, które mogą wpłynąć na właściwości końcowego produktu, jakim jest beton. Na przykład, w odpowiedzi, która wskazuje na 1 wiadro piasku, 2 wiadra żwiru i 4 wiadra cementu, kolejność składników jest całkowicie odwrotna, co prowadzi do mieszanki zbyt bogatej w cement, co może skutkować nadmierną sztywnością i kruchością betonu. Inna odpowiedź, sugerująca użycie żwiru jako pierwszego składnika, również wprowadza w błąd, ponieważ zmienia proporcje, co z kolei może prowadzić do osłabienia struktury betonu. W kontekście projektowania mieszanek betonowych, niezwykle istotne jest przestrzeganie ustalonych proporcji, które zapewniają równowagę pomiędzy wytrzymałością a plastycznością. Mieszanki betonowe muszą być projektowane zgodnie ze standardem PN-EN 206, który określa wymogi techniczne dotyczące betonu, w tym odpowiednie proporcje składników, aby zapewnić ich odpowiednie właściwości użytkowe.

Pytanie 37

Aby zrealizować izolację termiczną ścian, należy wykorzystać

A. wełnę mineralną, emulsję asfaltową
B. styropian, papę
C. wełnę mineralną, masy bitumiczne
D. styropian, wełnę mineralną
Izolacja cieplna ścian jest kluczowym elementem skutecznego zarządzania energią w budynków. Wybór odpowiednich materiałów izolacyjnych, takich jak styropian i wełna mineralna, wynika z ich doskonałych właściwości termoizolacyjnych. Styropian, znany z niskiego współczynnika przewodzenia ciepła, jest lekki, łatwy w obróbce i stosunkowo tani. Jego zastosowanie w izolacji ścian zewnętrznych pozwala na znaczną redukcję strat ciepła, co przekłada się na niższe koszty ogrzewania. Wełna mineralna z kolei charakteryzuje się nie tylko dobrą izolacyjnością termiczną, ale również akustyczną, a także odpornością na ogień. Dzięki tym właściwościom, stosowanie obu materiałów w połączeniu pozwala na stworzenie kompleksowego systemu izolacji, który nie tylko poprawia komfort cieplny, ale także spełnia wymagania norm budowlanych i standardów efektywności energetycznej, takich jak np. normy PN-EN 13162 dla styropianu. W praktyce, użycie tych materiałów może być różnorodne, od prostych ścian jednowarstwowych po bardziej skomplikowane systemy ociepleń budynków wielokondygnacyjnych.

Pytanie 38

Jaką ilość cementu i piasku trzeba przygotować do sporządzenia zaprawy cementowo-wapiennej w proporcji 1:3:12, jeśli użyto 6 pojemników wapna?

A. 2 pojemniki cementu i 36 pojemników piasku
B. 3 pojemniki cementu i 24 pojemniki piasku
C. 3 pojemniki cementu i 36 pojemników piasku
D. 2 pojemniki cementu i 24 pojemniki piasku
Odpowiedź 2 pojemniki cementu i 24 pojemniki piasku jest poprawna, ponieważ proporcja składników zaprawy cementowo-wapiennej wynosi 1:3:12. W tej proporcji używamy jednego elementu cementu, trzech elementów wapna oraz dwunastu elementów piasku. Skoro mamy 6 pojemników wapna, to aby obliczyć ilość cementu, dzielimy 6 pojemników przez 3 (proporcja wapna do cementu), co daje 2 pojemniki cementu. Następnie, aby obliczyć ilość piasku, mnożymy 6 pojemników wapna przez 2 (proporcja wapna do piasku), co daje 24 pojemniki piasku. W praktyce, stosowanie odpowiednich proporcji składników jest kluczowe dla uzyskania optymalnych właściwości mechanicznych zaprawy, takich jak wytrzymałość na ściskanie i trwałość. Warto zwrócić uwagę na znaczenie odpowiedniego doboru materiałów w budownictwie, co jest zgodne z normami budowlanymi, takimi jak PN-EN 197-1, które regulują jakość cementu i jego zastosowanie.

Pytanie 39

Który z podanych tynków należy do tynków o cienkiej warstwie?

A. Wypalony
B. Akrylowy
C. Ciągnięty
D. Ciepłochronny
Tynki akrylowe zaliczają się do tynków cienkowarstwowych ze względu na ich charakterystyczną budowę i sposób aplikacji. Tynki te mają zazwyczaj grubość od 1 do 3 mm i są stosowane na zewnętrzne i wewnętrzne powierzchnie budynków. Ich główną zaletą jest elastyczność, co pozwala na odporność na pęknięcia wywołane ruchami podłoża oraz różnicami temperatur. Tynki akrylowe charakteryzują się dobrą przyczepnością do podłoża, co czyni je idealnymi do stosowania na różnych materiałach, takich jak beton, cegła czy płyty gipsowo-kartonowe. Przykładem zastosowania tynków akrylowych jest ich użycie w systemach ociepleń budynków, gdzie pełnią rolę zarówno estetyczną, jak i ochronną. Dzięki różnorodności kolorów i faktur, tynki akrylowe umożliwiają architektom oraz inwestorom uzyskanie pożądanych efektów wizualnych, nie rezygnując jednocześnie z funkcji użytkowych. Warto zauważyć, że tynki akrylowe są zgodne z normami europejskimi, co potwierdza ich wysoką jakość oraz bezpieczeństwo stosowania.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.