Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 18 maja 2025 22:21
  • Data zakończenia: 18 maja 2025 22:45

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Aby przygotować miano kwasu solnego, konieczne jest odważenie węglanu sodu o masie wynoszącej około 400 mg. Jaką precyzję powinna mieć waga używana do odważenia węglanu sodu?

A. 0,1 g
B. 1 g
C. 0,001 g
D. 0,01 g
Wybór wag o dokładności większej niż 0,001 g, jak 0,01 g, 0,1 g, czy 1 g, jest niewłaściwy w kontekście ważenia substancji o masie rzędu 400 mg. Odpowiednia dokładność wag jest podstawowym czynnikiem wpływającym na precyzję analityczną. W przypadku wag 0,1 g oznacza to, że błąd pomiaru może wynosić aż 100 mg, co jest absolutnie nieakceptowalne. Podobnie, 0,01 g daje nam 10 mg błędu, co może znacząco wpłynąć na wyniki analizy, zwłaszcza w delikatnych reakcjach chemicznych, gdzie nawet małe odchylenia mogą prowadzić do błędnych wyników. Waga o dokładności 1 g nie jest w ogóle odpowiednia do ważenia próbki o masie 400 mg, ponieważ błąd pomiarowy byłby zbyt duży, aby zapewnić wymaganą precyzję. To prowadzi do typowego błędu myślowego, polegającego na przypuszczeniu, że niższa dokładność jest wystarczająca dla wszystkich zastosowań. W praktyce laboratorium chemicznego, aby uzyskać wiarygodne wyniki, niezbędne jest stosowanie wag analitycznych, które zapewniają możliwie najmniejszy błąd pomiarowy, co jest zgodne z rygorystycznymi standardami analitycznymi, takimi jak ISO 17025, które podkreślają znaczenie dokładności w laboratoriach badawczych.

Pytanie 2

Temperatura wrzenia aniliny przy normalnym ciśnieniu wynosi 457,13 K. W trakcie jej oczyszczania metodą destylacji prostej pod ciśnieniem atmosferycznym należy zebrać frakcję wrzącą w przedziale temperatur

A. 185 °C - 190 °C
B. 181 °C - 185 °C
C. 178 °C - 182 °C
D. 175 °C - 179 °C
Odpowiedź 181 °C - 185 °C jest poprawna, ponieważ temperatura wrzenia aniliny wynosząca 457,13 K odpowiada 184 °C. W procesie destylacji prostej, aby skutecznie oddzielić substancję, należy zbierać frakcję wrzącą wokół tej wartości, co oznacza, że optymalny zakres do zbierania frakcji to 181 °C - 185 °C. W praktyce, aby zapewnić wysoką czystość destylatu, zwykle ustawia się zakres tak, aby obejmował temperatury bliskie wartości wrzenia, z uwzględnieniem ewentualnych wahań związanych z ciśnieniem atmosferycznym i zanieczyszczeniami. Przykładem zastosowania tej wiedzy jest przemysł chemiczny, gdzie oczyszczanie substancji chemicznych, takich jak anilina, jest kluczowe dla uzyskania wysokiej jakości produktów. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokładności pomiarów temperatury i stosowania odpowiednich metod oczyszczania, co jest niezbędne dla zapewnienia jakości i bezpieczeństwa procesów chemicznych.

Pytanie 3

Dekantacja to metoda

A. oddzielania cieczy od osadu, która polega na zlaniu cieczy znad osadu
B. oddzielania cieczy od osadu, która polega na odparowaniu cieczy
C. opadania cząstek ciała stałego w wyniku działania siły ciężkości, które są rozproszone w cieczy
D. oddzielania cieczy lub gazu od cząstek ciała stałego, które są w nich zawieszone, polegająca na przepuszczeniu zawiesiny przez przegrodę filtracyjną
Dekantacja to taki sposób oddzielania cieczy od osadu, polegający na tym, że wlewasz ciecz znad osadu do innego naczynia. Jest super popularna w laboratoriach chemicznych i w różnych branżach, szczególnie przy oczyszczaniu i separacji. Głównym celem tego procesu jest zdobycie czystej cieczy i pozbycie się osadu, który ląduje na dnie. Przykłady? No to na przykład wino – dekantuje się je, żeby oddzielić osad, który powstaje przy fermentacji. W laboratoriach też często używają dekantacji, żeby pozbyć się osadu po reakcjach chemicznych. To prosta i skuteczna metoda, co czyni ją jedną z podstawowych technik w chemii. Ważne jest, żeby robić to ostrożnie, żeby nie zmieszać cieczy z osadem. Dobrze jest też używać odpowiednich naczyń, które pomogą ci w precyzyjnym zlaniu cieczy.

Pytanie 4

Metoda oczyszczania substancji oparta na różnicach w rozpuszczalności poszczególnych składników w określonym rozpuszczalniku to

A. adsorpcja
B. krystalizacja
C. chromatografia
D. destylacja
Krystalizacja to proces oczyszczania substancji, który polega na wykorzystaniu różnic w rozpuszczalności składników w danym rozpuszczalniku. Podczas krystalizacji, gdy roztwór staje się nasycony, rozpuszczony substancja zaczyna wytrącać się w postaci kryształów. Ten proces jest szczególnie użyteczny w chemii i przemyśle farmaceutycznym, gdzie czystość substancji czynnej jest kluczowa. Przykładem może być produkcja soli kuchennej, gdzie rozpuszczona sól w wodzie jest poddawana procesowi odparowania, co prowadzi do wytrącenia się czystych kryształów soli. Krystalizacja jest zgodna z zasadami dobrej praktyki laboratoryjnej (GLP) oraz standardami czystości substancji, co czyni ją niezastąpioną metodą w analizie chemicznej i syntezach organicznych. Dzięki temu procesowi można uzyskać substancje o wysokiej czystości, co jest niezbędne w dalszych badaniach i aplikacjach przemysłowych.

Pytanie 5

Na podstawie informacji zawartej na pipecie, została ona skalibrowana na

A. gorąco.
B. wlew.
C. wylew.
D. zimno.
Odpowiedź 'wylew' jest prawidłowa, ponieważ oznacza, że pipecie nadano skalę pomiarową, która jest używana do precyzyjnego dozowania cieczy. W kontekście laboratoriów i procedur naukowych, pipecie, zwanej również pipetą, należy przypisać odpowiednią kalibrację, aby zapewnić dokładność i powtarzalność wyników. Standardy ISO oraz normy, takie jak ISO 8655, podkreślają znaczenie kalibracji pipet, co jest kluczowe w analizach chemicznych oraz biologicznych. W praktyce, pipecie skalibrowanej na 'wylew' przypisuje się objętość, którą można precyzyjnie odmierzyć i przenieść z jednego naczynia do drugiego, co ma istotne zastosowanie w produkcji leków oraz testach laboratoryjnych. Przykładem może być przygotowanie roztworu, gdzie każdy mililitr musi być dokładnie odmierzone, by uniknąć błędów w badaniach. Ponadto, kalibracja na 'wylew' pozwala na minimalizację strat cieczy, co jest niezbędne w przypadku drobnych reagentów o wysokich kosztach.

Pytanie 6

W celu wydania świadectwa kontroli jakości odczynnika chemicznego - jodku potasu cz.d.a. przeprowadzono jego analizę. Wymagania oraz wyniki badań zapisano w tabeli:
Z analizy danych zawartych w tabeli wynika, że jodek potasu cz.d.a.

WymaganiaWynik badania
Zawartość KImin. 99,5%99,65%
Wilgoćmax. 0,1%0,075%
Substancje nierozpuszczalne w wodziemax. 0,005%0,002%
pH (5%, H2O)6 ÷ 86,8
Azot ogólny (N)max. 0,001%0,0007%
Chlorki i bromki (j. Cl)max. 0,01%0,004%
Fosforany (PO4)max. 0,001%0,0006%
Jodany (IO3)max. 0,0003%0,0001%
Siarczany (SO4)max. 0,001%0,0004%
Metale ciężkie (j. Pb)max. 0,0005%0,00025%
Arsen (As)max. 0,00001%0,000006%
Magnez (Mg)max. 0,001%0,0004%
Sód (Na)max. 0,05%0,015%
Wapń (Ca)max. 0,001%0,0006%
Żelazo (Fe)max. 0,0003%0,0003%

A. nie spełnia wymagań pod względem zawartości żelaza.
B. nie spełnia wymagań pod względem zawartości metali ciężkich.
C. nie spełnia wymagań pod względem pH i zawartości jodanów.
D. spełnia wymagania i można wydać świadectwo jakości.
Twoja odpowiedź jest na pewno trafna. Jodek potasu cz.d.a. rzeczywiście spełnia normy jakościowe, co jest bardzo ważne, gdy mówimy o wydaniu świadectwa kontroli jakości. W badaniach wyszło, że zawartość jodku potasu wynosi 99,65%, co jest lepsze niż wymagane 99,5%. To świetny wynik! Poza tym inne parametry, takie jak pH, wilgotność czy substancje nierozpuszczalne w wodzie, też są w normie. Z mojego doświadczenia, spełnianie norm to kluczowa sprawa, zwłaszcza w farmacji czy chemii analitycznej. Świadectwo jakości potwierdza, że produkt jest nie tylko zgodny z normami, ale również można go bezpiecznie używać. W laboratoriach warto regularnie sprawdzać i dokumentować wyniki, żeby mieć pewność, że wszystko jest na czasie z obowiązującymi standardami i zasadami bezpieczeństwa.

Pytanie 7

W trakcie reakcji estryfikacji opisanej równaniem CH3COOH + C2H5OH ↔ CH3COOC2H5 + H2O użyto molowego stosunku alkoholu do kwasu wynoszącego 1:10. W rezultacie tego

A. równowaga reakcji została silnie przesunięta w lewo
B. równowaga reakcji została silnie przesunięta w prawo
C. alkohol uległ całkowitej reakcji
D. uzyskano ester o 100% wydajności
W przypadku reakcji estryfikacji, zastosowanie molowego stosunku alkoholu do kwasu acetylenowego wynoszącego 1:10 powoduje, że ilość dostępnego alkoholu jest znacznie większa w porównaniu do kwasu. Zgodnie z zasadą Le Chateliera, zwiększenie ilości reagentu (w tym przypadku alkoholu) prowadzi do przesunięcia równowagi reakcji w stronę produktów. W tym konkretnym przypadku oznacza to, że równowaga reakcji przesunie się w prawo, co skutkuje większą produkcją estru (CH3COOC2H5) oraz wody (H2O). Praktycznie, taki stosunek reagentów jest często stosowany w przemyśle chemicznym, aby zwiększyć wydajność produkcji estrów, co jest szczególnie istotne w syntezach organicznych i w produkcji aromatów. Warto zauważyć, że aby uzyskać optymalne wyniki, ważne jest monitorowanie warunków reakcji, takich jak temperatura oraz obecność katalizatorów, co może również wpływać na szybkość i wydajność reakcji.

Pytanie 8

Roztwór o dokładnej masie z odważki analitycznej powinien być sporządzony

A. w zlewce
B. w cylindrze miarowym
C. w kolbie miarowej
D. w kolbie stożkowej
Roztwór mianowany z odważki analitycznej należy przygotować w kolbie miarowej, ponieważ ta szklana naczynie jest zaprojektowane do precyzyjnego przygotowywania roztworów o określonych objętościach. Kolby miarowe są wyposażone w wyraźne oznaczenia, które pozwalają na dokładne odmierzenie objętości cieczy, co jest kluczowe w chemii analitycznej. Przygotowując roztwór, należy najpierw rozpuścić odważoną ilość substancji w niewielkiej objętości rozpuszczalnika, a następnie uzupełnić do oznaczonej objętości. Dzięki temu otrzymujemy roztwór o znanym stężeniu, co jest niezbędne w różnych analizach chemicznych. Przykładem praktycznym jest przygotowanie roztworu buforowego, gdzie precyzyjne stężenie reagentów wpływa na efektywność reakcji chemicznych. Standardy przygotowania roztworów, takie jak ISO 8655, podkreślają znaczenie stosowania odpowiednich naczyń do uzyskania wiarygodnych wyników.

Pytanie 9

Nie należy podgrzewać cieczy w szczelnie zamkniętych pojemnikach, ponieważ

A. istnieje ryzyko zalania palnika
B. wzrost ciśnienia może spowodować wybuch
C. może wystąpić niebezpieczeństwo zgaszenia płomienia
D. może to zwiększyć jej toksyczność
Ogrzewanie cieczy w szczelnie zamkniętych naczyniach stwarza ryzyko wzrostu ciśnienia wewnątrz naczynia, co może prowadzić do niebezpiecznych sytuacji, w tym wybuchu. W momencie, gdy ciecz jest podgrzewana, jej temperatura wzrasta, co powoduje zwiększenie energii kinetycznej cząsteczek. W zamkniętym naczyniu, które nie ma możliwości swobodnego wydostania się pary, ciśnienie będzie rosło. Przykładem z życia codziennego mogą być sytuacje, gdy gotujemy wodę w zamkniętej butelce lub słoiku. W takich przypadkach para wodna nie ma drogi ujścia, a przy osiągnięciu krytycznego poziomu ciśnienia, naczynie może pęknąć lub eksplodować, co stanowi poważne zagrożenie dla bezpieczeństwa. Zgodnie z normami BHP oraz zaleceniami producentów sprzętu laboratoryjnego i przemysłowego, zawsze należy stosować naczynia przystosowane do ogrzewania cieczy oraz zapewniać odpowiedni nadmiar ciśnienia, aby zminimalizować ryzyko takich incydentów, na przykład poprzez użycie zaworów bezpieczeństwa.

Pytanie 10

Mając wagę laboratoryjną z dokładnością pomiaru 10 mg, nie da się wykonać odważki o masie

A. 0,013 g
B. 1300 mg
C. 13 g
D. 130 mg
Odpowiedź 0,013 g jest prawidłowa, ponieważ waga laboratoryjna o dokładności odczytu 10 mg (0,01 g) nie pozwala na precyzyjne ważenie mas mniejszych niż ta wartość. Przygotowanie odważki o masie 0,013 g wymagałoby pomiaru, który jest poniżej granicy dokładności wagi, skutkując niedokładnym odczytem. W praktyce laboratoria powinny stosować wagi, które są w stanie dokładnie mierzyć masy w zakresie ich potrzeb, a zgodność z normami dotyczącymi dokładności pomiarów jest kluczowa. Przykładowo, w laboratoriach chemicznych, gdzie precyzyjne pomiary są niezbędne do uzyskania wiarygodnych wyników, zawsze używa się wag, które sprostają wymaganiom analitycznym. Ważenie substancji o masach mniejszych niż 10 mg przy użyciu wagi, która ma taką granicę dokładności, prowadziłoby do błędów systematycznych, co mogłoby mieć wpływ na dalsze etapy analizy.

Pytanie 11

Nie należy używać do czyszczenia szklanych naczyń laboratoryjnych

A. piasku oraz ściernych detergentów
B. mydlanego roztworu
C. alkoholowego roztworu NaOH
D. stężonego kwasu siarkowego(VI) technicznego
Użycie piasku i ścierających środków myjących do mycia szklanych naczyń laboratoryjnych jest niewłaściwe z kilku powodów. Po pierwsze, materiały te mogą powodować zarysowania oraz uszkodzenia powierzchni szkła, co prowadzi do zmiany właściwości optycznych i chemicznych naczyń. Zarysowania mogą utrudniać dokładne czyszczenie, sprzyjać gromadzeniu się zanieczyszczeń i prowadzić do kontaminacji próbek. Zgodnie z najlepszymi praktykami w laboratoriach, do mycia szkła należy używać delikatnych środków czyszczących, które nie uszkodzą jego struktury. Alternatywą jest stosowanie specjalistycznych detergentów laboratoryjnych, które są zaprojektowane do usuwania resztek chemicznych i biologicznych bez ryzyka uszkodzenia naczyń. Warto także zwrócić uwagę na kwestie bezpieczeństwa, gdyż stosowanie nieodpowiednich środków czyszczących może prowadzić do nieprzewidywalnych reakcji chemicznych. Dlatego przestrzeganie standardów czyszczenia naczyń laboratoryjnych jest kluczowe dla zapewnienia ich trwałości oraz bezpieczeństwa pracy w laboratorium.

Pytanie 12

Piknometr służy do określania

A. lepkości
B. wilgotności
C. gęstości
D. rozpuszczalności
Piknometr jest precyzyjnym przyrządem służącym do pomiaru gęstości substancji, co jest niezwykle istotne w wielu dziedzinach, takich jak chemia, biochemia czy inżynieria materiałowa. Gęstość jest definiowana jako masa na jednostkę objętości i ma kluczowe znaczenie w identyfikacji substancji oraz w kontrolowaniu jakości produktów. Piknometry są wykorzystywane w laboratoriach do pomiaru gęstości cieczy, a także ciał stałych po uprzednim ich przekształceniu w zawiesiny. Przykładowo, w analizie chemicznej, znajomość gęstości substancji pozwala na obliczenie stężenia roztworów, co jest krytyczne dla wielu procesów syntezy chemicznej i analitycznej. Zgodnie z zasadami metrologii, pomiar gęstości powinien być przeprowadzany w warunkach kontrolowanej temperatury, a piknometry muszą być kalibrowane, aby zapewnić wiarygodność wyników. Standardy, takie jak ASTM D1481, wyznaczają metody pomiaru gęstości z wykorzystaniem piknometrów, co dodatkowo podkreśla ich znaczenie w praktyce laboratywnej.

Pytanie 13

W przypadku odczynnika, w którym nawet najczulsze techniki analizy chemicznej nie są w stanie wykryć zanieczyszczeń, a jego badanie wymaga zastosowania metod opartych na zjawiskach fizycznych, zalicza się on do kategorii czystości

A. chemicznie czysty
B. czysty do analizy
C. czysty
D. techniczny
Odpowiedź "chemicznie czysty" jest prawidłowa, ponieważ odnosi się do substancji, w której zanieczyszczenia chemiczne są na tak niskim poziomie, że nie można ich wykryć nawet za pomocą zaawansowanych technik analizy chemicznej. W praktyce oznacza to, że substancja ta jest odpowiednia do zastosowań wymagających najwyższej klasy czystości, takich jak w laboratoriach analitycznych, produkcji farmaceutyków czy w materiałach do badań naukowych. W zgodzie z normami ISO oraz standardami dla chemikaliów do analizy, substancje chemicznie czyste muszą spełniać określone wymagania dotyczące zawartości zanieczyszczeń, co czyni je niezastąpionymi w precyzyjnych analizach. Na przykład, do analizy spektroskopowej często używa się chemicznie czystych rozpuszczalników, które nie wprowadzają dodatkowych sygnałów do pomiarów, co pozwala uzyskać wyniki o wysokiej rozdzielczości i dokładności.

Pytanie 14

W jakim celu używa się kamyczków wrzenne w trakcie długotrwałego podgrzewania cieczy?

A. Zwiększenia temperatury wrzenia cieczy
B. Obniżenia temperatury wrzenia cieczy
C. Uniknięcia miejscowego przegrzewania się cieczy
D. Zwiększenia powierzchni kontaktu faz w celu przyspieszenia reakcji
Kamyczki wrzenne, znane też jako rdzenie wrzenia, są naprawdę ważne, gdy chodzi o zapobieganie przegrzewaniu się cieczy. Działają na zasadzie zwiększania powierzchni, na której zachodzi wrzenie, co w efekcie pozwala na równomierne rozprowadzenie temperatury. Gdyby nie one, mogłyby powstawać pęcherzyki pary, które czasem wybuchają i mogą prowadzić do niebezpiecznych sytuacji, takich jak gwałtowny wzrost ciśnienia. Dlatego użycie kamyczków wrzennych jest w laboratoriach czy w chemii naprawdę istotne, ponieważ pozwala na lepszą kontrolę temperatury i uzyskanie wiarygodnych wyników. Na przykład w destylacji, stabilne wrzenie jest kluczem do efektywnego oddzielania różnych składników. Można powiedzieć, że to standardy jak ISO 17025 to potwierdzają – mówią, jak ważne jest to dla jakości i bezpieczeństwa badań.

Pytanie 15

Do systemu odprowadzania ścieków, w formie rozcieńczonego roztworu wodnego o maksymalnej masie 100 g na raz, można wprowadzić

A. NaCl
B. AgF
C. BaCl2
D. Pb(NO3)2
NaCl, czyli chlorek sodu, jest substancją, która doskonale nadaje się do wprowadzania do systemu kanalizacyjnego w formie rozcieńczonego roztworu wodnego. Jest to związek chemiczny, który jest w pełni rozpuszczalny w wodzie i nie niesie ze sobą ryzyka wprowadzenia do środowiska toksycznych substancji. W kontekście standardów ochrony środowiska, NaCl jest szeroko stosowany w różnych dziedzinach, od przemysłu spożywczego po przemysł chemiczny, dzięki czemu jego obecność w kanalizacji jest akceptowalna. NaCl jest także stosowany do wspomagania procesów oczyszczania w oczyszczalniach ścieków, ponieważ wspiera działanie mikroorganizmów odpowiedzialnych za biodegradację organicznych zanieczyszczeń. Bezpieczeństwo stosowania soli kuchennej w ilości do 100 g jednorazowo jest zgodne z dobrymi praktykami w zakresie zarządzania odpadami, co czyni ją idealnym rozwiązaniem w tej sytuacji.

Pytanie 16

Wybierz spośród wymienionych właściwości tę, która nie dotyczy naczyń kwarcowych.

A. Odporność na działanie kwasu fluorowodorowego oraz roztworu wodorotlenku potasu
B. Niska wrażliwość na zmiany temperatury
C. Większa kruchość oraz mniejsza odporność na uderzenia niż naczynia wykonane z normalnego szkła
D. Przepuszczalność promieniowania ultrafioletowego
Odporność na działanie kwasu fluorowodorowego i roztworu wodorotlenku potasu nie jest cechą naczyń kwarcowych. Naczynia kwarcowe, wykonane ze szkła kwarcowego, charakteryzują się wysoką odpornością chemiczną, ale nie są odporne na działanie kwasu fluorowodorowego, który jest jednym z niewielu kwasów zdolnych do atakowania szkła kwarcowego. W praktyce oznacza to, że naczynia te mogą być używane do przechowywania i reakcji chemicznych z wieloma substancjami, ale należy unikać kontaktu z kwasami fluorowodorowymi. Z drugiej strony, szkło kwarcowe dobrze znosi działanie zasadowych roztworów, takich jak wodorotlenek potasu, dlatego jest często wykorzystywane w laboratoriach chemicznych i przemysłowych do przechowywania odczynników. Ponadto, naczynia kwarcowe wykazują wysoką odporność na wysokie temperatury, co czyni je idealnymi do zastosowania w piecach i innych urządzeniach wymagających zachowania stabilności w ekstremalnych warunkach temperaturowych.

Pytanie 17

Ile gramów cukru trzeba dodać do 200 gramów wody o temperaturze 20°C, aby uzyskać roztwór nasycony?

A. 50 g
B. 200 g
C. 400 g
D. 100 g
Aby uzyskać roztwór nasycony w temperaturze 20°C, należy rozpuścić w 200 gramach wody około 400 gramów cukru. Zjawisko nasycenia roztworu oznacza, że w danej temperaturze nie można już rozpuścić większej ilości substancji. W przypadku cukru rozpuszczalność w wodzie jest znaczna, a przy 20°C wynosi około 2000 g na 1 litr wody. Woda w tej temperaturze ma zatem zdolność rozpuszczenia znacznej ilości cukru, co sprawia, że 400 g w 200 g wody to zaledwie 20% maksymalnej ilości, jaką dałoby się rozpuścić. Praktyczne zastosowanie tej wiedzy można zauważyć w przemyśle spożywczym, gdzie dokładne parametry roztworu są kluczowe dla produkcji napojów słodzonych, syropów czy innych produktów zawierających cukier. Zrozumienie rozpuszczalności substancji jest niezbędne w wielu procesach chemicznych i technologicznych, co podkreśla znaczenie tej umiejętności w praktyce laboratoryjnej i przemysłowej.

Pytanie 18

Metoda oczyszczania substancji, która opiera się na różnicy w rozpuszczalności substancji docelowej oraz zanieczyszczeń w zastosowanym rozpuszczalniku, nosi nazwę

A. dekantacją
B. ekstrakcją
C. sublimacją
D. krystalizacją
Krystalizacja to proces oczyszczania substancji, który polega na wydzielaniu czystej substancji z roztworu na skutek różnicy rozpuszczalności w danym rozpuszczalniku. W praktyce, kiedy roztwór jest schładzany lub odparowywany, substancja rozpuszczona zaczyna się krystalizować, co pozwala na oddzielenie jej od zanieczyszczeń, które nie krystalizują w tych samych warunkach. Krystalizacja jest szczególnie istotna w przemyśle chemicznym oraz farmaceutycznym, gdzie czystość substancji jest kluczowym wymogiem. Przykładem zastosowania krystalizacji jest produkcja soli kuchennej, gdzie rozpuszczona sól w wodzie zostaje wykrystalizowana przy odparowywaniu wody. W laboratoriach krystalizacja jest także wykorzystywana do oczyszczania związków organicznych, co jest zgodne z najlepszymi praktykami w zakresie analizy chemicznej oraz syntezy związków chemicznych.

Pytanie 19

Jaką metodą nie można rozdzielać mieszanin?

A. ekstrakcja
B. aeracja
C. krystalizacja
D. chromatografia
Aeracja to proces, który nie jest metodą rozdzielania mieszanin, lecz techniką stosowaną w różnych dziedzinach, takich jak oczyszczanie wody czy hodowla ryb, w celu wzbogacenia medium w tlen. Proces ten polega na wprowadzeniu powietrza do cieczy, co ma na celu zwiększenie stężenia tlenu rozpuszczonego w wodzie. Aeracja znajduje zastosowanie w biotechnologii wodnej oraz przy oczyszczaniu ścieków, gdzie tlen jest niezbędny dla organizmów aerobowych, które degradować mogą zanieczyszczenia organiczne. W przeciwieństwie do metod takich jak chromatografia, krystalizacja czy ekstrakcja, które mają na celu separację konkretnych składników z mieszaniny, aeracja koncentruje się na poprawie warunków środowiskowych. Chromatografia jest szeroko stosowana w laboratoriach chemicznych do analizy substancji, krystalizacja służy do oczyszczania substancji chemicznych poprzez tworzenie kryształów, a ekstrakcja umożliwia oddzielenie substancji na podstawie ich różnej rozpuszczalności. Właściwe zrozumienie tych procesów jest kluczowe dla ich efektywnego zastosowania w przemyśle chemicznym i biotechnologii.

Pytanie 20

Sposoby utrwalania i przechowywania próbek wody przeznaczonych do badań fizykochemicznych.
Próbkę wody przeznaczoną do oznaczenia zawartości metali poddaje się utrwalaniu za pomocą

OznaczenieSposób utrwalania i przechowywania
BarwaPrzechowywać w ciemności
MętnośćPrzechowywać w ciemności
TwardośćpH = 3 z użyciem HNO3
OWO0,7 ml HCl/30 ml próbki
ChZTpH 1- 2 z użyciem H2SO4
FosforPrzechowywać w temperaturze 1-5°C
GlinpH 1-2 z użyciem HNO3
ŻelazopH 1-2 z użyciem HNO3
UtlenialnośćpH1-2 z użyciem H2SO4, Przechowywać w ciemności

A. kwasu azotowego(V).
B. kwasu siarkowego(VI).
C. kwasu solnego.
D. kwasu fosforowego(V).
Kwas azotowy(V) (HNO3) jest powszechnie stosowanym środkiem do utrwalania próbek wody przeznaczonych do badań fizykochemicznych, zwłaszcza w kontekście oznaczania metali ciężkich. Działa poprzez stabilizację rozpuszczonych metali, takich jak glin czy żelazo, co jest kluczowe dla uzyskania dokładnych wyników analizy. Utrwalanie próbek przy użyciu HNO3 zapobiega osadzaniu się tych metali oraz ich redystrybucji w czasie transportu i przechowywania próbek. To podejście jest zgodne z wytycznymi przedstawionymi w standardach analitycznych, takich jak ISO 5667, które podkreślają znaczenie odpowiednich metod przygotowania próbek dla rzetelności wyników. Ponadto, kwas azotowy(V) zapewnia odpowiednie pH, co jest istotne dla zachowania stabilności chemicznej analizowanych substancji. W praktyce, stosowanie HNO3 w laboratoriach badawczych jest standardową procedurą, co potwierdzają liczne publikacje naukowe oraz dokumenty normatywne.

Pytanie 21

Do grupy reagentów o szczególnym zastosowaniu nie wlicza się

A. wskaźników
B. rozpuszczalników do chromatografii
C. wodnych roztworów kwasów
D. wzorców
Wodne roztwory kwasów są powszechnie stosowane w laboratoriach chemicznych, jednak nie są klasyfikowane jako odczynniki o specjalnym przeznaczeniu. Odczynniki o specjalnym przeznaczeniu obejmują substancje, które są używane w określonych procesach analitycznych lub badawczych, gdzie ich funkcja jest wysoce wyspecjalizowana. Przykładowo, wzorce są substancjami o znanym składzie, które służą do kalibracji instrumentów pomiarowych oraz weryfikacji wyników analizy. Wskaźniki, z kolei, są używane do wizualizacji zmian pH czy innych parametrów chemicznych w trakcie reakcji. Rozpuszczalniki do chromatografii, takie jak acetonitryl czy etanol, są kluczowe w procesach separacji składników mieszanki. W przeciwieństwie do tych substancji, wodne roztwory kwasów pełnią rolę bardziej ogólną, umożliwiając reakcje chemiczne, ale nie są dedykowane do specyficznych zastosowań analitycznych. Dlatego odpowiedź na pytanie jest poprawna, a zrozumienie różnicy między tymi grupami odczynników jest istotne w kontekście praktyki laboratoryjnej.

Pytanie 22

Jakie jest pH 0,001-molowego roztworu NaOH?

A. 13
B. 3
C. 11
D. 1
pH 0,001-molowego roztworu NaOH wynosi 11, bo NaOH to mocna zasada, która całkowicie rozdziela się w wodzie na jony Na+ i OH-. W takim roztworze stężenie tych jonów OH- to 0,001 mol/L. Jak wyliczysz pOH używając wzoru pOH = -log[OH-], dostaniesz -log(0,001), co równa się 3. Pamiętaj, że jest związek między pH i pOH, który można zapisać jako pH + pOH = 14. Więc pH = 14 - pOH = 14 - 3 = 11. To, jak się to wszystko ze sobą wiąże, ma dużą wagę w chemii analitycznej i w laboratoriach, ponieważ pH pokazuje, czy roztwór jest kwasowy czy zasadowy. W wielu dziedzinach, jak biochemia, farmacja czy inżynieria chemiczna, ta wiedza to podstawa. Na przykład, w neutralizacji i różnych reakcjach chemicznych, kontrola pH może znacząco wpłynąć na skuteczność tych procesów.

Pytanie 23

Na podstawie danych zawartych w tabeli określ, do oznaczania którego parametru próbka musi być utrwalona w niskim pH.

Oznaczany parametrRodzaj naczynia do przechowywaniaSposób utrwalaniaDopuszczalny czas przechowywania
barwaszklane lub polietylenowe- schłodzenie do temperatury 2-5°C24 h
fosforany ogólneszklane lub polietylenowe- zakwaszenie kwasem siarkowym(VI)
- schłodzenie do temperatury 2-5°C
4 h
48 h
BZTszklane- schłodzenie do temperatury 2-5°C
- przechowywanie w ciemności
24 h
azot azotanowy(V)szklane lub polietylenowe- schłodzenie do temperatury 2-5°C
- dodanie 2 cm3 chloroformu do 1 dm3 próbki
24 h
48 h

A. Fosforanów ogólnych.
B. BZT.
C. Azotu azotanowego(V).
D. Barwy.
Analizując niepoprawne odpowiedzi, należy wskazać, że barwy, BZT oraz azot azotanowy(V) nie wymagają zakwaszenia próbki do analizy, co jest kluczowe dla zrozumienia procesu ich oznaczania. Barwy w wodzie są zazwyczaj mierzone za pomocą spektrofotometrii, a więc są one niezależne od pH próbki. W przypadku Biologicznego Zapotrzebowania Tlenu (BZT), próbki są zwykle inkubowane w neutralnym pH, aby zapewnić odpowiednie warunki do rozwoju mikroorganizmów, co jest istotne dla wiarygodności wyników. Azot azotanowy(V), na ogół oznaczany metodami kolorimetrycznymi lub spektroskopowymi, również nie wymaga zakwaszenia; wręcz przeciwnie - zbyt niskie pH może prowadzić do jego konwersji do formy, która nie będzie odpowiednia do analizy. Typowy błąd myślowy związany z tymi odpowiedziami może wynikać z braku zrozumienia specyfiki analizy chemicznych parametrów wody. Każdy z tych parametrów wymaga odmiennych warunków próbki, co jest kluczowe w procesach analitycznych. Niezrozumienie roli pH w analizach chemicznych może prowadzić do niewłaściwych praktyk laboratoryjnych i błędnych wyników, a w konsekwencji do fałszywych wniosków o stanie jakości wód. Dlatego ważne jest, aby zrozumieć, że kontrola pH jest istotna tylko w przypadku niektórych analiz, jak w przypadku fosforanów ogólnych, a nie w kontekście pozostałych parametrów.

Pytanie 24

Na podstawie danych w tabeli próbkę, w której będzie oznaczany BZT, należy przechowywać

Oznaczany parametrRodzaj naczynia do przechowywaniaSposób utrwalaniaDopuszczalny czas przechowywania
barwaszklane lub polietylenowe- schłodzenie do temperatury 2-5°C24 h
fosforany ogólneszklane lub polietylenowe- zakwaszenie kwasem siarkowym(VI)
- schłodzenie do temperatury 2-5°C
4 h
48 h
BZTszklane- schłodzenie do temperatury 2-5°C
- przechowywanie w ciemności
24 h
azot azotanowy(V)szklane lub polietylenowe- schłodzenie do temperatury 2-5°C
- dodanie 2 cm3 chloroformu do 1 dm3 próbki
24 h
48 h

A. w butelce z ciemnego szkła.
B. w metalowym naczyniu.
C. w polietylenowej butelce.
D. w szklanej butelce.
Wybór niewłaściwego materiału do przechowywania próbek do oznaczania BZT może prowadzić do zafałszowania wyników analizy, co jest istotnym problemem w praktykach laboratoryjnych. Przechowywanie próbek w polietylenowej butelce nie jest odpowiednie, ponieważ polietylen może wchodzić w reakcje chemiczne z substancjami obecnymi w próbce, co z kolei może prowadzić do zmiany ich właściwości fizykochemicznych i nieadekwatnych wyników. Metalowe naczynia również nie są zalecane, ponieważ mogą reagować z niektórymi związkami chemicznymi, a ich powierzchnia może prowadzić do adsorpcji substancji, co zniekształca analizowane wartości. Wybór szklanej butelki nie wystarczy, jeśli nie jest to szkło ciemne; przezroczyste szkło nie zapewnia ochrony przed promieniowaniem UV, co prowadzi do degradacji składników próbki. Takie podejście jest sprzeczne z zaleceniami międzynarodowych standardów dotyczących przechowywania próbek w laboratoriach analitycznych, które jasno określają, że próbki wymagają konkretnego typu opakowania, aby uniknąć wpływu światła na ich integralność. Dlatego ważne jest, aby w procesie przechowywania próbek kierować się nie tylko dostępnością materiałów, ale przede wszystkim ich właściwościami chemicznymi i fizycznymi, aby zachować jakość analizy.

Pytanie 25

Jakie zestawienie sprzętu laboratoryjnego wykorzystuje się do filtracji osadów?

A. Zlewka, lejek, trójnóg, tygiel
B. Zlewka, waga, tryskawka, bagietka
C. Zlewka, lejek, waga, bagietka
D. Zlewka, lejek, statyw, bagietka
Wybór zestawu sprzętu laboratoryjnego do sączenia osadów jest kluczowy dla efektywności procesu filtracji. W przypadku poprawnej odpowiedzi, czyli zestawu składającego się ze zlewki, lejka, statywu i bagietki, każdy z tych elementów odgrywa istotną rolę. Zlewka służy do przechowywania cieczy, która ma być filtrowana, natomiast lejek ułatwia skierowanie tej cieczy do naczynia filtracyjnego, co zwiększa wydajność procesu. Statyw zapewnia stabilność i bezpieczeństwo podczas pracy z lejkiem, co jest niezwykle ważne, aby uniknąć rozlania cieczy. Bagietka natomiast umożliwia precyzyjne dozowanie cieczy, co jest istotne w przypadku pracy z substancjami chemicznymi. Przykładem zastosowania tego zestawu może być filtracja roztworów w chemii analitycznej, gdzie osady muszą być oddzielone od cieczy w celu dalszej analizy. W kontekście standardów laboratoryjnych, korzystanie z tego zestawu jest zgodne z dobrymi praktykami, które podkreślają znaczenie precyzyjnych i bezpiecznych metod pracy.

Pytanie 26

Na ilustracji zobrazowano urządzenie do

A. sublimacji
B. destylacji przy obniżonym ciśnieniu
C. rektyfikacji
D. destylacji pod ciśnieniem atmosferycznym
Destylacja pod zmniejszonym ciśnieniem jest techniką, która służy do separacji składników przy niższych temperaturach, co jest korzystne dla substancji wrażliwych na wysokie temperatury, ale nie jest odpowiednia w kontekście zastanawiania się nad destylacją w warunkach atmosferycznych. Takie podejście może prowadzić do mylnych wniosków, zwłaszcza gdy mówimy o substancjach, które nie powinny być poddawane wysokim temperaturze ze względu na ryzyko rozkładu. Rektyfikacja, z drugiej strony, to proces bardziej skomplikowany, który wymaga stosowania kolumny rektyfikacyjnej i jest używany do uzyskiwania bardzo czystych frakcji ze złożonych mieszanin, co znacznie różni się od prostszej destylacji. Z kolei sublimacja, czyli przejście substancji ze stanu stałego w gazowy bez przechodzenia przez stan ciekły, jest zupełnie odmiennym procesem, stosowanym głównie w przypadku substancji takich jak jod czy nafta. Typowym błędem jest mylenie tych procesów, ponieważ każdy z nich ma swoje specyficzne zastosowania, warunki i cele. Zrozumienie różnic między tymi technikami jest kluczowe dla efektywnego planowania eksperymentów i procesów przemysłowych, a także dla bezpieczeństwa w laboratoriach chemicznych.

Pytanie 27

Skuteczny środek do osuszania

A. powinien być rozpuszczalny w cieczy, która jest suszona.
B. nie powinien przyspieszać rozkładu suszonej substancji.
C. powinien działać wolno.
D. powinien wchodzić w reakcję z substancją suszoną i nie prowadzić do jej utlenienia.
Wybór środka suszącego wymaga zrozumienia jego funkcji oraz potencjalnych skutków, jakie może wywołać w procesie suszenia. Odpowiedź sugerująca, że dobry środek suszący powinien suszyć powoli, nie bierze pod uwagę, że szybkość procesu suszenia jest często kluczowa w wielu zastosowaniach. W praktyce, wolne suszenie może prowadzić do nieefektywności, a w przypadkach, takich jak suszenie materiałów biologicznych, może sprzyjać rozwojowi mikroorganizmów. Dlatego odpowiednie środki suszące powinny zapewniać optymalną szybkość suszenia, co jest zgodne z zasadami inżynierii materiałowej. Inną nieprawidłową koncepcją jest twierdzenie, iż środek suszący powinien reagować z substancją suszoną. Takie podejście prowadzi do niepożądanych interakcji, które mogą zmieniać chemiczną strukturę materiału, co jest nie do zaakceptowania w przemyśle spożywczym czy farmaceutycznym, gdzie jakakolwiek zmiana składu chemicznego może mieć poważne konsekwencje zdrowotne. Ponadto, stwierdzenie, że środek suszący powinien rozpuszczać się w cieczy suszonej, jest błędne, ponieważ substancje te powinny działać na zasadzie adsorpcji, a nie rozpuszczania, aby skutecznie usunąć wilgoć z materiału. Te błędne założenia często wynikają z mylnego postrzegania roli środków suszących i ich interakcji z substancjami, co prowadzi do nieefektywności procesów technologicznych.

Pytanie 28

Jakie jest stężenie procentowe roztworu uzyskanego poprzez rozpuszczenie 25 g jodku potasu w 100 cm3 destylowanej wody (o gęstości 1 g/cm3)?

A. 20%
B. 75%
C. 25%
D. 2,5%
Stężenie procentowe roztworu obliczamy jako stosunek masy rozpuszczonej substancji (w tym przypadku jodku potasu) do całkowitej masy roztworu, wyrażony w procentach. W naszym przypadku mamy 25 g jodku potasu rozpuszczonego w 100 cm³ wody. Gęstość wody wynosi 1 g/cm³, co oznacza, że 100 cm³ wody ma masę 100 g. Całkowita masa roztworu wynosi więc 25 g (masy jodku potasu) + 100 g (masy wody) = 125 g. Stężenie procentowe obliczamy jako: (masa rozpuszczonej substancji / masa roztworu) × 100%, co daje (25 g / 125 g) × 100% = 20%. Takie obliczenia są niezwykle istotne w chemii analitycznej, gdzie dokładne stężenia roztworów są kluczowe w różnych zastosowaniach, takich jak przygotowywanie odczynników czy analiza jakościowa i ilościowa substancji chemicznych.

Pytanie 29

Ile węglanu sodu trzeba odmierzyć, aby uzyskać 200 cm3 roztworu o stężeniu 8% (m/v)?

A. 9,6 g
B. 16,0 g
C. 8,0 g
D. 1,6 g
Aby obliczyć masę węglanu sodu (Na2CO3) potrzebną do przygotowania 200 cm³ roztworu o stężeniu 8% (m/v), możemy zastosować podstawowe wzory chemiczne. Stężenie masowe (m/v) odnosi się do masy substancji rozpuszczonej w jednostce objętości roztworu. W przypadku 8% roztworu oznacza to, że w 100 cm³ roztworu znajduje się 8 g węglanu sodu. Dla 200 cm³ roztworu odpowiednia masa wynosi zatem 8 g x 2 = 16 g. W kontekście praktycznym, przygotowanie roztworów o określonym stężeniu jest kluczowe w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne pomiary są wymagane dla zapewnienia jakości produktów. Na przykład, w analizach chemicznych czy syntezach, właściwe przygotowanie roztworów z odpowiednimi stężeniami ma zasadnicze znaczenie dla uzyskania powtarzalnych i dokładnych wyników. Zgodnie z dobrymi praktykami laboratoryjnymi, zawsze należy stosować odpowiednie metody ważeń oraz kalibracji sprzętu, aby zapewnić dokładność i wiarygodność uzyskanych wyników.

Pytanie 30

Z uwagi na higroskopijne właściwości tlenku fosforu(V) powinien on być przechowywany w warunkach bez dostępu

A. powietrza
B. tlenu
C. ciepła
D. światła
Tlenek fosforu(V), czyli P2O5, ma naprawdę mocne właściwości higroskopijne, więc potrafi wciągać wilgoć z otoczenia. Dlatego najlepiej trzymać go w suchym miejscu, z dala od powietrza – to ważne, żeby nie doszło do reakcji z wodą, bo wtedy może stracić swoje właściwości. Jak jest za wilgotno, P2O5 może zacząć tworzyć kwas fosforowy, a to zmienia jego charakterystykę i może być problem, gdy chcesz go używać. Ten związek jest często stosowany w produkcji nawozów fosforowych oraz w chemii organicznej, a także w procesach suszenia. Dlatego w chemii ważne są dobre praktyki przechowywania takich substancji, czyli hermetyczne pakowanie i osuszacze. Wiedza o tym, jak prawidłowo składować tlenek fosforu(V), jest kluczowa, żeby zachować jego jakość i skuteczność w różnych zastosowaniach, zarówno przemysłowych, jak i laboratoryjnych.

Pytanie 31

Opis w ramce przedstawia sposób oczyszczania substancji poprzez

Próbke substancji stałej należy umieścić w kolbie kulistej, zaopatrzonej w chłodnicę zwrotną, dodać rozpuszczalnika - etanolu i delikatnie ogrzewać do wrzenia. Po lekkim ostudzeniu dodać do roztworu niewielką ilość węgla aktywnego, zagotować i przesączyć na gorąco. Przesącz pozostawić do ostygnięcia, a wydzielony osad odsączyć pod zmniejszonym ciśnieniem, przemyć niewielką ilością rozpuszczalnika, przenieść na szalkę, pozostawić do wyschnięcia, a następnie zważyć.

A. krystalizację.
B. ekstrakcję.
C. destylację.
D. sublimację.
Destylacja, ekstrakcja, sublimacja i krystalizacja to różne techniki separacji substancji, które często są mylone ze względu na ich podobieństwa, ale zasadniczo różnią się mechanizmem działania. Destylacja polega na wykorzystaniu różnicy temperatur wrzenia substancji, co pozwala na oddzielenie cieczy o różnych punktach wrzenia. W kontekście oczyszczania substancji, destylacja jest skuteczna, kiedy substancje mają znacznie różniące się temperatury wrzenia, co nie jest celem procesu opisanego w pytaniu. Ekstrakcja z kolei opiera się na rozpuszczalności różnych substancji w różnych rozpuszczalnikach, ale nie prowadzi do uzyskania czystych kryształów, jak w przypadku krystalizacji. Sublimacja, czyli przejście substancji ze stanu stałego w gazowy, a następnie z powrotem w stały, również nie jest odpowiednia w tym kontekście, ponieważ dotyczy tylko substancji, które mogą sublimować, a nie wszystkich substancji chemicznych. Typowym błędem myślowym jest założenie, że wszystkie procesy oczyszczania prowadzą do uzyskania czystych substancji w formie stałej, co nie jest prawdą. Znajomość różnic pomiędzy tymi procesami jest kluczowa dla skutecznego stosowania technik oczyszczania w laboratoriach i przemyśle chemicznym. Dlatego ważne jest, aby rozróżniać te metody i stosować je w odpowiednich sytuacjach.

Pytanie 32

Wykorzystując pipetę gazową, pobrano próbkę azotu (Mn2 = 28 g/mol) o objętości 250 cm3 w standardowych warunkach. Jaką masę ma zmierzony azot?

A. 1,5635 g
B. 0,1563 g
C. 3,1250 g
D. 0,3125 g
Odpowiedź 0,3125 g jest prawidłowa, ponieważ można ją obliczyć za pomocą wzoru na masę gazu w warunkach normalnych. W warunkach normalnych (0°C i 1 atm) 1 mol gazu zajmuje objętość 22,4 litra (22400 cm³). Mając objętość 250 cm³, możemy obliczyć ilość moli azotu: n = V / V_m, gdzie V_m to objętość molowa gazu. Zatem n = 250 cm³ / 22400 cm³/mol = 0,01116 mol. Następnie, wykorzystując masę molową azotu (28 g/mol), obliczamy masę: m = n * M, co daje m = 0,01116 mol * 28 g/mol = 0,3125 g. W laboratoriach chemicznych, dokładne pomiary masy gazów są kluczowe, szczególnie w reakcjach, które wymagają precyzyjnych ilości reagentów. Zastosowanie pipet gazowych oraz znajomość zależności między objętością, ilością moli a masą jest fundamentalne w analityce chemicznej oraz w syntezach chemicznych, gdzie precyzja wpływa na wyniki eksperymentów oraz ich powtarzalność.

Pytanie 33

Podczas przygotowywania roztworów buforowych do analizy pH w laboratorium istotne jest, aby:

A. Przygotować bufor wyłącznie z wody kranowej.
B. Dokładnie odmierzyć masy składników i rozpuścić je w określonej objętości wody destylowanej.
C. Zmierzyć pH po przypadkowym zmieszaniu soli i kwasu.
D. Dodać soli buforowej do dowolnej ilości wody.
Prawidłowo przygotowany roztwór buforowy wymaga bardzo precyzyjnego odmierzania mas poszczególnych składników, jak również dokładnego uzupełnienia do ściśle określonej objętości, zwykle za pomocą wody destylowanej. To jest kluczowe, bo nawet niewielkie odchylenia od zalecanych proporcji mogą skutkować zmianą wartości pH, a co za tym idzie – błędami w analizie. Woda destylowana zapobiega wprowadzeniu dodatkowych jonów, które mogłyby zakłócić działanie buforu i zafałszować wyniki badania pH. Takie postępowanie to podstawa profesjonalnej praktyki laboratoryjnej, opisana w każdej instrukcji doświadczalnej oraz zgodna z normami branżowymi. Z mojego doświadczenia wynika, że najczęściej popełnianym błędem przez początkujących jest bagatelizowanie dokładności – czasem wydaje się, że 'odrobinę więcej' lub 'trochę mniej' nie zrobi różnicy, ale w chemii analitycznej nie ma miejsca na takie uproszczenia. Dobrze przygotowany bufor to podstawa wiarygodnych wyników, a sumienne przygotowanie odczynników świadczy o kompetencji laboranta.

Pytanie 34

Proces nitrowania najczęściej realizuje się, stosując organiczny substrat

A. stężonym kwasem azotowym(V)
B. mieszaniną kwasów azotowego(V) oraz solnego
C. mieszaniną kwasów azotowego(V) oraz siarkowego(VI)
D. rozcieńczonym kwasem azotowym(V)
Reakcja nitrowania to proces chemiczny, w którym do organicznych substratów wprowadza się grupy nitrowe (-NO2). Najczęściej stosowaną metodą tego procesu jest użycie mieszaniny kwasów azotowego(V) i siarkowego(VI). Kwas azotowy(V) jest źródłem grupy nitrowej, natomiast kwas siarkowy(VI) działa jako czynnik osuszający, wspomagając reaktywność kwasu azotowego. W praktyce nitrowanie jest kluczowym etapem w syntezie wielu związków organicznych, takich jak barwniki, leki oraz środki wybuchowe. Na przykład, proces ten jest stosowany w produkcji nitrobenzenu, który jest istotnym prekursorem w syntezie chemikaliów przemysłowych. Dzięki dobrze kontrolowanym warunkom reakcji, można uzyskać wysokie wydajności oraz selektywność w nitrowaniu, co jest zgodne z dobrymi praktykami w chemii organicznej. Odpowiednia kontrola temperatury i stężenia reagentów jest niezbędna, aby uniknąć niepożądanych reakcji ubocznych, co jest kluczowe w przemyśle chemicznym.

Pytanie 35

Próbka wzorcowa to próbka

A. o dokładnie znanym składzie
B. otrzymana w wyniku zmieszania próbek jednostkowych
C. przeznaczona w całości do jednego oznaczenia
D. przygotowana z próbki laboratoryjnej przez jej zmniejszenie
Próbka wzorcowa to próbka o dokładnie znanym składzie, co czyni ją kluczowym elementem w procesach analitycznych. W analizie chemicznej i badaniach laboratoryjnych próbki wzorcowe są niezbędne do kalibracji instrumentów pomiarowych, a także do walidacji metod analitycznych. Przykładem może być stosowanie standardów w technikach spektroskopowych, gdzie próbki wzorcowe pozwalają na uzyskanie precyzyjnych wyników pomiarów. Zgodnie z normami ISO, próbki wzorcowe powinny być przygotowane z najwyższą starannością, aby zminimalizować błędy pomiarowe. W praktyce, ich zastosowanie obejmuje również monitorowanie jakości procesu produkcyjnego, co pozwala na wykrywanie potencjalnych nieprawidłowości. Stosowanie próbki wzorcowej jest również zgodne z dobrymi praktykami laboratoryjnymi (GLP), które podkreślają znaczenie znanego składu prób w zapewnieniu wiarygodności wyników i umożliwieniu ich porównywalności. Dlatego też, rozwiązując problemy analityczne, znajomość i umiejętność wykorzystania próbek wzorcowych jest niezbędna dla każdego specjalisty w dziedzinie analizy chemicznej i biologicznej.

Pytanie 36

Podczas pobierania skoncentrowanego roztworu kwasu solnego konieczne jest pracowanie w włączonym dygestorium oraz zastosowanie

A. fartucha, okularów ochronnych, rękawic odpornych na kwasy
B. rękawic odpornych na kwasy, maski ochronnej
C. fartucha, okularów ochronnych, maski ochronnej, rękawic lateksowych
D. okularów ochronnych, rękawic lateksowych, maski ochronnej
Wybór fartucha, okularów ochronnych i rękawic kwasoodpornych podczas pracy z kwasem solnym to naprawdę dobry ruch. Fartuch to podstawa, bo chroni skórę przed kontaktem z tym żrącym cudem. Nie chciałbym, żebyś miał jakieś poparzenia... Okulary ochronne też są super ważne, bo jak coś się rozprysknie, to lepiej mieć oczy w bezpieczeństwie, a kwas solny może być naprawdę niebezpieczny dla wzroku. Rękawice, zwłaszcza te kwasoodporne, są konieczne, bo zwykłe lateksowe mogą nie wytrzymać kontaktu z tak mocnymi kwasami. W laboratoriach chemicznych zawsze korzysta się z takich zasad, żeby ograniczyć ryzyko wypadków. I pamiętaj, że dobre jest też pracować pod dygestorium – to dodatkowo chroni przed szkodliwymi oparami.

Pytanie 37

Zgodnie z zasadami BHP w laboratorium, po zakończeniu pracy z odczynnikami chemicznymi należy:

A. Zamknąć szczelnie pojemniki z odczynnikami, posegregować odpady chemiczne zgodnie z instrukcjami i dokładnie umyć stanowisko pracy.
B. Wszystkie nieużyte odczynniki pozostawić na stole roboczym.
C. Wylać pozostałości odczynników do zlewu niezależnie od ich rodzaju.
D. Zostawić otwarte pojemniki i natychmiast opuścić laboratorium.
Prawidłowe postępowanie po zakończeniu pracy z odczynnikami chemicznymi w laboratorium opiera się na kilku kluczowych zasadach bezpieczeństwa i higieny pracy. Po pierwsze, zawsze należy szczelnie zamknąć pojemniki z używanymi chemikaliami, aby uniknąć parowania, przypadkowego kontaktu oraz zanieczyszczenia powietrza szkodliwymi substancjami. To ważne nie tylko dla zdrowia pracowników, ale też dla ochrony środowiska. Następnie wszelkie odpady chemiczne muszą być posegregowane i zutylizowane zgodnie z obowiązującymi przepisami – nie wolno ich wylewać do zlewu czy pozostawiać na stanowisku. Wreszcie, dokładne umycie stanowiska pracy to nie tylko kwestia estetyki, ale też bezpieczeństwa: resztki substancji mogą powodować nieprzewidywalne reakcje lub narazić kolejne osoby korzystające z tego miejsca. Moim zdaniem, takie podejście minimalizuje ryzyko wypadków i sprawia, że praca w laboratorium jest bardziej przewidywalna. W praktyce, nawet jeśli jesteśmy zmęczeni po długim dniu eksperymentów, warto poświęcić te kilka minut na sprzątnięcie, bo to się po prostu opłaca – dla nas i dla innych. To standard nie tylko w szkołach i uczelniach, ale też w profesjonalnych laboratoriach chemicznych na całym świecie.

Pytanie 38

Którą z poniższych czynności należy wykonać, aby zapewnić wysoką dokładność pomiaru masy substancji podczas przygotowywania próbki do analizy chemicznej?

A. Wystarczy ważyć substancję na zwykłej wadze kuchennej.
B. Zastosować wagę analityczną o dokładności do 0,1 mg.
C. Użyć linijki do określenia objętości substancji.
D. Pominąć etap ważenia przy sporządzaniu roztworu.
Dokładność pomiaru masy substancji chemicznych ma kluczowe znaczenie w analizie laboratoryjnej. Użycie wagi analitycznej o dokładności do 0,1 mg jest standardem wszędzie tam, gdzie wymagane są precyzyjne oznaczenia ilościowe. Wagi analityczne mają specjalną konstrukcję – są zamknięte w osłonie przeciwwiatrowej, mają bardzo czułe mechanizmy i są regularnie kalibrowane, co minimalizuje wpływ czynników zewnętrznych takich jak drgania czy ruchy powietrza. Tak wysoka dokładność pozwala na ważenie nawet niewielkich ilości substancji, co jest często niezbędne przy pracy z odczynnikami o wysokiej aktywności lub kosztownych standardach. W praktyce zawodowej takie podejście pozwala uniknąć błędów systematycznych, które mogłyby zafałszować wyniki analizy i doprowadzić do nieprawidłowych wniosków. Stosowanie wag analitycznych jest opisane w normach branżowych i podręcznikach dla laborantów. Moim zdaniem, bez tej dokładności nie da się mówić o profesjonalnym przygotowaniu próbek. Warto też pamiętać, że nawet drobne różnice masy mogą mieć duże znaczenie przy przygotowywaniu roztworów wzorcowych czy analitycznych, dlatego nie ma tu miejsca na półśrodki.

Pytanie 39

Resztki szkła, osadników czy inne odpady stałe powstałe w laboratorium analitycznym powinny być umieszczone

A. w szklanych słoikach z plastikowym wieczkiem
B. w kartonowych opakowaniach
C. w workach z polietylenu i oznaczyć zawartość
D. w pojemnikach na odpady komunalne
Umieszczanie odpadów stałych typu resztki sączków oraz zbitego szkła w pojemnikach na odpady komunalne jest zgodne z obowiązującymi normami i regulacjami dotyczącymi gospodarki odpadami. Tego rodzaju odpady, ze względu na swoje właściwości, powinny być segregowane i składowane w odpowiednich pojemnikach, które są przystosowane do tego celu. Zgodnie z dyrektywami unijnymi i krajowymi, odpady te nie mogą być wrzucane do ogólnych pojemników, ponieważ mogą stwarzać zagrożenie dla ludzi oraz środowiska. Na przykład, zbite szkło w laboratoriach analitycznych wymaga szczególnej uwagi, ponieważ może powodować urazy. Praktyczne podejście do zarządzania tymi odpadami obejmuje nie tylko ich odpowiednie pakowanie, ale także prowadzenie dokumentacji dotyczącej ich pochodzenia i rodzaju. Odpowiednia segregacja i składowanie odpadów są kluczowe dla ich późniejszego przetwarzania oraz recyklingu, co pozwala na minimalizację negatywnego wpływu na środowisko i zdrowie publiczne.

Pytanie 40

Które równanie przedstawia reakcję otrzymywania mydła?

CH3COOH + NaOH →CH3COONa + H2O
2 CH3COOH + Na2O →2 CH3COONa + H2O
2 C2H5COOH + 2 Na →2 C2H5COONa + H2
C17H35COOH + NaOH →C17H35COONa + H2O

A. 2 CH3COOH + Na2O → 2 CH3COONa + H2O
B. 2 C2H5COOH + 2 Na → 2 C2H5COONa + H2↑
C. CH3COOH + NaOH → CH3COONa + H2O
D. C17H35COOH + NaOH → C17H35COONa + H2O
No, ta reakcja, którą podałeś, to super przykład zmydlania, a więc procesu, w którym kwasy tłuszczowe reagują z zasadami, w tym przypadku z wodorotlenkiem sodu. Z tego powodu powstaje sól kwasu tłuszczowego, czyli mydło, a przy okazji mamy jeszcze wodę. Zmydlanie to absolutny must-have w produkcji mydeł, które wszyscy używamy w domach czy w kosmetykach. Przykład? Naturalne mydła, które można robić z olejów, np. kokosowego albo oliwy z oliwek. Ważne, żeby trzymać się dobrych proporcji kwasu tłuszczowego do zasady, bo to wpływa na to, jak twarde będzie mydło, jak się pieni i jak nawilża. Zmydlanie jest też ważnym procesem w chemii, bo używa się go do produkcji różnych substancji chemicznych. Jak widać, to istotna sprawa!