Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik technologii chemicznej
  • Kwalifikacja: CHM.02 - Eksploatacja maszyn i urządzeń przemysłu chemicznego
  • Data rozpoczęcia: 3 maja 2025 16:17
  • Data zakończenia: 3 maja 2025 16:19

Egzamin niezdany

Wynik: 3/40 punktów (7,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Rozpoczęcie analizy stężenia jonów Cu2+ w rozcieńczonych próbkach wody metodą spektrometrii atomowej powinno nastąpić od przygotowania krzywej wzorcowej?

A. stężeniowej
B. polarograficznej
C. amperometrycznej
D. adsorpcyjnej
Odpowiedzi amperometryczna, adsorpcyjna oraz polarograficzna są niewłaściwe w kontekście analizy stężenia jonów Cu<sup>2+</sup>. Metoda amperometryczna polega na pomiarze prądu w odpowiedzi na potencjał aplikowany do elektrody, co nie jest bezpośrednio związane z pomiarem absorbancji, jak ma to miejsce w spektrometrii atomowej. Zastosowanie tej metody do analizy stężenia jonów wymagałoby dodatkowych kroków, takich jak kalibracja elektrody, co nie jest typowe dla spektrometrii atomowej. Adsorpcja to proces chemiczny, w którym cząsteczki są przyciągane do powierzchni materiału – nie jest to metoda analityczna, lecz zjawisko fizykochemiczne, które może wpływać na wyniki pomiarów, ale nie jest to podejście do konstrukcji krzywej wzorcowej. Z kolei polarografia, jako technika analityczna, również opiera się na pomiarze prądu i potencjału, co czyni ją nieadekwatną do analizy spektroskopowej. Często popełnianym błędem jest mylenie tych metod z techniką, która rzeczywiście odpowiada za dokonanie pomiarów w spektrometrii atomowej. W praktyce, aby uzyskać wiarygodne i precyzyjne wyniki, należy skupić się na metodzie, która najlepiej odpowiada specyfice analizy, w tym przypadku stężeniowej, co jest kluczowe dla prawidłowej interpretacji wyników.

Pytanie 2

W kolumnie próżniowej w procesie destylacji rurowo-wieżowej zyskuje się frakcje olejowe o temperaturach wrzenia 220÷380 °C. Co pół godziny powinno się zanotować w dzienniku monitoringu?

A. ciśnienia i temperatury
B. objętości zebranych frakcji
C. tylko ciśnienia
D. tylko temperatury
Prawidłowa odpowiedź to wpisywanie zarówno ciśnienia, jak i temperatury, ponieważ obie te wartości są kluczowe w procesie monitorowania destylacji rurowo-wieżowej. Wartości te pozwalają na ocenę efektywności procesu separacji frakcji olejowych. Ciśnienie wpływa na temperaturę wrzenia substancji, a zmiany w zarówno ciśnieniu, jak i temperaturze mogą wskazywać na odchylenia od normy. Przykładowo, w procesie destylacji, zwiększenie ciśnienia może prowadzić do podwyższenia temperatury wrzenia, co może zmodyfikować charakterystykę odbieranych frakcji. W praktyce, monitorowanie tych parametrów jest zgodne z zasadami dobrej praktyki inżynieryjnej, a regularne zapisywanie ich wartości co pół godziny pozwala na szybką reakcję w przypadku wystąpienia anomalii, co jest kluczowe dla zapewnienia bezpieczeństwa i efektywności produkcji. W przypadku systemów automatycznego monitorowania, dane te mogą być również wykorzystywane do analizy wydajności procesu oraz optymalizacji warunków operacyjnych.

Pytanie 3

Zastosowanie transportera pneumatycznego do przewozu zbrylonego, wilgotnego materiału ziarnistego może wywołać

A. obniżenie ciśnienia ssania
B. podwyższenie ciśnienia w przewodzie ssącym
C. zator w przewodzie oraz awarię ssawy
D. kruszenie brył materiału
Kiedy używamy transportera pneumatycznego do przewożenia wilgotnego, zbrylonego materiału ziarnistego, możemy napotkać różne problemy, takie jak zatykanie przewodów czy awarie ssawy. Materiał, gdy jest wilgotny, ma tendencję do sklejania się, co prowadzi do powstawania brył. Te bryły mogą zablokować transport i spowodować, że ssawa będzie działać zbyt mocno, co z kolei zwiększa ryzyko uszkodzeń. Z mojego doświadczenia, bardzo ważne jest, aby dobierać transporter odpowiednio do rodzaju materiału, który przewozimy. W przypadku wilgotnych materiałów warto pomyśleć o dodatkowych urządzeniach do rozdrabniania lub suszenia przed transportem. Dobre praktyki inżynieryjne, jak chociażby przestrzeganie norm ISO dotyczących transportu pneumatycznego, mogą uchronić nas przed poważnymi problemami. No i regularne przeglądy sprzętu też są nie do pominięcia, bo mogą naprawdę zmniejszyć ryzyko zatorów.

Pytanie 4

Jaką powinna mieć przybliżoną temperaturę czynnik grzewczy dostarczany do wyparki Roberta, w której zachodzi proces zatężania roztworu o temperaturze wrzenia 86°C?

A. W okolicach 88°C
B. W okolicach 75°C
C. W okolicach 140°C
D. W okolicach 120°C
Temperatura czynnika grzewczego, który leci do wyparki Roberta, powinna być w okolicach 88°C. To jest blisko temperatury wrzenia roztworu, co sprawia, że cały proces zatężania działa lepiej. Kluczowe jest, by ta temperatura była wystarczająco wysoka, bo wtedy rozpuszczalnik odparowuje, ale nie może być za wysoka, bo to może prowadzić do intensywnego wrzenia, a to z kolei powoduje różne straty. No i też zmniejsza efektywność całego procesu. Trzymanie się temperatury blisko 88°C to jakby najlepsze warunki do pracy. W przemyśle chemicznym i farmaceutycznym często widzi się takie temperatury w procesach zatężania, żeby wszystko szło gładko i produkt był dobrej jakości. Pamiętaj, że kontrola temperatury to mega ważna rzecz, zgodna z zasadami dobrych praktyk produkcyjnych (GMP), które mówią, że trzeba monitorować i regulować parametry procesu, bo to naprawdę ważne dla jakości końcowego produktu.

Pytanie 5

Jakie są zasady bieżącej kontroli pracy płaszczowo-rurowego wymiennika ciepła?

A. Na weryfikacji szczelności połączeń rur w dnie sitowym
B. Na regulacji temperatury czynnika grzewczego/chłodzącego
C. Na analizowaniu twardości wody w wymienniku
D. Na regulacji ilości par odprowadzanych do skraplacza

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Bieżąca kontrola pracy płaszczowo-rurowego wymiennika ciepła polega głównie na regulacji temperatury czynnika grzewczego lub chłodzącego, co jest kluczowe dla efektywności wymiany ciepła. Utrzymanie właściwej temperatury czynnika pozwala na zoptymalizowanie transferu ciepła pomiędzy obiegiem a wymiennikiem, co przekłada się na oszczędności energetyczne oraz minimalizację zużycia mediów. Dobrą praktyką jest monitorowanie parametrów operacyjnych, takich jak temperatura i ciśnienie, co pozwala na szybką reakcję w przypadku jakichkolwiek odchyleń od norm. Przykładem zastosowania tej wiedzy może być przemysł chemiczny, w którym stała kontrola temperatury czynnika chłodzącego jest krytyczna dla stabilności procesu produkcyjnego. Warto również wspomnieć, że zgodnie z normą ASME, regularne przeglądy i kalibracje czujników temperatury są niezbędne dla zapewnienia bezpiecznego i efektywnego działania wymienników ciepła. Takie podejście przyczynia się do dłuższej żywotności urządzeń oraz zwiększenia efektywności energetycznej instalacji.

Pytanie 6

W celu przygotowania wsadu do komór koksowniczych należy

Mieszanka wsadowa do komór koksowniczych
składa się z różnych gatunków węgla
zawiera 90-95% kawałków o średnicy mniejszej niż 3 mm
zawiera wodę w ilości poniżej 9%
zawiera popiół w ilości poniżej 8%
A. wymieszać w potrzebnych proporcjach węgiel określonych gatunków, przeprowadzić klasyfikację i pełną analizę mieszanki.
B. rozdrobnić i przesiać węgiel różnych gatunków, zarobić olejem na pastę, przeprowadzić granulację i wysuszyć.
C. rozdrobnić i przesiać węgiel różnych gatunków, posortować, podzielić na partie i wysuszyć.
D. rozdrobnić i wymieszać w potrzebnych proporcjach węgiel określonych gatunków, przesiać i wysuszyć otrzymaną mieszankę.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ przygotowanie wsadu do komór koksowniczych wymaga mieszania węgla różnych gatunków w odpowiednich proporcjach, co jest kluczowe dla uzyskania właściwych parametrów technologicznych. Mieszanka powinna mieć zawartość węgla o odpowiedniej frakcji, co zapewnia proces przesiania. Odpowiednie rozdrobnienie węgla do frakcji mniejszej niż 3 mm jest istotne, gdyż umożliwia optymalne spalanie w piecach koksowniczych. Warto zauważyć, że zawartość wody w mieszance nie powinna przekraczać 9%, co jest istotne dla wydajności procesu koksowania. Dodatkowo, niska zawartość popiołu (poniżej 8%) jest również kluczowa, aby uniknąć niepożądanych efektów ubocznych w procesie produkcyjnym. W praktyce, odpowiednie przygotowanie wsadu pozwala na uzyskanie wyższej jakości koksu, co ma bezpośredni wpływ na efektywność produkcyjną oraz jakość finalnych produktów. Dlatego też, kluczowym zagadnieniem w technologii koksowania jest nie tylko dobór odpowiednich gatunków węgla, ale również zapewnienie właściwego procesu technologicznego, co zostało uwzględnione w poprawnej odpowiedzi.

Pytanie 7

Aby przygotować 1 dm3 roztworu o stężeniu 0,1 mol/dm3, potrzeba 6,31 cm3 44% roztworu NaOH. Jaką ilość 44% roztworu NaOH należy zastosować, aby uzyskać 250 cm3 0,1-molowego roztworu?

A. 25,24 cm3
B. 2,16 cm3
C. 1,58 cm3
D. 6,31 cm3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby przygotować 250 cm³ roztworu o stężeniu 0,1 mol/dm³, trzeba najpierw obliczyć ilość moli NaOH, którą chcemy uzyskać. Wzór na obliczenie moli to: moli = stężenie (mol/dm³) × objętość (dm³). Zmieniając 250 cm³ na dm³, otrzymujemy 0,25 dm³. Zatem liczba moli NaOH wynosi: 0,1 mol/dm³ × 0,25 dm³ = 0,025 mol. Teraz musimy obliczyć, ile roztworu 44% NaOH potrzebujemy, aby uzyskać tę ilość moli. W przypadku 44% roztworu NaOH, jego gęstość wynosi około 1,2 g/cm³, co oznacza, że 100 g tego roztworu zawiera około 44 g NaOH. Ilość moli NaOH w 44 g to: 44 g / 40 g/mol (masa molowa NaOH) = 1,1 mol. Zatem w 100 g roztworu mamy 1,1 mola NaOH, co przekłada się na około 0,025 mola, które chcemy uzyskać. Obliczamy objętość potrzebną: 0,025 mol / 1,1 mol/100 g = 2,27 g roztworu. Przeliczając na objętość (używając gęstości), mamy: 2,27 g / 1,2 g/cm³ = 1,89 cm³. Taka objętość roztworu w 44% NaOH odpowiada 1,58 cm³, co jest odpowiedzią prawidłową. W praktyce znajomość tych obliczeń jest kluczowa w laboratoriach chemicznych, gdzie przygotowuje się roztwory o określonym stężeniu.

Pytanie 8

Jakie funkcje pełnią gniotowniki obiegowe z misą ogrzewaną płaszczem parowym w branży chemicznej?

A. Ciągłe rozdrabnianie materiałów wybuchowych
B. Mieszanie pigmentów w masach ceramicznych
C. Mieszanie smoły, asfaltu w trybie okresowym
D. Rozdrabnianie surowców do pieców koksowniczych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gniotowniki obiegowe z misą ogrzewaną płaszczem parowym są istotnym narzędziem w przemyśle chemicznym, szczególnie w procesach związanych z obróbką bitumów, smoły oraz asfaltu. Ich działanie polega na ciągłym mieszaniu materiału w podwyższonej temperaturze, co sprzyja równomiernemu podgrzewaniu i homogenizacji mieszaniny. Tego rodzaju urządzenia pozwalają na efektywne usuwanie lotnych związków oraz zapewniają optymalne warunki dla reakcji chemicznych zachodzących w trakcie przetwarzania tych substancji. W praktyce, gniotowniki te są wykorzystywane do produkcji emulsji asfaltowych, które są kluczowe w budownictwie drogowym. Dzięki zastosowaniu płaszcza parowego można precyzyjnie kontrolować temperaturę, co wpływa na jakość końcowego produktu. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie stosowania odpowiednich urządzeń w procesach produkcyjnych, co zwiększa efektywność oraz bezpieczeństwo operacji.

Pytanie 9

Które podejście jest najbezpieczniejsze w przypadku konieczności czyszczenia zbiornika ciśnieniowego?

A. Dodanie substancji chemicznych bez opróżniania
B. Podniesienie ciśnienia, aby ułatwić czyszczenie
C. Opróżnienie zbiornika i odcięcie od źródeł zasilania
D. Czyszczenie przy pełnym ciśnieniu pracy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przy czyszczeniu zbiornika ciśnieniowego najważniejsze jest bezpieczeństwo. Opróżnienie zbiornika i odcięcie go od źródeł zasilania to podstawowe kroki, które zapewniają minimalizację ryzyka. Przede wszystkim opróżnienie zbiornika eliminuje zagrożenia związane z ciśnieniem wewnętrznym, co jest kluczowe dla ochrony operatorów przed ewentualnymi eksplozjami czy nagłymi wyciekami. Odcięcie źródeł zasilania, takich jak gaz czy ciecz, dodatkowo zabezpiecza przed przypadkowym ponownym ciśnieniem czy dostarczeniem niebezpiecznych substancji do wnętrza zbiornika. Prace konserwacyjne wymagają ścisłego przestrzegania procedur bezpieczeństwa i zgodności z normami, takimi jak normy dotyczące pracy w przestrzeniach zamkniętych i zasad BHP. Dobrą praktyką jest także zapewnienie odpowiedniej wentylacji i użycie odpowiednich narzędzi do czyszczenia, co zwiększa bezpieczeństwo i skuteczność operacji.

Pytanie 10

Jakie czynniki mogą wpływać na korozję materiałów w przemyśle chemicznym?

A. Wysoka wilgotność i agresywne środowisko chemiczne
B. Niska temperatura i niskie ciśnienie
C. Niskie pH i wysoka zawartość soli
D. Wysokie ciśnienie i niska zawartość tlenu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Korozja materiałów to proces, który może być znacząco przyspieszony przez różne czynniki środowiskowe, zwłaszcza w przemyśle chemicznym, gdzie maszyny i urządzenia są narażone na wymagające warunki pracy. Agresywne środowisko chemiczne, na przykład obecność gazów korozyjnych czy cieczy, może prowadzić do różnych form korozji, takich jak korozja chemiczna, elektrochemiczna czy nawet atmosferyczna. Wysoka wilgotność zwiększa przewodnictwo elektrolityczne, co sprzyja reakcjom korozyjnym. W praktyce, urządzenia pracujące w takich warunkach muszą być wykonane z materiałów odpornych na korozję, takich jak stal nierdzewna, oraz dodatkowo zabezpieczone odpowiednimi powłokami antykorozyjnymi. Stosowanie inhibitorów korozji w płynach procesowych także jest dobrą praktyką. Z mojego doświadczenia, regularne monitorowanie stanu technicznego urządzeń i szybka reakcja na pierwsze oznaki korozji są kluczowe dla utrzymania ich długiej żywotności. To wszystko sprawia, że znajomość czynników korozyjnych jest niezbędna dla każdego specjalisty zajmującego się eksploatacją maszyn w przemyśle chemicznym.

Pytanie 11

Jak zgodnie z technologią powinno się dozować mieszaninę nitrującą podczas przeprowadzania procesu nitrowania?

A. Dozować mieszaninę powoli i równomiernie, nie używać mieszadła mechanicznego, mieszać zawartość reaktora przy pomocy bełkotki i pary wodnej
B. Uruchomić mieszadło przed rozpoczęciem procesu, dozować mieszaninę równomiernie, nieustannie intensywnie mieszając zawartość nitratora
C. Dodać mieszaninę nitrującą do reaktora wypełnionego nitrowanym surowcem, a następnie włączyć mieszadło i dokładnie wymieszać zawartość nitratora
D. Dozować mieszaninę powoli i równomiernie, wciąż systematycznie podgrzewając reaktor i cyklicznie włączając mieszadło

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest poprawna, ponieważ zgodnie z zasadami technologicznymi, kluczowym aspektem procesu nitrowania jest zapewnienie równomiernego dozowania mieszaniny nitrującej. Włączenie mieszadła przed rozpoczęciem procesu oraz ciągłe intensywne mieszanie w trakcie dozowania ma na celu zapewnienie odpowiedniej homogeniczności reakcji chemicznej, co jest niezbędne, aby uzyskać stabilne i przewidywalne wyniki. Równomierne dozowanie pozwala na uniknięcie lokalnych zjawisk przegrzewania, które mogą prowadzić do niekontrolowanych reakcji egzotermicznych, a nawet eksplozji. Przykładowo, w przemyśle farmaceutycznym i chemicznym, odpowiednie mieszanie reagentów jest kluczowe dla uzyskania wysokiej jakości produktów. Standardy takie jak ISO 9001 podkreślają znaczenie kontroli procesów, co obejmuje także dobór odpowiednich parametrów mieszania. W praktyce, dobrym przykładem są systemy automatycznego dozowania, które monitorują i regulują szybkość dozowania oraz intensywność mieszania, co zwiększa bezpieczeństwo i efektywność procesu nitrowania.

Pytanie 12

W procesie flotacji nadzór sprawuje się poprzez pobieranie do analizy ruchowej między innymi

A. materiał do flotacji przy użyciu świdra
B. odczynniki flotacyjne za pomocą sondy
C. powietrze z aeratora przy pomocy aspiratora
D. koncentrat po flotacji za pomocą zlewki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'koncentrat po flotacji za pomocą zlewki' jest poprawna, ponieważ monitorowanie procesu flotacji polega na analizie uzyskanego koncentratu, który jest kluczowym wskaźnikiem efektywności tego procesu. Flotacja jest techniką separacji, w której różne składniki mineralne są oddzielane na podstawie ich zdolności do przylegania do pęcherzyków powietrza. Po zakończeniu procesu, próbki koncentratu są pobierane do analizy, aby ocenić jakość i ilość odzyskanego materiału. W praktyce, pobranie próbki za pomocą zlewki pozwala na dokładne i kontrolowane zbadanie właściwości fizykochemicznych koncentratu. To pozwala na dostosowanie parametrów procesu flotacji, takich jak dawki reagentów czy czas kontaktu, w celu optymalizacji wydajności. Standardy branżowe zalecają regularne pobieranie i analizowanie próbek, aby zapewnić, że proces flotacji działa zgodnie z oczekiwaniami i że uzyskiwane wyniki są zgodne z wymaganiami jakościowymi.

Pytanie 13

Jakie kroki należy podjąć po zauważeniu, że uszczelka autoklawu jest zużyta i ciśnienie w urządzeniu stale maleje?
przełożyć ją na drugą stronę.

A. Odkręcić pokrywę urządzenia, opróżnić autoklaw z zawartości, wyjąć zużytą uszczelkę, wyżarzyć ją i zamontować z powrotem
B. Schłodzić urządzenie do temperatury otoczenia, wyrównać ciśnienie, odkręcić pokrywę, wyjąć zużytą uszczelkę i zamontować nową
C. Otworzyć zawór bezpieczeństwa, schłodzić urządzenie do temperatury otoczenia, wyjąć uszczelkę i
D. Wyrównać ciśnienie w autoklawie, zdjąć pokrywę i zamontować nową uszczelkę na gorącą pokrywę

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ postępowanie w sytuacji, gdy uszczelka autoklawu jest zużyta i ciśnienie systematycznie spada, powinno rozpocząć się od ochłodzenia aparatu do temperatury otoczenia. Jest to kluczowe, ponieważ manipulacja przy gorącym autoklawie może prowadzić do oparzeń i innych niebezpieczeństw. Następnie konieczne jest wyrównanie ciśnienia, co jest istotne, aby uniknąć nagłych wybuchów pary wodnej lub innych niebezpiecznych sytuacji. Dopiero po tych krokach można bezpiecznie odkręcić pokrywę autoklawu, wyjąć zużytą uszczelkę i zastąpić ją nową. Wymiana uszczelki jest niezbędna, aby zapewnić odpowiednią szczelność urządzenia, co ma kluczowe znaczenie dla jego prawidłowego działania i bezpieczeństwa. Dobre praktyki w zakresie konserwacji autoklawów podkreślają znaczenie regularnej inspekcji i wymiany uszczelek, co wpływa na efektywność sterylizacji oraz zabezpiecza przed uszkodzeniami sprzętu. Na przykład, w przemyśle medycznym, utrzymanie właściwego funkcjonowania autoklawu jest kluczowe dla zapewnienia bezpieczeństwa pacjentów i skuteczności procedur medycznych.

Pytanie 14

Wykonaj pomiar temperatury, której przewidywana wartość wynosi około 348 K. Jakie powinno być zakres pomiarowy termometru zastosowanego w tym przypadku?

A. 50-100°C
B. -20-+250°C
C. 70-90°C
D. 0-+150°C

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór zakresu 50-100°C jest jak najbardziej na miejscu, bo temperatura, której potrzebujemy, to około 348 K, co przekłada się na 75°C. Wybierając termometr z takim zakresem, mamy pewność, że pomiar będzie dokładny i bezpieczny. Gdybyśmy zdecydowali się na termometr z zakresu -20 do 250°C, mogłoby to prowadzić do nieprecyzyjnych wyników, zwłaszcza w niższych temperaturach. Z tego, co wiem, termometry najlepiej działają w swoich optymalnych zakresach. Jak to często bywa, sprzęt wykorzystywany w laboratoriach lub przemyśle musi być dobrze dobrany do warunków, żeby wyniki były rzetelne. Dobrą praktyką jest również zostawić sobie margines bezpieczeństwa w zakresie pomiarowym, dlatego wybór 50-100°C jest sensowny. Dzięki temu możemy uniknąć uszkodzeń urządzenia, gdyby temperatura podeszła zbyt blisko granicy jego działania.

Pytanie 15

Przy konserwacji pompy membranowej, na co należy zwrócić szczególną uwagę?

A. Stan membrany i jej szczelność
B. Temperaturę otoczenia
C. Kolor obudowy pompy
D. Grubość rury ssącej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pompa membranowa jest jednym z kluczowych urządzeń w przemyśle chemicznym, a jej prawidłowe działanie zależy w dużej mierze od stanu membrany. Membrana jest głównym elementem roboczym, który odpowiada za przepompowywanie medium. Jej uszkodzenia, takie jak pęknięcia czy nieszczelności, mogą prowadzić do wycieku substancji i spadku efektywności pracy pompy. Dlatego też regularna kontrola stanu membrany i jej szczelności jest niezwykle istotna. Podczas konserwacji należy dokładnie sprawdzić membranę pod kątem mechanicznych uszkodzeń oraz ocenić jej elastyczność. Często stosuje się również testy szczelności, aby upewnić się, że membrana nie przecieka. Pamiętaj, że dbałość o ten element nie tylko przedłuży żywotność pompy, ale również zapewni bezpieczne i efektywne jej użytkowanie. W praktyce, używanie odpowiednich narzędzi i przestrzeganie instrukcji producenta to praktyki, które pomagają utrzymać pompę w dobrym stanie.

Pytanie 16

Jak należy się zachować, jeśli podczas realizacji procesu krystalizacji w krystalizatorze próżniowym nastąpiła awaria pompy próżniowej?

A. Doprowadzić proces do końca, powiadomić brygadzistę o awarii oraz przystąpić do wymiany pompy
B. W czasie pracy krystalizatora podłączyć sprężarkę do układu cyrkulacyjnego
C. Zwiększyć temperaturę prowadzenia procesu dla następnych porcji roztworu
D. Przerwać pracę urządzenia, zgłosić awarię brygadziście i po jej usunięciu włączyć urządzenie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przerwanie pracy urządzenia w przypadku awarii pompy próżniowej jest kluczowym działaniem, aby uniknąć potencjalnych uszkodzeń sprzętu oraz zapewnić bezpieczeństwo procesu. W krystalizatorze próżniowym, pompa próżniowa odgrywa fundamentalną rolę w utrzymaniu odpowiedniego ciśnienia, które jest niezbędne do prawidłowego przebiegu krystalizacji. Jeśli pompa przestaje działać, ciśnienie w krystalizatorze może wzrosnąć, co prowadzi do niekontrolowanego przyrostu temperatury oraz obniżenia jakości kryształów. W takich sytuacjach, zgodnie z dobrymi praktykami branżowymi, należy niezwłocznie zgłosić awarię brygadziście. Istotne jest, aby uniknąć dalszego prowadzenia procesu w uszkodzonym urządzeniu, ponieważ może to doprowadzić do nieodwracalnych uszkodzeń i strat materiałowych. Po usunięciu usterki przez wykwalifikowany personel, urządzenie powinno być uruchomione zgodnie z ustalonymi procedurami, co zapewnia bezpieczeństwo oraz efektywność procesu krystalizacji.

Pytanie 17

Jakie środki należy podjąć, aby zapobiec powstawaniu piany w reaktorze chemicznym?

A. Zmniejszyć ilość katalizatora
B. Zwiększyć temperaturę reakcji
C. Obniżyć ciśnienie w reaktorze
D. Stosować substancje przeciwpieniące

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podczas pracy z reaktorami chemicznymi, kontrola powstawania piany jest kluczowa, zwłaszcza gdy procesy obejmują reakcje intensywnie pieniące się. Jednym z najskuteczniejszych środków jest stosowanie substancji przeciwpieniących. Te związki chemiczne obniżają napięcie powierzchniowe cieczy, co zmniejsza stabilność piany i ułatwia jej rozpad. W praktyce przemysłowej, przeciwpieniacze są stosowane w różnych formach: jako dodatki do cieczy, w postaci aerozoli lub jako stałe. Typowe substancje przeciwpieniące to oleje silikonowe, wyższe alkohole, czy emulsyfikowane oleje mineralne. Ich wybór zależy od specyfiki procesu i rodzaju reakcji chemicznej. Właściwie dobrane substancje mogą znacząco zwiększyć efektywność i bezpieczeństwo procesu produkcyjnego, zapobiegając potencjalnym przestojom i uszkodzeniom sprzętu, jakie mogą być spowodowane nadmiernym pienieniem się. W standardach przemysłowych, takich jak ISO 9001, zwraca się uwagę na kontrolę czynników wpływających na jakość produktu, w tym skuteczne zarządzanie pianą.

Pytanie 18

Jednym z etapów przygotowania maszyn do remontów jest sprawdzenie, które polega na

A. demontażu urządzenia lub aparatu na podzespoły i części składowe
B. określeniu stopnia zużycia urządzenia lub aparatu oraz jego komponentów
C. połączeniu różnych elementów w podzespoły i zespoły zgodnie z wcześniej określonymi wymaganiami technicznymi
D. przywróceniu zużytym elementom odpowiednich wymiarów, kształtów i właściwości przez najczęściej uzupełnienie ubytków

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź wskazuje na kluczowy etap w procesie przygotowania maszyn do remontów, jakim jest weryfikacja. W tym kontekście, określenie stopnia zużycia aparatu lub urządzenia oraz jego elementów pozwala na podjęcie decyzji dotyczących dalszego postępowania, w tym ewentualnych działań naprawczych. Weryfikacja polega na ocenie stanu technicznego sprzętu, co jest zgodne z najlepszymi praktykami w branży, takimi jak regularne przeglądy oraz audyty stanu technicznego. Przykładem zastosowania tej wiedzy może być sytuacja, w której po przeprowadzonej weryfikacji stwierdzono, że pewne elementy wymagają wymiany, co z kolei zapobiega dalszym uszkodzeniom i zwiększa bezpieczeństwo użytkowania maszyny. Zgodnie z normami ISO 9001, procesy takie jak weryfikacja powinny być dokumentowane i analizowane, aby poprawić jakość i efektywność działań serwisowych. Dokładne określenie stopnia zużycia umożliwia także lepsze planowanie budżetu na konserwację oraz remonty.

Pytanie 19

Jakim parametrem dawkowanego materiału powinno się zarządzać podczas obsługi podajnika talerzowego?

A. Granulację.
B. Wilgotność.
C. Skład.
D. Temperaturę.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Granulacja materiału jest kluczowym parametrem w obsłudze podajnika talerzowego, ponieważ wpływa na efektywność dozowania oraz jednorodność mieszanki. Granulacja odnosi się do wielkości cząstek materiału, co ma bezpośredni wpływ na przepływ materiału przez podajnik. Zbyt duże cząstki mogą powodować zatykanie się urządzenia, podczas gdy zbyt małe mogą prowadzić do nieprzewidywalnych wahań w dozowaniu. W praktyce, kontrola granulacji pozwala na optymalne dostosowanie parametrów procesu, co jest zgodne z najlepszymi praktykami w branży. W wielu zakładach produkcyjnych standardem jest regularne monitorowanie granulacji za pomocą analizy sitowej lub sprzętu do pomiaru rozkładu wielkości cząstek. Właściwa granulacja jest także kluczowa w kontekście jakości końcowego produktu, ponieważ wpływa na jego właściwości fizyczne i chemiczne. Na przykład, w przemyśle farmaceutycznym, granulat o odpowiedniej wielkości zapewnia równomierne rozkładanie substancji czynnych w tabletach, co jest niezbędne dla zachowania ich skuteczności.

Pytanie 20

Aby precyzyjnie zmierzyć temperaturę topnienia i krzepnięcia substancji, należy użyć

A. ebuliometr.
B. pirometr optyczny.
C. kriometr.
D. bomba kalorymetryczna.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kriometr jest specjalistycznym narzędziem stosowanym do precyzyjnego oznaczania temperatury topnienia i krzepnięcia substancji. Działa na zasadzie pomiaru zmiany temperatury podczas fazy przejściowej substancji, co pozwala na uzyskanie dokładnych wyników w krótkim czasie. Użycie kriometru jest szczególnie istotne w laboratoriach chemicznych i przemysłowych, gdzie precyzja pomiarów jest kluczowa dla procesów technologicznych oraz badań naukowych. Przykładem zastosowania kriometru może być analiza substancji w przemyśle farmaceutycznym, gdzie dobrze określona temperatura topnienia substancji czynnej jest istotna dla jej jakości i skuteczności. W standardach ASTM i ISO określono metody pomiaru temperatury topnienia przy użyciu kriometrów, co przyczynia się do zapewnienia wysokiej jakości produktów oraz zgodności z regulacjami branżowymi.

Pytanie 21

Po włączeniu mieszadła śmigłowego przyciskiem ON, urządzenie nie rozpoczęło pracy. Jakie czynności należy wykonać w pierwszej kolejności?

A. termin ostatniego serwisu
B. połączenie urządzenia z gniazdkiem sieciowym
C. sprawdzenie poziomu urządzenia
D. ocena stanu urządzenia pod kątem korozji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kiedy próbujesz uruchomić mieszadło śmigłowe i nic się nie dzieje po naciśnięciu przycisku ON, pierwsze co powinieneś sprawdzić, to czy maszyna jest podpięta do gniazdka. To dosyć podstawowa sprawa, ale naprawdę ważna. Zanim zaczniesz grzebać w bardziej skomplikowanych rzeczach, jak sprawdzanie stanu technicznego czy poziomowania, upewnij się, że urządzenie ma prąd. Jeśli nie jest podłączone, to nie ruszy, a wtedy zaczynasz myśleć o poważniejszych problemach, które wcale nie muszą istnieć. Z mojego doświadczenia, zawsze najlepiej zacząć od najprostszych rzeczy, bo to często one są przyczyną problemu. No i nie zapomnij o regularnych przeglądach instalacji elektrycznej – to naprawdę pomoże uniknąć kłopotów. Zgodnie z normami IEC 60204-1, bezpieczne podłączenie do prądu to absolutna podstawa przed używaniem jakiejkolwiek maszyny.

Pytanie 22

Przed przystąpieniem do napełniania otwartego zbiornika na ciecz, należy w pierwszej kolejności zweryfikować

A. stan uszczelek pokrywy i poprawność działania przyrządów kontrolujących ciśnienie w zbiorniku
B. poprawność instalacji elektrycznych oraz stan zabezpieczeń przeciwpożarowych
C. szczelność zbiornika i prawidłowe działanie zaworu bezpieczeństwa
D. szczelność zbiornika i prawidłowe funkcjonowanie urządzenia mierzącego poziom zawartej w nim cieczy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Szczelność zbiornika oraz prawidłowość pracy urządzenia określającego poziom cieczy to kluczowe elementy bezpieczeństwa i efektywności operacji napełniania otwartych zbiorników magazynowych. Szczelność zbiornika zapobiega wyciekom, które mogą prowadzić do strat materiałowych, zanieczyszczenia środowiska oraz zagrożeń dla zdrowia i życia ludzi. W przypadku cieczy niebezpiecznych, takich jak substancje chemiczne, szczególnie istotne jest, aby zbiornik był szczelny, aby uniknąć ich przypadkowego wydostania się na zewnątrz. Urządzenie monitorujące poziom cieczy zapewnia, że zbiornik nie będzie przepełniony, co mogłoby prowadzić do katastrofalnych skutków, takich jak rozlanie substancji. W praktyce, przed napełnieniem zbiornika, należy przeprowadzić inspekcję wizualną oraz testy szczelności, a także regularnie konserwować urządzenia kontrolujące, aby zapewnić ich poprawne działanie. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie systematycznego monitorowania i zarządzania ryzykiem w procesach magazynowania cieczy.

Pytanie 23

Gazy pochodzące z mieszalnika oraz komór produkcyjnych superfosfatu, po absorpcji w wodzie, powinny zostać poddane badaniu na obecność

A. tlenku siarki(IV)
B. tlenku azotu(IV)
C. tlenku fosforu(V)
D. fluorku krzemu(IV)

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Fluorek krzemu(IV) jest związkiem chemicznym, który może powstawać w procesach chemicznych związanych z produkcją superfosfatu. W procesie tym, krzemionka może reagować z kwasami, co prowadzi do uwolnienia fluorku krzemu. Dlatego analiza gazów z mieszalnika i komór produkcyjnych po ich absorpcji w wodzie powinna obejmować detekcję tego niezwykle reaktywnego związku. Fluorek krzemu jest ważny, ponieważ może mieć wpływ na jakość produktu końcowego i bezpieczeństwo procesu. W praktyce, identyfikacja i kontrola stężenia fluorku krzemu w gazach odpadowych jest kluczowa, aby uniknąć ich szkodliwego wpływu na środowisko oraz zdrowie ludzi. Standardy branżowe, takie jak ISO 14001, zalecają monitorowanie emisji zanieczyszczeń, w tym gazów, co jest niezbędne dla zgodności z przepisami ochrony środowiska oraz dla zapewnienia bezpieczeństwa w miejscu pracy. Dobrą praktyką jest także regularne szkolenie pracowników dotyczące rozpoznawania potencjalnych zagrożeń związanych z emisjami chemicznymi.

Pytanie 24

Jaka jest funkcja zaworu redukcyjnego w instalacjach chemicznych?

A. Obniżanie ciśnienia w systemie
B. Podnoszenie temperatury medium
C. Przyspieszanie przepływu cieczy
D. Zmniejszanie objętości gazu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zawór redukcyjny, jak sama nazwa wskazuje, służy do redukcji ciśnienia w systemach instalacji chemicznych. Jego główną funkcją jest zapewnienie, że ciśnienie w określonym obszarze instalacji zostanie utrzymane na bezpiecznym i stabilnym poziomie. Jest to kluczowe z perspektywy bezpieczeństwa, ponieważ zbyt wysokie ciśnienie może prowadzić do uszkodzenia sprzętu, awarii lub nawet eksplozji. W praktyce, zawory te są używane tam, gdzie konieczne jest obniżenie ciśnienia z wyższego poziomu na niższy w celu dostosowania do wymogów pracy konkretnego urządzenia lub procesu technologicznego. Przykładowo, w instalacjach parowych zawory redukcyjne są stosowane do obniżenia ciśnienia pary, zanim zostanie ona doprowadzona do obszarów, które wymagają niższego ciśnienia. Dobre praktyki branżowe wskazują na konieczność regularnej konserwacji tych zaworów, aby zapewnić ich bezawaryjność i długą żywotność. Warto również zauważyć, że prawidłowe działanie zaworów redukcyjnych może prowadzić do zwiększenia efektywności energetycznej całego systemu.

Pytanie 25

Jak powinny być oznaczane partie apatytu składowane przed procesem produkcji superfosfatu?

A. Trwałą tablicą umieszczoną obok hałdy z informacjami o dostawcy, dacie dostawy oraz nazwie surowca
B. Etykietą na zbiorniku magazynowym z informacjami o harmonogramie użycia poszczególnych partii surowca
C. Etykietą na zbiorniku magazynowym zawierającą dane dotyczące dostawcy oraz imienia i nazwiska osoby odbierającej surowiec
D. Trwałą tablicą umieszczoną obok hałdy z informacjami na temat składu surowca, daty dostawy oraz imienia i nazwiska osoby odpowiedzialnej za składowanie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oznaczenie zmagazynowanych partii apatytu za pomocą trwałej tabliczki umieszczonej obok hałdy, zawierającej informacje o dostawcy, dacie dostawy oraz nazwie surowca, jest zgodne z najlepszymi praktykami branżowymi w zakresie zarządzania magazynem i bezpieczeństwa. Tego rodzaju oznaczenia pozwalają na łatwe śledzenie historii surowca, co jest kluczowe w kontekście zapewnienia jakości i bezpieczeństwa procesu produkcyjnego. Przykładem zastosowania tej metody może być sytuacja, w której należy szybko zidentyfikować partię surowca do analizy lub kontroli jakości. Informacje te są również niezbędne do zgodności z normami regulacyjnymi, które często wymagają dokumentacji dotyczącej pochodzenia surowców oraz ich historii. W praktyce, poprawne oznaczenie surowca pozwala uniknąć pomyłek, które mogą prowadzić do kosztownych błędów w produkcji, a także ułatwia komunikację pomiędzy działami odpowiedzialnymi za zakupy, magazynowanie i produkcję.

Pytanie 26

Jakie działania należy podjąć, aby przenośnik taśmowy, który transportuje mokry piasek pod kątem 25º, mógł również przewozić piasek suchy?

A. Zwiększyć wysokość transportu przenośnika w pionowym kierunku
B. Skrócić poziomą długość trasy przenośnika
C. Podnieść prędkość ruchu taśmy przenośnika
D. Zmniejszyć kąt nachylenia trasy przenośnika do poziomu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zmniejszenie kąta pochylenia przenośnika taśmowego jest kluczowym krokiem w przypadku transportu suchego piasku, ponieważ zmniejsza to siły działające na materiał. Mokry piasek ma inną lepkość i gęstość, co pozwala na jego transport nawet pod większym kątem. W przypadku suchego piasku, który jest bardziej sypki i łatwiej się przesuwa, zbyt stromy kąt może prowadzić do zsuwania się materiału z taśmy, co w efekcie obniża wydajność transportu oraz może prowadzić do zatorów. Optymalny kąt nachylenia dla transportu suchego piasku wynosi zazwyczaj od 15º do 20º. Przykładowo, w przemyśle budowlanym często stosuje się przenośniki o zmniejszonym kącie nachylenia, aby zapewnić nieprzerwane i efektywne załadunki przy zachowaniu jakości transportowanego materiału. Praktyki te są zgodne z normami branżowymi, które podkreślają znaczenie dostosowania parametrów przenośnika do właściwości transportowanego materiału.

Pytanie 27

Osoba obsługująca nastawny termometr kontaktowy powinna między innymi

A. ustawić oczekiwaną temperaturę na górnej podzielni
B. ustawić maksymalną dozwoloną temperaturę na dolnej podzielni, a minimalną na górnej
C. ustawić maksymalną dozwoloną temperaturę na górnej podzielni, a minimalną na dolnej
D. ustawić minimalną temperaturę na dolnej podzielni

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Ustawienie oczekiwanej temperatury na górnej podzielni termometru kontaktowego jest kluczowym działaniem, które zapewnia precyzyjne i efektywne monitorowanie procesów technologicznych. W praktyce oznacza to, że operator powinien dokładnie zdefiniować temperaturę, która ma być osiągnięta podczas danego procesu, co pozwala na bieżąco kontrolować i regulować parametry. Dobrą praktyką jest stosowanie się do norm, takich jak ISO 9001, które zalecają ustalanie i monitorowanie krytycznych parametrów w celu zapewnienia jakości produktu. Na przykład, w procesie produkcji chemikaliów, ustawienie oczekiwanej temperatury na górnej podzielni pozwala operatorom na szybkie wykrywanie odchyleń od normy oraz podejmowanie odpowiednich działań korygujących, co minimalizuje ryzyko awarii i poprawia efektywność operacyjną. Wiedza na temat odpowiedniego ustawienia termometrów kontaktowych jest zatem niezbędna dla każdego operatora, by zapewnić prawidłowe działanie sprzętu oraz bezpieczeństwo w miejscu pracy.

Pytanie 28

Jakie urządzenie można wykorzystać do pomiaru natężenia przepływu cieczy?

A. urządzenie Abla-Pensky'ego
B. zwężka Venturiego
C. wiskozymetr Ubbelohdego
D. aparatura Orsata

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwężka Venturiego jest urządzeniem pomiarowym, które działa na zasadzie różnicy ciśnień w cieczy przepływającej przez zwężenie. Dzięki zjawisku Bernoulliego, gdy ciecz przepływa przez zwężkę, jej prędkość wzrasta, a ciśnienie maleje. To zjawisko pozwala na dokładne obliczenie natężenia przepływu na podstawie różnicy ciśnień, co jest zgodne z równaniem Bernoulliego. W praktyce zwężki Venturiego są powszechnie stosowane w różnych branżach, takich jak przemysł chemiczny, hydraulika czy systemy nawadniające. Zgodnie z normami ISO dotyczących pomiaru przepływu, zwężki Venturiego są uznawane za jedno z najdokładniejszych narzędzi w tej kategorii, co czyni je preferowanym wyborem w zastosowaniach wymagających wysokiej precyzji. Dodatkowo, ich konstrukcja jest prosta i niezawodna, co ułatwia ich integrację w różnych systemach rurociągowych, zapewniając minimalne opory przepływu, co jest kluczowe w wielu zastosowaniach inżynieryjnych.

Pytanie 29

Nadzór nad funkcjonowaniem instalacji zasilającej piec rurowo cylindryczny (flaszkowy) opiera się na ciągłej obserwacji

A. twardości wody dostarczanej do pieca
B. natężenia przepływu oraz temperatury wody
C. natężenia przepływu oraz temperatury ropy naftowej
D. składu oraz odczynu podawanej ropy naftowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Monitorowanie działania instalacji zasilającej piec rurowo cylindryczny, szczególnie w kontekście przemysłu naftowego, wymaga stałej kontroli natężenia przepływu i temperatury ropy naftowej. Ropa, jako surowiec energetyczny, musi być dostarczana do pieca w odpowiednich warunkach, aby zapewnić efektywność procesu spalania oraz stabilność jego pracy. Odpowiednie natężenie przepływu zapewnia optymalne warunki reakcji chemicznych zachodzących w piecu, co wpływa na jego wydajność oraz bezpieczeństwo operacyjne. Zastosowanie nowoczesnych technologii monitoringu, takich jak sensory temperatury i przepływu, zgadza się z najlepszymi praktykami branżowymi, co pozwala na wczesne wykrywanie nieprawidłowości w działaniu instalacji. Na przykład, nagłe zmiany w natężeniu przepływu mogą wskazywać na zatykanie rurociągów lub problemy z pompami. Właściwe zarządzanie tymi parametrami jest kluczowe dla minimalizacji ryzyka awarii oraz zwiększenia efektywności energetycznej. W praktyce, firmy stosujące takie systemy monitorowania często osiągają lepsze wyniki operacyjne oraz oszczędności kosztów eksploatacyjnych.

Pytanie 30

Ile dm3 wody o gęstości 1 g/cm3 powinno być odmierzone, by przygotować 1000 kg roztworu chlorku sodu o stężeniu 25% masowych?

A. 750 dm3
B. 25 dm3
C. 975 dm3
D. 250 dm3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby sporządzić 1000 kg roztworu chlorku sodu o stężeniu 25%, musimy najpierw obliczyć masę chlorku sodu oraz masę wody, która będzie potrzebna. Stężenie masowe 25% oznacza, że na 100 g roztworu przypada 25 g chlorku sodu. Zatem w 1000 kg roztworu (co odpowiada 1 000 000 g) ilość chlorku sodu wynosi 25% z tej masy, co daje 250 000 g. Reszta masy roztworu, czyli masa wody, będzie wynosić 1 000 000 g - 250 000 g = 750 000 g. Ponieważ gęstość wody wynosi 1 g/cm³, to 750 000 g wody odpowiada 750 000 cm³, co przelicza się na 750 dm³. Takie wyliczenia są zgodne z zasadami przygotowania roztworów w chemii oraz standardami laboratoryjnymi, gdzie precyzyjne obliczenia są kluczowe dla uzyskania oczekiwanych wyników. W praktyce, znajomość stężeń i umiejętność przeliczania objętości wody jest niezwykle ważna podczas przygotowywania reagentów w laboratoriach chemicznych oraz w przemyśle farmaceutycznym.

Pytanie 31

Jakie są wymagania dotyczące przechowywania karbidu?

A. W foliowych workach
B. W ciśnieniowych stalowych butlach
C. W stalowych pojemnikach
D. W luzie w suchym pomieszczeniu magazynowym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przechowywanie karbidu w pojemnikach z blachy stalowej jest zalecane ze względu na jego właściwości chemiczne oraz ryzyko związane z jego reagowaniem z wilgocią. Karbid, zwany także węglikiem wapnia, reaguje z wodą, produkując acetylen, co może prowadzić do niebezpiecznych sytuacji, w tym wybuchów. Pojemniki stalowe zapewniają szczelność oraz odporność na działanie chemiczne, co minimalizuje ryzyko kontaminacji wilgocią. W praktyce, stosowanie pojemników stalowych jako standardowego rozwiązania w magazynach przemysłowych lub laboratoriach jest powszechną praktyką. Warto również zwrócić uwagę na odpowiednie oznakowanie tych pojemników, aby zminimalizować ryzyko błędnego użycia. Dodatkowo, przestrzeganie norm bezpieczeństwa takich jak normy OSHA lub ANSI w zakresie przechowywania substancji chemicznych podkreśla znaczenie stosowania odpowiednich pojemników, co nie tylko zwiększa bezpieczeństwo, ale również ułatwia zarządzanie ryzykiem w środowisku pracy.

Pytanie 32

Osoba obsługująca wyparkę Roberta w czasie jej działania powinna

A. monitorować temperatury czynnika grzewczego oraz wydobywających się oparów, a także poziom piany w komorze
B. sprawdzać temperatury skroplin, a także cieczy zatężonej oraz stężenie gazów w komorze
C. dostosowywać ilość podawanej surówki oraz temperaturę uzyskanego kondensatu
D. regulować ilość skroplin kierowanych do skraplacza i częściowo je zwracać do procesu zatężania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź dotyczy kluczowych aspektów monitorowania procesu pracy wyparkę. Kontrola temperatury czynnika grzewczego i odprowadzanych oparów jest istotna, ponieważ pozwala na optymalizację procesu zatężania, co wpływa na jakość produktu finalnego oraz efektywność energetyczną całego systemu. Utrzymanie właściwej temperatury czynnika grzewczego gwarantuje, że proces odparowania zachodzi w sposób ciągły i stabilny, co jest niezbędne dla uzyskania pożądanej wydajności. Dodatkowo, monitoring ilości piany w komorze wyparnej jest ważny, ponieważ nadmiar piany może prowadzić do obniżenia wydajności oraz zanieczyszczenia produktu. W praktyce, operatorzy powinni regularnie sprawdzać te parametry, aby uniknąć problemów, takich jak przegrzewanie lub niska jakość skroplin. Dobre praktyki branżowe zalecają stosowanie automatycznych systemów monitoringu, które mogą informować o nieprawidłowościach w czasie rzeczywistym, co zwiększa bezpieczeństwo i efektywność procesu.

Pytanie 33

Jak należy pozyskiwać próbkę strumienia zawracanego na wierzchołku kolumny rektyfikacyjnej w trakcie prowadzenia rektyfikacji z użyciem deflegmatora częściowo skraplającego?

A. Przez aspirator
B. Przez sondę probierczą
C. Przez batometr
D. Przez kurka probierczego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pobieranie próbki strumienia zawracanego na szczyt kolumny rektyfikacyjnej za pomocą kurka probierczego jest właściwą metodą, gdyż zapewnia precyzyjne i kontrolowane odcięcie strumienia bez zakłócania procesu rektyfikacji. Kurek probierczy umożliwia regulację przepływu, co jest kluczowe dla utrzymania stabilnych warunków w kolumnie. Umożliwia to również pobieranie próbki w momencie, gdy skład chemiczny strumienia jest najbardziej reprezentatywny. W praktyce, stosując kurek probierczy, operator może w każdej chwili pobrać próbkę do analizy, co jest niezbędne do monitorowania efektywności procesu oraz wykrywania potencjalnych odchyleń od normy. W kontekście standardów branżowych, zgodność z metodami pobierania próbek określonymi w normach takich jak ISO 3171, która reguluje pobieranie próbek z rurociągów, jest kluczowa dla zapewnienia jakości i bezpieczeństwa pracy, a użycie kurka probierczego jest zgodne z tymi wymaganiami. Tego rodzaju praktyki są fundamentem skutecznego zarządzania procesami chemicznymi i inżynieryjnymi."

Pytanie 34

Jakie urządzenie powinno być wykorzystane do mieszania substancji o konsystencji ciastowatej lub płynnej, mających bardzo dużą lepkość?

A. Barboter zbiornikowy
B. Mieszalnik przesypowy
C. Zagniatarkę ślimakową
D. Mieszarkę bębnową

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zagniatarka ślimakowa jest urządzeniem idealnym do mieszania materiałów o bardzo dużej lepkości, takich jak gęste ciasta czy pasty. Jej konstrukcja, wyposażona w spiralny mechanizm, pozwala na skuteczne mieszanie składników poprzez intensywne zagniatanie i wprowadzanie powietrza, co jest kluczowe w procesie produkcji pieczywa czy ciast. W przemyśle spożywczym, zagniatarki ślimakowe są powszechnie stosowane w produkcji ciast na pizzę, makaronów oraz innych produktów wymagających jednorodnej konsystencji. Użycie tego urządzenia zapewnia nie tylko efektywne połączenie składników, lecz także poprawia właściwości organoleptyczne gotowego produktu. Dobrą praktyką w branży jest również monitorowanie parametrów procesu mieszania, takich jak czas i temperatura, co pozwala na uzyskanie optymalnych rezultatów. Ponadto, zagniatarki są często projektowane z myślą o łatwym czyszczeniu i konserwacji, co jest zgodne z normami HACCP, zapewniającymi bezpieczeństwo żywności.

Pytanie 35

W jakim momencie, z powodu ograniczeń sprzętowych, powinno się zakończyć proces zagęszczania roztworu, który jest realizowany w wyparce Roberta – z pionowymi rurkami, przy naturalnej cyrkulacji roztworu?

A. Po osiągnięciu maksymalnej lepkości dla zagęszczanego roztworu
B. Gdy poziom cieczy zagęszczanej osiągnie górny poziom rurek grzewczych
C. Po osiągnięciu temperatury wrzenia zagęszczanej cieczy
D. Gdy poziom cieczy zagęszczanej zbliży się do dolnego poziomu rurek grzewczych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że należy zakończyć proces zatężania roztworu, gdy poziom cieczy osiągnie górny poziom rurek grzewczych, jest prawidłowa z powodów aparaturowych i operacyjnych. W wyparce Roberta, która wykorzystuje naturalną cyrkulację, kluczowe jest, aby unikać sytuacji, w której ciecz się przegrzewa lub zaczyna wrzeć w niewłaściwym momencie. Osiągnięcie górnego poziomu rurek grzewczych oznacza, że dalsze prowadzenie procesu mogłoby prowadzić do niekontrolowanego parowania, co stwarza ryzyko uszkodzenia sprzętu. Obserwacja poziomu cieczy jest standardową praktyką w technologii zatężania, pozwalającą na utrzymanie stabilnych warunków procesowych. Przykładem zastosowania tej zasady jest przemysł chemiczny, gdzie precyzyjne kontrolowanie poziomu cieczy oraz odpowiednich parametrów procesu, takich jak temperatura i ciśnienie, jest niezbędne do zapewnienia bezpieczeństwa oraz efektywności operacyjnej. Zastosowanie systemów alarmowych lub automatycznych zaworów może dodatkowo pomóc w monitorowaniu poziomu cieczy oraz zapobiegać przekroczeniu krytycznych wartości.

Pytanie 36

Który ze składników wykorzystywany jest jako katalizator w reakcji estryfikacji?

A. woda destylowana
B. tlenek wapnia
C. wodorotlenek sodu
D. kwas siarkowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W reakcji estryfikacji, kwas siarkowy pełni rolę katalizatora. To bardzo ważne w reakcji chemicznej, ponieważ estrowanie polega na połączeniu alkoholu z kwasem karboksylowym, co prowadzi do powstania estru i wody. Kwas siarkowy działa jako katalizator kwasowy, przyspieszając proces poprzez protonowanie grupy karbonylowej kwasu, co czyni ją bardziej elektrofilową. To ułatwia atak nukleofilowy alkoholu. W praktyce, dodanie kwasu siarkowego nie tylko przyspiesza reakcję, ale także zwiększa jej wydajność. To istotne zwłaszcza w przemyśle chemicznym, gdzie czas i efektywność są kluczowe. Warto zauważyć, że katalizatory, takie jak kwas siarkowy, nie zużywają się w trakcie reakcji, co czyni je ekonomicznie korzystnymi. Dodatkowo, stosowanie kwasu siarkowego jako katalizatora jest standardem w wielu procesach przemysłowych, ze względu na jego dostępność i skuteczność. Kwas siarkowy jest więc kluczowym składnikiem w technologii chemicznej, szczególnie w kontekście produkcji estrów, które mają szerokie zastosowanie od perfum po tworzywa sztuczne.

Pytanie 37

Jedną z operacji technologicznych realizowanych na etapie wstępnego przetwarzania rud miedzi jest

A. wypalanie
B. ekstrakcja
C. rafinacja
D. flotacja

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Flotacja to naprawdę ważny etap w przygotowywaniu rud miedzi. To, co się dzieje, to mieszanie drobno zmielonej rudy z wodą i różnymi chemikaliami, dzięki czemu minerały zawierające miedź oddzielają się od reszty. Wiesz, w przemyśle miedziowym to jest kluczowa metoda, bo pozwala uzyskać naprawdę dobre koncentraty miedzi, które potem można dalej przerabiać. Co ciekawe, flotacja jest uniwersalna i można ją dostosować do różnych rodzajów rud - to jest jej ogromny atut. W branży to jest standard, więc jakby co, zawsze można znaleźć więcej informacji na ten temat w różnych dokumentach o technologii surowców. Myślę, że dobrze rozumiesz, że flotacja jest nieodzowna w tym wszystkim, co dotyczy wydobycia i przetwarzania miedzi.

Pytanie 38

Które urządzenie jest używane do oddzielania cieczy od ciał stałych w procesie filtracji?

A. reaktor chemiczny
B. wirówka filtracyjna
C. zbiornik ciśnieniowy
D. komora susząca

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Proces filtracji jest jednym z kluczowych etapów w przemyśle chemicznym, mającym na celu oddzielenie substancji stałych od cieczy. Wirówka filtracyjna to urządzenie, które wykonuje to zadanie poprzez wykorzystanie siły odśrodkowej. Dzięki szybkiemu obrotowi, ciecz przepływa przez materiał filtracyjny, pozostawiając na nim ciała stałe. Tego typu urządzenia są szczególnie skuteczne przy dużych ilościach zawiesin i gdy wymagana jest wysoka wydajność. W praktyce często stosowane są w zakładach chemicznych, farmaceutycznych czy spożywczych, gdzie jakość filtracji ma kluczowe znaczenie dla końcowej postaci produktu. Wirówki filtracyjne mogą być projektowane w różnych wariantach, dopasowanych do specyficznych wymagań procesowych. Standardy w tym zakresie obejmują takie aspekty jak materiał wykonania, dostosowanie do warunków ciśnieniowych oraz zgodność z normami bezpieczeństwa i higieny. Stosowanie wirówek filtracyjnych zgodnie z zaleceniami producenta i branżowymi wytycznymi zapewnia optymalne rezultaty filtracji oraz minimalizuje ryzyko awarii.

Pytanie 39

Jakie cechy materiału transportowanego mają wpływ na działanie przenośnika ślimakowego?

A. Struktura krystaliczna oraz pylistość
B. Wilgotność oraz granulacja
C. Gęstość nasypowa oraz radioaktywność
D. Temperatura oraz toksyczność

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wilgotność i granulacja to naprawdę ważne rzeczy, jeśli chodzi o transport materiałów przenośnikami ślimakowymi. Wilgotność może wpłynąć na to, jak lepki staje się materiał i jak łatwo ulega aglomeracji, co z kolei ma bezpośredni wpływ na to, jak wydajnie pracuje przenośnik. Na przykład, w przypadku sypkich materiałów jak zboża, zbyt duża wilgotność może sprawić, że się zlepiają i to skutecznie utrudnia ich przesuwanie. No i z drugiej strony, jak wilgotności jest za mało, to pojawia się pylenie i straty materiału. Granulacja, czyli wielkość i kształt cząstek materiału, też jest kluczowa, bo decyduje o tym, jak przenośnik działa – musi być między przepływem a wydajnością dobry balans. Projektując przenośniki, trzeba brać pod uwagę te parametry, żeby uniknąć zatorów i zapewnić, że wszystko działa jak należy. W branży budowlanej i przemysłowej standardy ISO dotyczące transportu sypkich materiałów uwzględniają te aspekty, co jest ważne dla zaprojektowania naprawdę efektywnych przenośników.

Pytanie 40

Wodę można zakwalifikować do wód mineralnych, jeżeli sucha pozostałość po jej odparowaniu wynosi co najmniej

Rodzaj wódSucha pozostałość [mg/dm³]
Ultra słodkieponiżej 100
Słodkie100÷500
O podwyższonej mineralizacji500÷1000
Mineralne1000÷5000
Specjalnepowyżej 5000
A. 100 mg/dm3
B. 500 mg/dm3
C. 5000 mg/dm3
D. 1000 mg/dm3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór 1000 mg/dm3 jako wartości oznaczającej granicę dla wód mineralnych jest zgodny z obowiązującymi normami i definicjami w sektorze wodociągów i zdrowia publicznego. Wody mineralne, określane jako naturalne wody o określonym składzie mineralnym, muszą spełniać kryteria dotyczące suchej pozostałości po odparowaniu. Granica 1000 mg/dm3 oznacza, że woda zawiera wystarczającą ilość minerałów, co czyni ją wartościową dla zdrowia. W praktyce, wody mineralne są wykorzystywane w dietetyce oraz w gastronomii, często w formie napojów, które wspierają różnorodne procesy metaboliczne w organizmie. Na przykład, wody o wysokiej mineralizacji mogą być stosowane w terapii uzupełniającej dla osób z niedoborami minerałów, a także w profilaktyce chorób układu kostnego. Dodatkowo, w branży wellness, wody mineralne są promowane za swoje właściwości zdrowotne, co podkreśla ich znaczenie w codziennej diecie.