Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 3 maja 2025 15:13
  • Data zakończenia: 3 maja 2025 15:32

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas przeprowadzania inspekcji instalacji elektrycznej w budynku mieszkalnym nie jest wymagane sprawdzanie

A. poprawności działania wyłącznika różnicowoprądowego
B. nastaw urządzeń zabezpieczających w instalacji
C. wartości rezystancji izolacji przewodów
D. stanu obudów wszystkich elementów instalacji
Wiesz, wartość rezystancji izolacji przewodów mówi nam, jak dobrze te przewody są izolowane. Fajnie, że znasz tę definicję! Ale w praktyce, w trakcie sprawdzania instalacji elektrycznych w mieszkaniach nie ma wymogu, żeby to sprawdzać. Normy, jak PN-IEC 60364, mówią głównie o bezpieczeństwie użytkowników i tym, żeby instalacja działała jak należy. Gdy przeglądasz instalację, skup się na tym, żeby ocenić stan obudów i elementów zabezpieczających. Te rzeczy są na prawdę ważne. Wyłączniki różnicowoprądowe też warto sprawdzić, bo są kluczowe dla ochrony przed porażeniem elektrycznym. Możesz to zrobić, wciskając przycisk testowy, co jest dość standardowe. Dzięki temu łatwiej zauważysz, czy coś jest nie tak. Taki sposób działania pomaga uniknąć problemów i sprawia, że instalacja będzie bezpieczna i zgodna z normami.

Pytanie 2

Który z podanych materiałów charakteryzuje się najniższą rezystywnością?

A. Stal
B. Aluminium
C. Nichrom
D. Miedź
Miedź to materiał o wyjątkowo niskiej rezystywności, wynoszącej około 1.68 µΩ·m w temperaturze 20°C. Dzięki temu jest szeroko stosowana w aplikacjach elektrycznych, takich jak przewody, złączki i komponenty elektroniczne. Wysoka przewodność miedzi sprawia, że jest idealnym wyborem w sytuacjach, gdzie minimalizacja strat energii jest kluczowa. Przykładem może być wykorzystanie miedzi w instalacjach elektrycznych w budynkach mieszkalnych oraz w przemyśle motoryzacyjnym, gdzie przewody miedziane są standardem. Inne materiały, takie jak aluminium, mają wyższą rezystywność, co wpływa na zwiększenie strat energii w systemach elektrycznych. W praktyce, miedź jest również preferowana w zastosowaniach wymagających dużej odporności na korozję oraz wysokiej trwałości, co czyni ją materiałem pierwszego wyboru w wielu normach branżowych dotyczących elektryczności i elektroniki.

Pytanie 3

W jakim z podanych typów źródeł światła wykorzystuje się zapłonnik?

A. Lampa sodowa
B. Świetlówka tradycyjna
C. Żarówka halogenowa
D. Lampa rtęciowa
Wybór lampy sodowej, rtęciowej czy żarówki halogenowej jako źródła światła, w którym stosuje się zapłonnik, jest nieprawidłowy z powodu różnic w technologii i zasadzie działania tych lamp. Lampy sodowe wykorzystują zjawisko emisji światła poprzez naładowany gaz sodowy, jednak nie potrzebują zapłonnika, gdyż zamiast tego działają na zasadzie bezpośredniego przepływu prądu. Ponadto, lampy rtęciowe również nie wymagają zapłonnika w tradycyjnym sensie, ponieważ ich uruchomienie odbywa się poprzez elektryczne rozładowanie w gazie rtęciowym, co jest realizowane przez układ zapłonowy zintegrowany z balastem. Żarówki halogenowe, z kolei, są konstrukcją opartą na technologii żarowej, w której nie stosuje się zapłonników; zamiast tego, działają na zasadzie podgrzewania włókna wolframowego do wysokiej temperatury, co generuje światło. Zrozumienie różnic między tymi technologiami jest kluczowe, ponieważ prowadzi do lepszego doboru źródeł światła w zależności od zastosowania. Ignorowanie tych różnic może skutkować nieefektywnym działaniem systemów oświetleniowych i wyższymi kosztami eksploatacyjnymi. W praktyce, kluczowe jest stosowanie odpowiednich rozwiązań technologicznych w zależności od potrzeb i charakterystyki danego środowiska oświetleniowego.

Pytanie 4

Kontrola instalacji elektrycznych, które są narażone na szkodliwe działanie warunków atmosferycznych lub destrukcyjne oddziaływanie czynników występujących podczas eksploatacji budynku, powinna odbywać się nie rzadziej niż raz na

A. 2 lata
B. 4 lata
C. kwartał
D. rok
Przeprowadzanie kontroli instalacji elektrycznych narażonych na szkodliwe wpływy atmosferyczne co najmniej raz w roku jest zgodne z normami bezpieczeństwa oraz dobrymi praktykami w branży budowlanej. Regularne inspekcje pozwalają na wczesne wykrycie potencjalnych problemów, takich jak korozja czy uszkodzenia izolacji, co może znacząco obniżyć ryzyko awarii elektrycznych. Na przykład, w przypadku instalacji znajdujących się na zewnątrz budynków, narażonych na opady deszczu, śniegu czy zmiany temperatury, roczna kontrola pozwala na ocenę stanu technicznego wszystkich elementów. Dzięki temu możemy podjąć działania prewencyjne, takie jak wymiana uszkodzonych części czy poprawa izolacji, co przekłada się na bezpieczniejsze użytkowanie budynków. Dodatkowo, zgodnie z przepisami prawa budowlanego oraz normami PN-IEC 60364, regularne kontrole są niezbędne dla zapewnienia bezpieczeństwa użytkowników oraz zgodności z normami technicznymi.

Pytanie 5

Który z wymienionych przełączników instalacyjnych służy do kontrolowania dwóch sekcji źródeł światła w żyrandolu?

A. Świecznikowy
B. Schodowy
C. Krzyżowy
D. Dwubiegunowy
Odpowiedzi takie jak 'Dwubiegunowy', 'Schodowy' czy 'Krzyżowy' nie są odpowiednie w kontekście pytania o sterowanie dwoma sekcjami źródeł światła w żyrandolu. Łącznik dwubiegunowy, choć umożliwia włączanie i wyłączanie obwodów, nie jest przeznaczony do niezależnego sterowania różnymi sekcjami tego samego źródła światła. Zazwyczaj stosuje się go do prostych obwodów, gdzie jedynie kontroluje zasilanie jednego obwodu. Łącznik schodowy jest używany głównie w instalacjach, gdzie potrzebne jest kontrolowanie jednego źródła światła z dwóch różnych miejsc, co z kolei nie ma zastosowania w przypadku żyrandola z wieloma sekcjami. Łącznik krzyżowy służy do rozszerzenia możliwości już istniejącego układu schodowego, umożliwiając sterowanie jednym źródłem światła z więcej niż dwóch miejsc, ale także nie jest odpowiedni dla żyrandola, gdzie potrzebne jest niezależne włączanie poszczególnych sekcji. Typowe błędy myślowe mogą obejmować założenie, że każdy rodzaj łącznika posiada uniwersalne zastosowanie, co nie jest zgodne z rzeczywistością instalacyjną i wymaga szczególnej uwagi przy wyborze odpowiedniego typu łącznika do konkretnej aplikacji oświetleniowej.

Pytanie 6

Który z rodzajów kabli ma zewnętrzną osłonę wykonaną z polwinitu?

A. LgY
B. DYt
C. YADY
D. XzTKMXpw
Typ przewodu YADY jest powszechnie stosowany w instalacjach elektrycznych, a jego charakterystyczną cechą jest powłoka zewnętrzna wykonana z polwinitu (PVC). Polwinit jest materiałem o wysokiej odporności na działanie czynników atmosferycznych oraz chemicznych, dzięki czemu przewody tego typu znajdują zastosowanie zarówno w instalacjach wewnętrznych, jak i zewnętrznych. Stosuje się je w budownictwie, w infrastrukturze przemysłowej oraz w systemach automatyki. Przewody YADY charakteryzują się także elastycznością, co ułatwia ich instalację w trudnodostępnych miejscach. Zgodnie z normami PN-EN 50525, przewody te mogą być używane do zasilania urządzeń elektrycznych, a ich budowa zapewnia odpowiednią izolację oraz bezpieczeństwo użytkowania. Warto również zwrócić uwagę na specyfikację dostosowaną do różnych warunków pracy, co czyni je uniwersalnym rozwiązaniem w wielu branżach.

Pytanie 7

Aby wymienić wadliwy łącznik w instalacji, należy wykonać następujące kroki:

A. wyłączyć napięcie, upewnić się o braku napięcia, wyjąć uszkodzony łącznik
B. podłączyć napięcie, zweryfikować ciągłość połączeń, wyjąć uszkodzony łącznik
C. usunąć uszkodzony łącznik, odłączyć napięcie, sprawdzić ciągłość połączeń
D. wyłączyć napięcie, usunąć uszkodzony łącznik, zweryfikować ciągłość połączeń
Niezbędne jest zrozumienie, że każda operacja związana z wymianą elementów instalacji elektrycznej wymaga zachowania szczególnej ostrożności i przestrzegania określonych procedur. Pierwszym błędem w odmiennych podejściach jest załączenie napięcia przed przystąpieniem do działań, co jest absolutnie niewłaściwe. Nieodpowiednie podejście, jakim jest wymontowywanie uszkodzonego łącznika przy włączonym napięciu, naraża technika na poważne ryzyko porażenia prądem, co stoi w sprzeczności z zasadami BHP. Dlatego też, przed jakąkolwiek wymianą, konieczne jest zawsze odłączenie zasilania. Podobnie, sprawdzenie ciągłości połączeń przed upewnieniem się, że nie ma napięcia, jest błędne. Taki krok prowadzi do niepewności co do bezpieczeństwa i może skutkować uszkodzeniem sprzętu oraz stwarzać potencjalne zagrożenie dla życia. Ostatecznie, jeśli technik nie upewni się, że w danym obwodzie nie ma napięcia, a następnie przystąpi do wymiany łącznika, może to doprowadzić do tragicznym skutków. Dlatego kluczowe jest, aby zawsze przestrzegać ustalonych zasad oraz korzystać z profesjonalnych narzędzi do weryfikacji braku napięcia, co zabezpiecza zarówno technika, jak i instalację przed nieprzewidzianymi zdarzeniami.

Pytanie 8

Jakiego zestawu narzędzi potrzebujesz do złożenia aparatury oraz wykonania połączeń elektrycznych w rozdzielnicy w mieszkaniu?

A. Szczypce monterskie uniwersalne, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
B. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
C. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
D. Szczypce monterskie uniwersalne, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
Wybór narzędzi do montażu nie jest taki prosty, jakby się mogło wydawać. Odpowiedzi, które nie zawierają kluczowych narzędzi, takich jak szczypce do cięcia, czy przyrząd do ściągania powłoki, to poważny błąd. Szczypce uniwersalne mogą być fajne, ale nie do obcinania przewodów, bo można je łatwo uszkodzić. A młotek, serio? To narzędzie budowlane, nie elektryczne – może nie być idealne w tej sytuacji. Jak nie masz odpowiednich narzędzi do ściągania izolacji, to ograniczasz swoje możliwości przy robieniu porządnych połączeń, a to już prosta droga do problemów. Twój zestaw narzędzi powinien być na pewno skompletowany w sposób przemyślany, bo inaczej możesz mieć kłopoty z bezpieczeństwem. Rozumienie, jak różne narzędzia ze sobą współpracują, jest kluczowe w tej branży.

Pytanie 9

Jaki jest najmniejszy błąd pomiaru natężenia prądu wynoszącego 30 mA, gdy używamy cyfrowego miliamperomierza z wyświetlaczem do 2 miejsc po przecinku oraz miernika o określonej dokładności?

A. ±1,5% + 3 cyfry
B. ±1,0% + 4 cyfry
C. ±2,5% + 1 cyfra
D. ±2,0% + 2 cyfry
Wybór błędnych opcji wynika często z niepełnego zrozumienia zasad działania mierników oraz błędnego interpretowania wartości procentowych i cyfr. Na przykład odpowiedzi z dokładnością ±2,0% + 2 cyfry czy ±1,5% + 3 cyfry oferują znacznie większy margines błędu, co sprawia, że ​​są mniej odpowiednie do precyzyjnych pomiarów. Przy odpowiedzi ±2,0% + 2 cyfry, maksymalny błąd wyniósłby 30 mA × 2,0% + 2 cyfry, co daje 0,6 mA + 0,02 mA, czyli 0,62 mA, a to już znacznie przekracza akceptowalny poziom dokładności w wielu zastosowaniach. Podobnie, dla ±1,5% + 3 cyfry, obliczenia prowadzą do maksymalnego błędu 0,45 mA + 0,03 mA, czyli 0,48 mA. Te wartości są niewystarczające w kontekście aplikacji, które wymagają dużej precyzji. W praktyce, większa dokładność miernika pozwala na dokładniejsze przyrządzanie obwodów elektronicznych oraz zmniejsza ryzyko wystąpienia błędów w obliczeniach związanych z analizą danych. W branży inżynieryjnej, ważne jest, aby dobierać urządzenia zgodnie z wymaganiami pomiarowymi, co przekłada się na jakość i wiarygodność wyników.

Pytanie 10

Wiatrołap jest oświetlany dwoma żarówkami. Żarówki w oprawach są włączane przez wyłącznik zmierzchowy. Gdy jedna z żarówek przestała świecić, jakie kroki należy podjąć, aby zidentyfikować i usunąć potencjalne przyczyny tej usterki?

A. Wymienić żarówkę, która się nie świeci, sprawdzić przewody i oprawę oświetleniową
B. Zamienić żarówkę, która nie świeci, sprawdzić funkcjonowanie wyłącznika oraz oprawy oświetleniowej
C. Sprawdzić działanie wyłącznika, zweryfikować oprawę i przewody
D. Zweryfikować przewody, sprawdzić działanie wyłącznika, wymienić żarówkę
Analizując inne odpowiedzi, można zauważyć, że skupiają się one na fragmentarycznych rozwiązaniach, co może prowadzić do niepełnej diagnozy problemu. Na przykład, wymiana tylko żarówki, bez sprawdzenia innych elementów instalacji, może spowodować, że użytkownik nie zauważyłby dalszych problemów, na przykład uszkodzenia przewodów lub wyłącznika. Zignorowanie konieczności weryfikacji przewodów może prowadzić do sytuacji, w której nowa żarówka również przestanie działać z powodu braku zasilania, co byłoby nieefektywnym i kosztownym rozwiązaniem. Podobnie, choć sprawdzenie działania wyłącznika jest istotne, nie powinno być to jedyne działanie, ponieważ uszkodzenie oprawy oświetleniowej też może być przyczyną problemu. Takie podejście jest typowe dla błędów myślowych, gdzie użytkownicy koncentrują się na jednym elemencie systemu, zaniedbując jego całościową analizę. Praktyczne podejście do diagnozowania usterek elektrycznych wymaga holistycznego spojrzenia na całą instalację, co zapewnia skuteczną identyfikację i eliminację problemów. Właściwe postępowanie zgodne z zasadami bezpieczeństwa i dobrymi praktykami branżowymi powinno obejmować kompleksowe sprawdzenie wszystkich komponentów systemu oświetleniowego, co jest kluczowe dla utrzymania efektywności energetycznej i niezawodności instalacji.

Pytanie 11

Na rysunku przedstawiono schemat układu sterowania oświetleniem oraz diagram działania zastosowanego przekaźnika. Który opis działania układu jest prawidłowy?

A.B.
SekwencjaEfekt działania układuSekwencjaEfekt działania układu
0Zgaszone są obie żarówki0Zgaszone są obie żarówki
1Świeci tylko żarówka R11Świeci tylko żarówka R1
2Świeci tylko żarówka R22Świeci tylko żarówka R2
3Świeci tylko żarówka R13Świeci tylko żarówka R1
4Zgaszone są obie żarówki4Świecą obie żarówki
C.D.
SekwencjaEfekt działania układuSekwencjaEfekt działania układu
0Zgaszone są obie żarówki0Świecą obie żarówki
1Świeci tylko żarówka R11Świeci tylko żarówka R1
2Świeci tylko żarówka R22Świeci tylko żarówka R2
3Świecą obie żarówki3Zgaszone są obie żarówki
4Zgaszone są obie żarówki4Świecą obie żarówki

Ilustracja do pytania
A. D.
B. A.
C. B.
D. C.
Odpowiedź C. jest prawidłowa, ponieważ dokładnie odzwierciedla działanie układu sterowania oświetleniem przedstawionego na rysunku oraz diagramu działania przekaźnika. W sekwencji 0, gdy żadne z styków nie są aktywne, obie żarówki pozostają zgaszone. Następnie w sekwencji 1, aktywacja styku 1-2 powoduje świecenie żarówki R1, co pokazuje zastosowanie przekaźników w prostych układach sterujących. W sekwencji 2, aktywacja styku 3-4 skutkuje załączeniem żarówki R2, co ilustruje możliwość niezależnego sterowania różnymi źródłami światła. W sekwencji 3, w której oba styki są aktywne, zarówno R1, jak i R2 świecą, co pokazuje, jak można zintegrować różne obwody w jednym układzie. Na koniec, w sekwencji 4, układ wraca do stanu początkowego, co jest typowym zachowaniem w układach sterujących, gdzie ważna jest możliwość cyklicznego powracania do stanu zerowego. Takie podejście jest zgodne z najlepszymi praktykami w automatyzacji i sterowaniu, umożliwiając efektywne zarządzanie oświetleniem w różnych aplikacjach.

Pytanie 12

Podłączenie gniazda wtykowego pozbawionego styku ochronnego do urządzenia elektrycznego klasy I ochronności spowoduje

A. uszkodzenie urządzenia elektrycznego
B. zagrożenie porażeniem prądem elektrycznym
C. przeciążenie systemu elektrycznego
D. zwarcie w systemie elektrycznym
Zgłoszona odpowiedź, dotycząca zagrożenia porażeniem prądem elektrycznym, jest absolutnie trafna. Gniazdo wtyczkowe bez styku ochronnego nie zapewnia odpowiedniego zabezpieczenia dla urządzeń elektrycznych, szczególnie tych klasy I, które wymagają ochrony przeciwporażeniowej poprzez uziemienie. Urządzenia klasy I korzystają z obudowy przewodzącej, która powinna być podłączona do uziemienia, aby w przypadku uszkodzenia izolacji prąd mógł być odprowadzony do ziemi, a nie przez użytkownika. W sytuacji, gdy takie urządzenie zostanie podłączone do gniazda bez styku ochronnego, istnieje wysokie ryzyko, że w przypadku awarii, prąd będzie mógł przepływać przez obudowę, co może prowadzić do porażenia prądem. Dlatego kluczowe jest przestrzeganie norm, takich jak PN-IEC 60364, które regulują zasady instalacji elektrycznych i określają, że gniazda powinny być projektowane z myślą o bezpieczeństwie użytkowników. W codziennym użytkowaniu, zapewnienie odpowiednich gniazd z uziemieniem jest podstawą bezpieczeństwa w każdym obiekcie.

Pytanie 13

Który z podanych silników elektrycznych ma najbardziej sztywną charakterystykę mechaniczną n = f(M) w trybie pracy stabilnej?

A. Obcowzbudny prądu stałego
B. Szeregowy prądu stałego
C. Synchroniczny
D. Asynchroniczny klatkowy
Silnik synchroniczny charakteryzuje się najbardziej sztywną charakterystyką mechaniczną n = f(M) w zakresie pracy stabilnej, co oznacza, że jego prędkość obrotowa jest ściśle związana z częstotliwością zasilania. W praktyce oznacza to, że silniki synchroniczne są idealnym rozwiązaniem w aplikacjach, gdzie wymagana jest precyzyjna kontrola prędkości oraz stabilność obrotów, na przykład w systemach napędowych w dużych maszynach przemysłowych, turbinach wiatrowych, czy w energetyce odnawialnej. Dzięki swojej konstrukcji, silniki te mogą pracować w warunkach, gdzie inne typy silników, jak np. silniki asynchroniczne, mogą wykazywać większe wahania prędkości. W zastosowaniach, gdzie ważne są parametry jakości energii, silniki synchroniczne mogą też przyczynić się do poprawy współczynnika mocy, co jest zgodne z aktualnymi standardami efektywności energetycznej, jak IEC 60034. Ponadto, zastosowanie technologii takich jak falowniki do sterowania silnikami synchronicznymi umożliwia osiąganie jeszcze większej wydajności i elastyczności w działaniu.

Pytanie 14

Stosując kryterium obciążalności prądowej, dobierz na podstawie tabeli minimalny przekrój przewodu do zasilenia grzejnika elektrycznego o danych: PN = 4,6 kW, UN = 230 V.

S, mm21,01,52,54,06,0
Idd, A1519243242

A. 6,0 mm2
B. 1,5 mm2
C. 2,5 mm2
D. 4,0 mm2
Wybór nieodpowiedniego przekroju przewodu, szczególnie mniejszych wartości, może prowadzić do niebezpieczeństw, jak przegrzewanie lub pożar. Odpowiedzi 1,5 mm², 4,0 mm² i 6,0 mm² na pierwszy rzut oka mogą wydawać się w porządku, ale każda z nich ma swoje minusy. Przekrój 1,5 mm² nie jest wystarczający, bo zwykle udźwignie tylko 16 A, a potrzebujemy 20 A dla grzejnika 4,6 kW. Taki przewód mógłby się przegrzewać, co w najgorszym przypadku doprowadzi do uszkodzenia i ryzyka pożaru. Z kolei 4,0 mm² może generować zbędne koszty i może nie być idealnie dopasowany do istniejącej instalacji, a 6,0 mm², no cóż, to już za dużo, nie jest to ekonomiczne dla zwykłych grzejników o tej mocy. Ważne, aby przy wyborze przewodów kierować się nie tylko mocą, ale też normami i tabelami obciążalności. Ignorowanie tych zasad może nam przynieść problemy w przyszłości.

Pytanie 15

Który element stosowany do sterowania w domowej instalacji elektrycznej przedstawiono na rysunku?

Ilustracja do pytania
A. Przekaźnik priorytetowy.
B. Regulator oświetlenia.
C. Przekaźnik bistabilny.
D. Sterownik rolet.
Pomimo atrakcyjności pozostałych odpowiedzi, żaden z wymienionych elementów nie pasuje do opisu przekaźnika priorytetowego. Regulator oświetlenia jest urządzeniem służącym do dostosowywania natężenia światła w pomieszczeniach, co jest istotne w kontekście oszczędności energetycznej, ale nie ma on funkcji zarządzania priorytetami zasilania. Sterownik rolet z kolei jest dedykowany do automatyzacji otwierania i zamykania rolet, co ma na celu poprawę komfortu użytkowania oraz ochronę przed słońcem, lecz nie ma zastosowania w kontekście zarządzania priorytetami zasilania. Przekaźnik bistabilny, mimo że jest elementem wykorzystywanym w automatyce do przełączania stanów, nie posiada mechanizmu rozróżniania priorytetów dla różnych urządzeń elektrycznych. Wszyscy odpowiadający mogą mylnie sądzić, że elementy te mogą pełnić podobne funkcje, jednak kluczowe różnice funkcjonalne sprawiają, że odpowiedzi te są błędne. Zrozumienie tych różnic jest kluczowe dla projektowania i wdrażania skutecznych systemów automatyki budynkowej, które są zgodne z najlepszymi praktykami branżowymi.

Pytanie 16

Jakie dane powinny być zawarte w protokole po przeprowadzeniu badań po modernizacji sieci?

A. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko wykonawcy.
B. Rodzaje mierników, nazwisko i uprawnienia osoby wykonującej prace.
C. Nazwisko zleceniodawcy, nazwisko wykonawcy, czas przeprowadzania pomiarów.
D. Nazwa przedsiębiorstwa energetycznego, do którego podłączono sieć, nazwisko zleceniodawcy.
Wybór nieprawidłowej odpowiedzi często wynika z niepełnego zrozumienia wymagań dotyczących dokumentacji technicznej po wykonaniu modernizacji sieci. Kluczowym błędem jest pomijanie istotnych informacji, co może prowadzić do problemów w przyszłości, takich jak trudności w ustaleniu odpowiedzialności czy brak możliwości weryfikacji wyników badań. Na przykład, odpowiedzi sugerujące dodanie nazwy zakładu energetycznego zamiast nazwiska zleceniodawcy nie uwzględniają faktu, że to właśnie osoby fizyczne (zleceniodawcy i wykonawcy) są odpowiedzialne za realizację projektu oraz jakość wykonania pomiarów. Istotne jest, aby protokół odnosił się do konkretnych osób, co ma kluczowe znaczenie w kontekście odpowiedzialności prawnej. W przypadku, gdyby wystąpiły jakiekolwiek nieprawidłowości w funkcjonowaniu sieci, łatwiejsze będzie ustalenie, kto był odpowiedzialny za konkretne etapy pracy. Ważne jest także, aby czas wykonywania pomiarów został udokumentowany, ponieważ pozwala to na analizę ewentualnych opóźnień i ich wpływu na projekt. Prawidłowo sporządzony protokół powinien być zgodny z obowiązującymi normami branżowymi, co pozwala na zachowanie wysokich standardów jakości. Dlatego pominięcie jakiejkolwiek z tych informacji prowadzi do niekompletności dokumentacji, a tym samym do potencjalnych problemów w przyszłości.

Pytanie 17

Który z łączników dysponuje komorami gaszeniowymi i ma zdolność do przerywania prądów zwarciowych?

A. Stycznik
B. Rozłącznik
C. Odłącznik
D. Wyłącznik
Odłącznik, rozłącznik i stycznik to urządzenia elektryczne, które pełnią różne funkcje, ale nie są w stanie zastąpić wyłącznika w kontekście gaszenia łuku elektrycznego w przypadku zwarcia. Odłącznik to urządzenie, które umożliwia bezpieczne odłączenie obwodu od źródła zasilania, jednak nie ma zdolności do wyłączania prądów zwarciowych. Jego głównym celem jest izolacja obwodu na potrzeby konserwacji i napraw. Rozłącznik działa w podobny sposób, ale z reguły jest przeznaczony do pracy pod obciążeniem, co oznacza, że również nie jest zaprojektowany do gaszenia łuków zwarciowych. Stycznik z kolei jest używany do załączania i wyłączania obwodów w normalnych warunkach pracy, a jego zdolności do radzenia sobie z prądami zwarciowymi są ograniczone. Dlatego, wybierając odpowiednie urządzenie do zarządzania prądami zwarciowymi, kluczowe jest zrozumienie różnicy między tymi urządzeniami. W praktyce, pomylenie ich funkcji może prowadzić do poważnych konsekwencji, w tym uszkodzenia sprzętu, a także zwiększonego ryzyka dla bezpieczeństwa personelu oraz instalacji. Dlatego tak ważne jest stosowanie odpowiednich urządzeń zgodnie z ich przeznaczeniem i normami branżowymi.

Pytanie 18

Właściciel lokalu w budynku wielorodzinnym, zasilanym z trójfazowej sieci elektrycznej, skarży się na znacznie częstsze od sąsiadów przepalanie żarówek. Jakie mogą być przyczyny tej usterki?

A. Poluzowany przewód neutralny w rozdzielnicy mieszkaniowej
B. Poluzowany przewód neutralny w głównym złączu budynku
C. Zamiana przewodu neutralnego z fazowym
D. Zamiana przewodu neutralnego z ochronnym
Jak wiadomo, poluzowany przewód neutralny w rozdzielnicy może namieszać w całej instalacji elektrycznej. Gdy przewód neutralny jest uszkodzony albo poluzowany, to prąd, który powinien wracać do zasilania, może nie mieć odpowiedniej drogi. To może sprawić, że napięcie na innych przewodach fazowych wzrośnie. Zdarza się wtedy, że żarówki się przepalają, bo napięcie przekracza to, co powinny wytrzymać. Dobrze jest od czasu do czasu sprawdzić stan połączeń elektrycznych, szczególnie w rozdzielnicach, żeby uniknąć takich kłopotów. Ważne jest też, aby dbać o odpowiednie napięcie i zabezpieczenia w instalacji, na przykład stosując różne urządzenia ochronne, jak wyłączniki nadprądowe czy różnicowoprądowe, które są zgodne z normami. Moim zdaniem, warto też wybierać żarówki, które są bardziej odporne na zmiany napięcia, to może wydłużyć ich żywotność w niepewnych warunkach zasilania.

Pytanie 19

Jakie jest minimalne napięcie znamionowe izolacji, jakie powinien posiadać przewód przeznaczony do instalacji trójfazowej 230/400 V, umieszczonej w rurkach stalowych?

A. 450/750 V
B. 300/300 V
C. 600/1000 V
D. 300/500 V
Odpowiedź 450/750 V jest poprawna, ponieważ wynika z norm dotyczących instalacji elektrycznych, które wskazują, że przewody stosowane w instalacjach trójfazowych muszą charakteryzować się odpowiednim napięciem znamionowym izolacji. W przypadku instalacji o napięciu nominalnym 230/400 V, zgodnie z normą PN-EN 60228, przewody powinny mieć minimum napięcie znamionowe izolacji 450/750 V. Praktyczne zastosowanie tej wartości zapewnia odpowiednią ochronę przed uszkodzeniami elektrycznymi oraz minimalizuje ryzyko porażenia prądem w przypadku zwarcia. Stosowanie przewodów o wyższej wartości znamionowej izolacji również spowalnia proces degradacji materiału w trudnych warunkach, takich jak wysokie temperatury czy obecność wilgoci. Przykładem mogą być instalacje w przemyśle, gdzie przewody często narażane są na działanie agresywnych substancji chemicznych. Dodatkowo, zastosowanie przewodów z wyższą wartością napięcia znamionowego jest zgodne z zasadami dobrych praktyk w projektowaniu i wykonawstwie instalacji elektrycznych, co przekłada się na bezpieczeństwo i niezawodność systemu energetycznego.

Pytanie 20

Jakie działania są uwzględnione w procederze oględzin systemu elektrycznego w budynku mieszkalnym?

A. Mierzenie ciągłości przewodów ochronnych i czynnych w obwodach odbiorczych, a także ocena efektywności ochrony w razie uszkodzenia za pomocą automatycznego wyłączenia zasilania
B. Kontrola zabezpieczeń z użyciem SELV, PELV, separacji elektrycznej lub nieuziemionych połączeń wyrównawczych lokalnych
C. Pomiar rezystancji izolacji przewodów, weryfikacja ciągłości przewodów ochronnych
D. Nastawienie sprzętu zabezpieczającego i sygnalizacyjnego, ocena dostępności urządzeń, co umożliwia komfortową obsługę, identyfikację oraz konserwację
Wybór odpowiedzi związanej z pomiarem rezystancji izolacji przewodów i sprawdzeniem ciągłości przewodów ochronnych może wydawać się logiczny, jednakże nie obejmuje kluczowego aspektu oględzin instalacji elektrycznej, jakim jest nastawienie urządzeń zabezpieczających. Oględziny powinny skupiać się nie tylko na pomiarach, ale także na funkcjonalności i dostępności urządzeń, które mają na celu ochronę użytkowników przed zagrożeniami. Pomiar rezystancji izolacji jest istotny, ale nie wystarczy sam w sobie, aby zapewnić bezpieczeństwo instalacji. Z kolei sprawdzenie ochrony poprzez separację elektryczną lub inne metody, takie jak SELV czy PELV, jest ważne w kontekście ochrony przed porażeniem prądem, ale również nie wyczerpuje tematu oględzin. Kluczowym aspektem jest również zrozumienie, że urządzenia zabezpieczające muszą być regularnie nastawiane oraz testowane, aby spełniały swoje funkcje w momencie awarii. Odpowiedź dotycząca pomiaru ciągłości przewodów również nie oddaje pełnego obrazu, ponieważ nie uwzględnia aspektu dostępności czy identyfikacji urządzeń, które są niezbędne dla ich efektywnej konserwacji. To prowadzi do niepełnej oceny stanu instalacji oraz potencjalnych zagrożeń, co jest kluczowe dla zapewnienia bezpieczeństwa w budynku mieszkalnym.

Pytanie 21

Jakie minimalne wymiary powinien mieć przewód ochronny miedziany w przypadku przewodów fazowych miedzianych o przekrojach 25 mm2 i 35 mm2?

A. 16 mm2
B. 10 mm2
C. 20 mm2
D. 12 mm2
Minimalny przekrój miedzianego przewodu ochronnego powinien wynosić 16 mm2 przy miedzianych przewodach fazowych o przekrojach 25 mm2 i 35 mm2. Takie wymagania wynikają z obliczeń związanych z bezpieczeństwem elektrycznym oraz ochroną przed porażeniem prądem. W polskich normach dotyczących instalacji elektrycznych, takich jak PN-IEC 60364, podano zasady doboru przewodów ochronnych, które uwzględniają maksymalne prądy zwarciowe oraz czas wyłączenia w przypadku awarii. Odpowiedni przekrój przewodu ochronnego jest kluczowy dla zapewnienia skutecznej ochrony instalacji oraz osób korzystających z urządzeń elektrycznych. W praktyce, dobór właściwego przekroju w instalacjach przemysłowych i budowlanych ma na celu minimalizację ryzyka uszkodzenia instalacji oraz zapewnienie odpowiedniego poziomu bezpieczeństwa. Warto również zwrócić uwagę na to, że stosując przewody o odpowiednim przekroju, zmniejszamy straty energii oraz ryzyko przegrzewania się materiałów, co jest istotne z perspektywy trwałości i niezawodności instalacji.

Pytanie 22

Jakim symbolem oznacza się jednożyłowy przewód z wielodrutową miedzianą żyłą o przekroju 2,5 mm2 w izolacji z PVC?

A. YLY 7×2,5 mm2
B. DY 2,5 mm2
C. YDY 5×2,5 mm2
D. LY 2,5 mm2
Odpowiedzi 'DY 2,5 mm2', 'YDY 5×2,5 mm2' oraz 'YLY 7×2,5 mm2' są błędne z różnych powodów. Oznaczenie 'DY' odnosi się do przewodów dwużyłowych z izolacją polwinitową, co nie jest zgodne z treścią pytania, które dotyczy przewodu jednożyłowego. Używanie oznaczeń dwużyłowych w kontekście jednożyłowym prowadzi do nieporozumień, zwłaszcza gdy mowa o zastosowaniach wymagających konkretnego przekroju i liczby żył. Z kolei oznaczenia 'YDY' oraz 'YLY' sugerują przewody wielożyłowe, co jest sprzeczne z wymaganiami zadania. Oznaczenia te wskazują na przewody z wieloma żyłami, co w kontekście jednożyłowego kabla jest niewłaściwe. Typowe błędy myślowe prowadzące do tych odpowiedzi mogą wynikać z nieścisłego zrozumienia klasyfikacji przewodów. Warto pamiętać, że dobór odpowiedniego przewodu elektrycznego powinien zawsze opierać się na specyfikacji technicznej oraz normach branżowych, jak PN-EN 60228. Nieprzestrzeganie tych zasad może prowadzić do poważnych problemów w instalacjach elektrycznych, takich jak przegrzewanie przewodów, co z kolei może prowadzić do pożarów lub awarii sprzętu.

Pytanie 23

Jakie akcesoria, oprócz szczypiec, trzeba pobrać z magazynu, aby zasilić zamontowany plafon sufitowy, kiedy instalacja została wykonana przewodami YDYp?

A. Ściągacz izolacji, nóż monterski, wkrętak
B. Nóż monterski, wiertarkę, ściągacz izolacji
C. Lutownicę, wiertarkę, ściągacz izolacji
D. Wiertarkę, lutownicę, wkrętak
Wybór narzędzi w odpowiedziach niepoprawnych wskazuje na błędne zrozumienie podstawowych zasad związanych z instalacjami elektrycznymi i ich wykonaniem. Lutownica, mimo że jest narzędziem użytecznym w niektórych pracach elektrycznych, nie jest konieczna w tym przypadku, ponieważ przewody YDYp są zazwyczaj łączone poprzez skręcanie lub złączki, a nie lutowanie. Wiertarka również nie jest narzędziem niezbędnym do podłączenia plafonu, gdyż jej zastosowanie ogranicza się głównie do wiercenia otworów w sufitach, co nie jest wymagane, jeżeli montaż może odbyć się na gotowych mocowaniach. Wykorzystanie wkrętaka jest istotne, jednak w połączeniu z niewłaściwymi narzędziami, nie spełnia ono swojej funkcji w kontekście prawidłowego podłączenia. Błędy myślowe, które mogą prowadzić do takich wniosków, to m.in. mylenie funkcji narzędzi oraz niezrozumienie specyfikacji stosowanych kabli i ich użycia w praktyce. Dla zapewnienia bezpieczeństwa oraz efektywności pracy, ważne jest, aby używać odpowiednich narzędzi zgodnie z ich przeznaczeniem oraz z zachowaniem zasad bezpieczeństwa, co zwiększa jakość wykonanej instalacji.

Pytanie 24

Która z podanych awarii urządzenia II klasy ochronności stanowi ryzyko porażenia prądem?

A. Zniszczenie przewodu ochronnego PE
B. Przerwanie uzwojeń silnika umieszczonego w urządzeniu
C. Uszkodzenie izolacji przewodu zasilającego urządzenie
D. Zwarcie bezpiecznika wewnętrznego urządzenia
Przepalenie bezpiecznika wewnątrz urządzenia oraz przerwa w uzwojeniach silnika, mimo że mogą prowadzić do problemów z działaniem urządzenia, nie stwarzają bezpośredniego zagrożenia porażenia prądem, ponieważ bezpiecznik jest elementem zabezpieczającym, który po wykryciu nadmiernego prądu automatycznie przerywa obwód. Z kolei przerwa w uzwojeniach silnika powoduje, że silnik przestaje działać, a nie występuje niebezpieczne napięcie na jego obudowie. Uszkodzenie przewodu ochronnego PE, chociaż stanowi istotny problem, w kontekście urządzenia II klasy ochronności nie powinno prowadzić do bezpośredniego zagrożenia, ponieważ urządzenia te są zaprojektowane tak, aby w przypadku awarii nie występowało niebezpieczne napięcie na obudowie. Kluczowym błędem myślowym jest niewłaściwe zrozumienie działania systemów ochrony. W urządzeniach II klasy ochronności, stosowanie podwójnej izolacji w celu zapobiegania porażeniom elektrycznym, sprawia, że nawet w przypadku uszkodzenia elementów wewnętrznych, nie powinno dojść do wystawienia na działanie niebezpiecznego napięcia. Zrozumienie zasad działania zabezpieczeń oraz klasyfikacji urządzeń elektrycznych jest kluczowe dla zapewnienia właściwego bezpieczeństwa w użytkowaniu sprzętu elektrycznego.

Pytanie 25

Jaka maksymalna wartość impedancji pętli zwarcia może występować w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby ochrona przed porażeniem była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego obwodu powinien wyłączyć instalacyjny wyłącznik nadprądowy C10?

A. 7,7 Ω
B. 8,0 Ω
C. 4,6 Ω
D. 2,3 Ω
Odpowiedź 2,3 Ω jest poprawna, ponieważ jest zgodna z wymaganiami dotyczącymi impedancji pętli zwarcia w trójfazowych obwodach elektrycznych. W takich systemach, aby zapewnić skuteczną ochronę przeciwporażeniową, impedancja pętli zwarcia powinna być na tyle niska, aby wyłącznik nadprądowy mógł szybko zareagować na zwarcie. Wyłącznik C10, który ma prąd znamionowy 10 A, wymaga maksymalnej impedancji pętli zwarcia równej 2,3 Ω, aby przy zwarciu wyzwolił się w czasie nieprzekraczającym 0,4 s. Przykładem zastosowania tej zasady jest instalacja w budynkach mieszkalnych, gdzie ochrona przed porażeniem prądem jest kluczowa. W praktyce, aby uzyskać odpowiednią impedancję, projektanci instalacji elektrycznych muszą uwzględnić odpowiednie przekroje przewodów oraz ich długość, a także zainstalować zabezpieczenia, które umożliwią szybkie odcięcie zasilania w przypadku uszkodzenia izolacji. W kontekście norm, można przywołać normę PN-EN 60364, która szczegółowo opisuje wymagania dotyczące ochrony osób i mienia przed skutkami działania prądu elektrycznego.

Pytanie 26

Który element rozdzielnicy przedstawiono na ilustracji?

Ilustracja do pytania
A. Przekaźnik czasowy.
B. Lampkę sygnalizacyjną trójfazową.
C. Czujnik zaniku fazy.
D. Regulator temperatury.
Wybór przekaźnika czasowego, regulatora temperatury czy czujnika zaniku fazy jako elementu przedstawionego na ilustracji wskazuje na pewne nieporozumienia dotyczące funkcji i zastosowania tych urządzeń w rozdzielnicach elektrycznych. Przekaźnik czasowy służy do automatyzacji procesów, włączając i wyłączając obwody zgodnie z zaprogramowanym czasem, a nie do sygnalizacji obecności napięcia. Regulator temperatury jest urządzeniem służącym do monitorowania i kontrolowania temperatury, co jest całkowicie inną funkcją w kontekście rozdzielnic elektrycznych. Z kolei czujnik zaniku fazy jest przeznaczony do ochrony instalacji przed nieprawidłowym działaniem spowodowanym brakiem jednej z faz, ale również nie pełni funkcji sygnalizacji napięcia. Wybierając jedną z tych odpowiedzi, można mylnie łączyć różne funkcje urządzeń, co prowadzi do nieporozumień w zakresie ich zastosowania. Ważne jest, aby w kontekście instalacji elektrycznych rozumieć rolę każdego urządzenia oraz ich specyfikę, co pozwala na poprawne podejmowanie decyzji dotyczących ich instalacji i użytkowania. W praktyce, błędne zrozumienie ról tych elementów może prowadzić do poważnych awarii i zagrożeń dla bezpieczeństwa użytkowników oraz sprzętu.

Pytanie 27

W jaki sposób powinno się przeprowadzać zalecane przez producenta regularne testy działania wyłącznika różnicowoprądowego?

A. Naciskając przycisk TEST na wyłączonym wyłączniku
B. Obserwując reakcję załączonego wyłącznika na odłączenie przewodu ochronnego w rozdzielnicy
C. Naciskając przycisk TEST na załączonym wyłączniku
D. Obserwując reakcję wyłączonego wyłącznika na zwarcie przewodów czynnych w obwodzie wyjściowym
Aby prawidłowo sprawdzić działanie wyłącznika różnicowoprądowego (RCD), należy nacisnąć przycisk TEST na załączonym wyłączniku. W momencie naciśnięcia przycisku TEST, wyłącznik symuluje wyciek prądu, co powinno spowodować jego natychmiastowe wyłączenie. Działanie to jest zgodne z zaleceniami zawartymi w normach europejskich EN 61008 oraz EN 61009, które podkreślają znaczenie regularnych testów wyłączników RCD w celu zapewnienia bezpieczeństwa elektrycznego. Przykładem zastosowania tej procedury może być okresowe testowanie w instalacjach domowych lub przemysłowych, co powinno odbywać się co najmniej raz na miesiąc. Regularne testowanie RCD jest kluczowe, ponieważ pozwala upewnić się, że wyłącznik będzie działał prawidłowo w przypadku rzeczywistego wycieku prądu, co może zminimalizować ryzyko porażenia prądem lub pożaru. Należy pamiętać, że po teście wyłącznik powinien być ponownie włączony, aby przywrócić normalne funkcjonowanie instalacji elektrycznej.

Pytanie 28

Jakie jest wymagane napięcie testowe przy pomiarze rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V?

A. 1000 V
B. 250V
C. 500V
D. 750V
Wymagane napięcie probiercze przy badaniu rezystancji izolacji obwodów w instalacjach elektrycznych 230/400 V wynosi 500 V. Taki poziom napięcia jest zgodny z normami określonymi w dokumentach takich jak PN-EN 61557-2, które regulują przeprowadzanie badań izolacji. Stosowanie napięcia 500 V jest efektywne w testowaniu izolacji, gdyż pozwala na uzyskanie rzetelnych wyników, przy jednoczesnym minimalizowaniu ryzyka uszkodzenia izolacji. Praktyczne zastosowanie tego napięcia jest szczególnie widoczne w instalacjach o napięciu roboczym 230/400 V, gdzie niskie napięcie mogłoby nie ujawnić potencjalnych problemów, a zbyt wysokie mogłoby prowadzić do uszkodzeń lub fałszywych odczytów. Regularne testy rezystancji izolacji przy użyciu odpowiednich napięć są kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych, co wynika z praktyk branżowych oraz przepisów BHP.

Pytanie 29

Jaką wartość ma prąd obciążenia przewodów fazowych, które zasilają odbiornik trójfazowy, jeśli pobiera on moc 2,2 kW przy napięciu 400 V oraz współczynniku mocy równym 0,82?

A. 3,9 A
B. 6,7 A
C. 2,2 A
D. 3,2 A
Aby obliczyć prąd obciążenia przewodów fazowych zasilających odbiornik trójfazowy, możemy skorzystać z wzoru na moc czynna w układzie trójfazowym: P = √3 * U * I * cos(φ), gdzie P to moc w watach, U to napięcie międzyfazowe w woltach, I to prąd w amperach, a cos(φ) to współczynnik mocy. W naszym przypadku moc wynosi 2,2 kW (czyli 2200 W), napięcie to 400 V, a współczynnik mocy wynosi 0,82. Przekształcamy wzór: I = P / (√3 * U * cos(φ)). Podstawiając wartości, mamy: I = 2200 / (√3 * 400 * 0,82). Po obliczeniach otrzymujemy I ≈ 3,9 A. Wiedza o obliczaniu prądu w obwodach trójfazowych jest niezbędna w praktyce, szczególnie w kontekście projektowania instalacji elektrycznych oraz ich późniejszej eksploatacji. Zrozumienie, jak różne czynniki wpływają na prąd, jest kluczowe dla bezpieczeństwa i efektywności energetycznej. Przykładem praktycznego zastosowania tej wiedzy może być dobór odpowiednich przewodów oraz zabezpieczeń w instalacjach elektrycznych.

Pytanie 30

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Automat zmierzchowy.
B. Przekaźnik priorytetowy.
C. Regulator temperatury.
D. Przekaźnik czasowy.
Urządzenie przedstawione na ilustracji to przekaźnik czasowy, co można stwierdzić na podstawie charakterystycznych oznaczeń obecnych na jego obudowie, w tym symboli związanych z czasem oraz pokręteł służących do ustawiania opóźnień. Przekaźniki czasowe są kluczowymi elementami w systemach automatyki, umożliwiającymi kontrolowanie działania urządzeń w określonych odstępach czasu. Na przykład, w instalacjach oświetleniowych, przekaźniki czasowe mogą być ustawiane tak, aby włączać światło o zmierzchu i wyłączać je o świcie, co jest zgodne z zasadami efektywnego zarządzania energią. Dodatkowo, oznaczenia takie jak 'T1' i 'T2' na urządzeniu wskazują na różne funkcje czasowe, co potwierdza jego przeznaczenie. Zastosowanie przekaźników czasowych jest powszechne w różnych sektorach, od budynków mieszkalnych, gdzie automatyzują oświetlenie, po przemysł, gdzie kontrolują maszyny w zależności od czasu pracy. Stosowanie przekaźników czasowych w zgodzie z normami branżowymi, takimi jak IEC 60947, zapewnia bezpieczeństwo oraz efektywność operacyjną systemów elektrycznych i elektronicznych.

Pytanie 31

Którym narzędziem należy wkręcać śrubę przedstawioną na rysunku?

Ilustracja do pytania
A. Wkrętakiem z nacięciem Torx.
B. Wkrętakiem z nacięciem Phillips.
C. Kluczem imbusowym.
D. Kluczem nasadowym.
Klucz imbusowy, nazywany również kluczem sześciokątnym, jest idealnym narzędziem do wkręcania śrub z sześciokątnym wewnętrznym nacięciem, co można zauważyć na przedstawionym na rysunku elemencie. Użycie klucza imbusowego pozwala na efektywne przeniesienie momentu obrotowego, co jest istotne w wielu aplikacjach, zarówno w mechanice, jak i w elektronice. Klucze imbusowe są dostępne w różnych rozmiarach, co umożliwia dopasowanie ich do różnych średnic śrub. Ważne jest również, aby stosować klucz imbusowy w odpowiednim rozmiarze, ponieważ nieodpowiedni klucz może uszkodzić nacięcie śruby, co utrudnia jej dalsze wkręcanie lub wykręcanie. W standardach branżowych klucz imbusowy jest często stosowany w konstrukcjach meblowych oraz w przemyśle motoryzacyjnym, gdzie wymagana jest wysoka precyzja i niezawodność. Dobrze dobrany klucz imbusowy ułatwia konserwację i montaż, a także zmniejsza ryzyko uszkodzenia śrub i komponentów.

Pytanie 32

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Izolator przepustowy wysokiego napięcia.
B. Izolator wsporczy.
C. Bezpiecznik aparatowy.
D. Wkładkę topikową bezpiecznika mocy.
Wkładka topikowa bezpiecznika mocy to kluczowy element zabezpieczający w obwodach elektrycznych, który chroni przed przeciążeniami i zwarciami. Na ilustracji widać charakterystyczne cechy tego komponentu, takie jak metalowe końcówki, które zapewniają dobrą przewodność elektryczną, oraz oznaczenia techniczne, które wskazują na parametry znamionowe wkładki. Wkładki topikowe są stosowane głównie w instalacjach przemysłowych i komercyjnych, gdzie występuje duże ryzyko przeciążeń. Zgodnie z normą IEC 60269, wkładki te powinny być dobierane na podstawie maksymalnego prądu, który może przepływać przez dany obwód, co wymaga precyzyjnego obliczenia. Przykłady zastosowania wkładek topikowych to ochrona silników elektrycznych, transformatorów oraz innych urządzeń, które mogą być narażone na nagłe skoki prądu. Użycie odpowiednich wkładek topikowych jest niezbędne dla zapewnienia bezpieczeństwa i niezawodności systemów elektrycznych.

Pytanie 33

Które z parametrów są podane na przedstawionym urządzeniu?

Ilustracja do pytania
A. Napięcie probiercze i prąd znamionowy.
B. Napięcie probiercze i prąd zadziałania.
C. Napięcie znamionowe i prąd zadziałania.
D. Napięcie znamionowe i prąd znamionowy.
Wybierając inne parametry, jak napięcie probiercze czy prąd zadziałania, to nie był najlepszy pomysł. Napięcie probiercze dotyczy testów izolacji, a nie tego, co pokazuje urządzenie na stałe. Prąd zadziałania to natomiast wartość, przy której zabezpieczenie jak wyłącznik różnicowoprądowy włącza się, gdy coś jest nie tak. Te pojęcia są ważne, ale nie pasują tu do parametrów znamionowych wypisanych na urządzeniu. Ważne jest, aby rozumieć te różnice, bo to pomaga w prawidłowym użytkowaniu sprzętu elektrycznego i jego bezpieczeństwie. Często ludzie mylą te terminy, co prowadzi do błędów przy doborze sprzętu i zabezpieczeń. Brak wiedzy na ten temat może skutkować poważnymi problemami, jak uszkodzenia urządzeń czy nawet pożar. Dlatego warto zawsze sprawdzać specyfikacje znamionowe, bo to podstawa do poprawnego użytkowania i projektowania instalacji elektrycznych.

Pytanie 34

Wyłącznik różnicowoprądowy oznaczony jako EFI-4 40/0,03 posiada znamionowy prąd różnicowy

A. 0,03 mA oraz znamionowy prąd ciągły 40 mA
B. 0,03 A oraz napięcie znamionowe 40 V
C. 0,03 mA oraz napięcie znamionowe 40 V
D. 0,03 A oraz znamionowy prąd ciągły 40 A
Wyłącznik różnicowoprądowy EFI-4 40/0,03 ma znamionowy prąd różnicowy wynoszący 0,03 A oraz znamionowy prąd ciągły 40 A. Oznaczenie '0,03' odnosi się do wartości prądu różnicowego, co oznacza, że urządzenie odłączy obwód elektryczny, gdy wykryje różnicę prądu wynoszącą 30 mA (0,03 A) pomiędzy przewodem fazowym a przewodem neutralnym. To działanie ma na celu ochronę przed porażeniem prądem oraz minimalizację ryzyka pożaru spowodowanego upływem prądu. Znamionowy prąd ciągły 40 A oznacza, że urządzenie jest w stanie przewodzić prąd o takim natężeniu bez ryzyka uszkodzenia. W praktyce, wyłączniki różnicowoprądowe są kluczowym elementem w systemach elektrycznych, szczególnie w instalacjach domowych i przemysłowych, gdzie ochrona ludzi i mienia przed skutkami awarii instalacji elektrycznej jest priorytetem. Stosowanie wyłączników różnicowoprądowych jest zgodne z normami PN-EN 61008-1, które określają wymagania dotyczące bezpieczeństwa i funkcjonowania tych urządzeń.

Pytanie 35

Jakiej z wymienionych czynności nie przeprowadza się w trakcie oględzin urządzenia napędowego z silnikiem elektrycznym podczas pracy?

A. Oceny stanu przewodów ochronnych oraz ich podłączenia
B. Sprawdzenia szczotek i szczotkotrzymaczy
C. Sprawdzenia działania systemów chłodzenia
D. Kontroli stanu osłon elementów wirujących
Odpowiedź dotycząca sprawdzenia szczotek i szczotkotrzymaczy jako czynności, której nie wykonuje się podczas oględzin urządzenia napędowego z silnikiem elektrycznym w czasie ruchu, jest poprawna. Podczas pracy silnika elektrycznego, szczegóły takie jak szczotki i szczotkotrzymacze nie mogą być skutecznie oceniane, ponieważ wymagają one zatrzymania silnika, aby móc przeprowadzić dokładne wizualne i techniczne badania. Szczotki są kluczowymi elementami, które przekazują prąd do wirnika i ich stan ma istotny wpływ na wydajność silnika. W praktyce, regularne kontrole tych komponentów powinny być przeprowadzane w warunkach postoju, aby uniknąć uszkodzeń i zapewnić długotrwałe, bezproblemowe funkcjonowanie napędu. Zaleca się stosowanie standardów takich jak PN-EN 60034, które określają wymagania dotyczące silników elektrycznych, oraz dokumentacji producentów, aby przestrzegać najlepszych praktyk obsługi i konserwacji urządzeń. Wnioskując, ocena stanu szczotek i szczotkotrzymaczy w czasie ruchu nie jest możliwa, co czyni tę odpowiedź prawidłową.

Pytanie 36

Jaką klasę ochronności przypisuje się oprawie oświetleniowej, która nie ma zacisku ochronnego i jest zasilana ze źródła napięcia SELV?

A. III
B. 0
C. I
D. II
Klasy ochronności urządzeń elektrycznych mają kluczowe znaczenie dla zapewnienia bezpieczeństwa ich użytkowania. Odpowiedzi I, 0 oraz II nie są poprawne w kontekście oprawy zasilanej niskonapięciowym źródłem SELV. Klasa I odnosi się do urządzeń, które posiadają zacisk ochronny i wymagają podłączenia do uziemienia, co nie jest spełnione w przypadku oprawy bez zacisku ochronnego. Klasa 0 dotyczy urządzeń, które nie mają ochrony przeciwporażeniowej i są niebezpieczne w użytkowaniu, ponieważ nie oferują żadnego zabezpieczenia przed zwarciem. Z kolei klasa II odnosi się do urządzeń, które mają podwójną izolację i nie wymagają uziemienia. Odpowiedź na to pytanie wymaga zrozumienia różnic między tymi klasami oraz ich zastosowania w praktyce. Większość błędów w wyborze odpowiedzi wynika z nieznajomości zasad dotyczących bezpieczeństwa elektrycznego oraz z mylenia klasyfikacji opraw w kontekście ich konstrukcji i zastosowania. Ważne jest, aby zwracać uwagę na oznaczenia na urządzeniach oraz stosować się do norm i standardów, które regulują te kwestie. W kontekście opraw oświetleniowych klasa ochronności III to gwarancja, że użytkownik nie będzie narażony na niebezpieczeństwo, a projektanci oświetlenia mogą skutecznie wykorzystywać takie oprawy w różnych środowiskach.

Pytanie 37

Która z poniższych czynności jest częścią oględzin przy konserwacji wirnika silnika komutatorowego?

A. Weryfikacja braku zwarć międzyzwojowych
B. Wyważanie
C. Pomiar rezystancji izolacji
D. Sprawdzenie kondycji wycinków komutatora
Odpowiedzi, które nie dotyczą sprawdzenia stanu wycinków komutatora, choć mogą wydawać się związane z konserwacją silników komutatorowych, nie odpowiadają na kluczową kwestię oględzin wirnika. Wyważenie wirnika jest istotne dla eliminacji drgań, które mogą prowadzić do uszkodzeń łożysk i innych komponentów, jednak nie jest to bezpośrednia czynność związana z ocena stanu komutatora. Pomiar rezystancji izolacji to ważny krok w ocenie stanu izolacji uzwojeń silnika, ale również nie dotyczy bezpośrednio stanu wycinków komutatora. Z kolei sprawdzenie braku zwarć międzyzwojowych jest kluczowe dla bezpieczeństwa i niezawodności silnika, jednak nie dotyczy to bezpośrednio stanu komutatora, który jest kluczowym elementem zapewniającym poprawną pracę silnika. Zrozumienie, że każda z tych czynności odgrywa swoją rolę w konserwacji silnika, jest ważne, ale nie wszystkie są równorzędne w kontekście oględzin wirnika. Często można spotkać się z mylnym przekonaniem, że te wszystkie czynności służą temu samemu celowi, podczas gdy każda z nich ma swoją specyfikę oraz odmienny wpływ na działanie silnika. Dlatego kluczowe jest skupienie się na właściwych czynnościach konserwacyjnych, które odpowiadają na konkretne potrzeby diagnostyczne silnika, a nie tylko na ogólnych działaniach związanych z jego konserwacją.

Pytanie 38

Jaką maksymalną wartość impedancji pętli zwarcia powinien mieć obwód o napięciu 230/400 V, aby wyłącznik instalacyjny nadprądowy C10 mógł skutecznie zapewnić ochronę przed porażeniem?

A. 4,6 Ω
B. 2,3 Ω
C. 7,7 Ω
D. 0,4 Ω
Wiesz co, jeśli chodzi o maksymalną wartość impedancji pętli zwarcia dla obwodu 230/400 V z wyłącznikiem nadprądowym C10, to wynosi ona 2,3 Ω. To wyliczenie oparłem na normie PN-IEC 60364, która w sumie mówi, jakie powinny być zasady dotyczące ochrony elektrycznej. Wyłącznik C10, który działa przy prądzie 10 A, musi zadziałać szybko, kiedy pojawi się zwarcie, a do tego potrzebna jest niska impedancja pętli. W skrócie, żeby zapewnić bezpieczeństwo, trzeba pilnować, żeby ta impedancja nie była wyższa niż 2,3 Ω. Dzięki temu wyłącznik zadziała w krótkim czasie, co daje lepszą ochronę. Jakby impedancja była wyższa, to wyłącznik może działać wolniej, a to już tworzy ryzyko dla ludzi. Dlatego ważne jest, żeby regularnie mierzyć impedancję pętli zwarcia i trzymać to w ryzach.

Pytanie 39

Woltomierz działający na zasadzie magnetoelektrycznej, który mierzy napięcie sinusoidalnie z dodatkiem składowej stałej, wskaże wartość

A. chwilową napięcia
B. skuteczną napięcia
C. znamionową napięcia
D. średnią napięcia
Woltomierz magnetoelektryczny jest narzędziem wykorzystywanym do pomiaru napięcia, a w przypadku napięcia sinusoidalnego z składową stałą, jego wskazanie dotyczy wartości średniej. Wartość średnia napięcia sinusoidalnego, z uwzględnieniem składowej stałej, jest kluczowa w aplikacjach, gdzie istotne jest określenie efektywnego poziomu energii dostarczanej do obciążenia. W praktyce, woltomierze magnetoelektryczne są często używane w pomiarach w systemach zasilania, gdzie zrozumienie i kontrola napięcia oraz prądu są niezbędne dla zapewnienia prawidłowego działania urządzeń. Wartość średnia jest obliczana jako średnia arytmetyczna z okresu sygnału, co w przypadku napięcia sinusoidalnego z składową stałą prowadzi do lepszego zrozumienia zarówno efektywności, jak i bezpieczeństwa systemów elektrycznych. Ustalono w normach IEC, że pomiar wartości średniej jest istotny dla wielu aplikacji w inżynierii elektrycznej, co podkreśla znaczenie tej metody pomiarowej.

Pytanie 40

Wyznacz znamionowy współczynnik mocy dla silnika trójfazowego z następującymi danymi: PN = 2,2 kW (moc mechaniczna), UN = 400 V, IN = 4,6 A, ηN = 0,84?

A. 0,57
B. 0,69
C. 0,99
D. 0,82
Obliczenie znamionowego współczynnika mocy (cos φ) dla silnika trójfazowego to dość prosta sprawa, jeśli mamy wszystkie potrzebne dane. Mówiąc w skrócie, ten współczynnik to stosunek mocy czynnej (P) do mocy pozornej (S). Może być obliczony za pomocą wzoru: cos φ = P / (√3 * U * I), gdzie P to moc czynna, U to napięcie, a I to prąd znamionowy. Jak podstawimy wartości z pytania: P = 2,2 kW, U = 400 V, I = 4,6 A, to najpierw liczymy S = √3 * 400 V * 4,6 A, co daje nam 2,664 kVA. Potem obliczamy cos φ = 2,2 kW / 2,664 kVA, co wychodzi około 0,826. Jak zaokrąglimy, to dostaniemy 0,82. Wiesz, czemu to jest ważne? Bo dobrze obliczony współczynnik mocy pomaga w projektowaniu układów elektroenergetycznych, a to z kolei przekłada się na lepszą efektywność energetyczną i mniejsze straty energii. Silniki z wyższym współczynnikiem mocy są bardziej efektywne i można na nich zaoszczędzić, co jest korzystne zarówno dla nas, jak i dla sieci zasilającej.